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CHAPTER 1

Installation

QuCumber only supports Python 3, not Python 2. If you are using Python 2, please update! You will also want to
install the following packages, if you have not already.

1. Pytorch v0.4.1 (https://pytorch.org/)

2. tqdm (https://github.com/tqdm/tqdm)

1.1 Github

Navigate to the qucumber page on github (https://github.com/PIQuIL/QuCumber) and clone the repository by typing:

git clone https://github.com/PIQuIL/QuCumber.git

Navigate to the main directory and type:

python setup.py install

1.2 Windows

Navigate to the directory (through command prompt) where pip.exe is installed (usually
C:\Python\Scripts\pip.exe) and type:

pip.exe install qucumber

1.3 Linux / MacOS

Open up a terminal, then type:
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pip install qucumber
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CHAPTER 2

Theory

For a basic introduction to Restricted Boltzmann Machines, click here.
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CHAPTER 3

Download the tutorials

Once you have installed QuCumber, we recommend going through our tutorial that is divided into two parts.

1. Training a Wavefunction to reconstruct a positive-real wavefunction (i.e. no phase) from a transverse-field Ising
model (TFIM) and then generating new data.

2. Training an Wavefunction to reconstruct a complex wavefunction (i.e. with a phase) from a simple two qubit
random state and then generating new data.

We have made interactive python notebooks that can be downloaded (along with the data required) here. Note that the
linked examples are from the most recent stable release (relative to the version of the docs you’re currently viewing),
and may not match the examples shown in the following pages. It is recommended that you refer to documentation
for the latest stable release: https://qucumber.readthedocs.io/en/stable/.

If you wish to simply view the static, non-interactive notebooks, continue to the next page of the documentation.

Alternatively, you can view interactive notebooks online at: , though they may be slow.
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CHAPTER 4

Reconstruction of a positive-real wavefunction

In this tutorial, a walkthrough of how to reconstruct a positive-real wavefunction via training a Restricted Boltzmann
Machine (RBM), the neural network behind qucumber, will be presented. The data used for training will be 𝜎𝑧

measurements from a one-dimensional transverse-field Ising model (TFIM) with 10 sites at its critical point.

4.1 Transverse-field Ising model

The example dataset, located in tfim1d_data.txt, comprises of 10,000 𝜎𝑧 measurements from a one-dimensional
transverse-field Ising model (TFIM) with 10 sites at its critical point. The Hamiltonian for the transverse-field Ising
model (TFIM) is given by

ℋ = −𝐽
∑︁
𝑖

𝜎𝑧
𝑖 𝜎

𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥
𝑖 (4.1)

where 𝜎𝑧
𝑖 is the conventional spin-1/2 Pauli operator on site 𝑖. At the critical point, 𝐽 = ℎ = 1. As per convention,

spins are represented in binary notation with zero and one denoting spin-down and spin-up, respectively.

4.2 Using qucumber to reconstruct the wavefunction

4.2.1 Imports

To begin the tutorial, first import the required Python packages.

In [1]: import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWavefunction
from qucumber.callbacks import MetricEvaluator

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data
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The Python class PositiveWavefunction contains generic properties of a RBM meant to reconstruct a positive-real
wavefunction, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a PositiveWavefunction object, one needs to specify the number of visible and hidden units in the RBM.
The number of visible units, num_visible, is given by the size of the physical system, i.e. the number of spins or qubits
(10 in this case), while the number of hidden units, num_hidden, can be varied to change the expressiveness of the
neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the TFIM, having this ratio be
equal to 1 leads to good results with reasonable computational effort.

4.2.2 Training

To evaluate the training in real time, the fidelity between the true ground-state wavefunction of the system and the
wavefunction that qucumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, will be calculated along with the Kullback-Leibler (KL)
divergence (the RBM’s cost function). It will also be shown that any custom function can be used to evaluate the
training.

First, the training data and the true wavefunction of this system must be loaded using the data utility.

In [2]: psi_path = "tfim1d_psi.txt"
train_path = "tfim1d_data.txt"
train_data, true_psi = data.load_data(train_path, psi_path)

As previously mentioned, to instantiate a PositiveWavefunction object, one needs to specify the number of visible and
hidden units in the RBM. These two quantities equal will be kept equal.

In [3]: nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWavefunction(num_visible=nv, num_hidden=nh)
# nn_state = PositiveWavefunction(num_visible=nv, num_hidden=nh, gpu = False)

By default, qucumber will attempt to run on a GPU if one is available (if one is not available, qucumber will default
to CPU). If one wishes to run qucumber on a CPU, add the flag “gpu = False” in the PositiveWavefunction object
instantiation (i.e. uncomment the line above).

Now the hyperparameters of the training process can be specified.

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pos_batch_size: the number of data points used in the positive phase of the gradient (default = 100)

3. neg_batch_size: the number of data points used in the negative phase of the gradient (default = pos_batch_size)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read
through the brief, but thorough theory document on RBMs located in the qucumber documentation. One does
not have to specify these hyperparameters, as their default values will be used without the user overwriting
them. It is recommended to keep with the default values until the user has a stronger grasp on what these
hyperparameters mean. The quality and the computational efficiency of the training will highly depend on the
choice of hyperparameters. As such, playing around with the hyperparameters is almost always necessary.

For the TFIM with 10 sites, the following hyperparameters give excellent results.

In [4]: epochs = 1000
pbs = 100 # pos_batch_size
nbs = 200 # neg_batch_size

8 Chapter 4. Reconstruction of a positive-real wavefunction
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lr = 0.01
k = 10

For evaluating the training in real time, the MetricEvaluator will be called in order to calculate the training evaluators
every 100 epochs. The MetricEvaluator requires the following arguments.

1. log_every: the frequency of the training evaluators being calculated is controlled by the log_every argument
(e.g. log_every = 200 means that the MetricEvaluator will update the user every 200 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the training_statistics
utility.

• target_psi: the true wavefunction of the system

• space: the hilbert space of the system

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator, thus
avoiding having to calculate fidelity and/or KL divergence. Any custom function given to MetricEvaluator must take
the neural-network state (in this case, the PositiveWavefunction object) and keyword arguments. As an example, the
function to be passed to the MetricEvaluator will be the fifth coefficient of the reconstructed wavefunction multiplied
by a parameter, A.

In [5]: def psi_coefficient(nn_state, space, A, **kwargs):
norm = nn_state.compute_normalization(space).sqrt_()
return A * nn_state.psi(space)[0][4] / norm

Now the hilbert space of the system can be generated for the fidelity and KL divergence and the dictionary of functions
the user would like to compute every “log_every” epochs can be given to the MetricEvaluator.

In [6]: log_every = 100
space = nn_state.generate_hilbert_space(nv)

Now the training can begin. The PositiveWavefunction object has a property called fit which takes care of this. Met-
ricEvaluator must be passed to the fit function in a list (callbacks).

In [7]: callbacks = [
MetricEvaluator(

log_every,
{"Fidelity": ts.fidelity, "KL": ts.KL, "A_Ψrbm_5": psi_coefficient},
target_psi=true_psi,
verbose=True,
space=space,
A=3.,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
callbacks=callbacks,

4.2. Using qucumber to reconstruct the wavefunction 9
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)
# nn_state.fit(train_data, callbacks=callbacks)

Epoch: 100 Fidelity = 0.916228 KL = 0.171583 A_rbm_5 = 0.222936
Epoch: 200 Fidelity = 0.964221 KL = 0.071276 A_rbm_5 = 0.210849
Epoch: 300 Fidelity = 0.979963 KL = 0.039937 A_rbm_5 = 0.221388
Epoch: 400 Fidelity = 0.987497 KL = 0.024977 A_rbm_5 = 0.223976
Epoch: 500 Fidelity = 0.989811 KL = 0.020543 A_rbm_5 = 0.235250
Epoch: 600 Fidelity = 0.991764 KL = 0.016631 A_rbm_5 = 0.232943
Epoch: 700 Fidelity = 0.993143 KL = 0.013830 A_rbm_5 = 0.234583
Epoch: 800 Fidelity = 0.993379 KL = 0.013242 A_rbm_5 = 0.241191
Epoch: 900 Fidelity = 0.994647 KL = 0.010728 A_rbm_5 = 0.237508
Epoch: 1000 Fidelity = 0.995182 KL = 0.009666 A_rbm_5 = 0.238725

All of these training evaluators can be accessed after the training has completed, as well. The code below shows this,
along with plots of each training evaluator versus the training cycle number (epoch).

In [8]: fidelities = callbacks[0].Fidelity
KLs = callbacks[0].KL
coeffs = callbacks[0].A_Ψrbm_5
# Please note that the key given to the *MetricEvaluator* must be what comes after callbacks[0].
epoch = np.arange(log_every, epochs + 1, log_every)

plt.figure(1)
ax1 = plt.axes()
ax1.grid()
ax1.set_xlim(log_every, epochs)
ax1.set_xlabel("Epoch")
ax1.set_ylabel("Fidelity")
ax1.plot(epoch, fidelities, color="r")

plt.figure(2)
ax2 = plt.axes()
ax2.grid()
ax2.set_xlim(log_every, epochs)
ax2.set_xlabel("Epoch")
ax2.set_ylabel("KL Divergence")
ax2.plot(epoch, KLs, color="r")

plt.figure(3)
ax3 = plt.axes()
ax3.grid()
ax3.set_xlim(log_every, epochs)
ax3.set_xlabel("Epoch")
ax3.set_ylabel(r"$A\psi_{RBM}[5]$")
ax3.plot(epoch, coeffs, color="r")

Out[8]: [<matplotlib.lines.Line2D at 0x7f0ce75d00b8>]
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It should be noted that one could have just ran nn_state.fit(train_samples) and just used the default hyperparameters
and no training evaluators.

To demonstrate how important it is to find the optimal hyperparameters for a certain system, restart this notebook
and comment out the original fit statement and uncomment the one below. The default hyperparameters will be
used instead. Using the non-default hyperparameters yielded a fidelity of approximately 0.994, while the default
hyperparameters yielded a fidelity of approximately 0.523!

The RBM’s parameters will also be saved for future use in other tutorials. They can be saved to a pickle file with the
name “saved_params.pt” with the code below.

In [9]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors with the following keys: “weights”, “visi-
ble_bias”, “hidden_bias”.

12 Chapter 4. Reconstruction of a positive-real wavefunction



CHAPTER 5

Reconstruction of a complex wavefunction

In this tutorial, a walkthrough of how to reconstruct a complex wavefunction via training a Restricted Boltzmann
Machine (RBM), the neural network behind qucumber, will be presented.

5.1 The wavefunction to be reconstructed

The simple wavefunction below describing two qubits (coefficients stored in qubits_psi.txt) will be reconstructed.

|𝜓⟩ = 𝛼|00⟩+ 𝛽|01⟩+ 𝛾|10⟩+ 𝛿|11⟩ (5.1)

where the exact values of 𝛼, 𝛽, 𝛾 and 𝛿 used for this tutorial are

𝛼 = 0.2861 + 0.0539𝑖 (5.2)
𝛽 = 0.3687− 0.3023𝑖 (5.3)
𝛾 = −0.1672− 0.3529𝑖 (5.4)
𝛿 = −0.5659− 0.4639𝑖. (5.5)

The example dataset, qubits_train.txt, comprises of 500 𝜎 measurements made in various bases (X, Y and Z). A cor-
responding file containing the bases for each data point in qubits_train.txt, qubits_train_bases.txt, is also required. As
per convention, spins are represented in binary notation with zero and one denoting spin-down and spin-up, respec-
tively.

5.2 Using qucumber to reconstruct the wavefunction

5.2.1 Imports

To begin the tutorial, first import the required Python packages.

In [1]: import numpy as np
import torch

13
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import matplotlib.pyplot as plt

from qucumber.nn_states import ComplexWavefunction

from qucumber.callbacks import MetricEvaluator

import qucumber.utils.unitaries as unitaries
import qucumber.utils.cplx as cplx

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data

The Python class ComplexWavefunction contains generic properties of a RBM meant to reconstruct a complex wave-
function, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a ComplexWavefunction object, one needs to specify the number of visible and hidden units in the RBM.
The number of visible units, num_visible, is given by the size of the physical system, i.e. the number of spins or qubits
(2 in this case), while the number of hidden units, num_hidden, can be varied to change the expressiveness of the
neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the two-qubit wavefunction
described above, good results are yielded when this ratio is 1.

On top of needing the number of visible and hidden units, a ComplexWavefunction object requires the user to input a
dictionary containing the unitary operators (2x2) that will be used to rotate the qubits in and out of the computational
basis, Z, during the training process. The unitaries utility will take care of creating this dictionary.

The MetricEvaluator class and training_statistics utility are built-in amenities that will allow the user to evaluate the
training in real time.

Lastly, the cplx utility allows qucumber to be able to handle complex numbers. Currently, Pytorch does not support
complex numbers.

5.2.2 Training

To evaluate the training in real time, the fidelity between the true wavefunction of the system and the wavefunction
that qucumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, will be calculated along with the Kullback-Leibler (KL) divergence (the
RBM’s cost function). First, the training data and the true wavefunction of this system need to be loaded using the
data utility.

In [2]: train_path = "qubits_train.txt"
train_bases_path = "qubits_train_bases.txt"
psi_path = "qubits_psi.txt"
bases_path = "qubits_bases.txt"

train_samples, true_psi, train_bases, bases = data.load_data(
train_path, psi_path, train_bases_path, bases_path

)

The file qubits_bases.txt contains every unique basis in the qubits_train_bases.txt file. Calculation of the full KL
divergence in every basis requires the user to specify each unique basis.

As previouosly mentioned, a ComplexWavefunction object requires a dictionary that contains the unitariy operators
that will be used to rotate the qubits in and out of the computational basis, Z, during the training process. In the case of
the provided dataset, the unitaries required are the well-known 𝐻 , and 𝐾 gates. The dictionary needed can be created
with the following command.

In [3]: unitary_dict = unitaries.create_dict()
# unitary_dict = unitaries.create_dict(unitary_name=torch.tensor([[real part],

14 Chapter 5. Reconstruction of a complex wavefunction
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# [imaginary part]],
# dtype=torch.double)

If the user wishes to add their own unitary operators from their experiment to unitary_dict, uncomment the block
above. When unitaries.create_dict() is called, it will contain the identity and the 𝐻 and 𝐾 gates by default with the
keys “Z”, “X” and “Y”, respectively.

The number of visible units in the RBM is equal to the number of qubits. The number of hidden units will also be
taken to be the number of visible units.

In [4]: nv = train_samples.shape[-1]
nh = nv

nn_state = ComplexWavefunction(
num_visible=nv, num_hidden=nh, unitary_dict=unitary_dict, gpu=False

)
# nn_state = ComplexWavefunction(num_visible=nv, num_hidden=nh, unitary_dict=unitary_dict)

By default, qucumber will attempt to run on a GPU if one is available (if one is not available, qucumber will default
to CPU). If one wishes to run qucumber on a CPU, add the flag “gpu = False” in the ComplexWavefunction object
instantiation. Uncomment the line above to run this tutorial on a GPU.

Now the hyperparameters of the training process can be specified.

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pos_batch_size: the number of data points used in the positive phase of the gradient (default = 100)

3. neg_batch_size: the number of data points used in the negative phase of the gradient (default = pos_batch_size)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read through
the brief, but thorough theory document on RBMs. One does not have to specify these hyperparameters, as their
default values will be used without the user overwriting them. It is recommended to keep with the default values
until the user has a stronger grasp on what these hyperparameters mean. The quality and the computational
efficiency of the training will highly depend on the choice of hyperparameters. As such, playing around with
the hyperparameters is almost always necessary.

The two-qubit example in this tutorial should be extremely easy to train, regardless of the choice of hyperparameters.
However, the hyperparameters below will be used.

In [5]: epochs = 80
pbs = 50 # pos_batch_size
nbs = 10 # neg_batch_size
lr = 0.1
k = 5

For evaluating the training in real time, the MetricEvaluator will be called to calculate the training evaluators every 10
epochs. The MetricEvaluator requires the following arguments.

1. log_every: the frequency of the training evaluators being calculated is controlled by the log_every argument
(e.g. log_every = 200 means that the MetricEvaluator will update the user every 200 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the training_statistics
utility.

• target_psi (the true wavefunction of the system)

5.2. Using qucumber to reconstruct the wavefunction 15
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• space (the hilbert space of the system)

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator, thus
avoiding having to calculate fidelity and/or KL divergence. As an example, functions that calculate the the norm of
each of the reconstructed wavefunction’s coefficients are presented. Any custom function given to MetricEvaluator
must take the neural-network state (in this case, the ComplexWavefunction object) and keyword arguments. Although
the given example requires the hilbert space to be computed, the scope of the MetricEvaluator’s ability to be able to
handle any function should still be evident.

In [6]: def alpha(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
alpha_ = cplx.norm(

torch.tensor([rbm_psi[0][0], rbm_psi[1][0]], device=nn_state.device)
/ normalization

)

return alpha_

def beta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
beta_ = cplx.norm(

torch.tensor([rbm_psi[0][1], rbm_psi[1][1]], device=nn_state.device)
/ normalization

)

return beta_

def gamma(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
gamma_ = cplx.norm(

torch.tensor([rbm_psi[0][2], rbm_psi[1][2]], device=nn_state.device)
/ normalization

)

return gamma_

def delta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
delta_ = cplx.norm(

torch.tensor([rbm_psi[0][3], rbm_psi[1][3]], device=nn_state.device)
/ normalization

)

return delta_

Now the hilbert space of the system must be generated for the fidelity and KL divergence and the dictionary of
functions the user would like to compute every “log_every” epochs must be given to the MetricEvaluator.
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In [7]: log_every = 10
space = nn_state.generate_hilbert_space(nv)

callbacks = [
MetricEvaluator(

log_every,
{

"Fidelity": ts.fidelity,
"KL": ts.KL,
"norm𝛼": alpha,
"norm𝛽": beta,
"norm𝛾": gamma,
"norm𝛿": delta,

},
target_psi=true_psi,
bases=bases,
verbose=True,
space=space,

)
]

Now the training can begin. The ComplexWavefunction object has a property called fit which takes care of this.

In [8]: nn_state.fit(
train_samples,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
input_bases=train_bases,
callbacks=callbacks,

)

Epoch: 10 Fidelity = 0.584157 KL = 0.239528 norm = 0.203017 norm = 0.333242 norm = 0.440140 norm = 0.808709
Epoch: 20 Fidelity = 0.900338 KL = 0.046861 norm = 0.284082 norm = 0.468427 norm = 0.408342 norm = 0.730158
Epoch: 30 Fidelity = 0.964009 KL = 0.022833 norm = 0.284898 norm = 0.489092 norm = 0.390978 norm = 0.725781
Epoch: 40 Fidelity = 0.979635 KL = 0.015013 norm = 0.286033 norm = 0.462681 norm = 0.415928 norm = 0.728777
Epoch: 50 Fidelity = 0.978498 KL = 0.017450 norm = 0.264300 norm = 0.413593 norm = 0.439953 norm = 0.752016
Epoch: 60 Fidelity = 0.983162 KL = 0.013628 norm = 0.284534 norm = 0.433017 norm = 0.443165 norm = 0.731533
Epoch: 70 Fidelity = 0.989934 KL = 0.009804 norm = 0.265790 norm = 0.484255 norm = 0.378505 norm = 0.742689
Epoch: 80 Fidelity = 0.990302 KL = 0.009240 norm = 0.255228 norm = 0.458123 norm = 0.389683 norm = 0.757053

All of these training evaluators can be accessed after the training has completed, as well. The code below shows this,
along with plots of each training evaluator versus the training cycle number (epoch).

In [9]: fidelities = callbacks[0].Fidelity
KLs = callbacks[0].KL
coeffs = callbacks[0].norm𝛼
# Please note that the key given to the *MetricEvaluator* must be what comes after callbacks[0].
epoch = np.arange(log_every, epochs + 1, log_every)

plt.figure(1)
ax1 = plt.axes()
ax1.grid()
ax1.set_xlim(log_every, epochs)
ax1.set_xlabel("Epoch")
ax1.set_ylabel("Fidelity")
ax1.plot(epoch, fidelities, color="r")

plt.figure(2)
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ax2 = plt.axes()
ax2.grid()
ax2.set_xlim(log_every, epochs)
ax2.set_xlabel("Epoch")
ax2.set_ylabel("KL Divergence")
ax2.plot(epoch, KLs, color="r")

plt.figure(3)
ax3 = plt.axes()
ax3.grid()
ax3.set_xlim(log_every, epochs)
ax3.set_xlabel("Epoch")
ax3.set_ylabel(r"$\vert\alpha\vert$")
ax3.plot(epoch, coeffs, color="r")

Out[9]: [<matplotlib.lines.Line2D at 0x7f216c73b940>]
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It should be noted that one could have just ran nn_state.fit(train_samples) and just used the default hyperparameters
and no training evaluators.

At the end of the training process, the network parameters (the weights, visible biases and hidden biases) are stored in
the ComplexWavefunction object. One can save them to a pickle file, which will be called saved_params.pt, with the
following command.

In [10]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors with the following keys: “weights”, “visi-
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ble_bias”, “hidden_bias”.

20 Chapter 5. Reconstruction of a complex wavefunction



CHAPTER 6

Sampling and calculating observables

6.1 Generate new samples

Firstly, to generate meaningful data, an RBM needs to be trained. Please refer to the tutorials 1 and 2 on training an
RBM if how to train an RBM using qucumber is unclear. An RBM with a positive-real wavefunction describing a
transverse-field Ising model (TFIM) with 10 sites has already been trained in the first tutorial, with the parameters of the
machine saved here as saved_params.pt. The autoload function can be employed here to instantiate the corresponding
PositiveWavefunction object from the saved RBM parameters.

In [1]: import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWavefunction

from qucumber.observables import Observable

import quantum_ising_chain
from quantum_ising_chain import TFIMChainEnergy

nn_state = PositiveWavefunction.autoload("saved_params.pt")

A PositiveWavefunction object has a property called sample that takes in the following arguments.

1. k: the number of Gibbs steps to perform to generate the new samples

2. num_samples: the number of new data points to be generated

In [2]: new_samples = nn_state.sample(k=100, num_samples=10000)
print(new_samples)

tensor([[0., 1., 1., ..., 1., 0., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[0., 1., 0., ..., 0., 0., 0.],
...,
[1., 1., 1., ..., 0., 0., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[0., 0., 0., ..., 1., 1., 1.]], dtype=torch.float64)
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With the newly generated samples, the user can now easliy calculate observables that do not require any details
associated with the RBM. A great example of this is the magnetization. To calculate the magnetization, the newly-
generated samples must be converted to ± 1 from 1 and 0, respectively. The function below does the trick.

In [3]: def to_pm1(samples):
return samples.mul(2.).sub(1.)

Now, the magnetization is calculated as follows.

In [4]: def Magnetization(samples):
return to_pm1(samples).mean(1).abs().mean()

magnetization = Magnetization(new_samples).item()

print("Magnetization = %.5f" % magnetization)

Magnetization = 0.55620

The exact value for the magnetization is 0.5610.

The magnetization and the newly-generated samples can also be saved to a pickle file along with the RBM parameters
in the PositiveWavefunction object.

In [5]: nn_state.save(
"saved_params_and_new_data.pt",
metadata={"samples": new_samples, "magnetization": magnetization},

)

The metadata argument in the save function takes in a dictionary of data that you would like to save on top of the
RBM parameters.

6.2 Calculate an observable using the Observable module

6.2.1 Custom observable

Qucumber has a built-in module called Observable which makes it easy for the user to compute any arbitrary observ-
able from the RBM. To see the the Observable module in action, an example observable called PIQuIL, which inherits
properties from the Observable module, is shown below.

The PIQuIL observable takes an 𝜎𝑧 measurement at a site and multiplies it by the measurement two sites from
it. There is also a parameter, P, that determines the strength of each of these interactions. For example, for
the dataset (−1, 1, 1,−1), (1, 1, 1, 1) and (1, 1,−1, 1) with P = 2, the PIQuIL for each data point would be
(2(−1× 1) + 2(1×−1) = −4) , (2(1× 1) + 2(1× 1) = 4) and (2(1×−1) + 2(1× 1) = 0), respectively.

In [6]: class PIQuIL(Observable):
def __init__(self, P):

super(PIQuIL, self).__init__()
self.P = P

# Required : function that calculates the PIQuIL. Must be named "apply"
def apply(self, nn_state, samples):

to_pm1(samples)
interaction_ = 0
for i in range(samples.shape[-1]):

if (i + 3) > samples.shape[-1]:
continue

else:
interaction_ += self.P * samples[:, i] * samples[:, i + 2]
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return interaction_

P = 0.05
piquil = PIQuIL(P)

The apply function is contained in the Observable module, but is overwritten here. The apply function in Observable
will compute the observable itself and must take in the RBM (nn_state) and a batch of samples as arguments. Thus,
any new class inheriting from Observables that the user would like to define must contain a function called apply that
calculates this new observable.

Although the PIQuIL observable could technically be computed without the use of the Observable module since it
does not ever use the RBM (nn_state), it is still nonetheless a constructive example.

The real power in the Observable module is in the ability for the user to easily compute statistics of the observable from
the generated sample. Since we have already generated new samples of data, the PIQuIL observable’s mean, standard
error and variance on the new data can be calculated with the statistics_from_samples function in the Observable
module. The user must simply give the RBM and the samples as arguments.

In [7]: piquil_stats1 = piquil.statistics_from_samples(nn_state, new_samples)

The statistics_from_samples function returns a dictionary containing the mean, standard error and the variance with
the keys “mean”, “std_error” and “variance”, respectively.

In [8]: print(
"Mean PIQuIL: %.4f" % piquil_stats1["mean"], "+/- %.4f" % piquil_stats1["std_error"]

)
print("Variance: %.4f" % piquil_stats1["variance"])

Mean PIQuIL: 0.1421 +/- 0.0014
Variance: 0.0192

However, if the user did not have samples generated already, that is no problem. The statistics function in the Ob-
servable module will generate new samples internally and compute the mean, standard error and variance on those
samples. Since the samples are not an argument in the statistics function, the user must now give the following
additional arguments to the statistics function to generate the new samples.

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample (default = 1)

The statistics function will also return a dictionary containing the mean, standard error and the variance with the keys
“mean”, “std_error” and “variance”, respectively.

In [9]: num_samples = 10000
burn_in = 100
steps = 100

piquil_stats2 = piquil.statistics(nn_state, num_samples, burn_in=burn_in, steps=steps)
print(

"Mean PIQuIL: %.4f" % piquil_stats2["mean"], "+/- %.4f" % piquil_stats2["std_error"]
)
print("Variance: %.4f" % piquil_stats2["variance"])

Mean PIQuIL: 0.1423 +/- 0.0014
Variance: 0.0188
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6.2.2 TFIM Energy

Some observables cannot be computed directly from samples, but instead depend on the RBM as previously men-
tioned. For example, the magnetization of the TFIM simply depends on the samples the user gives as input. Whereas
the TFIM energy is much more complicated. An example for the computation of the energy is provided in the python
file quantum_ising_chain.py, which takes advantage of qucumber’s Observable module.

quantum_ising_chain.py comprises of a class that computes the energy of a TFIM (TFIMChainEnergy) that inherits
properties from the Observable module. To instantiate a TFIMChainEnergy object, the ℎ

𝐽 value must be specified.
The trained RBM parameters are from the first tutorial, where the example data was from the TFIM with 10 sites at its
critical point (ℎ𝐽 = 1).

In [10]: h = 1

tfim_energy = TFIMChainEnergy(h)

To go ahead and calculate the mean energy and its standard error from the previously generated samples from this
tutorial (new_samples), the statistics_from_samples function in the Observable module is called upon.

In [11]: energy_stats = tfim_energy.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % energy_stats["mean"], "+/- %.4f" % energy_stats["std_error"])
print("Variance: %.4f" % energy_stats["variance"])

Mean: -1.2353 +/- 0.0005
Variance: 0.0022

The exact value for the energy is -1.2381.

To illustrate how quickly the energy converges as a function of the sampling step (i.e. the number of Gibbs steps to
perform to generate a new batch of samples), steps, the Convergence function in quantum_ising_chain.py will do the
trick. Convergence creates a batch of random samples initially, which is then used to generate a new batch of samples
from the RBM. The TFIM energy will be calculated at every Gibbs step. Please note that the samples generated
previously (new_samples) are not used here; different samples are generated.

In [12]: steps = 200
num_samples = 10000

dict_observables = quantum_ising_chain.Convergence(
nn_state, tfim_energy, num_samples, steps

)

energy = dict_observables["energies"]
err_energy = dict_observables["error"]

step = np.arange(steps + 1)

E0 = -1.2381

ax = plt.axes()
ax.plot(step, abs((energy - E0) / E0) * 100, color="red")
ax.set_xlim(0, steps)
ax.set_ylim(0, 0.6)
ax.set_xlabel("Gibbs Step")
ax.set_ylabel("% Error in Energy")

Out[12]: Text(0,0.5,'% Error in Energy')
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One can see a brief transient period in the magnetization observable, before the state of the machine “warms up” to
equilibrium. After that, the values fluctuate around the calculated mean.

6.2.3 Adding observables

One may also add / subtract observables with the new observable also retaining the same properties in the Observables
module. For instance, a new observable can be defined by adding the TFIM energy observable multiplied by an
arbitrary constant to the PIQuIL observable.

In [13]: new_obs = 0.01 * tfim_energy + piquil

The same statistics of this new observable can also be calculated.

In [14]: new_obs_stats = new_obs.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % new_obs_stats["mean"], "+/- %.4f" % new_obs_stats["std_error"])
print("Variance: %.4f" % new_obs_stats["variance"])

Mean: 0.1297 +/- 0.0014
Variance: 0.0192

6.2.4 Template for your custom observable

Here is a generic template for you to try using the Observable module yourself.

In [15]: import torch
from qucumber.observables import Observable

class YourObservable(Observable):
def __init__(self, your_constants):

super(YourObservable, self).__init__()
self.your_constants = your_constants
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def apply(self, nn_state, samples):
# arguments of "apply" must be in this order

# calculate your observable for each data point
obs = torch.tensor([42] * len(samples))

# make sure the observables are on the same device and have the
# same dtype as the samples
obs = obs.to(samples)

# return a torch tensor containing the observable values
return obs
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CHAPTER 7

Training while monitoring observables

As seen in the first tutorial that went through reconstructing the wavefunction describing the TFIM with 10 sites
at its critical point, the user can evaluate the training in real time with the MetricEvaluator and custom functions.
What is most likely more impactful in many cases is to calculate an observable, like the energy, during the training
process. This is slightly more computationally involved than using the MetricEvaluator to evaluate functions because
observables require that samples be drawn from the RBM.

Luckily, qucumber also has a module very similar to the MetricEvaluator, but for observables. This is called the
ObservableEvaluator. The following implements the ObservableEvaluator to calculate the energy during the training
on the TFIM data in the first tutorial. We will use the same hyperparameters as before.

It is assumed that the user has worked through tutorial 3 beforehand. Recall that quantum_ising_chain.py contains the
TFIMChainEnergy class that inherits from the Observable module. The exact ground-state energy is -1.2381.

In [1]: import os.path

import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWavefunction
from qucumber.callbacks import ObservableEvaluator

import qucumber.utils.data as data

from quantum_ising_chain import TFIMChainEnergy

In [2]: train_data = data.load_data(
os.path.join("..", "Tutorial1_TrainPosRealWavefunction", "tfim1d_data.txt")

)[0]

nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWavefunction(num_visible=nv, num_hidden=nh)

epochs = 1000
pbs = 100 # pos_batch_size
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nbs = 200 # neg_batch_size
lr = 0.01
k = 10

log_every = 100

h = 1
num_samples = 10000
burn_in = 100
steps = 100

tfim_energy = TFIMChainEnergy(h)

Now, the ObservableEvaluator can be called. The ObservableEvaluator requires the following arguments.

1. log_every: the frequency of the training evaluators being calculated is controlled by the log_every argument
(e.g. log_every = 200 means that the MetricEvaluator will update the user every 200 epochs)

2. A list of Observable objects you would like to reference to evaluate the training (arguments required for gener-
ating samples to calculate the observables are keyword arguments placed after the list)

The following additional arguments are needed to calculate the statistics on the generated samples during training
(these are the arguments of the statistics function in the Observable module, minus the nn_state argument; this gets
passed in as an argument to fit).

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample (default = 1)

The training evaluators can be printed out via the verbose=True statement.

In [3]: callbacks = [
ObservableEvaluator(

log_every,
[tfim_energy],
verbose=True,
num_samples=num_samples,
burn_in=burn_in,
steps=steps,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
callbacks=callbacks,

)

Epoch: 100
TFIMChainEnergy:
mean: -1.194464 variance: 0.024380 std_error: 0.001561

Epoch: 200
TFIMChainEnergy:
mean: -1.217816 variance: 0.012093 std_error: 0.001100

Epoch: 300
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TFIMChainEnergy:
mean: -1.226431 variance: 0.007242 std_error: 0.000851

Epoch: 400
TFIMChainEnergy:
mean: -1.229766 variance: 0.005400 std_error: 0.000735

Epoch: 500
TFIMChainEnergy:
mean: -1.231543 variance: 0.004386 std_error: 0.000662

Epoch: 600
TFIMChainEnergy:
mean: -1.232977 variance: 0.003655 std_error: 0.000605

Epoch: 700
TFIMChainEnergy:
mean: -1.232943 variance: 0.003286 std_error: 0.000573

Epoch: 800
TFIMChainEnergy:
mean: -1.234483 variance: 0.002825 std_error: 0.000532

Epoch: 900
TFIMChainEnergy:
mean: -1.235027 variance: 0.002327 std_error: 0.000482

Epoch: 1000
TFIMChainEnergy:
mean: -1.235285 variance: 0.002064 std_error: 0.000454

The callbacks list returns a list of dictionaries. The mean, standard error and the variance at each epoch can be accessed
as follows.

In [4]: energies = callbacks[0].TFIMChainEnergy.mean
errors = callbacks[0].TFIMChainEnergy.std_error
variance = callbacks[0].TFIMChainEnergy.variance
# Please note that the name of the observable class that the user makes must be what comes after callbacks[0].

A plot of the energy as a function of the training cycle is presented below.

In [5]: epoch = np.arange(log_every, epochs + 1, log_every)

E0 = -1.2381

ax = plt.axes()
ax.plot(epoch, energies, color="red")
ax.set_xlim(log_every, epochs)
ax.axhline(E0, color="black")
ax.fill_between(epoch, energies - errors, energies + errors, alpha=0.2, color="black")
ax.set_xlabel("Epoch")
ax.set_ylabel("Energy")
ax.grid()
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CHAPTER 8

RBM

class qucumber.rbm.BinaryRBM(num_visible, num_hidden, zero_weights=False, gpu=True)
Bases: torch.nn.modules.module.Module

effective_energy(v)
The effective energies of the given visible states.

ℰ(𝑣) = −
∑︁
𝑗

𝑏𝑗𝑣𝑗 −
∑︁
𝑖

log

⎡⎣1 + exp

⎛⎝𝑐𝑖 +∑︁
𝑗

𝑊𝑖𝑗𝑣𝑗

⎞⎠⎤⎦
Parameters v (torch.Tensor) – The visible states.

Returns The effective energies of the given visible states.

Return type torch.Tensor

effective_energy_gradient(v)
The gradients of the effective energies for the given visible states.

Parameters v (torch.Tensor) – The visible states.

Returns 1d vector containing the gradients for all parameters (computed on the given visible
states v).

Return type torch.Tensor

gibbs_steps(k, initial_state, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝(ℎ | 𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.
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initialize_parameters(zero_weights=False)
Randomize the parameters of the RBM

partition(space)
Compute the partition function of the RBM.

Parameters space (torch.Tensor) – A rank 2 tensor of the visible space.

Returns The value of the partition function evaluated at the current state of the RBM.

Return type torch.Tensor

prob_h_given_v(v, out=None)
Given a visible unit configuration, compute the probability vector of the hidden units being on.

Parameters

• h (torch.Tensor) – The hidden unit.

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of hidden units being active given the visible state.

Return type torch.Tensor

prob_v_given_h(h, out=None)
Given a hidden unit configuration, compute the probability vector of the visible units being on.

Parameters

• h (torch.Tensor) – The hidden unit

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of visible units being active given the hidden state.

Return type torch.Tensor

sample_h_given_v(v, out=None)
Sample/generate a hidden state given a visible state.

Parameters

• h (torch.Tensor) – The visible state.

• out (torch.Tensor) – The output tensor to write to.

Returns Tuple containing prob_h_given_v(v) and the sampled hidden state.

Return type tuple(torch.Tensor, torch.Tensor)

sample_v_given_h(h, out=None)
Sample/generate a visible state given a hidden state.

Parameters

• h (torch.Tensor) – The hidden state.

• out (torch.Tensor) – The output tensor to write to.

Returns Tuple containing prob_v_given_h(h) and the sampled visible state.

Return type tuple(torch.Tensor, torch.Tensor)
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CHAPTER 9

Quantum States

9.1 Positive Wavefunction

class qucumber.nn_states.PositiveWavefunction(num_visible, num_hidden=None,
gpu=True)

Bases: qucumber.nn_states.Wavefunction

Class capable of learning Wavefunctions with no phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being
learned.

• num_hidden (int) – The number of hidden units in the internal RBM. Defaults to the
number of visible units.

• gpu (bool) – Whether to perform computations on the default gpu.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a Wavefunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


QuCumber Documentation, Release v0.3.1.post4

Returns A new Wavefunction initialized from the given parameters. The returned Wavefunction
will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch)
Compute the gradients of a batch of the training data (samples_batch).

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

Returns List containing the gradients of the parameters.

Return type list

compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, progbar=False,
starting_epoch=1, time=False, callbacks=None, optimizer=<class ’torch.optim.sgd.SGD’>,
**kwargs)
Train the Wavefunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.Callback]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer
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generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(v)
Compute the gradient of the effective energy for a batch of states.

∇𝜆ℰ𝜆(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns A single tensor containing all of the parameter gradients.

Return type torch.Tensor

load(location)
Loads the Wavefunction parameters from the given location ignoring any metadata stored in the file. Over-
writes the Wavefunction’s parameters.

Note: The Wavefunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the Wavefunction parameters
from.

max_size
Maximum size of the Hilbert space for full enumeration

networks
A list of the names of the internal RBMs.

phase(v)
Compute the phase of a given vector/matrix of visible states.

In the case of a Positive Wavefunction, the phase is just zero.

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.
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Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆(𝜎) = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

rbm_am
The RBM to be used to learn the wavefunction amplitude.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the Wavefunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the Wavefunction parameters.

stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor
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9.2 Complex Wavefunction

class qucumber.nn_states.ComplexWavefunction(num_visible, num_hidden=None, uni-
tary_dict=None, gpu=True)

Bases: qucumber.nn_states.Wavefunction

Class capable of learning Wavefunctions with a non-zero phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being
learned.

• num_hidden (int) – The number of hidden units in both internal RBMs. Defaults to the
number of visible units.

• unitary_dict (dict[str, torch.Tensor]) – A dictionary mapping unitary
names to their matrix representations.

• gpu (bool) – Whether to perform computations on the default gpu.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆𝜇(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the amplitudes of the given states.

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a Wavefunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new Wavefunction initialized from the given parameters. The returned Wavefunction
will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (np.array) – Batch of the input bases corresponding to the samples in
samples_batch.

Returns List containing the gradients of the parameters.

Return type list
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compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆𝜇|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, in-
put_bases=None, progbar=False, starting_epoch=1, time=False, callbacks=None, opti-
mizer=<class ’torch.optim.sgd.SGD’>, **kwargs)
Train the Wavefunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (np.array) – The measurement bases for each sample. Must be pro-
vided if training a ComplexWavefunction.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.Callback]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor
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gradient(basis, sample)
Compute the gradient of a sample, measured in different bases.

Parameters

• basis (np.array) – A set of bases.

• sample (np.array) – A sample to compute the gradient of.

Returns A list of 2 tensors containing the parameters of each of the internal RBMs.

Return type list[torch.Tensor]

load(location)
Loads the Wavefunction parameters from the given location ignoring any metadata stored in the file. Over-
writes the Wavefunction’s parameters.

Note: The Wavefunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the Wavefunction parameters
from.

max_size
Maximum size of the Hilbert space for full enumeration

networks
A list of the names of the internal RBMs.

phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎) = −ℰ𝜇(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the phases of the given states.

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆𝜇(𝜎) = 𝑒−[ℰ𝜆(𝜎)+𝑖ℰ𝜇(𝜎)]/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state
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Return type torch.Tensor

rbm_am
The RBM to be used to learn the wavefunction amplitude.

rbm_ph
RBM used to learn the wavefunction phase.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the Wavefunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the Wavefunction parameters.

stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

9.3 Abstract Wavefunction
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Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.nn_states.Wavefunction
Bases: abc.ABC

Abstract Base Class for Wavefunctions.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓(𝜎)|

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a Wavefunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new Wavefunction initialized from the given parameters. The returned Wavefunction
will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (np.array) – Batch of the input bases corresponding to the samples in
samples_batch.

Returns List containing the gradients of the parameters.

Return type list

compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆𝜇|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

device
The device that the model is on.
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fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, in-
put_bases=None, progbar=False, starting_epoch=1, time=False, callbacks=None, opti-
mizer=<class ’torch.optim.sgd.SGD’>, **kwargs)
Train the Wavefunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (np.array) – The measurement bases for each sample. Must be pro-
vided if training a ComplexWavefunction.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.Callback]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient()
Compute the gradient of a set of samples.

load(location)
Loads the Wavefunction parameters from the given location ignoring any metadata stored in the file. Over-
writes the Wavefunction’s parameters.

Note: The Wavefunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.
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Parameters location (str or file) – The location to load the Wavefunction parameters
from.

max_size
Maximum size of the Hilbert space for full enumeration

networks
A list of the names of the internal RBMs.

phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

rbm_am
The RBM to be used to learn the wavefunction amplitude.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.
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save(location, metadata=None)
Saves the Wavefunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the Wavefunction parameters.

stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor
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CHAPTER 10

Callbacks

class qucumber.callbacks.Callback
Base class for callbacks.

on_batch_end(nn_state, epoch, batch)
Called at the end of each batch.

Parameters

• nn_state (Wavefunction) – The Wavefunction being trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_batch_start(nn_state, epoch, batch)
Called at the start of each batch.

Parameters

• nn_state (Wavefunction) – The Wavefunction being trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_epoch_end(nn_state, epoch)
Called at the end of each epoch.

Parameters

• nn_state (Wavefunction) – The Wavefunction being trained.

• epoch (int) – The current epoch.

on_epoch_start(nn_state, epoch)
Called at the start of each epoch.

Parameters

• nn_state (Wavefunction) – The Wavefunction being trained.
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• epoch (int) – The current epoch.

on_train_end(nn_state)
Called at the end of the training cycle.

Parameters nn_state (Wavefunction) – The Wavefunction being trained.

on_train_start(nn_state)
Called at the start of the training cycle.

Parameters nn_state (Wavefunction) – The Wavefunction being trained.

class qucumber.callbacks.LambdaCallback(on_train_start=None, on_train_end=None,
on_epoch_start=None, on_epoch_end=None,
on_batch_start=None, on_batch_end=None)

Class for creating simple callbacks.

This callback is constructed using the passed functions that will be called at the appropriate time.

Parameters

• on_train_start (callable or None) – A function to be called at the start of the
training cycle. Must follow the same signature as Callback.on_train_start.

• on_train_end (callable or None) – A function to be called at the end of the train-
ing cycle. Must follow the same signature as Callback.on_train_end.

• on_epoch_start (callable or None) – A function to be called at the start of every
epoch. Must follow the same signature as Callback.on_epoch_start.

• on_epoch_end (callable or None) – A function to be called at the end of every
epoch. Must follow the same signature as Callback.on_epoch_end.

• on_batch_start (callable or None) – A function to be called at the start of every
batch. Must follow the same signature as Callback.on_batch_start.

• on_batch_end (callable or None) – A function to be called at the end of every
batch. Must follow the same signature as Callback.on_batch_end.

class qucumber.callbacks.ModelSaver(period, folder_path, file_name, save_initial=True, meta-
data=None, metadata_only=False)

Callback which allows model parameters (along with some metadata) to be saved to disk at regular intervals.

This Callback is called at the end of each epoch. If save_initial is True, will also be called at the start of the
training cycle.

Parameters

• period (int) – Frequency of model saving (in epochs).

• folder_path (str) – The directory in which to save the files

• file_name (str) – The name of the output files. Should be a format string with one
blank, which will be filled with either the epoch number or the word “initial”.

• save_initial (bool) – Whether to save the initial parameters (and metadata).

• metadata (callable or dict or None) – The metadata to save to disk with the
model parameters Can be either a function or a dictionary. In the case of a function, it must
take 2 arguments the RBM being trained, and the current epoch number, and then return a
dictionary containing the metadata to be saved.

• metadata_only (bool) – Whether to save only the metadata to disk.
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class qucumber.callbacks.Logger(period, logger_fn=<built-in function print>, msg_gen=None,
**msg_gen_kwargs)

Callback which logs output at regular intervals.

This Callback is called at the end of each epoch.

Parameters

• period (int) – Logging frequency (in epochs).

• logger_fn (callable) – The function used for logging. Must take 1 string as an argu-
ment. Defaults to the standard print function.

• msg_gen (callable) – A callable which generates the string to be logged. Must take 2
positional arguments: the RBM being trained and the current epoch. It must also be able to
take some keyword arguments.

• **kwargs – Keyword arguments which will be passed to msg_gen.

class qucumber.callbacks.EarlyStopping(period, tolerance, patience, evaluator_callback,
quantity_name)

Stop training once the model stops improving. The specific criterion for stopping is:⃒⃒⃒⃒
𝑀𝑡−𝑝 −𝑀𝑡

𝑀𝑡−𝑝

⃒⃒⃒⃒
< 𝜖

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, and 𝜖 is the
tolerance.

This Callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum relative change required to consider training as
having converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric that we want to check for convergence.

• quantity_name (str) – The name of the metric/observable stored in evalua-
tor_callback.

class qucumber.callbacks.VarianceBasedEarlyStopping(period, tolerance, patience, eval-
uator_callback, quantity_name,
variance_name)

Stop training once the model stops improving. This is a variation on the EarlyStopping class which takes
the variance of the metric into account. The specific criterion for stopping is:⃒⃒⃒⃒

𝑀𝑡−𝑝 −𝑀𝑡

𝜎𝑡−𝑝

⃒⃒⃒⃒
< 𝜅

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, 𝜎𝑡 is the variance
of the metric, and 𝜅 is the tolerance.

This Callback is called at the end of each epoch.

Parameters
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• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum (standardized) change required to consider training
as having converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric/observable that we want to check for convergence.

• quantity_name (str) – The name of the metric/obserable stored in evaluator_callback.

• variance_name (str) – The name of the variance stored in evaluator_callback.

class qucumber.callbacks.MetricEvaluator(period, metrics, verbose=False, log=None,
**metric_kwargs)

Evaluate and hold on to the results of the given metric(s).

This Callback is called at the end of each epoch.

Note: Since Callbacks are given to fit as a list, they will be called in a deterministic order. It is therefore
recommended that instances of MetricEvaluator be among the first callbacks in the list passed to fit,
as one would often use it in conjunction with other callbacks like EarlyStopping which may depend on
MetricEvaluator having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given metric(s).

• metrics (dict(str, callable)) – A dictionary of callables where the keys are the
names of the metrics and the callables take the Wavefunction being trained as their positional
argument, along with some keyword arguments. The metrics are evaluated and put into an
internal dictionary structure resembling the structure of metrics.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **metric_kwargs – Keyword arguments to be passed to metrics.

__getattr__(metric)
Return an array of all recorded values of the given metric.

Parameters metric (str) – The metric to retrieve.

Returns The past values of the metric.

Return type np.array

__len__()
Return the number of timesteps that metrics have been evaluated for.

Return type int

clear_history()
Delete all metric values the instance is currently storing.

epochs
Return a list of all epochs that have been recorded.

Return type np.array
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get_value(name, index=None)
Retrieve the value of the desired metric from the given timestep.

Parameters

• name (str) – The name of the metric to retrieve.

• index (int or None) – The index/timestep from which to retrieve the metric. Nega-
tive indices are supported. If None, will just get the most recent value.

names
The names of the tracked metrics.

Return type list[str]

class qucumber.callbacks.ObservableEvaluator(period, observables, verbose=False,
log=None, **sampling_kwargs)

Evaluate and hold on to the results of the given observable(s).

This Callback is called at the end of each epoch.

Note: Since Callbacks are given to fit as a list, they will be called in a deterministic order. It is therefore
recommended that instances of ObservableEvaluator be among the first callbacks in the list passed to
fit, as one would often use it in conjunction with other callbacks like EarlyStopping which may depend
on ObservableEvaluator having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given observables(s).

• observables (list(qucumber.observables.Observable)) – A list of Ob-
servables. Observable statistics are evaluated by sampling the Wavefunction. Note that
observables that have the same name will conflict, and precedence will be given to the right-
most observable argument.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **sampling_kwargs – Keyword arguments to be passed to Observable.statistics. Ex.
num_samples, num_chains, burn_in, steps.

__getattr__(observable)
Return an ObservableStatistics containing recorded statistics of the given observable.

Parameters observable (str) – The observable to retrieve.

Returns The past values of the observable.

Return type ObservableStatistics

__len__()
Return the number of timesteps that observables have been evaluated for.

Return type int

clear_history()
Delete all statistics the instance is currently storing.

epochs
Return a list of all epochs that have been recorded.

Return type np.array
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get_value(name, index=None)
Retrieve the statistics of the desired observable from the given timestep.

Parameters

• name (str) – The name of the observable to retrieve.

• index (int or None) – The index/timestep from which to retrieve the observable.
Negative indices are supported. If None, will just get the most recent value.

names
The names of the tracked observables.

Return type list[str]

class qucumber.callbacks.LivePlotting(period, evaluator_callback, quantity_name, er-
ror_name=None, total_epochs=None, smooth=True)

Plots metrics/observables.

This Callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback updates the plots (in epochs).

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric/observable that we want to plot.

• quantity_name (str) – The name of the metric/observable stored in evalua-
tor_callback.

• error_name (str) – The name of the error stored in evaluator_callback.

class qucumber.callbacks.Timer(verbose=True)
Callback which records the training time.

This Callback is always called at the start and end of training. It will run at the end of an epoch or batch if the
given model’s stop_training property is set to True.

Parameters verbose (bool) – Whether to print the elapsed time at the end of training.
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CHAPTER 11

Observables

11.1 Pauli Operators

class qucumber.observables.SigmaZ
Bases: qucumber.observables.Observable

The 𝜎𝑧 observable.

Computes the magnetization in the Z direction of a spin chain.

apply(nn_state, samples)
Computes the magnetization of each sample given a batch of samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.
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• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided, with
the updated state of the Markov chain.

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0, will use a
number of chains equal to num_samples.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaX
Bases: qucumber.observables.Observable

The 𝜎𝑥 observable

Computes the magnetization in the X direction of a spin chain.

apply(nn_state, samples)
Computes the magnetization along X of each sample in the given batch of samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given Wavefunction.

Parameters
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• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided, with
the updated state of the Markov chain.

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0, will use a
number of chains equal to num_samples.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaY
Bases: qucumber.observables.Observable

The 𝜎𝑦 observable

Computes the magnetization in the Y direction of a spin chain.

apply(nn_state, samples)
Computes the magnetization along Y of each sample in the given batch of samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.
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• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided, with
the updated state of the Markov chain.

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0, will use a
number of chains equal to num_samples.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

symbol
The algebraic symbol representing the Observable.
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11.2 Neighbour Interactions

class qucumber.observables.NeighbourInteraction(periodic_bcs=False, c=1)
Bases: qucumber.observables.Observable

The 𝜎𝑧
𝑖 𝜎

𝑧
𝑖+𝑐 observable

Computes the c-th nearest neighbour interaction for a spin chain with either open or periodic boundary condi-
tions.

Parameters

• periodic_bcs (bool) – Specifies whether the system has periodic boundary conditions.

• c (int) – Interaction distance.

apply(nn_state, samples)
Computes the energy of this neighbour interaction for each sample given a batch of samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided, with
the updated state of the Markov chain.

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0, will use a
number of chains equal to num_samples.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.
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• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

symbol
The algebraic symbol representing the Observable.

11.3 Abstract Observable

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.observables.Observable
Bases: abc.ABC

Base class for observables.

apply(nn_state, samples)
Computes the value of the observable, row-wise, on a batch of samples. Must be implemented by any
subclasses.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided, with
the updated state of the Markov chain.
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statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the Wavefunction.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction to draw
samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0, will use a
number of chains equal to num_samples.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.Wavefunction) – The Wavefunction that
drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

symbol
The algebraic symbol representing the Observable.
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CHAPTER 12

Complex Algebra

qucumber.utils.cplx.absolute_value(x)
Computes the complex absolute value elementwise.

Parameters x (torch.Tensor) – A complex tensor.

Returns A real tensor.

Return type torch.Tensor

qucumber.utils.cplx.conjugate(x)
A function that takes the conjugate transpose of the argument.

Parameters x (torch.Tensor) – A complex vector or matrix.

Returns The conjugate of x.

Return type torch.Tensor

qucumber.utils.cplx.elementwise_division(x, y)
Elementwise division of x by y.

Parameters

• x (torch.Tensor) – A complex tensor.

• y (torch.Tensor) – A complex tensor.

Return type torch.Tensor

qucumber.utils.cplx.elementwise_mult(x, y)
Alias for scalar_mult().

qucumber.utils.cplx.inner_prod(x, y)
A function that returns the inner product of two complex vectors, x and y (<x|y>).

Parameters

• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.
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Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then
the function will not execute.

Returns The inner product, ⟨𝑥|𝑦⟩.

Return type torch.Tensor

qucumber.utils.cplx.kronecker_prod(x, y)
A function that returns the tensor / kronecker product of 2 complex tensors, x and y.

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex matrix.

Raises ValueError – If x and y do not have 3 dimensions or their first dimension is not 2, the
function cannot execute.

Returns The tensorproduct of x and y, 𝑥⊗ 𝑦.

Return type torch.Tensor

qucumber.utils.cplx.make_complex(x, y=None)
A function that combines the real (x) and imaginary (y) parts of a vector or a matrix.

Note: x and y must have the same shape. Also, this will not work for rank zero tensors.

Parameters

• x (torch.Tensor) – The real part

• y (torch.Tensor) – The imaginary part. Can be None, in which case, the resulting
complex tensor will have imaginary part equal to zero.

Returns The tensor [x,y] = x + yi.

Return type torch.Tensor

qucumber.utils.cplx.matmul(x, y)
A function that computes complex matrix-matrix and matrix-vector products.

Note: If one wishes to do matrix-vector products, the vector must be the second argument (y).

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex vector or matrix.

Returns The product between x and y.

Return type torch.Tensor

qucumber.utils.cplx.norm(x)
A function that returns the norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|.
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Return type torch.Tensor

qucumber.utils.cplx.norm_sqr(x)
A function that returns the squared norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|2.

Return type torch.Tensor

qucumber.utils.cplx.outer_prod(x, y)
A function that returns the outer product of two complex vectors, x and y.

Parameters

• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.

Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then
the function will not execute.

Returns The outer product between x and y, |𝑥⟩⟨𝑦|.

Return type torch.Tensor

qucumber.utils.cplx.scalar_divide(x, y)
A function that computes the division of x by y.

Parameters

• x (torch.Tensor) – The numerator (a complex scalar, vector or matrix).

• y (torch.Tensor) – The denominator (a complex scalar).

Returns x / y

Return type torch.Tensor

qucumber.utils.cplx.scalar_mult(x, y, out=None)
A function that computes the product between complex matrices and scalars, complex vectors and scalars or
two complex scalars.

Parameters

• x (torch.Tensor) – A complex scalar, vector or matrix.

• y (torch.Tensor) – A complex scalar, vector or matrix.

• z (torch.Tensor) – The complex tensor to write the output to.

• z – A complex scalar, vector or matrix. Can be None, in which case, a new tensor is created
and returned. Otherwise, the method overwrites z.

Returns The product between x and y. Either overwrites z, or returns a new tensor.

Return type torch.Tensor
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CHAPTER 13

Data Handling

qucumber.utils.data.extract_refbasis_samples(train_samples, train_bases)
Extract the reference basis samples from the data.

Parameters

• train_samples (numpy.array) – The training samples.

• train_bases (numpy.array) – The bases of the training samples.

Returns The samples in the data that are only in the reference basis.

Return type torch.tensor

qucumber.utils.data.load_data(tr_samples_path, tr_psi_path=None, tr_bases_path=None,
bases_path=None)

Load the data required for training.

Parameters

• tr_samples_path (str) – The path to the training data.

• tr_psi_path (str) – The path to the target/true wavefunction.

• tr_bases_path (str) – The path to the basis data.

• bases_path (str) – The path to a file containing all possible bases used in the
tr_bases_path file.

Returns A list of all input parameters.

Return type list
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CHAPTER 14

Indices and tables

• genindex

• modindex

• search
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Python Module Index

q
qucumber.utils.cplx, 59
qucumber.utils.data, 63
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Index

Symbols
__getattr__() (qucumber.callbacks.MetricEvaluator

method), 48
__getattr__() (qucumber.callbacks.ObservableEvaluator

method), 49
__len__() (qucumber.callbacks.MetricEvaluator method),

48
__len__() (qucumber.callbacks.ObservableEvaluator

method), 49

A
absolute_value() (in module qucumber.utils.cplx), 59
amplitude() (qucumber.nn_states.ComplexWavefunction

method), 37
amplitude() (qucumber.nn_states.PositiveWavefunction

method), 33
amplitude() (qucumber.nn_states.Wavefunction method),

41
apply() (qucumber.observables.NeighbourInteraction

method), 55
apply() (qucumber.observables.Observable method), 56
apply() (qucumber.observables.SigmaX method), 52
apply() (qucumber.observables.SigmaY method), 53
apply() (qucumber.observables.SigmaZ method), 51
autoload() (qucumber.nn_states.ComplexWavefunction

static method), 37
autoload() (qucumber.nn_states.PositiveWavefunction

static method), 33
autoload() (qucumber.nn_states.Wavefunction static

method), 41

B
BinaryRBM (class in qucumber.rbm), 31

C
Callback (class in qucumber.callbacks), 45
clear_history() (qucumber.callbacks.MetricEvaluator

method), 48

clear_history() (qucumber.callbacks.ObservableEvaluator
method), 49

ComplexWavefunction (class in qucumber.nn_states), 37
compute_batch_gradients() (qucum-

ber.nn_states.ComplexWavefunction method),
37

compute_batch_gradients() (qucum-
ber.nn_states.PositiveWavefunction method),
34

compute_batch_gradients() (qucum-
ber.nn_states.Wavefunction method), 41

compute_normalization() (qucum-
ber.nn_states.ComplexWavefunction method),
37

compute_normalization() (qucum-
ber.nn_states.PositiveWavefunction method),
34

compute_normalization() (qucum-
ber.nn_states.Wavefunction method), 41

conjugate() (in module qucumber.utils.cplx), 59

D
device (qucumber.nn_states.ComplexWavefunction at-

tribute), 38
device (qucumber.nn_states.PositiveWavefunction

attribute), 34
device (qucumber.nn_states.Wavefunction attribute), 41

E
EarlyStopping (class in qucumber.callbacks), 47
effective_energy() (qucumber.rbm.BinaryRBM method),

31
effective_energy_gradient() (qucumber.rbm.BinaryRBM

method), 31
elementwise_division() (in module qucumber.utils.cplx),

59
elementwise_mult() (in module qucumber.utils.cplx), 59
epochs (qucumber.callbacks.MetricEvaluator attribute),

48
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epochs (qucumber.callbacks.ObservableEvaluator at-
tribute), 49

extract_refbasis_samples() (in module qucum-
ber.utils.data), 63

F
fit() (qucumber.nn_states.ComplexWavefunction

method), 38
fit() (qucumber.nn_states.PositiveWavefunction method),

34
fit() (qucumber.nn_states.Wavefunction method), 41

G
generate_hilbert_space() (qucum-

ber.nn_states.ComplexWavefunction method),
38

generate_hilbert_space() (qucum-
ber.nn_states.PositiveWavefunction method),
34

generate_hilbert_space() (qucum-
ber.nn_states.Wavefunction method), 42

get_value() (qucumber.callbacks.MetricEvaluator
method), 49

get_value() (qucumber.callbacks.ObservableEvaluator
method), 50

gibbs_steps() (qucumber.rbm.BinaryRBM method), 31
gradient() (qucumber.nn_states.ComplexWavefunction

method), 38
gradient() (qucumber.nn_states.PositiveWavefunction

method), 35
gradient() (qucumber.nn_states.Wavefunction method),

42

I
initialize_parameters() (qucumber.rbm.BinaryRBM

method), 31
inner_prod() (in module qucumber.utils.cplx), 59

K
kronecker_prod() (in module qucumber.utils.cplx), 60

L
LambdaCallback (class in qucumber.callbacks), 46
LivePlotting (class in qucumber.callbacks), 50
load() (qucumber.nn_states.ComplexWavefunction

method), 39
load() (qucumber.nn_states.PositiveWavefunction

method), 35
load() (qucumber.nn_states.Wavefunction method), 42
load_data() (in module qucumber.utils.data), 63
Logger (class in qucumber.callbacks), 46

M
make_complex() (in module qucumber.utils.cplx), 60

matmul() (in module qucumber.utils.cplx), 60
max_size (qucumber.nn_states.ComplexWavefunction at-

tribute), 39
max_size (qucumber.nn_states.PositiveWavefunction at-

tribute), 35
max_size (qucumber.nn_states.Wavefunction attribute),

43
MetricEvaluator (class in qucumber.callbacks), 48
ModelSaver (class in qucumber.callbacks), 46

N
name (qucumber.observables.NeighbourInteraction at-

tribute), 55
name (qucumber.observables.Observable attribute), 56
name (qucumber.observables.SigmaX attribute), 52
name (qucumber.observables.SigmaY attribute), 54
name (qucumber.observables.SigmaZ attribute), 51
names (qucumber.callbacks.MetricEvaluator attribute),

49
names (qucumber.callbacks.ObservableEvaluator at-

tribute), 50
NeighbourInteraction (class in qucumber.observables), 55
networks (qucumber.nn_states.ComplexWavefunction at-

tribute), 39
networks (qucumber.nn_states.PositiveWavefunction at-

tribute), 35
networks (qucumber.nn_states.Wavefunction attribute),

43
norm() (in module qucumber.utils.cplx), 60
norm_sqr() (in module qucumber.utils.cplx), 61

O
Observable (class in qucumber.observables), 56
ObservableEvaluator (class in qucumber.callbacks), 49
on_batch_end() (qucumber.callbacks.Callback method),

45
on_batch_start() (qucumber.callbacks.Callback method),

45
on_epoch_end() (qucumber.callbacks.Callback method),

45
on_epoch_start() (qucumber.callbacks.Callback method),

45
on_train_end() (qucumber.callbacks.Callback method),

46
on_train_start() (qucumber.callbacks.Callback method),

46
outer_prod() (in module qucumber.utils.cplx), 61

P
partition() (qucumber.rbm.BinaryRBM method), 32
phase() (qucumber.nn_states.ComplexWavefunction

method), 39
phase() (qucumber.nn_states.PositiveWavefunction

method), 35
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phase() (qucumber.nn_states.Wavefunction method), 43
PositiveWavefunction (class in qucumber.nn_states), 33
prob_h_given_v() (qucumber.rbm.BinaryRBM method),

32
prob_v_given_h() (qucumber.rbm.BinaryRBM method),

32
probability() (qucumber.nn_states.ComplexWavefunction

method), 39
probability() (qucumber.nn_states.PositiveWavefunction

method), 35
probability() (qucumber.nn_states.Wavefunction

method), 43
psi() (qucumber.nn_states.ComplexWavefunction

method), 39
psi() (qucumber.nn_states.PositiveWavefunction

method), 36
psi() (qucumber.nn_states.Wavefunction method), 43

Q
qucumber.utils.cplx (module), 59
qucumber.utils.data (module), 63

R
rbm_am (qucumber.nn_states.ComplexWavefunction at-

tribute), 40
rbm_am (qucumber.nn_states.PositiveWavefunction at-

tribute), 36
rbm_am (qucumber.nn_states.Wavefunction attribute), 43
rbm_ph (qucumber.nn_states.ComplexWavefunction at-

tribute), 40
reinitialize_parameters() (qucum-

ber.nn_states.ComplexWavefunction method),
40

reinitialize_parameters() (qucum-
ber.nn_states.PositiveWavefunction method),
36

reinitialize_parameters() (qucum-
ber.nn_states.Wavefunction method), 43

S
sample() (qucumber.nn_states.ComplexWavefunction

method), 40
sample() (qucumber.nn_states.PositiveWavefunction

method), 36
sample() (qucumber.nn_states.Wavefunction method), 43
sample() (qucumber.observables.NeighbourInteraction

method), 55
sample() (qucumber.observables.Observable method), 56
sample() (qucumber.observables.SigmaX method), 52
sample() (qucumber.observables.SigmaY method), 54
sample() (qucumber.observables.SigmaZ method), 51
sample_h_given_v() (qucumber.rbm.BinaryRBM

method), 32

sample_v_given_h() (qucumber.rbm.BinaryRBM
method), 32

save() (qucumber.nn_states.ComplexWavefunction
method), 40

save() (qucumber.nn_states.PositiveWavefunction
method), 36

save() (qucumber.nn_states.Wavefunction method), 43
scalar_divide() (in module qucumber.utils.cplx), 61
scalar_mult() (in module qucumber.utils.cplx), 61
SigmaX (class in qucumber.observables), 52
SigmaY (class in qucumber.observables), 53
SigmaZ (class in qucumber.observables), 51
statistics() (qucumber.observables.NeighbourInteraction

method), 55
statistics() (qucumber.observables.Observable method),

56
statistics() (qucumber.observables.SigmaX method), 53
statistics() (qucumber.observables.SigmaY method), 54
statistics() (qucumber.observables.SigmaZ method), 52
statistics_from_samples() (qucum-

ber.observables.NeighbourInteraction method),
56

statistics_from_samples() (qucum-
ber.observables.Observable method), 57

statistics_from_samples() (qucum-
ber.observables.SigmaX method), 53

statistics_from_samples() (qucum-
ber.observables.SigmaY method), 54

statistics_from_samples() (qucum-
ber.observables.SigmaZ method), 52

stop_training (qucumber.nn_states.ComplexWavefunction
attribute), 40

stop_training (qucumber.nn_states.PositiveWavefunction
attribute), 36

stop_training (qucumber.nn_states.Wavefunction at-
tribute), 44

subspace_vector() (qucum-
ber.nn_states.ComplexWavefunction method),
40

subspace_vector() (qucum-
ber.nn_states.PositiveWavefunction method),
36

subspace_vector() (qucumber.nn_states.Wavefunction
method), 44

symbol (qucumber.observables.NeighbourInteraction at-
tribute), 56

symbol (qucumber.observables.Observable attribute), 57
symbol (qucumber.observables.SigmaX attribute), 53
symbol (qucumber.observables.SigmaY attribute), 54
symbol (qucumber.observables.SigmaZ attribute), 52

T
Timer (class in qucumber.callbacks), 50

Index 71



QuCumber Documentation, Release v0.3.1.post4

V
VarianceBasedEarlyStopping (class in qucum-

ber.callbacks), 47

W
Wavefunction (class in qucumber.nn_states), 41

72 Index


	Installation
	Github
	Windows
	Linux / MacOS

	Theory
	Download the tutorials
	Reconstruction of a positive-real wavefunction
	Transverse-field Ising model
	Using qucumber to reconstruct the wavefunction
	Imports
	Training


	Reconstruction of a complex wavefunction
	The wavefunction to be reconstructed
	Using qucumber to reconstruct the wavefunction
	Imports
	Training


	Sampling and calculating observables
	Generate new samples
	Calculate an observable using the Observable module
	Custom observable
	TFIM Energy
	Adding observables
	Template for your custom observable


	Training while monitoring observables
	RBM
	Quantum States
	Positive Wavefunction
	Complex Wavefunction
	Abstract Wavefunction

	Callbacks
	Observables
	Pauli Operators
	Neighbour Interactions
	Abstract Observable

	Complex Algebra
	Data Handling
	Indices and tables
	Python Module Index

