
Quasiquotes
Release 0.2.1

February 15, 2016

Contents

1 What is a quasiquote 3

2 The c quasiquoter 5

3 The r quasiquoter 7

4 IPython Integration 9

Python Module Index 21

i

ii

Quasiquotes, Release 0.2.1

Blocks of non-python code sprinkled in for extra seasoning.

Contents 1

Quasiquotes, Release 0.2.1

2 Contents

CHAPTER 1

What is a quasiquote

An quasiquote is a new syntactical element that allows us to embed non python code into our existing python code.
The basic structure is as follows:

coding: quasiquotes

[$name|some code goes here|]

This desuagars to:

name.quote_expr("some code goes here", frame, col_offset)

where frame is the executing stack frame and col_offset is the column offset of the quasiquoter.

This allows us to use slightly nicer syntax for our code. The # coding: quasiquotes is needed to enable
this extension. The syntax is chosen to match haskell’s quasiquote syntax from GHC 6.12. We need to use the older
syntax (with the $) because python’s grammar would be ambiguous without it at the quote open step. To simplify the
tokenizer, we chose to use slighly more verbose syntax.

We may also use statement syntax for quasiquotes in a modified with block:

coding: quasiquotes

with $name:
some code goes here

This desuagars to:

name.quote_stmt(" some code goes here", frame, col_offset)

3

Quasiquotes, Release 0.2.1

4 Chapter 1. What is a quasiquote

CHAPTER 2

The c quasiquoter

The builtin c quasiquoter allows us to inline C code into our python. For example:

>>> from quasiquotes.c import c
>>> def f(a):
... with $c:
... printf("%ld\n", PyLong_AsLong(a));
... a = Py_None;
... Py_INCREF(a);
... print(a)
...
>>> f(0)
0
None
>>> f(1)
1
None

Here we can see that the quasiquoter can read from and write to the local scope.

We can also quote C expressions with the quote expression syntax.

>>> def cell_new(n):
... return [$c|PyCell_New(n);]
...
>>> cell_new(1)
<cell at 0x7f8dde6cd5e8: int object at 0x7f8ddf956780>

Here we can see that the c quasiquoter is really convenient as a python interface into the C API.

Warning: CPython uses a reference counting system to manage the lifetimes of objects. Code like:

return [$|Py_None|]

can cause a potential segfault when None because it will have 1 less reference than expected. Instead, be sure to
remember to incref your expressions with:

return [$|Py_INCREF(Py_None); Py_None|]

You must also incref when reassigning names from the enclosing python scope. For more information, see the
CPython docs.

5

https://docs.python.org/3.6/c-api/refcounting.html

Quasiquotes, Release 0.2.1

6 Chapter 2. The c quasiquoter

CHAPTER 3

The r quasiquoter

The optional r quasiquoter allows us to inline R code into our python. For example:

>>> from quasiquotes.r import r
>>> def f(a):
... with $r:
... print(a)
... a <- 1
... print(a)
...
>>> f(0)
[1]
0

array([1.])
>>> f(1)
[1]
0

array([2.])

Here we can see that the quasiquoter can read from and write to the local scope.

Note: The return type is coerced to a numpy array of length one because there are no scalar types in R.

We can also quote R expressions with the quote expression syntax.

>>> def r_isna(df):
... return [$r|is.na(df)|]
...
>>> df = pd.DataFrame({'a': [1, 2, None], 'b': [4, None, 6]})
>>> df

a b
0 1 4
1 2 NaN
2 NaN 6
>>> r_isna(df)
array([[0, 0],

[0, 1],
[1, 0]], dtype=int32)

7

Quasiquotes, Release 0.2.1

Note: The r quasiquoter is installed with pip install quasiquotes[r] This will install rpy2 which is used
to interface with R.

8 Chapter 3. The r quasiquoter

CHAPTER 4

IPython Integration

We can use the c quasiquoter in the IPython repl or notebook as a cell or line magic. When used as a line magic, it is
quoted as an expression. When used as a cell magic, it is quoted as a statement.

In [1]: import quasiquotes.c

In [2]: a = 5

In [3]: %c PyObject *b = PyLong_FromLong(3); PyObject *ret = PyNumber_Add(a, b); Py_DECRE F(b); ret;
Out[3]: 8

In [4]: %%c
...: printf("%ld + %ld = %ld\n", 3, PyLong_AsLong(a), PyLong_AsLong(_3));
...: puts("reassigning 'a'");
...: a = Py_None;
...: Py_INCREF(a);
...:

3 + 5 = 8
reassigning 'a'

In [5]: a is None
Out[5]: True

Contents

4.1 Quasiquotes API

quasiquotes is designed to make it easy to extend python syntax with arbitrary parsing logic. To define a new syntax
enhancement, create an instance of a subclass of QuasiQuoter that overrides the quote_expr or quote_stmt
methods.

class quasiquotes.quasiquoter.QuasiQuoter
Custom parsing logic for python

static locals_to_fast(frame, *, _locals_to_fast=<_FuncPtr object>, _pyobject=<class
‘ctypes.py_object’>, _true=c_int(1))

Write the f_locals of frame back into the fast local storage.

Parameters frame : frame

The frame whose f_locals and fast will be synced.

9

Quasiquotes, Release 0.2.1

quote_expr(expr, frame, col_offset)
Quote an expression.

This is called in the oxford brackets case: [$qq|...|]

Parameters expr : str

The expression to quote.

frame : frame

The stack frame where this expression is being executed.

col_offset : int

The column offset for the quasiquoter.

Returns v : any

The value of the quoted expression.

quote_stmt(stmt, frame, col_offset)
Quote a statment.

This is called in the enhanced with block case: with $qq: ...

Parameters stmt : str

The statement to quote. This will have the unaltered indentation.

frame : frame

The stack frame where this statement is being executed.

col_offset : int

The column offset for the quasiquoter.

quote_stmt has no value. It is used to run normal imperitive code like you would normally put in the body of a
context manager.

quote_expr has a value. It is used to create expressions that can be plugged into other expressions.

Both quote_stmt and quote_expr are passed 3 arguments:

1. String representing the body of either the expression or statement

2. Stackframe where this is being executed

3. Column offset of the quasiquoter

The string will be the pre-built string literal the we constructed at decode time. The stackframe will be the python
stackframe where the quoted statement or expression is being used. Finally the column offset will be the pre-built
integer constant that represents the offset of the quasiquote token.

Each quasiquoter is free to do whatever it wants with this information, including mutation of the calling frame’s locals,
compiling new code, or just ignoring the body.

A quasiquoter does not need to implement both quote_stmt and quote_expr. In some cases, it only makes
sense to support one of these features. If a quote type is used syntactically; however, the runtime quasiquoter does
not support this featere then a quasiquotes.quasiquoter.QQNotImplementedError exception will be
raised.

10 Chapter 4. IPython Integration

Quasiquotes, Release 0.2.1

4.2 Inline c

The most fully featured quasiquoter and the the reason that this project exists is the c quasiquoter. The c quasiquoter
is designed to be a way to seamlessly use the CPython API while preserving code locality and avoiding boilerplate.

When optimizing python, we often find that very few functions are hotspots that require us to rewrite in c. Good
practice says to start in python and then slowly port the slow functions into c one at a time. We don’t just want to
rewrite all of it because then we lose the maintainability of python for a trivial gain. The c quasiquoter gives us even
more fine control over which parts of our program can be in c by allowing us to weave sections of c into our python
functions. We can even do things like rewrite a single loop in a function in c.

One of the main benifits of this approach is that we can keep the optimized c code right next to the python that it is
supporting. This is a huge benifit for maintainability.

4.2.1 Namespace Management

The c quasiquoter allows us to manipulate the python namespace of the enclosing scope. For example:

>>> a = 1
>>> b = 'test'
>>> with $c:
... printf("%ld\n%s\n",
... PyLong_AsLong(a),
... PyUnicode_AsUTF8(b));
1
test

Here we can see that the variables from the enclosing scope have been passed into our function. All python values will
have the standard type of PyObject* and can be used like normal.

We can also change the namespace just like a normal context manager.

>>> a = 1
... with $c:
... printf("%ld\n", PyLong_AsLong(a));
... a = Py_None;
... Py_INCREF(a);
1
>>> a is None
True

Here we can see that the enhanced with block can reassign the names in scope. This even works for the locals of a
function.

4.2.2 Quoted Expressions

The c quasiquoter also allows for quoted expressions. Just like the enhanced with statment, the quoted expression can
use the names from the enclosing scope. For example:

>>> [$c|PyLong_FromLong(2)|] + 2
4
>>> a = 2
>>> [$c|PyLong_FromLong(PyLong_AsLong(a) + 2)|]
4

Quoted expressions are built on compound statements, a gnu extension to c. These look like:

4.2. Inline c 11

Quasiquotes, Release 0.2.1

int a = ({
int b = 1; /* This is a new block, new declarations are allowed
int c = 2;
b + c; /* The final expression is the result of the block.

});

We need this because most quoted expressions that will return to python need to remember to incref the return. For
example:

>>> [$c|Py_INCREF(Py_None); Py_None|] is None
True

We need to remember to call Py_INCREF or we will get a segfault somewhere in the garbage collector at interpreter
shutdown.

Note: The last semicolon is optional in c quoted expression.

4.2.3 Type Conversion

Because one intended use case of the c quasiquoter is optimization, there is no implicit object conversion. All names
passed from the outside scope will have type PyObject*. This matches the normal CPython API conventions. There
are many type specific conversion functions, for example: PyLong_AsLong or PyUnicode_AsUTF8.

This is also true for the quoted expression return value. a quasiquotes.c.CompilationError will be raised
if the final expression does not have type PyObject*.

4.2.4 Reference Counting

CPython uses a reference counting garbage collection strategy. This means that every PyObject has an ob_refcnt
field (of type Py_ssize_t. This measures the number of objects that can refer to this object. Whenever an object is
added to some container, the container will Py_INCREF the object, increasing the reference count by 1. When the ob-
ject is removed from the container the container will Py_DECREF the object, reducing the reference count by 1. When
an object with exactly 1 reference is Py_DECREFed it will be destroyed immediatly by calling ((PyTypeObject*)
Py_TYPE(ob))->tp_dealloc(ob). This will deallocate the object.

CPython documentation will also refer to the concept of borrowed references. A borrowed reference is a reference
to an object that the current scope does not own. This means that the current scope is not responsible for calling
Py_DECREF on this object. For example, when arguments are passed to a function, they are passed as a borrowed
reference, if one wishes to hold onto the object, they must Py_INCREF it to take ownership. Some CPython API
functions will return borrowed references.

Similar to the idea of borrowed reference is the idea of stealing references. This means that a function will not
Py_INCREF the object but it will Py_DECREF it when it releases ownership. It is the job of the caller to ensure that
they want to release ownership to the function.

quasiquotes does not help the programmer with reference counting. It is still the user’s responsibility to manage the
lifetimes on their objects.

4.2.5 Exceptions

When a function or quoted block raises an exception, the user should call PyErr_SetString, PyErr_Format,
or one of the other functions used for setting the exception state. These will mark that a failure has occurred so that
the interpreter knows which type of failure happened. This is very similar to the raise keyword in python.

12 Chapter 4. IPython Integration

Quasiquotes, Release 0.2.1

When an exception has been set, the function should return NULL to show that an exception as occured. After calling
most CPython API functions, the user should verify that the return is not NULL. Often the user should bubble the
return of NULL up, making sure to Py_DECREF all of the values they had temporary ownership of.

4.2.6 Compilation Caching

Whenever a quoted statement or expression is compiled, it will create a shared object next to the python source of the
file. The name of the shared object will start with _qq_<kind> where kind can be either stmt or expr. This marks
the type of quasiquote that was used. Then it will have the name of the module it is in. After that is an md5 hash of
the body of the quoted section. Finally, there is the ABI compat string, like cpython-34m that says that this was
CPython major version 3 minor version 4 compiled with PyMalloc enabled.

The quasiquoter can also be configured to cache the generated c source code or to not cache the shared objects with
the keep_c and keep_so keyword arguments to the c quasiquoter.

Every compiled chunk will be cached in memory after the quasiquote has been executed once.

Every so often you will want to cleanup stale compiled shared objects. This can be done with the
quasiquotes.c.c.cleanup() method, or by executing: python -m quasiquotes.c Both of these ac-
cept two arguments: path and recurse defaulting to . and True respectivly. This marks where the search for
cached c and shared objects should begin and if the search should recurse through subdirectories.

4.2.7 Compilation Options

The c quasiquoter accepts a keyword argument: extra_compile_args which should be a sequence of string to
pass to gcc. This can be used to add include directories or link against other libraries.

4.3 fromfile

quasiquotes.fromfile is designed to take an existing quasiquoter and return a new quasiquoter that reads its
input from a file. For example, let’s write an “identity” quasiquoter that executes the body as python code.

from textwrap import dedent

from quasiquotes import QuasiQuoter
from quasiquotes.utils.instance import instance

@instance
class py(QuasiQuoter):

def quote_stmt(self, code, frame, col_offset):
exec(dedent(code), frame.f_globals, frame.f_locals)
self.locals_to_fast(frame)

def quote_expr(self, code, frame, col_offset):
return eval(code, frame.f_globals, frame.f_locals)

We can use this silly quasiquoter as expected:

>>> a = 2
>>> with $py:
... print(a + 2)
4
>>> print([$py|a + 2|])
4

4.3. fromfile 13

Quasiquotes, Release 0.2.1

We can now use this to inline python from another file in our function. For example, let’s imagine that
other_file.py looks like:

print(a + 2)

We can then use this in our files like:

>>> inlinepy = fromfile(py) # remember, we need to bind this before use.
>>> a = 2
>>> with $inlinepy:
... other_file.py
4
>>> [$inlinepy|other_file.py|] is None
4
True

4.4 Implementation

4.4.1 Tokens

quasiquotes works by hooking into the file encoding logic. Every file is marked with an encoding type, defaulting to
utf-8. This is shown with the # coding: <encoding> coments at the top of some files. This encoding defines
the functions needed to convert the raw bytes that come in from the filesystem into python str objects. Users are also
able to register their own encoding types by providing their own conversion functions. quasiquotes sits on top of the
utf-8 encoding functions; however, it tokenizes the files coming in so that it can rewrite certian patterns.

Let’s look at some source code and the tokens that come out of it:

with $qq:
this should not parse
but it will

NAME('with')
ERROR(' ')
ERROR('$')
NAME('qq')
OP(':')
NEWLINE('\n')
<body>
DEDENT

This says we have the string ‘with’ followed by 2 errors. These tokens appear as ERROR because this would normally
be an invalid token in python. The next part is the actual name of the quasiquoter you would want to use. Finally we
have the colon and newline. The body is whatever sequence of tokens make up the indented region in the quasiquoter,
and then we have the DEDENT token marking the end of the body.

By manipulating the tokens, we can change this into something that looks like:

cc._quote_stmt(0,' this should not parse\n but it will')

Here the 0 is the column offset of this quoted expression, and the string is the body of the context manager. The lack
of space after the comma accuratly reflects the column offsets of the tokens that the quasiquotes tokenizer emits.

Note: The original indentation is preserved.

14 Chapter 4. IPython Integration

Quasiquotes, Release 0.2.1

We can do this because we still have access to the raw text that makes up each line between the NEWLINE and the
DEDENT.

Let’s also look at the quoted expressions:

[$qq|this is also invalid|]

OP('[']
ERROR('$')
NAME('qq')
OP('|')
<body>
OP('|')
OP(']')

Just like with quoted statements, we can rewrite this to look more like:

.. code-block:: python

qq._quote_expr(0,' this is also invalid')

Note: Indentation is also preserved in a quoted expression.

4.4.2 Runtime Lookups

An important thing to notice about the implementation is that it builds source that has method calls of a dynamic
object. While we are doing static work to make the parser see the quoted block as valid python, we do not load the
quasiquoter until the function is being executed and we have a running frame. This means that the current value for
the name of the quasiquoter will be used.

4.4.3 Expressions as QuasiQuoters

QuasiQuoters are instances, so one might think that they should be able to do:

with $MyQQ(some_arg=some_value):
...

Unfortunately, this changes the token stream. We no longer have an OP(’:’), NEWLINE(’\n’) following the
name of the quoter. Currently, we do not detect this case and the normal python syntax error will be thrown. This is
also true for quoted expressions.

4.5 Appendix

4.5.1 c

quasiquotes.c.c = <quasiquotes.c.c object>
quasiquoter for inlining c.

Parameters keep_c : bool, optional

4.5. Appendix 15

Quasiquotes, Release 0.2.1

Keep the generated .c files. Defaults to False.

keep_so : bool, optional

Keep the compiled .so files. Defaults to True.

extra_compile_args : iterable[str or Flag]

Extra command line arguments to pass to gcc.

Notes

You cannot pass arguments in the quasiquote syntax. You must construct a new instance of c and then use that
as the quasiquoter. For example:

with $c(keep_so=False):
Py_None;

is a syntax error. Instead, you must do:

c_no_keep_so = c(keep_so=False)
with $c_no_keep_so:

Py_None;

This is because of the way the quasiquotes lexer identifies quasiquote sections.

Methods

quote_stmt
quote_expr

c.cleanup(path=’.’, recurse=True)
Remove cached shared objects and c code generated by the c quasiquoter.

Parameters path : str, optional

The path to the directory that will be searched.

recurse : bool, optional

Should the search recurse through subdirectories of path.

Returns removed : list[str]

The paths to the files that were removed.

exception quasiquotes.c.CompilationError
An exception that indicates that gcc failed to compile the given C code.

exception quasiquotes.c.CompilationWarning
A warningthat indicates that gcc warned when compiling the given C code.

4.5.2 fromfile

class quasiquotes.quasiquoter.fromfile(qq)
Create a QuasiQuoter from an existing one that reads the body from a filename.

Parameters qq : QuasiQuoter

16 Chapter 4. IPython Integration

Quasiquotes, Release 0.2.1

The QuasiQuoter to wrap.

Examples

>>> from quasiquotes.quasiquoter import fromfile
>>> from quasiquotes.c import c
>>> include_c = fromfile(c)
>>> # quote_expr on the contents of the file
>>> [$include_c|mycode.c|]
>>> # quote_stmt on the contents of the file
>>> with $include_c:
... mycode.c

4.5.3 Codec

class quasiquotes.codec.tokenizer.FuzzyTokenInfo
A token info object that check equality only on type and string.

Parameters type : int

The enum for the token type.

string : str

The string represnting the token.

start, end, line : any, optional

Ignored.

class quasiquotes.codec.tokenizer.PeekableIterator(stream)
An iterator that can peek at the next n elements without consuming them.

Parameters stream : iterator

The underlying iterator to pull from.

Notes

Peeking at n items will pull that many values into memory until they have been consumed with next.

The underlying iterator should not be consumed while the PeekableIterator is in use.

lookahead_iter()
Return an iterator that yields the next element and then consumes it.

This is particularly useful for takewhile style functions where you want to break when some predicate
is matched but not consume the element that failed the predicate.

Examples

>>> it = PeekableIterator(iter((1, 2, 3)))
>>> for n in it.lookahead_iter():
... if n == 2:
... break
>>> next(it)
2

4.5. Appendix 17

Quasiquotes, Release 0.2.1

peek(n=1)
Return the next n elements of the iterator without consuming them.

Parameters n : int

Returns peeked : tuple

The next elements

Examples

>>> it = PeekableIterator(iter((1, 2, 3, 4)))
>>> it.peek(2)
(1, 2)
>>> next(it)
1
>>> it.peek(1)
(2,)
>>> next(it)
2
>>> next(it)
3

quasiquotes.codec.tokenizer.quote_expr_tokenizer(name, start, tok_stream)
Tokenizer for quote_expr.

Parameters name : str

The name of the quasiquoter.

start : TokenInfo

The starting token.

tok_stream : iterator of TokenInfo

The token stream to pull from.

quasiquotes.codec.tokenizer.quote_stmt_tokenizer(name, start, tok_stream)
Tokenizer for quote_stmt.

Parameters name : str

The name of the quasiquoter.

start : TokenInfo

The starting token.

tok_stream : iterator of TokenInfo

The token stream to pull from.

quasiquotes.codec.tokenizer.tokenize(readline)
Tokenizer for the quasiquotes language extension.

Parameters readline : callable

A callable that returns the next line to tokenize.

quasiquotes.codec.tokenizer.tokenize_bytes(bs)
Tokenize a bytes object.

Parameters bs : bytes

18 Chapter 4. IPython Integration

Quasiquotes, Release 0.2.1

The bytes to tokenize.

quasiquotes.codec.tokenizer.tokenize_string(cs)
Tokenize a str object.

Parameters cs : str

The string to tokenize.

quasiquotes.codec.tokenizer.transform_bytes(bs)
Run bytes through the tokenizer and emit the pure python representation.

Parameters bs : bytes

The bytes to transform.

Returns transformed : bytes

The pure python representation of bs.

quasiquotes.codec.tokenizer.transform_string(cs)
Run a str through the tokenizer and emit the pure python representation.

Parameters cs : str

The string to transform.

Returns transformed : bytes

The pure python representation of cs.

4.5.4 Utilities

class quasiquotes.utils.shell.Executable(name)
An executable from the shell.

quasiquotes.utils._traceback.new_tb(frame)
Create a traceback object starting at the given stackframe.

Parameters frame : frame

The frame to start the traceback from.

Returns tb : traceback

The new traceback object.

Notes

This function creates a new traceback object through the C-API. Use at your own risk.

4.5. Appendix 19

Quasiquotes, Release 0.2.1

20 Chapter 4. IPython Integration

Python Module Index

q
quasiquotes.c, 16
quasiquotes.codec.search, 19
quasiquotes.codec.tokenizer, 17
quasiquotes.quasiquoter, 9
quasiquotes.utils._traceback, 19
quasiquotes.utils.instance, 19
quasiquotes.utils.shell, 19

21

Quasiquotes, Release 0.2.1

22 Python Module Index

Index

C
c (in module quasiquotes.c), 15
cleanup() (quasiquotes.c.c method), 16
CompilationError, 16
CompilationWarning, 16

E
Executable (class in quasiquotes.utils.shell), 19

F
fromfile (class in quasiquotes.quasiquoter), 16
FuzzyTokenInfo (class in quasiquotes.codec.tokenizer),

17

L
locals_to_fast() (quasiquotes.quasiquoter.QuasiQuoter

static method), 9
lookahead_iter() (quasiquotes.codec.tokenizer.PeekableIterator

method), 17

N
new_tb() (in module quasiquotes.utils._traceback), 19

P
peek() (quasiquotes.codec.tokenizer.PeekableIterator

method), 17
PeekableIterator (class in quasiquotes.codec.tokenizer),

17

Q
QuasiQuoter (class in quasiquotes.quasiquoter), 9
quasiquotes.c (module), 16
quasiquotes.codec.search (module), 19
quasiquotes.codec.tokenizer (module), 17
quasiquotes.quasiquoter (module), 9
quasiquotes.utils._traceback (module), 19
quasiquotes.utils.instance (module), 19
quasiquotes.utils.shell (module), 19
quote_expr() (quasiquotes.quasiquoter.QuasiQuoter

method), 9

quote_expr_tokenizer() (in module
quasiquotes.codec.tokenizer), 18

quote_stmt() (quasiquotes.quasiquoter.QuasiQuoter
method), 10

quote_stmt_tokenizer() (in module
quasiquotes.codec.tokenizer), 18

T
tokenize() (in module quasiquotes.codec.tokenizer), 18
tokenize_bytes() (in module

quasiquotes.codec.tokenizer), 18
tokenize_string() (in module

quasiquotes.codec.tokenizer), 19
transform_bytes() (in module

quasiquotes.codec.tokenizer), 19
transform_string() (in module

quasiquotes.codec.tokenizer), 19

23

	What is a quasiquote
	The c quasiquoter
	The r quasiquoter
	IPython Integration
	Python Module Index

