

    
      
          
            
  
QuantiPhy: Physical Quantities


Version: 2.19.2

Released: 2024-02-01

Please post all bugs and suggestions at
Github [https://github.com/KenKundert/quantiphy/issues]
(or contact me directly at
quantiphy@nurdletech.com).




What?

QuantiPhy is a Python library that offers support for physical quantities.
A quantity is the pairing of a number and a unit of measure that indicates the
amount of some measurable thing.  QuantiPhy provides quantity objects that
keep the units with the number, making it easy to share them as single object.
They subclass float and so can be used anywhere a real number is appropriate.




Why?

QuantiPhy naturally supports SI scale factors, which are widely used in
science and engineering. SI scale factors make it possible to cleanly represent
both very large and very small quantities in a form that is both easy to read
and write.  While generally better for humans, no general programming language
provides direct support for reading or writing quantities with SI scale factors,
making it difficult to write numerical software that communicates effectively
with people.  QuantiPhy addresses this deficiency, making it natural and
simple to both input and output physical quantities.




Features


	Flexibly reads amounts with units and SI scale factors.


	Quantities subclass the float class and so can be used as conventional
numbers.


	Generally includes the units when printing or converting to strings and by
default employs SI scale factors.


	Flexible unit conversion and scaling is supported to make it easy to convert
to or from any required form.


	Supports the binary scale factors (Ki, Mi, etc.) along with the normal SI
scale factors (k, M, etc.).


	When a quantity is created from a string, the actual digits specified can be
used in any output, eliminating any loss of precision.







Alternatives

There are a considerable number of Python packages dedicated to units and
quantities (alternatives [https://kdavies4.github.io/natu/seealso.html]).
However, as a rule, they focus on the units rather than the scale factors. In
particular, they build a system of units that you are expected to use throughout
your calculations.  These packages demand a high level of commitment from their
users and in turn provide unit consistency and built-in unit conversions.

In contrast, QuantiPhy treats units basically as documentation.  They are
simply strings that are attached to quantities largely so they can be presented
to the user when the values are printed. As such, QuantiPhy is a light-weight
package that demands little from the user.  It is used when inputting and
outputting values, and then only when it provides value.  As a result, it
provides a simplicity in use that cannot be matched by the other packages.

In addition, these alternative packages generally build their unit systems upon
the SI base units [https://en.wikipedia.org/wiki/SI_base_unit], which tends
to restrict usage to physical quantities with static conversion factors.  They
are less suited to non-physical quantities or conversion factors that change
dynamically, such as with currencies.  QuantiPhy gracefully handles all of
these cases.




Quick Start

Install with:

pip3 install quantiphy





Requires Python 3.6 or newer.  If you using an earlier version of Python,
install version 2.10 of QuantiPhy.

You use Quantity to convert numbers and units in various forms to quantities:

>>> from quantiphy import Quantity

>>> Tclk = Quantity(10e-9, 's')
>>> print(Tclk)
10 ns

>>> Fhy = Quantity('1420.405751786 MHz')
>>> print(Fhy)
1.4204 GHz

>>> Rsense = Quantity('1e-4Ω')
>>> print(Rsense)
100 uΩ

>>> cost = Quantity('$11_200_000')
>>> print(cost)
$11.2M

>>> Tboil = Quantity('212 °F', scale='°C')
>>> print(Tboil)
100 °C





Once you have a quantity, there are a variety of ways of accessing aspects of
the quantity:

>>> Tclk.real
1e-08

>>> float(Fhy)
1420405751.786

>>> 2*cost
22400000.0

>>> Rsense.units
'Ω'

>>> str(Tboil)
'100 °C'





You can use the render method to flexibly convert the quantity to a string:

>>> Tclk.render()
'10 ns'

>>> Tclk.render(show_units=False)
'10n'

>>> Tclk.render(form='eng', show_units=False)
'10e-9'

>>> Fhy.render(prec=8)
'1.42040575 GHz'

>>> Tboil.render(scale='°F')
'212 °F'





The fixed method is a variant that specializes in rendering numbers without
scale factors or exponents:

>>> cost.fixed(prec=2, show_commas=True, strip_zeros=False)
'$11,200,000.00'





You can use the string format method or the new format strings to flexibly
incorporate quantity values into strings:

>>> f'{Fhy}'
'1.4204 GHz'

>>> f'{Fhy:.6}'
'1.420406 GHz'

>>> f'❬{Fhy:<15.6}❭'
'❬1.420406 GHz   ❭'

>>> f'❬{Fhy:>15.6}❭'
'❬   1.420406 GHz❭'

>>> f'{cost:#,.2P}'
'$11,200,000.00'

>>> f'Boiling point of water: {Tboil:s}'
'Boiling point of water: 100 °C'

>>> f'Boiling point of water: {Tboil:s°F}'
'Boiling point of water: 212 °F'








Issues

Please ask questions or report problems on Github [https://github.com/KenKundert/quantiphy/issues].




Documentation



	Users’ Guide

	Classes and Functions

	Examples

	Accessories

	Releases






	Index










            

          

      

      

    

  

    
      
          
            
  
Users’ Guide


Overview

QuantiPhy adds support for quantities to Python. Quantities are little more
than a number combined with its units. They are used to represent physical
quantities. Your height and weight are both quantities, having both a value and
units, and both are important. For example, if I told you that Mariam’s weight
was 8, you might assume pounds as the unit of measure if you lived in the US and
think Mariam was an infant, or you might assume stones as the units if you live
in the UK and assume that she was an adult, or you might assume kilograms if you
lived anywhere else and assume she was a small child.
The units are very important, and in general it is always best to keep the unit
of measure with the number and present the complete value when working with
quantities. To do otherwise invites confusion.  Just ask NASA [http://www.cnn.com/TECH/space/9909/30/mars.metric.02/].  Readers often
stumble on numbers without units as they mentally try to determine the units
from context.  Quantity values should be treated in a manner similar to money,
which is also a quantity. Monetary amounts are almost always given with their
units (a currency symbol).

Having a single object represent a quantity in a programming language is useful
because it binds the units to the number making it more likely that the units
will be presented with the number. In addition, quantities from QuantiPhy
provide another important benefit.  They naturally support the SI scale factors,
which for those that are familiar with them are much easier to read and write
than the alternatives. The most common SI scale factors are:


T (1012) tera

G (109) giga

M (106) mega

k (103) kilo

m (10-3) milli

μ (10-6) micro

n (10-9) nano

p (10-12) pico

f (10-15) fempto

a (10-18) atto



Numbers with SI scale factors are commonly used in science and engineering
to represent physical quantities because it is easy to read and write numbers
both large and small. For example, the distance between the atoms in a silicon
lattice is roughly 230 pm whereas the distance to the sun is about 150 Gm.
Unfortunately, computers do not normally use SI scale factors. Instead, they
use E-notation. The two distances would be written as 2.3e-10 m and 1.5e+11 m.
Virtually all computer languages such as Python both read and write numbers in
E-notation, but none naturally read or write numbers that use SI scale factors,
even though SI is an international standard [https://en.wikipedia.org/wiki/International_System_of_Units] that has been
in place for over 50 years and is widely used.

QuantiPhy is an attempt to address both of these deficiencies. It allows
quantities to be represented with a single object that allows the complete
quantity to be easily read or written as a single unit. It also naturally
supports SI scale factors.  As such, QuantiPhy allows computers to communicate
more naturally with humans, particularly scientists and engineers.




Quantities

QuantiPhy is a library that adds support to Python for both reading and
writing numbers with SI scale factors and units. The primary working construct
for QuantiPhy is Quantity, which is a class whose objects hold the
number and units that are used to represent a physical quantity. For example, to
create a quantity from a string you can use:

>>> from quantiphy import Quantity

>>> distance_to_sun = Quantity('150 Gm')
>>> distance_to_sun.real
150000000000.0

>>> distance_to_sun.units
'm'

>>> print(distance_to_sun)
150 Gm





Now distance_to_sun contains an object with two values, the number
150000000000.0 and the units ‘m’.  The ‘G’ was interpreted as the giga scale
factor, which scales 150 by 109.

It is worth considering the alternative for a moment:

>>> d_sol = float('150000000000.0')
>>> print(f'{d_sol} m')
150000000000.0 m





Ignoring the difficulty in writing and reading the number, there is another
important difference. The units are placed in the print statement and not kept
with the number. This makes the value ambiguous, it clutters the print
statement, and it introduces a vulnerability. When coming back and refactoring
your code after some time has passed, you might change the units of the number
and forget to change the units in the print statement. This is particularly
likely if the number is defined far from where it is printed. The result is that
erroneous results are printed and is always a risk when two related pieces of
information are specified far from one another. QuantiPhy addresses this issue
by binding the value and the units into one object.

Quantity is a subclass of float, and so distance_to_sun can be used
just like any real number. For example, you can convert the distance to miles
using:

>>> distance_in_miles = distance_to_sun / 1609.34
>>> print(distance_in_miles)
93205910.49747102





When printed or converted to strings quantities naturally use SI scale factors.
For example, you can clean up that distance in miles using:

>>> distance_in_miles = Quantity(distance_to_sun / 1609.34, 'miles')
>>> print(distance_in_miles)
93.206 Mmiles





However, you need not explicitly do the conversion yourself. QuantiPhy
provides many of the most common conversions for you:

>>> distance_in_miles = Quantity(distance_to_sun, scale='miles')
>>> print(distance_in_miles)
93.206 Mmiles






Specifying Quantities

Normally, creating a Quantity takes one or two arguments.  The first is
taken to be the value, and the second, if given, is taken to be the model, which
is a source of default values.


The first argument: the value

The value may be given as a float, as a string, or as a quantity.  The string
may be the name of a known constant or it may represent a number. If the string
represents a number, it may be in floating point notation (1200.0), in
E-notation (ex: 1.2e+3), or use SI scale factors (1.2k). It may also include the
units.  And like Python in general, the numbers may include underscores to make
them easier to read (they are ignored).  For example, any of the following ways
can be used to specify 1ns:

>>> period = Quantity(1e-9, 's')
>>> print(period)
1 ns

>>> period = Quantity('0.000_000_001 s')
>>> print(period)
1 ns

>>> period = Quantity('1e-9s')
>>> print(period)
1 ns

>>> period = Quantity('1ns')
>>> print(period)
1 ns

>>> period2 = Quantity(period)
>>> print(period2)
1 ns





If given as a string, the value may also be the name of a known constant:

>>> k = Quantity('k')
>>> q = Quantity('q')
>>> print(k, q, sep='\n')
13.806e-24 J/K
160.22e-21 C





The following constants are pre-defined: h, ħ, k, q, c, 0°C, ε₀,
μ₀, and Z₀. You may add your own constants.

Currency units ($€¥£₩₺₽₹Ƀ₿Ξ) are a bit different than other units in that they
are placed at the front of the quantity.

>>> print(Quantity('$11_200_000'))
$11.2M

>>> print(Quantity(11.2e6, '$'))
$11.2M





When using currency units, if the number has a sign, it should precede the
units:

>>> print(Quantity('-$11_200_000'))
-$11.2M

>>> print(Quantity(-11.2e6, '$'))
-$11.2M





When given as a string, the number may use any of the following scale factors
(though you can use the input_sf preference to prune this list if desired):


Q (1030) quetta

R (1027) ronna

Y (1024) yotta

Z (1021) zetta

E (1018) exa

P (1015) peta

T (1012) tera

G (109) giga

M (106) mega

k (103) kilo

_ (1)

c (10-2) centi

m (10-3) milli

u (10-6) micro (ASCII)

µ (10-6) micro (unicode micro)

μ (10-6) micro (unicode Greek mu)

n (10-9) nano

p (10-12) pico

f (10-15) fempto

a (10-18) atto

z (10-21) zepto

y (10-24) yocto

r (10-27) ronto

q (10-30) quecto



In addition, the units must start with a letter or any of these characters:
°ÅΩƱΩ℧¢$€¥£₩₺₽₹Ƀ₿șΞΔ%√, and may be followed by those characters (except %)
or digits or any of these characters: -^/()·⁻⁰¹²³⁴⁵⁶⁷⁸⁹.  Thus, any of the
following would be accepted as units: Ohms, V/A, J-s, m/s^2,
H/(m-s), Ω, %, m·s⁻², V/√Hz.

When specifying the value as a string you may also give a name and description,
and if you do they become available as the attributes name and desc.  This
conversion is under the control of the assign_rec preference.  The default
version of assign_rec accepts either ‘=’ or ‘:’ to separate the name from the
value, and either ‘—’, ‘–’, ‘#’, or ‘//’ to separate the value from the
description if a description is given. Thus, by default QuantiPhy recognizes
specifications of the following forms:

<name> = <value>
<name> = <value> — <description>
<name> = <value> -- <description>
<name> = <value> # <description>
<name> = <value> // <description>
<name>: <value>
<name>: <value> — <description>
<name>: <value> -- <description>
<name>: <value> # <description>
<name>: <value> // <description>





For example:

>>> period = Quantity('Tclk = 10ns -- clock period')
>>> print(f'{period.name} = {period}  # {period.desc}')
Tclk = 10 ns  # clock period








The second argument: the model

If you only specify a real number for the value, then the units, name, and
description do not get values. Even if given as a string or quantity, the value
may not contain these extra attributes. This is where the second argument, the
model, helps.  It may be another quantity or it may be a string.  Any attributes
that are not provided by the first argument are taken from the second if
available.  If the second argument is a string, it is split.  If it contains one
value, that value is taken to be the units, if it contains two, those values are
taken to be the name and units, and it it contains more than two, the remaining
values are taken to be the description.  If the model is a quantity, only the
units are inherited. For example:

>>> out_period = Quantity(10*period, period)
>>> print(out_period)
100 ns

>>> freq = Quantity(100e6, 'Hz')
>>> print(freq)
100 MHz

>>> freq = Quantity(100e6, 'Fin Hz')
>>> print(f'{freq.name} = {freq}')
Fin = 100 MHz

>>> freq = Quantity(100e6, 'Fin Hz input frequency')
>>> print(f'{freq.name} = {freq} — {freq.desc}')
Fin = 100 MHz — input frequency





If the model contains units, those units are only used if the value does not
have units. The same is true for the description. For example:

>>> h = Quantity('18in', 'm')
>>> print(h)
18 in








The remaining arguments

Any arguments beyond the first two must be given as named arguments.

If you need to override the name, units or the description given in either the
value or the model, you can do so by specifying them with corresponding named
arguments.  For example:

>>> out_period = Quantity(
...     10*period, period, name='output period',
...     desc='period at output of frequency divider'
... )
>>> print(f'{out_period.name} = {out_period} — {out_period.desc}')
output period = 100 ns — period at output of frequency divider





In this the value is 10*period, which is a float and so has no name, units,
or description attributes, but the model is period that has all three
attributes, but the name name and description, coming from a quantity, are
ignored. Instead, they are specified explicitly using the name and desc
arguments.

Specifying binary as True allows you to use the binary scale factors. The
binary scale factors are Ki, Mi, Gi, Ti, Pi, Ei, Zi, and Yi.
Unlike the normal scale factors, you cannot use a lower case k in Ki. Also,
input_sf is ignored. The normal recognizers are used if none of the binary
scale factors are found.

>>> bytes = Quantity('1 KiB', binary=True)
>>> print(bytes)
1.024 kB





You can also specify scale and ignore_sf as named arguments.  scale allows
you to scale the value or convert it to different units. It is described
in a bit. ignore_sf indicates that any scale
factors should be ignored. This is one way of handling units
whose name starts with a scale factor character.  For example:

>>> x = Quantity('1m')                                  # unitless value
>>> print(x, x.real, x.units, sep=', ')
1m, 0.001,

>>> l = Quantity('1m', ignore_sf=True)                  # length in meters
>>> print(l, l.real, l.units, sep=', ')
1 m, 1.0, m

>>> d = Quantity('1m', units = 'mile', ignore_sf=True)  # distance in miles
>>> print(d, d.real, d.units, sep=', ')
1 mile, 1.0, mile

>>> t = Quantity('1m', units = 'min', ignore_sf=True)   # duration in minutes
>>> print(t, t.real, t.units, sep=', ')
1 min, 1.0, min





Finally, you can also specify conversion parameters using params.  These
values are ignored by QuantiPhy except that they are made available to any
UnitConversion conversion functions as a way of implementing
parametrized conversions.




Quantity attributes

You can overwrite Quantity attributes to override the units, name, or
description.

>>> out_period = Quantity(10*period)
>>> out_period.units = 's'
>>> out_period.name = 'output period'
>>> out_period.desc = 'period at output of frequency divider'
>>> print(f'{out_period.name} = {out_period} — {out_period.desc}')
output period = 100 ns — period at output of frequency divider





In addition, you can also override the preferences with attributes:

>>> out_period.spacer = ''
>>> print(out_period)
100ns










Scaling When Creating a Quantity

Quantities tend to be used primarily when reading and writing numbers, and less
often when processing numbers.  Often data comes in an undesirable form. For
example, imagine data that has been normalized to kilograms but the numbers
themselves have neither units or scale factors.  QuantiPhy allows you to scale
the number and assign the units when creating the quantity:

>>> mass = Quantity('2.529', scale=1000, units='g')
>>> print(mass)
2.529 kg





In this case the value is given in kilograms, and is converted to the base units
of grams by multiplying the given value by 1000. You always want to convert to
base units (units with no scale factor) when creating a Quantity.  This
can also be expressed as follows:

>>> mass = Quantity('2.529', scale=(1000, 'g'))
>>> print(mass)
2.529 kg





You can also specify a function to do the conversion, which is helpful when the
conversion is not linear:

>>> def from_dB(value, units=''):
...     return 10**(value/20), value.units[2:]

>>> Quantity('-100 dBV', scale=from_dB)
Quantity('10 uV')






Note

Since version 2.18 the first argument, in this case value, is guaranteed to
be a Quantity that contains both the units and any parameters needed
during the conversion.  As such, the second argument, units, is not longer
needed and will eventually be removed.



The conversion can also often occur if you simply state the units you wish the
quantity to have:

>>> Tboil = Quantity('212 °F', scale='K')
>>> print(Tboil)
373.15 K





or if you employ a subclass of Quantity that has units:

>>> class Kelvin(Quantity):
...     units = 'K'

>>> Tboil = Kelvin('212 °F')
>>> print(Tboil)
373.15 K





This assumes that the initial value is specified with units. If not, you need to
provide them for these mechanisms to work.

>>> Tboil = Quantity('212', '°F', scale='K')
>>> print(Tboil)
373.15 K





To do this conversion, QuantiPhy examines the given units (°F) and the desired
units (K) and chooses the appropriate converter.  No scaling is done if the
given units are equivalent as the desired units. Thus you can use the scaling
mechanism to convert a collection of data with mixed units to values with
consistent units.  For example:

>>> weights = '''
...     240 lbs
...     230 lb
...     100 kg
...     210
... '''.strip().split('\n')
>>> for weight in weights:
...     w = Quantity(weight, 'lb', scale='lb')
...     print(w)
240 lb
230 lb
220.46 lb
210 lb





To perform these conversions QuantiPhy uses predefined relationships between
pairs of units.  These relationships are defined using Unit Converters.

When using unit conversions it is important to only convert to units without
scale factors when creating a quantity.  For example, it is better to convert to
‘g’ rather than ‘kg’.  Otherwise, if the desired units used when creating
a quantity includes a scale factor, it is easy to end up with two scale factors
when converting the number to a string (ex: 1 mkg or one milli-kilo-gram).

Here is another example that uses quantity scaling. Imagine that a table is
being read that gives temperature versus time, but the temperature is given in
°F and the time is given in minutes and neither are given with units.  Assume
that for the purpose of later analysis it is desirable for the values be
converted to the more natural units of Kelvin and seconds:

>>> rawdata = '0 450, 10 400, 20 360'
>>> data = []
>>> for pair in rawdata.split(','):
...     time, temp = pair.split()
...     time = Quantity(time, 'min', scale='s')
...     temp = Quantity(temp, '°F', scale='K')
...     data += [(time, temp)]

>>> for time, temp in data:
...     print(f'{time:9q} {temp:9q}')
      0 s  505.37 K
    600 s  477.59 K
   1.2 ks  455.37 K








Creating a Quantity by Scaling an Existing Quantity

The Quantity.scale() method scales the value of a quantity and then uses
the new value to create a new Quantity. For example:

>>> import math

>>> h_line = Quantity('1420.405751786 MHz')
>>> sagan = h_line.scale(math.pi)
>>> sagan2 = sagan.scale(2)
>>> print(sagan, sagan2, sep='\n')
4.4623 GHz
8.9247 GHz

>>> print(repr(h_line))
Quantity('1.420405751786 GHz')

>>> print(repr(sagan))
Quantity('4.462336274928 GHz')





Any value that can be passed to the scale argument for Quantity or
Quantity.render() can be passed to the scale method.  Specifically, the
following types are accepted:


	float or Quantity
	The argument scales the underlying value (a new quantity is returned whose
value equals the underlying quantity multiplied by scale). In this case the
scale is assumed unitless (any units are ignored) and so the units of the
new quantity are the same as those of the underlying quantity.



	tuple
	The argument consists of two values. Tthe first value, a float, is treated
as a scale factor. The the second value, a string, is taken to be the units
of the new quantity.



	function
	The function takes two arguments, the value to be scaled and its units.  The
value is guaranteed to be a Quantity that includes the units, so the second
argument is redundant and will eventually be deprecated.  The function
returns two values, the value and units of the new value.



	string
	The argument is taken to the be desired units. This value along with the
units of the underlying quantity are used to select a known unit conversion,
which is applied to create the new value.

>>> Tboil_C = Tboil.scale('C')
>>> print(Tboil_C)
100 C












Creating a Quantity by Adding to an Existing Quantity

The Quantity.add() method adds a contribution to the  value of a quantity
and then uses the sum to create a new Quantity. For example:

>>> import math

>>> total = Quantity(0, '$')
>>> for contribution in ['1.23', '4.56', '7.89']:
...     total = total.add(contribution)
>>> print(total)
$13.68





The argument to add can be a quantity, a real number, or a string.

When adding quantities, the units of the quantity should match. You can enforce
this by adding check_units=True. If the dimension of your quantities match but
not the units, you can often use Quantity.scale() to get the units right:

>>> m1 = Quantity('1kg')
>>> m2 = Quantity('1lb')
>>> m3 = m1.add(m2.scale('g'), check_units=True)
>>> print(m3)
1.4536 kg








Accessing Quantity Values

There are a variety of ways of accessing the value of a quantity. If you are
just interested in its numeric value, you access it with:

>>> h_line.real
1420405751.786

>>> float(h_line)
1420405751.786





Or you can simply use a quantity in the same way that you would use any real
number, meaning that you can use it in expressions and it evaluates to its
numeric value:

>>> second_sagan_freq = 2 * math.pi * h_line
>>> print(second_sagan_freq)
8924672549.85517

>>> sagan2 = Quantity(second_sagan_freq, h_line)
>>> print(sagan2)
8.9247 GHz

>>> type(h_line)
<class 'quantiphy.quantiphy.Quantity'>

>>> type(second_sagan_freq)
<class 'float'>

>>> type(sagan2)
<class 'quantiphy.quantiphy.Quantity'>





Notice that when performing arithmetic operations on quantities the units
are completely ignored and do not propagate in any way to the newly computed
result.

If you are interested in the units of a quantity, you can use:

>>> h_line.units
'Hz'





Or you can access both the value and the units, either as a tuple or in
a string:

>>> h_line.as_tuple()
(1420405751.786, 'Hz')

>>> str(h_line)
'1.4204 GHz'





SI scale factors are used by default when converting numbers to strings. The
following scale factors could be used: QRYZEPTGMkc%munpfazyrq, though by
default % is treated as a unit rather than a scale factor.  You need to activate
% in input_sf for it to be treated as a scale factor.

Only the scale factors listed in the output_sf preference are actually used,
and by default that is set to TGMkmunpfa, which avoids the more uncommon
scale factors.  You can set output_sf to Quantity.all_sf to output all known
scale factors except c or %, which are never used in output.

The Quantity.render() method allows you to control the process of
converting a quantity to a string. For example:

>>> h_line.render()
'1.4204 GHz'

>>> h_line.render(form='eng')
'1.4204e9 Hz'

>>> h_line.render(show_units=False)
'1.4204G'

>>> h_line.render(form='eng', show_units=False)
'1.4204e9'

>>> h_line.render(prec=6)
'1.420406 GHz'

>>> h_line.render(form='fixed', prec=2)
'1420405751.79 Hz'

>>> bytes.render(form='binary')
'1 KiB'

>>> k.render(negligible=1e-12)
'0 J/K'





show_label allows you to display the name and description of the quantity when
rendering. If show_label is False, the quantity is not labeled with the name
or description. Otherwise the quantity is labeled under the control of the
show_label value and the show_desc, label_fmt and label_fmt_full
preferences (described further in Preferences and
Quantity.set_prefs()).  If show_label is ‘a’ (for abbreviated) or if
the quantity has no description, label_fmt is used to label the quantity with
its name.  If show_label is ‘f’ (for full), label_fmt_full is used to label
the quantity with its name and description.  Otherwise label_fmt_full is used
if show_desc is True and label_fmt otherwise.

>>> freq.render(show_label=True)
'Fin = 100 MHz'

>>> freq.render(show_label='f')
'Fin = 100 MHz — input frequency'

>>> Quantity.set_prefs(show_desc=True)
>>> freq.render(show_label=True)
'Fin = 100 MHz — input frequency'

>>> freq.render(show_label='a')
'Fin = 100 MHz'





You can also access the full precision of the quantity:

>>> h_line.render(prec='full')
'1.420405751786 GHz'

>>> h_line.render(form='eng', prec='full')
'1.420405751786e9 Hz'





Full precision implies whatever precision was used when specifying the quantity
if it was specified as a string and if the keep_components preference is True.
Otherwise a fixed number of digits, specified in the full_prec preference, is
used (default=12).  Generally one uses ‘full’ when generating output that is
intended to be read by a machine without loss of precision.

An alternative to render is Quantity.fixed(). It converts the quantity
to a string in fixed-point format:

>>> total = Quantity('$11.2M')
>>> print(total.fixed(prec=2, show_commas=True, strip_zeros=False))
$11,200,000.00





You can also use Quantity.render() to produce a fixed format, but it does
not support all of the options available with fixed:

>>> print(total.render(form='fixed', prec=2))
$11200000





Another alternative to render is Quantity.binary(). It converts the
quantity to a string that uses binary scale factors:

>>> mem = Quantity(17_179_869_184, 'B', name='physical memory')
>>> print(mem.binary())
16 GiB





Alternatively you can also use render to render strings with binary prefixes:

>>> print(mem.render(form='binary'))
16 GiB








Scaling When Rendering a Quantity

Once it comes time to output quantities from your program, you may again may be
constrained in the way the numbers must be presented. QuantiPhy also allows
you to scale the values as you render them to strings. In this case, the value
of the quantity itself remains unchanged. For example, imagine having a quantity
in grams and wanting to present it in either kilograms or in pounds:

>>> m = Quantity('2529 g')
>>> print("mass (kg): {}".format(m.render(show_units=False, scale=0.001)))
mass (kg): 2.529

>>> print(m.render(scale=(0.0022046, 'lb'), form='fixed'))
5.5754 lb





As before, functions can also be used to do the conversion. Here is an example
where that comes in handy: a logarithmic conversion to dBV is
performed.

>>> import math
>>> def to_dB(value, units=''):
...     return 20*math.log10(value), 'dB'+value.units

>>> T = Quantity('100mV')
>>> print(T.render(scale=to_dB))
-20 dBV






Note

Since version 2.18 the first argument, in this case value, is guaranteed to
be a Quantity that contains both the units and any parameters needed
during the conversion.  As such, the second argument, units, is not longer
needed and will eventually be removed.



Finally, you can also use either the built-in converters or the converters you
created to do the conversion simply based on the units:

>>> print(m.render(scale='lb'))
5.5755 lb





In an earlier example the units of time and temperature data were converted to
normal SI units. Presumably this makes processing easier. Now, when producing
the output, the units can be converted back to the original units if desired:

>>> for time, temp in data:
...     print("{:<7} {}".format(time.render(scale='min'), temp.render(scale='°F')))
0 min   450 °F
10 min  400 °F
20 min  360 °F








String Formatting

Quantities can be passed into the string format method:

>>> print('{}'.format(h_line))
1.4204 GHz

>>> print('{:s}'.format(h_line))
1.4204 GHz





In these cases the preferences for SI scale factors, units, and precision are
honored.


Specifying the format

You can override the precision as part of the format specification

>>> print('{:.6}'.format(h_line))
1.420406 GHz





You can also specify the width and alignment.  Quantiphy follows the Python
convention of right justifying numbers by default.

>>> print('«{:16.6}»'.format(h_line))
«    1.420406 GHz»

>>> print('«{:<16.6}»'.format(h_line))
«1.420406 GHz    »

>>> print('«{:>16.6}»'.format(h_line))
«    1.420406 GHz»

>>> print('«{:^16.6}»'.format(h_line))
«  1.420406 GHz  »





The general form of the format specifiers supported by quantities is:

format_spec ::=  [align][#][width][,][.precision][type][scale]





align specifies the alignment using one of the following characters:







	Align

	Meaning





	>

	Right justification.



	<

	Left justification.



	^

	Center justification.






The hash (#) is a literal hash that when present indicates that trailing zeros
and radix should not be stripped from the fractional part of the number.

width is a literal integer that specifies the minimum width of the string.

The comma (,) is a literal comma that when present indicates that commas should
be added to the whole part of the mantissa, every three digits.

precision is a literal integer that specifies the precision.

And finally, type specifies which form should be used when formatting the
value. The choices include:







	Type

	Meaning





	None

	Use default formatting options.



	s

	Use default formatting options.



	q

	Format using SI scale factors and show the units.



	r

	Format using SI scale factors but do not show the units.



	p

	Format using fixed-point notation and show the units.



	e

	Format using exponent notation but do not show the units.



	f

	Format using fixed-point notation but do not show the units.



	b

	Format using binary prefixes while showing the units.



	g

	Format using fixed-point or exponential notation, whichever is shorter, but
do not show the units.



	u

	Only include the units.



	n

	Only include the name.



	d

	Only include the description.






You can capitalize any of the format characters that output the value of the
quantity (any of ‘sqrpefg’, but not ‘und’). If you do, the label will also be
included.

These format specifiers are generally included in format strings. However, in
addition, Quantitphy provides the Quantity.format() method that converts
a quantity to a string based on a naked format string. For example:

>>> print(h_line.format('.6q'))
1.420406 GHz





Any format specification that is not recognized by QuantiPhy is simply passed
on to the underlying float. For example:

>>> print(f'TOTAL: {total:+#,.2f}')
TOTAL: +11,200,000.00

>>> with Quantity.prefs(input_sf='%'):
...     growth = Quantity('23.7%')
>>> print(f'growth = {growth:.0%}')
growth = 24%








Examples

Here is an example of these format types:

>>> h_line = Quantity('f = 1420.405751786 MHz — hydrogen line')
>>> for f in 'sSpPqQrRbBeEfFgGund':
...     print(f + ':', h_line.format(f))
s: 1.4204 GHz
S: f = 1.4204 GHz — hydrogen line
p: 1420405751.786 Hz
P: f = 1420405751.786 Hz — hydrogen line
q: 1.4204 GHz
Q: f = 1.4204 GHz — hydrogen line
r: 1.4204G
R: f = 1.4204G — hydrogen line
b: 1.3229 GiHz
B: f = 1.3229 GiHz — hydrogen line
e: 1.4204e+09
E: f = 1.4204e+09 — hydrogen line
f: 1420405751.786
F: f = 1420405751.786 — hydrogen line
g: 1.4204e+09
G: f = 1.4204e+09 — hydrogen line
u: Hz
n: f
d: hydrogen line





The ‘q’ type specifier is used to explicitly indicate that both the number and
the units are desired and that SI scale factors should be used, regardless of
the current preferences.

>>> print('{:.6q}'.format(h_line))
1.420406 GHz





Alternately, ‘r’ can be used to indicate just the number represented using SI
scale factors is desired, and the units should not be included.

>>> print('{:r}'.format(h_line))
1.4204G





The opposite can be achieved using ‘p’, which includes the units without SI
scale factors:

>>> print('{:p}'.format(h_line))
1420405751.786 Hz





The ‘p’ format is often used with ‘#’ to format currency values:

>>> print('{:#.2p}'.format(total))
$11200000.00

>>> print('{:#,.2p}'.format(total))
$11,200,000.00





The ‘b’ format is used to render number with binary scale factors:

>>> print('{:b}'.format(mem))
16 GiB

>>> print('{:B}'.format(mem))
physical memory = 16 GiB





You can also use the traditional floating point format type specifiers:

>>> print('{:f}'.format(h_line))
1420405751.786

>>> print('{:e}'.format(h_line))
1.4204e+09

>>> print('{:g}'.format(h_line))
1.4204e+09





Use ‘u’ to indicate that only the units are desired:

>>> print('{:u}'.format(h_line))
Hz





Access the name or description of the quantity using ‘n’ and ‘d’.

>>> print('{:n}'.format(freq))
Fin

>>> print('{:d}'.format(freq))
input frequency





Using the upper case versions of the format codes that print the numerical value
of the quantity (SQRFEG) indicates that the quantity should be labeled with its
name and perhaps its description (as if the show_label preference were set).
They are under the control of the show_desc, label_fmt and label_fmt_full
preferences (described further in Preferences and
Quantity.set_prefs()).

If show_desc is False or the quantity does not have a description, then
label_fmt is used to add the labeling.

>>> Quantity.set_prefs(show_desc=False)
>>> trise = Quantity('10ns', name='trise')

>>> print('{:S}'.format(trise))
trise = 10 ns

>>> print('{:Q}'.format(trise))
trise = 10 ns

>>> print('{:R}'.format(trise))
trise = 10n

>>> print('{:F}'.format(trise))
trise = 0

>>> print('{:E}'.format(trise))
trise = 1e-08

>>> print('{:G}'.format(trise))
trise = 1e-08

>>> print('{0:n} = {0:q} ({0:d})'.format(freq))
Fin = 100 MHz (input frequency)

>>> print('{:S}'.format(freq))
Fin = 100 MHz





If show_desc is True and the quantity has a description, then label_fmt_full
is used if the quantity has a description.

>>> Quantity.set_prefs(show_desc=True)

>>> print('{:S}'.format(trise))
trise = 10 ns

>>> print('{:S}'.format(freq))
Fin = 100 MHz — input frequency








Scaling while formatting

Finally, you can add units after the format code, which causes the number to be
scaled to those units if the transformation represents a known unit conversion.
In this case the format code must be specified (use ‘s’ rather than ‘’).

>>> Tboil = Quantity('Boiling point = 100 °C')
>>> print('{:S°F}'.format(Tboil))
Boiling point = 212 °F

>>> eff_channel_length = Quantity('leff = 14nm')
>>> print(f'{eff_channel_length:SÅ}')
leff = 140 Å

>>> print(f'{mem:bb}')
128 Gib





This feature can be used to simplify the conversion of the time and temperature
information back into the original units:

>>> for time, temp in data:
...     print(f'{time:<7smin} {temp:s°F}')
0 min   450 °F
10 min  400 °F
20 min  360 °F





You can add a scale factor to the units, in which case the number will be scaled
accordingly:

>>> for p in range(1, 5):
...     bytes = Quantity(256**p, 'B')
...     print(f"An {8*p} bit bus addresses {bytes:,pkB}.")
An 8 bit bus addresses 0.256 kB.
An 16 bit bus addresses 65.536 kB.
An 24 bit bus addresses 16,777.216 kB.
An 32 bit bus addresses 4,294,967.296 kB.





Generally you should only specify base units when using a format that renders
with scale factors as otherwise you could see two scale factors on the same
number.  For example, if the q format was used in the above example, the
last address space would be rendered as 4.295 MkB.








Ambiguity of Scale Factors and Units

By default, QuantiPhy treats both the scale factor and the units as being
optional.  With the scale factor being optional, the meaning of some
specifications can be ambiguous. For example, ‘1m’ may represent 1 milli or it
may represent 1 meter.  Similarly, ‘1meter’ my represent 1 meter or
1 milli-eter.  In this case QuantiPhy gives preference to the scale factor, so
‘1m’ normally converts to 1e-3. To allow you to avoid this ambiguity,
QuantiPhy accepts ‘_’ as the unity scale factor.  In this way ‘1_m’ is
unambiguously 1 meter. You can instruct QuantiPhy to output ‘_’ as the unity
scale factor by specifying the unity_sf argument to
Quantity.set_prefs():

>>> Quantity.set_prefs(unity_sf='_', spacer='')
>>> l = Quantity(1, 'm')
>>> print(l)
1_m





This is often a good way to go if you are outputting numbers intended to be read
unambiguously or by both people and machines.

If you need to interpret numbers that have units and are known not to have scale
factors, you can specify the ignore_sf preference:

>>> Quantity.set_prefs(ignore_sf=True, unity_sf='', spacer=' ')
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1000.0, 'm')

>>> print(l)
1 km

>>> Quantity.set_prefs(ignore_sf=False)
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1.0, '')





If there are scale factors that you know you will never use, you can instruct
QuantiPhy to interpret a specific set and ignore the rest using the input_sf
preference.

>>> Quantity.set_prefs(input_sf='GMk')
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1000.0, 'm')

>>> print(l)
1 km





Specifying input_sf=None causes QuantiPhy to again accept all known scale
factors.

>>> Quantity.set_prefs(input_sf=None)
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1.0, '')





Alternatively, you can specify the units you wish to use whose leading character
is a scale factor.  Once known, these units no longer confuse QuantiPhy.
These units can be specified as a list or as a string. If specified as a string
the string is split to form the list. Specifying the known units replaces any
existing known units.

>>> d1 = Quantity('1 au')     # astronomical unit
>>> d2 = Quantity('1000 pc')  # parsec
>>> p = Quantity('138 Pa')    # Pascal
>>> print(d1.render(form='eng'), d2, p, sep='\n')
1e-18 u
1 nc
138e15 a

>>> Quantity.set_prefs(known_units='au pc Pa')
>>> d1 = Quantity('1 au')
>>> d2 = Quantity('1000 pc')
>>> p = Quantity('138 Pa')
>>> print(d1.render(form='eng'), d2, p, sep='\n')
1 au
1 kpc
138 Pa





This same issue comes up for temperature quantities when given in Kelvin. There
are again several ways to handle this. First you can specify the acceptable
input scale factors leaving out ‘K’, ex. input_sf = ‘TGMkmunpfa’, or:

>>> Quantity.set_prefs(input_sf=Quantity.get_pref('input_sf').replace('K', ''))
>>> temp = Quantity('100K')
>>> print(temp.as_tuple())
(100.0, 'K')

>>> temp = Quantity('100k')
>>> print(temp.as_tuple())
(100000.0, '')

>>> temp = Quantity('100k', 'K')
>>> print(temp.as_tuple())
(100000.0, 'K')





Alternatively, you can specify ‘K’ as one of the known units. Finally, if you
know exactly when you will be converting a temperature to a quantity, you can
specify ignore_sf for that specific conversion. The effect is the same either
way, ‘K’ is interpreted as a unit rather than a scale factor.

The same techniques would be used to handle volumes in cubic centimeters:

>>> vol = Quantity('10 cc')
>>> print(vol.as_tuple())
(0.1, 'c')





>>> with Quantity.prefs(input_sf=Quantity.get_pref('input_sf').replace('c', '')):
...     vol = Quantity('10 cc')
>>> print(vol.as_tuple())
(10.0, 'cc')





>>> with Quantity.prefs(known_units='cc'):
...     vol = Quantity('100 cc')
>>> print(vol.as_tuple())
(100.0, 'cc')





Percentages are a special case.  QuantiPhy can treat the % character as either
a unit or a scale factor (0.01).  By default it is treated as a unit:

>>> tolerance = Quantity('10%')
>>> change = Quantity('10%Δ')
>>> print(tolerance.as_tuple(), change.as_tuple(),)
(10.0, '%') (10.0, '%Δ')





If, however, you add % as a known scale factor, it then acts as a scale factor.

>>> with Quantity.prefs(input_sf = Quantity.get_pref('input_sf') + '%'):
...     tolerance = Quantity('10%')
...     change = Quantity('10%Δ')
...     print(tolerance.as_tuple(), change.as_tuple(),)
(0.1, '') (0.1, 'Δ')





In general you cannot simply add to the list of known scale factors.  The %
character is an exception as QuantiPhy knows about it but disables it by
default.




Subclassing Quantity

You can subclass Quantity to make it easier to create a particular type
of quantity, or to create quantities with particular qualities.  The following
example demonstrates both. It creates a subclass for dollars that both sets the
units and the display preferences.  Any Quantity preference (see
Quantity.set_prefs()) may be given as an attribute. Display preferences
for currencies are often very different from what you would want from physical
quantities:

>>> class Dollars(Quantity):
...     units = '$'
...     form = 'fixed'
...     prec = 2
...     strip_zeros = False
...     show_commas = True

>>> cost = Dollars(100_000)
>>> print(cost)
$100,000.00





This example creates a special class for bytes.

>>> class Bytes(Quantity):
...     units = 'B'
...     form = 'binary'
...     accept_binary = True

>>> memory = Bytes('64KiB')
>>> print(memory)
64 KiB





Here, two classes are created for voltage and current, each with their own
perspective on what values should be considered negligible.

>>> class Voltage(Quantity):
...     units = 'V'
...     negligible = 1e-6

>>> class Current(Quantity):
...     units = 'A'
...     negligible = 1e-12

>>> Vout = Voltage(1e-9)
>>> Ileak = Current(1e-9)
>>> print(f"Vout = {Vout}, Ileak = {Ileak}.")
Vout = 0 V, Ileak = 1 nA.





Lastly, this example creates a special class for temperatures. It disallows use
of ‘K’ as a scale factor to avoid confusion with Kelvin units.

>>> class Temperature(Quantity):
...     units = 'K'
...     input_sf = Quantity.get_pref('input_sf').replace('K', '')

>>> Tcore = Temperature('15M')
>>> Tphoto = Temperature('5.3k')
>>> Tcmb = Temperature('3.18K')
>>> print(Tcore, Tphoto, Tcmb, sep='\n')
15 MK
5.3 kK
3.18 K






Scaling with Subclasses

Special scaling rules come into play if the units attribute is present on
a Quantity class.  In such a case you can specify the class as an
argument to a scaling operation.  For example:

>>> class Grams(Quantity):
...     units = 'g'

>>> class Pounds(Quantity):
...     units = 'lbs'

>>> wt = Pounds(10)
>>> mass = wt.scale(Grams)

>>> print(mass, repr(mass), sep='\n')
4.5359 kg
Grams('4.5359237 kg')

>>> print(wt.render(scale=Grams))
4.5359 kg





Notice that use of Grams with the Quantity.scale() method resulted in
a return value of type Grams.  This does not naturally occur if you scale
using scale factors or units:

>>> mass = wt.scale('g')
>>> print(mass, repr(mass), sep='\n')
4.5359 kg
Quantity('4.5359237 kg')





In this case you can replicate the previous behavior by adding Grams as an
argument to the conversion:

>>> mass = wt.scale('g', cls=Grams)
>>> print(mass, repr(mass), sep='\n')
4.5359 kg
Grams('4.5359237 kg')








Scaling Upon Subclass Creation

When creating quantities using a subclass, a conversion automatically occurs if
both the subclass and the value have units.  The conversion converts the given
units to those expected by the class.  For example:

>>> class Seconds(Quantity):
...     units = 's'

>>> ttl = Seconds('2 days')
>>> print(ttl)
172.8 ks





If you also specify a scale argument, that conversion occurs before the result
is converted to the units of the class:

>>> class Days(Quantity):
...     units = 'days'

>>> expires = Days('48 hr', scale='s')
>>> print(expires)
2 days





Adding the scale argument is handy because QuantiPhy does not provide
a built-in direct conversion between hours and days.  In this case two
conversions occur, from hours to seconds, as a result of the scale request, and
from seconds to days, to convert to the units expected by the class.






Unit Converters

The UnitConversion class defines conversion relationships between pairs
of units, which saves you the trouble of having to remember the actual
conversion factors.  Once defined, a relationship is available anywhere in
QuantiPhy where a unit conversion can occur.  For example [https://en.wikipedia.org/wiki/Smoot]:

>>> from quantiphy import Quantity, UnitConversion

>>> m_smoot = UnitConversion('m', 'smoots', 1.7)

>>> length_of_harvard_bridge = Quantity('364.4 smoots')
>>> print(length_of_harvard_bridge.render(scale='m', prec=1))
620 m





This is a linear conversion.  This unit conversion says, when converting
smoots to m, multiply by 1.7.  When going the other way, divide by 1.7.

You can also specify units with a scale factor when scaling a number.  For
example, you can explicitly direct that the length of the bridge should be
output in kilometers using:

>>> print(f"{length_of_harvard_bridge:.2pkm}")
0.62 km





QuantiPhy* provides a collection of built-in converters for common units:







	base units

	related units





	C °C

	K, F °F, R °R



	K

	C °C, F °F, R °R



	m

	micron, Å angstrom, mi mile miles, ft feet, in inch inches



	g

	oz, lb lbs



	s

	sec second seconds, min minute minutes, hour hours hr, day days



	b

	B



	BTC btc Ƀ ₿

	sat sats ș






The conversions can occur between a pair of units, one from the first column and
one from the second. They do not occur when both units are only in the second
column. So for example, it is possible to convert between g and lbs, but not
between oz and lb.  However, if you notice, the units in the second column
are grouped using commas.  A set of units within commas are considered
equivalent, meaning that there are multiple names for the same underlying unit.
For example, in, inch, and inches are all considered equivalent. You can
convert between equivalent units even though both are found in either the first
or second columns.

UnitConversion supports linear conversions (slope only), affine
conversions (slope and intercept) nonlinear conversions, parameterized
conversions (conversions with extra parameters) and dynamic conversions
(convertions that change over time).  Here are some examples:

>>> def from_dB(dB):
...     return 10**(dB/20)

>>> def to_dB(v):
...     return 20*math.log10(v)

>>> m_inch = UnitConversion('m', 'in inch inches', 0.0254)  # linear
>>> C_F = UnitConversion('C °C', 'F °F', 5/9, -32*5/9)      # affine
>>> _dB = UnitConversion('', 'dB', from_dB, to_dB)          # nonlinear

>>> print(Quantity('12 in', scale='m'))
304.8 mm

>>> print(Quantity('100 °C', scale='°F'))
212 °F

>>> print(Quantity('100', scale='dB'))
40 dB





One thing to be aware of with affine conversions like °C to °F: they are
suitable for converting absolute temperatures but not temperature differences.
One way around this is to add another conversion specifically for differences:

>>> dC_F = UnitConversion('ΔC Δ°C', 'ΔF Δ°F', 5/9)
>>> print(Quantity('100 Δ°C', scale='Δ°F'))
180 Δ°F





Notice that the scaling functions used here differ from those described
previously in that they only take one argument and return one value.  The units
are not included in either then argument list or the return value.

Also notice that the return value of UnitConversion was not used in the
examples above.  It is enough to simply create the UnitConversion for it to be
available to Quantity. So, it is normal to not capture the return value of
UnitConversion. However, there are a few things you can do with the return
value.  First you can convert it to a string to get a description of the
relationship.  This is largely used as a sanity check:

>>> print(C_F)
C ← 0.5555555555555556*F + -17.778





In addition, you can use it to directly perform conversions:

>>> temp_F = C_F.convert(0, '°C', '°F')
>>> print(temp_F)
32 °F

>>> temp_C = C_F.convert(32, '°F', '°C')
>>> print(temp_C)
0 °C





Finally, you can pre-define multiple conversions between the same pairs of
units, and activate the one you currently wish to use.  This can be useful with
conversions that change over time.  For example

>>> btc_usd_2017_peak = UnitConversion('USD $', 'BTC Ƀ', 19870.62)
>>> btc_usd_2021_peak = UnitConversion('USD $', 'BTC Ƀ', 68978.64)

>>> print(Quantity("5 BTC", scale='$'))
$344.89k

>>> btc_usd_2017_peak.activate()
>>> print(Quantity("5 BTC", scale='$'))
$99.353k

>>> btc_usd_2021_peak.activate()
>>> print(Quantity("5 BTC", scale='$'))
$344.89k





Defining a conversion between the same pair of units acts to conceal an earlier
definition, but the previous definition can be restored using activate().


Parametrized Unit Converters

Occasionally you might encounter conversion that requires one or more extra
parameters.  For example, to convert between concentration and molarity in
solutions requires the atomic weight of the solute.  These extra parameters can
be passed in when creating a quantity and then are available to the desired
conversion.  For example:

>> @UnitConversion.fixture
>> def from_molarity(M, mw):
..     return M * mw

>> @UnitConversion.fixture
>> def to_molarity(g_L, mw):
..     return g_L / mw

>> mol_conv = UnitConversion('g/L', 'M', from_molarity, to_molarity)

>> KCl_conc = Quantity('1.2 mg/L', params=74.55)
>> print(f"{KCl_conc:qM}")
16.097 uM





For more information on defining unit converters, see UnitConversion.
For more information on parametrized unit converters, see
UnitConversion.fixture().  For example of real-time dynamic conversions,
see Dynamic Unit Conversions.






Scale Factor Conversions

In the preceding sections it was shown that you can use the scaling features of
QuantiPhy to convert between units using only the name of the units.  When
doing so the relationship between the units must be known, and
UnitConversion is used to specify the relationship.  However, it is
also possible to perform simple scale factor conversions without changing the
units.  This case is specified in a manner similar to a unit conversion, but in
this case both the from-units and the to-units are the same, and it is not
necessary to define a UnitConversion.  For example, imagine printing
a table of bit-rates where the rates are held in bps but are expected to be
displayed in Mbps:

>>> rates = [155.52e6, 622.08e6, 2.48832e9, 9.95328e9, 39.81312e9]
>>> rates = [Quantity(r, 'bps') for r in rates]
>>> for r in rates:
...     print(f"{r:>14,.2pMbps}")
   155.52 Mbps
   622.08 Mbps
 2,488.32 Mbps
 9,953.28 Mbps
39,813.12 Mbps





You can also do the inverse; convert simple numbers given in Mbps to quantities
in bps:

>>> rates = [155.52, 622.08, 2488.32, 9953.28, 39813.12]
>>> rates = [Quantity(r, 'Mbps', scale='bps') for r in rates]
>>> for r in rates:
...     print(r.as_tuple())
(155520000.0, 'bps')
(622080000.0, 'bps')
(2488320000.0, 'bps')
(9953280000.0, 'bps')
(39813120000.0, 'bps')








Quantity Functions

It is sometimes handy to convert directly to and from real values rather than
converting to Quantity objects and holding them.  Generally it is
preferred to key a value and its units together, but as said before, the primary
use of QuantiPhy is inputting and outputting numbers.  If you are not
inputting and outputting the same numbers, it may not be worth even the small
overhead of a Quantity object.  In that case, you can use quantity
functions to convert directly to and from real values.  If you wish to use
QuantiPhy to convert to a simple float, use as_real().  It takes the
same arguments as a Quantity, but returns a float rather than
a Quantity:

>>> from quantiphy import as_real
>>> print(as_real('10 mL'))
0.01





It is common to use Scale Factor Conversions to scale the result to the
desired size:

>>> print(as_real('10 mL', scale='uL'))
10000.0





as_tuple() is similar except it returns both the value and the units as
a tuple:

>>> from quantiphy import as_tuple
>>> print(as_tuple('10 mL'))
(0.01, 'L')

>>> print(as_tuple('10 mL', scale='uL'))
(10000.0, 'uL')





Finally, you can use render(), fixed(), and binary() to
convert a real value and units into a string.  Besides the value and the units,
the these functions the same arguments as Quantity.render(),
Quantity.fixed(), and Quantity.binary().

>>> from quantiphy import render, fixed, binary
>>> print(render(1e-6, 'L'))
1 uL

>>> print(fixed(1e7, '$', show_commas=True, strip_zeros=False, prec=2))
$10,000,000.00

>>> print(binary(2**32, 'B'))
4 GiB








Physical Constants

QuantiPhy has several built-in constants that are available by specifying
their name to the Quantity class.  The following quantities are built
in:









	Name

	MKS value

	CGS value

	Description





	h

	6.626070040e-34 J-s

	6.626070040e-27 erg-s

	Plank’s constant



	hbar, ħ

	1.054571800e-34 J-s

	1.054571800e-27 erg-s

	Reduced Plank’s constant



	k

	1.38064852e-23 J/K

	1.38064852e-16 erg/K

	Boltzmann’s constant



	q

	1.6021766208e-19 C

	4.80320425e-10 Fr

	Elementary charge



	c

	2.99792458e8 m/s

	2.99792458e8 m/s

	Speed of light



	0C, 0°C

	273.15 K

	273.15 K

	0 Celsius



	eps0, ε₀

	8.854187817e-12 F/m

	—

	Permittivity of free space



	mu0, μ₀

	4e-7π H/m

	—

	Permeability of free space



	Z0, Z₀

	376.730313461 Ohms

	—

	Characteristic impedance
of free space






Constants are given in base units (g, m, etc.) rather than the natural units
for the unit system (kg, cm, etc.). For example, when using the CGS unit
system, the speed of light is given as 300Mm/s (rather than 30Gcm/s).

As shown, these constants are partitioned into two unit systems: mks and
cgs.  Only those constants that are associated with the active unit system and
those that are not associated with any unit system are available when creating
a new quantity. You can activate a unit system using set_unit_system().
Doing so deactivates the previous system. By default, the mks system is
active.

You can create your own constants and unit systems using
add_constant():

>>> from quantiphy import Quantity, add_constant
>>> add_constant(Quantity("λₕ: 211.061140539mm // wavelength of hydrogen line"))

>>> hy_wavelength = Quantity('λₕ')
>>> print(hy_wavelength.render(show_label=True))
λₕ = 211.06 mm — wavelength of hydrogen line





In this case is the name given in the quantity is used when creating the
constant.  You can also specify an alias as an argument to add_constant.

>>> add_constant(
...     Quantity("λₕ = 211.061140539mm # wavelength of hydrogen line"),
...     alias='lambda h'
... )

>>> hy_wavelength = Quantity('lambda h')
>>> print(hy_wavelength.render(show_label=True))
λₕ = 211.06 mm — wavelength of hydrogen line





It is not necessary to specify both the name and the alias, one is sufficient;
the constant is accessible using either.  Notice that the alias does not
actually become part of the constant, it is only used for looking up the
constant.

By default, user defined constants are not associated with a unit system,
meaning that they are always available regardless of which unit system is
being used.  However, when creating a constant you can specify one or more
unit systems for the constant. You need not limit yourself to the predefined
mks and cgs unit systems. You can specify multiple unit systems either by
specifying a list of strings for the unit systems, or by specifying one string
that would contain more than one name once split.

>>> from quantiphy import Quantity, add_constant, set_unit_system

>>> add_constant(Quantity(4.80320427e-10, 'Fr'), 'q', 'esu gaussian')
>>> add_constant(Quantity(1.602176487e-20, 'abC'), alias='q', unit_systems='emu')
>>> q_mks = Quantity('q')
>>> set_unit_system('cgs')
>>> q_cgs = Quantity('q')
>>> set_unit_system('esu')
>>> q_esu = Quantity('q')
>>> set_unit_system('gaussian')
>>> q_gaussian = Quantity('q')
>>> set_unit_system('emu')
>>> q_emu = Quantity('q')
>>> set_unit_system('mks')
>>> print(q_mks, q_cgs, q_esu, q_gaussian, q_emu, sep='\n')
160.22e-21 C
480.32 pFr
480.32 pFr
480.32 pFr
16.022e-21 abC








Preferences

QuantiPhy supports a wide variety of preferences that control its behavior.
For example, when rendering quantities you can control the number of digits used
(prec), whether SI scale factors are used (form), whether the units are
included (show_units), etc.  Similar preferences also control the conversion
of strings into quantities, which can help disambiguate whether a suffix
represents a scale factor or a unit. The list of available preferences and their
descriptions are given in the description of the Quantity.set_prefs()
method.

To set a preference, use the Quantity.set_prefs() class method.  You can
set more than one preference at once:

>>> Quantity.set_prefs(prec=6, map_sf={'u': 'μ'})





This statements tells QuantiPhy to use 7 digits (the prec plus 1) and to
output μ rather u for the 10-6 scale factor.

Setting preferences to None returns them to their default values:

>>> Quantity.set_prefs(prec=None, map_sf=None)





The preferences are changed on the class itself, meaning that they affect any
instance of that class regardless of whether they were instantiated before or
after the preferences were set. If you would like to have more than one set of
preferences, then you should subclass Quantity. For example, imagine
a situation where you have different types of quantities that would naturally
want different preferences:

>>> class Temperature(Quantity):
...     units = 'C'
>>> Temperature.set_prefs(prec=1, known_units='K', spacer='')

>>> class Frequency(Quantity):
...     units = 'Hz'
>>> Frequency.set_prefs(prec=5, spacer='')

>>> frequencies = []
>>> for each in '-25.3 999987.7, 25.1  1000207.1, 74.9  1001782.3'.split(','):
...     temp, freq = each.split()
...     frequencies.append((Temperature(temp),  Frequency(freq)))

>>> for temp, freq in frequencies:
...     print(f'{temp:4}  {freq}')
-25C  999.988kHz
 25C  1.00021MHz
 75C  1.00178MHz





In this example, a subclass is created that is intended to report in
concentrations.

>>> class Concentration(Quantity):
...     pass
>>> Concentration.set_prefs(
...     map_sf = dict(u=' PPM', n= ' PPB', p=' PPT'),
...     show_label = True,
... )

>>> pollutants = dict(CO=5, SO2=20, NO2=0.10)
>>> concentrations = [Concentration(v, scale=1e-6, name=k) for k, v in pollutants.items()]
>>> for each in concentrations:
...     print(each)
CO = 5 PPM
SO2 = 20 PPM
NO2 = 100 PPB





Alternately, you can simply set the preferences as attributes when creating the
sublclasses.  For example:

>>> class Dollars(Quantity):
...     units = '$'
...     prec = 2
...     form = 'fixed'
...     show_commas = True
...     minus = Quantity.minus_sign
...     strip_zeros = False





When a subclass is created, the preferences active in the main class are copied
into the subclass. Subsequent changes to the preferences in the main class do
not affect the subclass.

You can also go the other way and override the preferences on a specific
quantity.

>>> print(hy_wavelength)
211.06 mm

>>> hy_wavelength.show_label = True
>>> print(hy_wavelength)
λₕ = 211.06 mm — wavelength of hydrogen line





This is often the way to go with quantities that have logarithmic units
such as decibels (dB) or shannons (Sh) (or the related bit, digits,
nats, hartleys, etc.). In these cases use of SI scale factors is often
undesired.

>>> gain = Quantity(0.25, 'dB')
>>> print(gain)
250 mdB

>>> gain.form = 'fixed'
>>> print(gain)
0.25 dB





To retrieve a preference, use the Quantity.get_pref() class method. This
is useful with known_units. Normally setting known_units overrides the
existing units. You can simply add more with:

>>> Quantity.set_prefs(known_units=Quantity.get_pref('known_units') + ['K'])





A variation on Quantity.set_prefs() is Quantity.prefs().  It is
basically the same, except that it is meant to work with Python’s with
statement to temporarily override preferences:

>>> with Quantity.prefs(form='fixed', show_units=False, prec=2):
...     for time, temp in data:
...         print(f"{time:<7} {temp}")
0       505.37
600     477.59
1200    455.37

>>> print(f"Final temperature = {data[-1][1]} @ {data[-1][0]}.")
Final temperature = 455.37 K @ 1.2 ks.





Notice that the specified preferences only affected the table, not the final
printed values, which were rendered outside the with statement.

If you are using QuantiPhy in a large package with multiple modules and more
than one includes Quantity, you may find that the preferences are not
shared between the modules. This occurs because each module gets its own
independent version of Quantity. To work around this issue you would create
your own module that imports from QuantiPhy.  Each of the packages’ modules
then import from your new module rather than directly from QuantiPhy.  For
example, consider creating a local module named quantity.py:

from quantiphy import *
import locale

# Base preferences
loc_conv = locale.localeconv()
radix = loc_conv['decimal_point']
comma = loc_conv['thousands_sep']
Quantity.set_prefs(radix=radix, comma=comma, known_units='K')

# Alternate preference sets
preferences = dict(
    user = dict(
        # assumes a user is reading values on a terminal with fixed-width font
        form = 'si',
        map_sf = Quantity.map_sf_to_greek,
        prec = 4,
        spacer = ' ',
        strip_radix = True,
        minus = Quantity.minus_sign,
        show_units = True,
    ),
    sphinx = dict(
        # assumes values are to be rendered with a variable-with font by Sphinx
        form = 'si',
        map_sf = Quantity.map_sf_to_sci_notation,
        prec = 4,
        spacer = Quantity.narrow_non_breaking_space,
        minus = Quantity.minus_sign,
        strip_radix = True,
        show_units = True,
    ),
    code_with_si = dict(
        # assumes values are to be rendered to code that accepts sf but not units
        form = 'sia',
        map_sf = None,
        prec = 'full',
        spacer = '',
        minus = '-'.minus_sign,
        strip_radix = 'cover',  # assures quantities are always treated as reals
    )
    code_without_si = dict(
        # assumes values are to be rendered to code that does not accept sf or units
        form = 'eng',
        map_sf = None,
        prec = 'full',
        spacer = '',
        minus = '-'.minus_sign,
        strip_radix = 'cover',  # assures quantities are always treated as reals
    )
)

def set_quantity_defaults(choice):
    Quantity.set_prefs(**peferences[choice])

set_quantity_defaults('user')





Now, in the other modules, you would simply import from quantity rather than
quantiphy:

from quantity import Quantity, QuantiPhyError, set_quantity_defaults





Then, if you change the preferences using set_quantity_defaults from one
module, the preferences are changed for all modules.




Localization

Quantiphy provides 7 preferences that help with localization: radix,
comma, plus, minus, inf, nan, and spacer.


	radix
	The decimal point; generally . or ,.



	comma
	The thousands separator; generally ,, ., _ or a narrow
non-breaking space.



	plus
	QuantitPhy does not use plus signs when rendering quantities either on the
mantissa or the exponent.  But it will accept this symbol as a plus signs
when converting strings to quantities.



	minus
	The symbol used to indicate a negative number; generally - or −.
This symbol is also accepted as a minus signs when converting strings to
quantities.



	inf
	The symbol or word that signifies infinity; generally inf or ∞.



	nan
	The symbol or word that indicates a NaN or Not-a-Number; generally NaN
or nan.



	spacer
	The character used to separate the mantissa from trailing units, or scale
factor combined with units: generally `` `` or
Quantity.narrow_non_breaking_space.  spacer does not affect how strings
are converted quantities, where the spacer is optional and may ether be
a space, a non-breaking space, a thin space, or a narrow non-breaking space.





By default QuantiPhy uses ., ,, +, -, inf, nan and ``
`` as the defaults.  These are all simple ASCII characters.  They work as expected
for the numbers normally used in programming, such as -5.17e+06.

Both radix and comma affect the way stings are converted to quantities and
they way quantities are rendered.  When interpreting a string as a number,
QuantiPhy first strips the comma character from the string and then replaces
the radix character with ..

If you prefer to use , for your radix, you generally have two choices. With
the first, radix is set to , and comma to .. This allows you to
properly read and write numbers like €100.000.000,00 but misinterpretes a number
if it uses . as the radix.

>>> Quantity.set_prefs(radix=',', comma='.')
>>> q1 = Quantity('€100.000,00')
>>> q2 = Quantity('€100000.00')
>>> print(q1, q2, sep='\n')
€100k
€10M





With the second, radix is set to , and comma to ‘’. This allows both
, and . to be used as the radix, so €100,000 and €100.000 have the same
value.  However, it fails for numbers that use . as the thousands separator.

>>> Quantity.set_prefs(radix=',', comma='')
>>> q1 = Quantity('€100,000')
>>> q2 = Quantity('€100.000')
>>> print(q1, q2, sep='\n')
€100
€100





You can automatically adapt to local conventions using the Python locale
package:

>>> from quantiphy import Quantity
>>> import locale

>>> loc_conv = locale.localeconv()
>>> radix = loc_conv['decimal_point']
>>> comma = loc_conv['thousands_sep']
>>> Quantity.set_prefs(radix=radix, comma=comma)

>>> q = Quantity('€100.000')
>>> print(q)
€100

>>> print(f"radix is '{radix}'\ncomma is '{comma}'")
radix is '.'
comma is ''





You can convert from one convention to the other by changing radix and comma
on the fly:

>>> with Quantity.prefs(radix=',', comma='.'):
...     q = Quantity('€100.000.000,00')
>>> with Quantity.prefs(radix='.', comma=','):
...     print(f'{q:#,.2p}')
€100,000,000.00








Formatting Tabular Data

When creating tables it is often desirable to align the decimal points of the
numbers, and perhaps align the units. You can use the number_fmt to arrange
this. number_fmt is a format string that if specified is used to convert the
components of a number into the final number. You can control the widths and
alignments of the components to implement specific arrangements.  number_fmt
is passed to the string format function with named arguments: whole, frac
and units, which contains the integer part of the number, the fractional part
including the decimal point, and the units including the scale factor.  More
information about the content of the components can be found in
Quantity.set_prefs().

For example, you can align the decimal point and units of a column of numbers
like this:

>>> lengths = [
...     Quantity(l)
...     for l in '1mm, 10mm, 100mm, 1.234mm, 12.34mm, 123.4mm'.split(',')
... ]

>>> with Quantity.prefs(number_fmt='{whole:>3}{frac:<4} {units}'):
...     for l in lengths:
...         print(l)
  1     mm
 10     mm
100     mm
  1.234 mm
 12.34  mm
123.4   mm





You can also give a function as the value for number_fmt rather than a string.
It would be called with whole, frac and units as arguments given in that
order.  The function is expected to return the assembled number as a string. For
example:

>>> def fmt_num(whole, frac, units):
...     return '{mantissa:<5} {units}'.format(mantissa=whole+frac, units=units)

>>> with Quantity.prefs(number_fmt=fmt_num):
...     for l in lengths:
...         print(l)
1     mm
10    mm
100   mm
1.234 mm
12.34 mm
123.4 mm





If there are multiple columns it might be necessary to apply a different format
to each column. In this case, it often makes sense to create a subclass of
Quantity for each column that requires distinct formatting:

>>> def format_temperature(whole, frac, units):
...     return '{:>5} {:<5}'.format(whole+frac, units)

>>> class Temperature(Quantity):
...     units = 'C'
>>> Temperature.set_prefs(
...     prec = 1, known_units = 'K', number_fmt = format_temperature
... )

>>> class Frequency(Quantity):
...     units = 'Hz'
>>> Frequency.set_prefs(prec=5, number_fmt = '{whole:>3}{frac:<6} {units}')

>>> frequencies = []
>>> for each in '-25.3 999987.7, 25.1 1000207.1, 74.9 1001782.3'.split(','):
...     temp, freq = each.split()
...     frequencies.append((Temperature(temp),  Frequency(freq)))

>>> for temp, freq in frequencies:
...     print(temp, freq)
  -25 C     999.988   kHz
   25 C       1.00021 MHz
   75 C       1.00178 MHz








Extract Quantities

It is possible to put a collection of quantities in a text string and then use
the Quantity.extract() method to parse the quantities and return them in
a dictionary.  For example:

>>> design_parameters = '''
...     Fref (fₒ) = 156 MHz  — Reference frequency
...     Kdet = 88.3 uA       — Gain of phase detector
...     Kvco = 9.07 GHz/V    — Gain of VCO
... '''
>>> quantities = Quantity.extract(design_parameters)

>>> Quantity.set_prefs(
...     label_fmt = '{n} = {v}',
...     label_fmt_full = '{V:<18}  # {d}',
...     show_label = 'f',
... )
>>> for k, q in quantities.items():
...     print(f'{k}: {q}')
Fref: fₒ = 156 MHz        # Reference frequency
Kdet: Kdet = 88.3 uA      # Gain of phase detector
Kvco: Kvco = 9.07 GHz/V   # Gain of VCO





The string is processed one line at a time and may contain any number of
quantity definitions.  Blank lines are ignored.  Each non-blank line is passed
through assign_rec to determine if it is recognized as an assignment.  If it
is recognized, the assign_rec named fields (name, qname, val, and
desc) are used when creating the quantity.  The default recognizer allows you
to separate the name from the value with either ‘=’ or ‘:’. It allows you to
separate the value from the description using ‘—’, ‘–’, ‘//’, or ‘#’. These
substrings are also used to introduce comments, so you could start a line with
‘#’ and it would be treated as a comment.  If the line is not recognized, then
it is ignored.

In this example, the first line is nonconforming and so is ignored. The second
Kvdo line is a comment, the comment character and anything beyond is ignored.
Finally, empty lines are ignored.

>>> design_parameters = '''
...     PLL Design Parameters
...
...     Fref = 156 MHz      — Reference frequency
...     Kdet = 88.3 uA      — Gain of phase detector
...     Kvco = 9.07 GHz/V   — Gain of VCO
...     // Kvco = 5 GHz/V     — Gain of VCO
...     N = 128             — Divide ratio
...     Fout = N*Fref "Hz"  — Output Frequency
... '''
>>> globals().update(Quantity.extract(design_parameters))

>>> print(f'{Fref:S}\n{Kdet:S}\n{Kvco:S}\n{N:S}\n{Fout:}')
Fref = 156 MHz      # Reference frequency
Kdet = 88.3 uA      # Gain of phase detector
Kvco = 9.07 GHz/V   # Gain of VCO
N = 128             # Divide ratio
Fout = 19.968 GHz   # Output Frequency





In this case the output of the Quantity.extract() call is fed into
globals().update() so as to add the quantities into the module namespace, making
the quantities accessible as local variables.  This is an example of how
simulation scripts could be written. The system and simulation parameters would
be gathered together at the top into a multiline string, which would then be
read and loaded into the local name space. It allows you to quickly give
a complete description of a collection of parameters when the goal is to put
something together quickly in an expressive manner.  Another example of this
ideas is shown a bit further down where the module docstring is used to contain
the quantity definitions.

Here is an example that uses this feature to read parameters from a file. This
is basically the same idea as above, except the design parameters are kept in
a separate file.  It also subclasses Quantity to create a version that
displays the name and description by default.

>>> from quantiphy import Quantity, InvalidNumber
>>> from inform import os_error, fatal, display

>>> class VerboseQuantity(Quantity):
...    show_label = 'f'
...    label_fmt = '{n} = {v}'
...    label_fmt_full = '{V:<18} — {d}'

>>> filename = '.parameters'
>>> try:
...     with open(filename) as f:
...         globals().update(VerboseQuantity.extract(f.read()))
... except OSError as e:
...     fatal(os_error(e))
... except InvalidNumber as e:
...     fatal(e, culprit=filename)

>>> print(Fref, Kdet, Kvco, N, Fout, sep='\n')
Fref = 156 MHz     — Reference frequency
Kdet = 88.3 uA     — Gain of phase detector (Imax)
Kvco = 9.07 GHz/V  — Gain of VCO
N = 128            — Divide ratio
Fout = 19.968 GHz  — Output Frequency





With Quantity.extract() the values of quantities can be given as
a expression that contains previously defined quantities (or physical
constants or select mathematical constants (pi, tau, π, or τ).  You
can follow an expression with a string to give the units. Finally, you can use
the predefined argument to pass in a dictionary of named values that can be
used in your expressions.  For example:

#!/usr/bin/env python3
>>> __doc__ = """
... Simulates a second-order ΔΣ modulator with the following parameter values:
...
...     Fclk = Fxtal/4 "Hz"                  — clock frequency
...     Fin = 200kHz                         — input frequency
...     Vin = 950mV                          — input voltage amplitude (peak)
...     gain1 = 0.5V/V                       — gain of first integrator
...     gain2 = 0.5V/V                       — gain of second integrator
...     Vmax = 1V                            — quantizer maximum input voltage
...     Vmin = -1V                           — quantizer minimum input voltage
...     levels = 5                           — quantizer output levels
...     Tstop = 2/Fin "s"                    — simulation stop time
...     Tstart = -1/Fin 's'                  — initial transient interval (discarded)
...     file_name = 'out.wave'               — output filename
...     sim_name = f'{Fclk:q} ΔΣ Modulator'  — simulation name
...
... The values given above are used in the simulation; no further
... modification of the code given below is required when changing
... these parameters.
... """

>>> from quantiphy import Quantity

>>> Fxtal = Quantity('200 MHz')
>>> parameters = Quantity.extract(__doc__, predefined=dict(Fxtal=Fxtal))
>>> globals().update(parameters)

>>> with Quantity.prefs(
...     label_fmt = '{n} = {v}',
...     label_fmt_full = '{V:<18} ­— {d}',
...     show_label = 'f',
... ):
...     print('Simulation parameters:')
...     for k, v in parameters.items():
...         try:
...             print(f'    {v:Q}')
...         except ValueError:
...             print(f'    {k} = {v!s}')
Simulation parameters:
    Fclk = 50 MHz      ­— clock frequency
    Fin = 200 kHz      ­— input frequency
    Vin = 950 mV       ­— input voltage amplitude (peak)
    gain1 = 500 mV/V   ­— gain of first integrator
    gain2 = 500 mV/V   ­— gain of second integrator
    Vmax = 1 V         ­— quantizer maximum input voltage
    Vmin = -1 V        ­— quantizer minimum input voltage
    levels = 5         ­— quantizer output levels
    Tstop = 10 us      ­— simulation stop time
    Tstart = -5 us     ­— initial transient interval (discarded)
    file_name = out.wave
    sim_name = 50 MHz ΔΣ Modulator





Notice in this case the parameters were specified and read out of the docstring
at the top of the file. In this way, the parameters become very easy to set and
the documentation is always up to date. Ignore the fact that the docstring is
assigned to __doc__. That was a hack that was needed to make the example
executable from within the documentation.




Translating Quantities

Quantity.all_from_conv_fmt() recognizes conventionally formatted numbers
and quantities embedded in text and reformats them using
Quantity.render(). This is an difficult task in general, and so some
constraints are placed on the values to make them easier to distinguish.
Specifically, the units, if given, must be simple and immediately adjacent to
the number. Units are simple if they only consist of letters and underscores.
The characters °, Å, Ω and Ʊ are also allowed.  So ‘47e3Ohms’, ‘50_Ohms’ and
‘1.0e+12Ω’ are recognized as quantities, but ‘50 Ohms’ and ‘12m/s’ are not.

Besides the text to be translated, all_from_conv_fmt() takes the same
arguments as render(), though they must be given as named arguments.

>>> test_results = '''
... Applying stimulus @ 2.00500000e-04s: V(in) = 5.000000e-01V.
... Pass @ 3.00500000e-04s: V(out): expected=2.00000000e+00V, measured=1.99999965e+00V, diff=3.46117130e-07V.
... '''.strip()

>>> Quantity.set_prefs(spacer='')
>>> translated = Quantity.all_from_conv_fmt(test_results)
>>> print(translated)
Applying stimulus @ 200.5us: V(in) = 500mV.
Pass @ 300.5us: V(out): expected=2V, measured=2V, diff=346.12nV.





Quantity.all_from_si_fmt() is similar, except that it recognizes
quantities formatted with either a scale factor or units and ignores plain
numbers. Again, units are expected to be simple and adjacent to their number.

>>> Quantity.set_prefs(spacer='')
>>> translated_back = Quantity.all_from_si_fmt(translated, form='eng')
>>> print(translated_back)
Applying stimulus @ 200.5e-6s: V(in) = 500e-3V.
Pass @ 300.5e-6s: V(out): expected=2V, measured=2V, diff=346.12e-9V.





Notice in the translations the quantities lost resolution. This is avoided if
you use ‘full’ precision:

>>> translated = Quantity.all_from_conv_fmt(test_results, prec='full')
>>> print(translated)
Applying stimulus @ 200.5us: V(in) = 500mV.
Pass @ 300.5us: V(out): expected=2V, measured=1.99999965V, diff=346.11713nV.








Equivalence

You can determine whether a value is equivalent to that of a quantity using
Quantity.is_close().  The value may be given as a quantity, a real
number, or a string. The two values need not be identical, they just need to be
close to be deemed equivalent. The reltol and abstol preferences are used to
determine if they are close.

>>> h_line.is_close(h_line)
True

>>> h_line.is_close(h_line + 1)
True

>>> h_line.is_close(h_line + 1e4)
False





Quantity.is_close() returns true if the units match and if:


abs(a - b) <= max(reltol * max(abs(a), abs(b)), abstol)



where a and b represent other and the numeric value of the underlying
quantity.

By default, is_close() looks at the both the value and the units if the
argument has units. In this way if you compare two quantities with different
units, the is_close() test will always fail if their units differ.  This
behavior can be overridden by specifying check_units.

>>> Quantity('$10').is_close('10 USD')
False

>>> Quantity('$10').is_close('10 USD', check_units=False)
True








Negligible Values

QuantiPhy can round small values to zero when rendering them, which can help
to reduce visual clutter.  You can specify the size of a negligible value as
a preference using Quantity.set_prefs() or Quantity.prefs(), or you
can specify it locally using Quantity.render().  Any quantity whose
absolute value is smaller than the specified value is rendered as zero with the
underlying value remaining unchanged.

>>> from quantiphy import Quantity
>>> from math import exp

>>> Vt = 0.025852
>>> def cond(v):
...     return Quantity(1e-27 * exp(v/Vt)/Vt, 'Ʊ')

>>> Quantity.set_prefs(prec=2)
>>> for i in range(11):
...     v = Quantity(i/5, 'V')
...     print(f'{v:>6}: {cond(v):>10}, {v:>26}: {cond(v).render(negligible=1e-3):>10}')
   0 V: 38.7e-27 Ʊ,                        0 V:        0 Ʊ
200 mV: 88.6e-24 Ʊ,                     200 mV:        0 Ʊ
400 mV:  203e-21 Ʊ,                     400 mV:        0 Ʊ
600 mV:     465 aƱ,                     600 mV:        0 Ʊ
800 mV:    1.06 pƱ,                     800 mV:        0 Ʊ
   1 V:    2.44 nƱ,                        1 V:        0 Ʊ
 1.2 V:    5.58 uƱ,                      1.2 V:        0 Ʊ
 1.4 V:    12.8 mƱ,                      1.4 V:    12.8 mƱ
 1.6 V:     29.3 Ʊ,                      1.6 V:     29.3 Ʊ
 1.8 V:      67 kƱ,                      1.8 V:      67 kƱ
   2 V:     153 MƱ,                        2 V:     153 MƱ








Exceptional Values

QuantiPhy supports NaN (not a number) and infinite values:

>>> inf = Quantity('inf Hz')
>>> print(inf)
inf Hz

>>> nan = Quantity('NaN Hz')
>>> print(nan)
NaN Hz





You can test whether the value of the quantity is infinite or is not-a-number
using Quantity.is_infinite() or Quantity.is_nan().  These method
return a rendered value for the number without units if they are true and None
otherwise:

>>> h_line.is_infinite()

>>> inf.is_infinite()
'inf'

>>> h_line.is_nan()

>>> nan.is_nan()
'NaN'





The rendered value is affected by the inf and nan preferences or attributes:

>>> inf.inf = '∞'
>>> inf.is_infinite()
'∞'








Exceptions

The way exceptions are defined in QuantiPhy has changed. Initially, the
standard Python exceptions were used to indicate errors. For example,
a ValueError was raised by Quantity if it were passed a string it
cannot convert into a number.  Now, a variety of QuantiPhy specific exceptions
are used to indicate specific errors. However, these exceptions subclass the
corresponding Python error for compatibility with existing code.  It is
recommended that new code catch the QuantiPhy specific exceptions rather than
the generic Python exceptions as their use will be deprecated in the future.

QuantiPhy employs the following exceptions:


	ExpectedQuantity:
	Subclass of QuantiPhyError and ValueError.  Used by
add_constant().

Raised when the value is either not an instance of Quantity or
a string that can be converted to a quantity.



	IncompatiblePreferences:
	Subclass of QuantiPhyError and ValueError.  Used by
Quantity constructor.

Raised when comma and radix preference is the same.



	IncompatibleUnits:
	Subclass of QuantiPhyError and TypeError.  Used by
Quantity.add().

Raised when the units of contribution do not match those of underlying
quantity.



	InvalidNumber:
	Subclass of QuantiPhyError, ValueError, and TypeError.  Used by
Quantity().

Raised if the value given could not be converted to a number.



	InvalidRecognizer:
	Subclass of QuantiPhyError and KeyError.  Used by
Quantity().

The assign_rec preference is expected to be a regular expression that
defines one or more named fields, one of which must be val. This exception
is raised when the current value of assign_rec does not satisfy this
requirement.



	MissingName:
	Subclass of QuantiPhyError and NameError.  Used by
add_constant().

Raised when alias was not specified and no name was available from
value.



	UnknownConversion:
	Subclass of QuantiPhyError and KeyError.

Used by UnitConversion.convert(), Quantity(),
Quantity.scale(), Quantity.render(),
Quantity.fixed(), Quantity.format(),
Quantity.binary(), as_real(), as_tuple(),
render(), fixed(), and binary().

Raised when a unit conversion was requested and there is no corresponding
unit converter.



	UnknownFormatKey:
	Subclass of QuantiPhyError and KeyError.  Used by
Quantity.render(), Quantity.fixed(), and
Quantity.format().

The label_fmt and label_fmt_full are expected to be format strings that
may interpolate certain named arguments. The valid named arguments are n
for name, v for value, and d for description. This exception is raised
when some other name is used for an interpolated argument.



	UnknownPreference:
	Subclass of QuantiPhyError and KeyError.  Used by
Quantity.set_prefs(), Quantity.get_pref(), and
Quantity.prefs().

Raised when the name given for a preference is unknown.



	UnknownScaleFactor:
	Subclass of QuantiPhyError and ValueError.  Used by
Quantity(), Quantity.set_prefs(), or
Quantity.prefs().

The input_sf preference gives the list of scale factors that should be
accepted. This exception is raised if input_sf contains an unknown scale
factor.



	UnknownUnitSystem:
	Subclass of QuantiPhyError and KeyError.  Used by
set_unit_system().

Raised when the name given does not correspond to a known unit system.





QuantiPhy defines a common base exception, QuantiPhyError, that all
specific exceptions derive from.  This allows you to simplify your exception
handling if you are not interested in distinguishing between the specific
errors:

>>> from quantiphy import Quantity, QuantiPhyError

>>> try:
...     q = Quantity('tweed')
... except QuantiPhyError as e:
...     print(str(e))
'tweed': not a valid number.





The alternative would be to catch each error individually:

>>> from quantiphy import (
...     Quantity, InvalidNumber, UnknownScaleFactor,
...     UnknownConversion, InvalidRecognizer
... )

>>> try:
...     q = Quantity('tweed')
... except (InvalidNumber, UnknownScaleFactor, UnknownConversion, InvalidRecognizer) as e:
...     print(str(e))
'tweed': not a valid number.





QuantiPhy provides uniform access methods for its exceptions. You can access
all the unnamed arguments passed to the exception using the args attribute,
you can access the named arguments using kwargs, and you can create
a customized message that incorporates the arguments using
QuantiPhyError.render() method. The argument to render is a format
string that can access both the unnamed and named arguments:

>>> try:
...     q = Quantity('tweed')
... except InvalidNumber as e:
...     print(e.render('{}: no es un número valido.'))
... except UnknownScaleFactor as e:
...     print(e.render('factor de escala desconocido.'))
... except UnknownConversion as e:
...     if 'to_units' in e.kwargs:
...         if 'from_units' in e.kwargs:
...             template = 'incapaz de convertir entre {} y {}'
...         else:
...             template = 'incapaz de convertir a {}'
...     else:
...         template = 'incapaz de convertir de {}'
...     print(e.render(template))
... except InvalidRecognizer as e:
...     print(e.render("el reconocedor no contiene la clave 'val'"))
tweed: no es un número valido.





Alternately, if you wish to globally replace the default QuantiPhy error
messages, you can simply override the _template attribute for the
exceptions:

>>> InvalidNumber._template = '{!r}: no es un número valido.'
>>> UnknownScaleFactor._template = 'factor de escala desconocido.'
>>> UnknownConversion._template = (
...     'incapaz de convertir entre ‘{to_units}’ y ‘{from_units}’',
...     'incapaz de convertir a ‘{to_units}’',
...     'incapaz de convertir de ‘{from_units}’',
... )
>>> InvalidRecognizer._template = "el reconocedor no contiene la clave ‘val’"

>>> try:
...     q = Quantity('tweed')
... except QuantiPhyError as e:
...     print(e.render())
'tweed': no es un número valido.





As shown in UnknownConversion, _template may be given as a tuple of format
strings, in which case the first one for which all arguments are available is
used.







            

          

      

      

    

  

    
      
          
            
  
Classes and Functions


Quantities


	
class quantiphy.Quantity(value, model=None, *, units=None, scale=None, binary=None, name=None, desc=None, ignore_sf=None, params=None)

	Create a physical quantity.

A quantity is a number paired with a unit of measure.


	Parameters

	
	value (real, string or quantity) – The value of the quantity.  If a string, it may be the name of a
pre-defined constant or it may be a number that may be specified with SI
scale factors and/or units.  For example, the following are all valid:
‘2.5ns’, ‘1.7 MHz’, ‘1e6Ω’, ‘2.8_V’, ‘1e4 m/s’, ‘$10_000’, ‘42’, ‘ħ’,
etc.  The string may also have name and description if they are provided
in a way recognizable by assign_rec. For example, ‘trise: 10ns —
rise time’ or ‘trise = 10ns # rise time’ would work with the default
recognizer.


	model (quantity or string) – Used to pick up any missing attibutes (units, name, desc). May be a
quantity or a string. If model is a quantity, only its units would be
taken. If model is a string, it is split. Then, if there is one
item, it is taken to be units. If there are two, they are taken
to be name and units.  And if there are three or more, the first
two are taken to the be name and units, and the remainder is taken
to be description.


	units (str) – Overrides the units taken from value or model.


	scale (float, tuple, func, string, or quantity) – 
	If a float or quantity, it multiplies by the given value to compute
the value of the quantity.  If a quantity, the units are ignored.


	If a tuple, the first value, a float, is treated as a scale factor
and the second value, a string, is take to be the units of the
quantity.


	If a function, it takes two arguments, the given value and the units
and it returns two values, the value and units of the quantity.


	If a string, it is taken to the be desired units. This value along
with the units of the given value are used to select a known unit
conversion, which is applied to create the quantity.







	name (str) – Overrides the name taken from value or model.


	desc (str) – Overrides the desc taken from value or model.


	ignore_sf (bool) – Assume the value given within a string does not employ a scale factors.
In this way, ‘1m’ is interpreted as 1 meter rather than 1 milli.


	binary (bool) – Allow use of binary scale factors (Ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi).


	params – Parameters to be used in scaling. May be scalar, tuple, or dictionary.






	Raises

	
	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.


	InvalidRecognizer(QuantiPhyError, KeyError) – Assignment recognizer (assign_rec) does not match at least
the value (val).


	UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or factors.


	InvalidNumber(QuantiPhyError, ValueError, TypeError) – Not a valid number.


	IncompatiblePreferences(QuantiPhyError, ValueError) – radix and comma must differ.








You can use Quantity to create quantities from floats, strings, or other
You can use Quantity to create quantities from floats, strings, or other
quantities.  If a float is given, model or units would be used to
specify the units.

Examples:

>>> from quantiphy import Quantity
>>> from math import pi, tau
>>> newline = '''
... '''

>>> fhy = Quantity('1420.405751786 MHz')
>>> sagan = Quantity(pi*fhy, 'Hz')
>>> sagan2 = Quantity(tau*fhy, fhy)
>>> print(fhy, sagan, sagan2, sep=newline)
1.4204 GHz
4.4623 GHz
8.9247 GHz





You can use scale to scale the number or convert to different units when
creating the quantity.

Examples:

>>> Tfreeze = Quantity('273.15 K', ignore_sf=True, scale='°C')
>>> print(Tfreeze)
0 °C

>>> Tboil = Quantity('212 °F', scale='°C')
>>> print(Tboil)
100 °C






Public Methods:







	reset_prefs()

	Reset preferences



	set_prefs(**kwargs)

	Set class preferences.



	get_pref(name)

	Get class preference.



	prefs(**kwargs)

	Set class preferences.



	is_infinite()

	Test value to determine if quantity is infinite.



	is_nan()

	Test value to determine if quantity is not a number.



	as_tuple()

	Return a tuple that contains the value as a float along with its units.



	scale(scale[, cls])

	Scale a quantity to create a new quantity.



	add(addend[, check_units])

	Create a new quantity that is the sum of the original and a contribution.



	render(*[, form, show_units, prec, ...])

	Convert quantity to a string.



	fixed(*[, show_units, prec, show_label, ...])

	Convert quantity to fixed-point string.



	binary(*[, show_units, prec, show_label, ...])

	Convert quantity to string using binary scale factors.



	is_close(other[, reltol, abstol, check_units])

	Are values equivalent?



	format([template])

	Convert quantity to string under the guidance of a template.



	extract(text[, predefined])

	Extract quantities.



	map_sf_to_sci_notation(sf)

	Render scale factors in scientific notation.



	map_sf_to_greek(sf)

	Render scale factors in Greek alphabet if appropriate.



	all_from_conv_fmt(text[, only_e_notation])

	Convert all numbers and quantities from conventional notation.



	all_from_si_fmt(text, **kwargs)

	Convert all numbers and quantities from SI notation.











	
add(addend, check_units=False)

	Create a new quantity that is the sum of the original and a contribution.


	Parameters

	
	addend (real, quantity, string) – The amount to add to the quantity.


	check_units (boolean or 'strict') – If True, raise an exception if the units of the addend are not
compatible with the underlying quantity. If the addend does not
have units, then it is considered compatible unless check_units is
‘strict’.






	Raises

	IncompatibleUnits(QuantiPhyError, TypeError) – Units of contribution do not match those of underlying quantity.





Example:

>>> total = Quantity(0, '$')
>>> for contribution in [1.23, 4.56, 7.89]:
...     total = total.add(contribution)
>>> print(total)
$13.68










	
classmethod all_from_conv_fmt(text, only_e_notation=False, **kwargs)

	Convert all numbers and quantities from conventional notation.

Only supports a subset of the conventional formats that QuantiPhy
normally accepts.  For example, leading units (ex. $1M) and embedded
commas are not supported, and the radix is always ‘.’.

There may be a space between the number an units, but it cannot be a
normal space. Only non-breaking, thin-non-breaking and thin spaces are
allowed.


	Parameters

	
	text (str) – A search and replace is performed on this text. The search looks for
numbers and quantities in floating point or e-notation. They are
replaced with the same number rendered as a quantity. To be
recognized any units must be simple (only letters or underscores, no
digits or symbols) and the units must be immediately adjacent to the
number.


	only_e_notation (bool) – If true, only numbers that explicitly have exponents are converted
(1e6Hz is converted, but not 1.6 or 2009).  If False, numbers with
or without exponents are converted ( 1e6Hz, 1.6 and 2009 are all
converted.


	**kwargs – By default the numbers are rendered using the currently active
preferences, but any valid argument to Quantity.render() can
be passed in to control the rendering.






	Returns

	A copy of text where all numbers that were formatted
conventionally have been reformatted.



	Return type

	str





Example:

>>> text = 'Applying stimulus @ 2.05000e-05s: V(in) = 5.00000e-01V.'
>>> with Quantity.prefs(spacer=''):
...     xlated = Quantity.all_from_conv_fmt(text)
...     print(xlated)
Applying stimulus @ 20.5us: V(in) = 500mV.










	
classmethod all_from_si_fmt(text, **kwargs)

	Convert all numbers and quantities from SI notation.

Only supports a subset of the SI formats that QuantiPhy normally
accepts.  For example, leading units (ex. $1M) and embedded commas
are not supported, and the radix is always ‘.’.


	Parameters

	
	text (str) – A search and replace is performed on this text. The search looks for
numbers and quantities formatted in SI notation (must have either a
scale factor or units or both).  They are replaced with the same
number rendered as a quantity. To be recognized any units must be
simple (only letters or underscores, no digits or symbols) and the
units must be immediately adjacent to the number.


	**kwargs – By default the numbers are rendered using the currently active
preferences, but any valid argument to Quantity.render() can
be passed in to control the rendering.






	Returns

	A copy of text where all numbers that were formatted with SI scale
factors have been reformatted.



	Return type

	str





Example:

>>> print(Quantity.all_from_si_fmt(xlated))
Applying stimulus @ 20.5 us: V(in) = 500 mV.

>>> print(Quantity.all_from_si_fmt(xlated, form='eng'))
Applying stimulus @ 20.5e-6 s: V(in) = 500e-3 V.










	
as_tuple()

	Return a tuple that contains the value as a float along with its units.

Example:

>>> period = Quantity('10ns')
>>> period.as_tuple()
(1e-08, 's')










	
binary(*, show_units=None, prec=None, show_label=None, strip_zeros=None, strip_radix=None, scale=None)

	Convert quantity to string using binary scale factors.

When in range the number is divided by some integer power of 1024 and
the appropriate scale factor is added to the quotient, where the scale
factors are ‘’ for 0 powers of 1024, ‘Ki’ for 1, ‘Mi’ for 2, ‘Gi’ for 3,
‘Ti’ for 4, ‘Pi’ for 5, ‘Ei’ for 6, ‘Zi’ for 7 and ‘Yi for 8.  Outside
this range, the number is converted to a string using a simple floating
point format.

Within the range the number of significant figures used is equal to
prec+1.  Outside the range, prec give the number of figures to the right
of the decimal point.


	Parameters

	
	show_units (bool) – Whether the units should be included in the string.


	prec (integer or 'full') – The desired precision (number of digits to the right of the radix
when normalized).  If specified as ‘full’, full_prec is used as
the number of digits (and not the originally specified precision as
with render).


	show_label ('f', 'a', or boolean) – Add the name and possibly the description when rendering a quantity
to a string.  Either label_fmt or label_fmt_full is used to
label the quantity.


	neither is used if show_label is False,


	otherwise label_fmt is used if quantity does not have a
description or if show_label is ‘a’ (short for abbreviated),


	otherwise label_fmt_full is used if show_desc is True or
show_label is ‘f’ (short for full).







	strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.


	strip_radix (boolean) – Remove radix if there is nothing to the right of it.  If not
specified, the global strip_radix setting is used.


	scale (real, pair, function, or string) – 
	If a float, it scales the displayed value (the quantity is
multiplied by scale before being converted to the string).


	If a tuple, the first value, a float, is treated as a scale factor
and the second value, a string, is take to be the units of the
displayed value.


	If a function, it takes two arguments, the value and the units of
the quantity and it returns two values, the value and units of
the displayed value.


	If a string, it is taken to the be desired units. This value along
with the units of the quantity are used to select a known unit
conversion, which is applied to create the displayed value.











	Raises

	
	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.


	UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’ contains an unknown format key.








Example:

>>> t = Quantity('mem = 16 GiB — amount of physical memory', binary=True)
>>> print(
...     t.binary(),
...     t.binary(prec=3, strip_zeros=False),
...     t.binary(show_label=True, scale='b'), sep=newline)
16 GiB
16.00 GiB
mem = 128 Gib










	
classmethod extract(text, predefined=None, **kwargs)

	Extract quantities.

Takes a string that contains quantity definitions, one per line, and
returns those quantities in a dictionary.


	Parameters

	
	text (str) – The string that contains the quantities, one definition per
line.  Each is parsed by assign_rec. By default, the lines are
assumed to be of the form:

[<name> [(<qname>)] = <value>] [— <description>]





where ‘=’ may be replaced by ‘:’ and ‘—’ (the em-dash) may be
replaced by ‘–’, ‘//’ or ‘#’.  In addition, brackets delimit
optional fields and parentheses represent literal parentheses.  Each
of the fields are allowed be largely arbitrary strings.

The brackets indicate that the name/value pair and the description
is optional.  However, <name> must be given if <value> is given.


	<name>:
	the name is used as a key for the value.



	<qname>:
	the name taken by the quantity.



	<value>:
	A number with optional units (ex: 3 or 1pF or 1 kΩ);
the units need not be a simple identifier (ex: 9.07 GHz/V).

The value may also be an expression.  When giving an expression,
you may follow it with a string surrounded by double quotes,
which is taken as the units.  For example: Tstop = 5/Fin “s”.
The expressions may only contain value defined previously in the
same set of definitions, values contained in predefined,
physical constants, the mathematical constants pi and tau
(2*pi), which may be named π or τ, or number literals without
scale factors or units. The units should not include a scale
factor.

When processing the value, it is passed as an argument to
Quantity, if cannot be converted to a quantity, then it is
treated as a Python expression.



	<description>:
	Optional textual description (ex: Frequency of hydrogen line).





Blank lines and any line that does not contain a value are ignored.
So with the default assign_rec, lines with the following form are
ignored:

— comment
-- comment
# comment
// comment








	predefined (dict) – A dictionary of predefined values. When specified, these values
become available to be used in the expressions that give values to
the values being defined.  You can use locals() as this argument
to make all local variables available.

You can specify both values and functions. For example,
predefined=dict(sqrt=sqrt) allows sqrt to be
used in expressions.




	**kwargs – Any argument that can be passed to Quantity can be passed to this
function, and are in turn passed to Quantity as the quantities are
created.  This can be used, for example, to allow the binary scale
factors.






	Returns

	a dictionary of quantities for the values specified in the argument.



	Return type

	dict





Example:

>>> sagan_frequencies = r'''
...     — Carl Sagan's SETI frequencies of high interest
...
...     f_hy = 1420.405751786 MHz — Hydrogen line frequency
...     f_sagan1 = π*f_hy "Hz" — Sagan's first frequency
...     f_sagan2 = τ*f_hy "Hz" — Sagan's second frequency
... '''
>>> freqs = Quantity.extract(sagan_frequencies)
>>> for f in freqs.values():
...     print(f.render(show_label='f'))
f_hy = 1.4204 GHz — Hydrogen line frequency
f_sagan1 = 4.4623 GHz — Sagan's first frequency
f_sagan2 = 8.9247 GHz — Sagan's second frequency

>>> globals().update(freqs)
>>> print(f_hy, f_sagan1, f_sagan2, sep=newline)
1.4204 GHz
4.4623 GHz
8.9247 GHz










	
fixed(*, show_units=None, prec=None, show_label=None, show_commas=None, strip_zeros=None, strip_radix=None, scale=None)

	Convert quantity to fixed-point string.


	Parameters

	
	show_units (bool) – Whether the units should be included in the string.


	prec (integer or 'full') – The desired precision (one plus this value is the desired number of
digits). If specified as ‘full’, the full original precision is used.


	show_label ('f', 'a', or boolean) – Add the name and possibly the description when rendering a quantity
to a string.  Either label_fmt or label_fmt_full is used to
label the quantity.


	neither is used if show_label is False,


	otherwise label_fmt is used if quantity does not have a
description or if show_label is ‘a’ (short for abbreviated),


	otherwise label_fmt_full is used if show_desc is True or
show_label is ‘f’ (short for full).







	show_commas – Add commas to whole part of mantissa, every three digits. If not
specified, the global strip_zeros setting is used.


	strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.


	strip_radix (boolean) – Remove radix if there is nothing to the right of it.  If not
specified, the global strip_radix setting is used.


	scale (real, pair, function, or string) – 
	If a float, it scales the displayed value (the quantity is
multiplied by scale before being converted to the string).


	If a tuple, the first value, a float, is treated as a scale factor
and the second value, a string, is take to be the units of the
displayed value.


	If a function, it takes two arguments, the value and the units of
the quantity and it returns two values, the value and units of
the displayed value.


	If a string, it is taken to the be desired units. This value along
with the units of the quantity are used to select a known unit
conversion, which is applied to create the displayed value.











	Raises

	
	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.


	UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’ contains an unknown format key.








Example:

>>> t = Quantity('Total = $1000000.00 — the total')
>>> print(
...     t.fixed(),
...     t.fixed(show_commas=True),
...     t.fixed(show_units=False), sep=newline)
$1000000
$1,000,000
1000000

>>> print(
...     t.fixed(prec=2, strip_zeros=False, show_commas=True),
...     t.fixed(prec=6),
...     t.fixed(strip_zeros=False, prec=6), sep=newline)
$1,000,000.00
$1000000
$1000000.000000

>>> print(
...     t.fixed(strip_zeros=False, prec='full'),
...     t.fixed(show_label=True),
...     t.fixed(show_label='f'), sep=newline)
$1000000.00
Total = $1000000
Total = $1000000 — the total

>>> print(
...     t.fixed(scale=(1/10000, 'BTC')),
...     t.fixed(scale=(1/1000, 'ETH')),
...     t.fixed(scale=(1/1000, 'ETH'), show_units=False), sep=newline)
100 BTC
1000 ETH
1000










	
format(template='')

	Convert quantity to string under the guidance of a template.

Supports the normal floating point and string format types as well some
new ones. If the format code is given in upper case, label_fmt is used
to add the name and perhaps description to the result.


	Parameters

	template (str) – the format string.



	Raises

	
	UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’ contains an unknown format key.


	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.








The format is specified using A#W,.PTU where:

A   is a character and gives the alignment: either '', '>', '<', or '^'
#   is a literal hash that if present indicates that
    trailing zeros and radix should not be suppressed from fractional part.
W   is an integer and gives the width of the final string
,   is a literal comma, it indicates that the whole part of the
    mantissa should be partitioned into groups of three digits
    separated by commas
.P  is a literal period followed by an integer that gives the precision
T   is a character and gives the type: choose from p, q, r, s, e, f, g, u, n, d, ...
U   is a string that must match a known unit, it invokes scaling





Each of these component pieces is optional.

If:

q = Quantity('f = 1420.405751786 MHz — hydrogen line')





then:

q: quantity [si=y, units=y, label=n] (ex: 1.4204 GHz)
Q: quantity [si=y, units=y, label=y] (ex: f = 1.4204 GHz)
r: real [si=y, units=n, label=n] (ex: 1.4204G)
R: real [si=y, units=n, label=y] (ex: f = 1.4204G)
 : [label=n] (ex: 1.4204 GHz)
p: fixed-point [fixed=y, units=y, label=n] (ex: 1420405751.7860 Hz)
P: fixed-point [fixed=y, units=y, label=y] (ex: f = 1420405751.7860 Hz)
s: string [label=n] (ex: 1.4204 GHz)
S: string [label=y] (ex: f = 1.4204 GHz)
e: exponential form [si=n, units=n, label=n] (ex: 1.4204e9)
E: exponential form [si=n, units=n, label=y] (ex: f = 1.4204e9)
f: float [label=n] (ex: 1420400000.0000)
F: float [label=y] (ex: f = 1420400000.0000)
g: generalized float [label=n] (ex: 1.4204e+09)
G: generalized float [label=y] (ex: f = 1.4204e+09)
u: units only (ex: Hz)
n: name only (ex: f)
d: description only (ex: hydrogen line)










	
classmethod get_pref(name)

	Get class preference.

Returns the value of given preference.


	Parameters

	name (str) – Name of the desired preference. See
Quantity.set_prefs() for list of preferences.



	Raises

	UnknownPreference(QuantiPhyError, KeyError) – unknown preference.





Example:

>>> Quantity.set_prefs(known_units='au')
>>> known_units = Quantity.get_pref('known_units')
>>> known_units.append('pc')
>>> Quantity.set_prefs(known_units=known_units)
>>> print(Quantity.get_pref('known_units'))
['au', 'pc']










	
is_close(other, reltol=None, abstol=None, check_units=True)

	Are values equivalent?

Indicates  whether the value of a quantity or real number is equivalent
to that of a quantity. The two values need not be identical, they just
need to be close to be deemed equivalent.


	Parameters

	
	other (quantity, real, or string) – The value to compare against.


	reltol (float) – The relative tolerance.
If not specified. the reltol preference is
used, which defaults to 1u.


	abstol (float) – The absolute tolerance.  If not specified. the abstol preference is
used, which defaults to 1p.


	check_units (bool) – If True (the default), and if other is a quantity, compare the
units of the two values, if they differ return False. Otherwise only
compare the numeric values, ignoring the units.






	Returns

	Returns true if abs(a - b) <= max(reltol * max(abs(a), abs(b)), abstol)
where a and b represent other and the numeric value of the
underlying quantity.



	Return type

	bool





Example:

>>> print(
...     c.is_close(c),                     # should pass, is identical
...     c.is_close(c+1),                   # should pass, is close
...     c.is_close(c+1e4),                 # should fail, not close
...     c.is_close(Quantity(c+1, 'm/s')),  # should pass, is close
...     c.is_close(Quantity(c+1, 'Hz')),   # should fail, wrong units
...     c.is_close('299.7925 Mm/s'),       # should pass, is close
... )
True True False True False True










	
is_infinite()

	Test value to determine if quantity is infinite.
Returns a representation of the number (sign combined with self.inf) if
value is infinite and None otherwise.

Example:

>>> inf = Quantity('inf Hz')
>>> inf.is_infinite()
'inf'










	
is_nan()

	Test value to determine if quantity is not a number.
Returns a representation of the number (sign combined with self.nan) if
value is not a number and None otherwise.

Example:

>>> nan = Quantity('-nan Hz')
>>> nan.is_nan()
'NaN'










	
static map_sf_to_greek(sf)

	Render scale factors in Greek alphabet if appropriate.

Pass this dictionary to map_sf preference if you prefer µ rather than u.

Example:

>>> with Quantity.prefs(map_sf=Quantity.map_sf_to_greek):
...     print(Quantity('mu0').render(show_label='f'))
µ₀ = 1.2566 µH/m — permeability of free space










	
static map_sf_to_sci_notation(sf)

	Render scale factors in scientific notation.

Pass this function to map_sf preference if you prefer your large and
small numbers in classic scientific notation. It also causes ‘u’ to be
converted to ‘µ’. Set form to ‘eng’ to format all numbers in
scientific notation.

Example:

>>> with Quantity.prefs(map_sf=Quantity.map_sf_to_sci_notation, show_label='f'):
...     print(
...         Quantity('k').render(),
...         Quantity('mu0').render(),
...         Quantity('mu0').render(form='eng'),
...         sep=newline,
...     )
k = 13.806×10⁻²⁴ J/K — Boltzmann's constant
µ₀ = 1.2566 µH/m — permeability of free space
µ₀ = 1.2566×10⁻⁶ H/m — permeability of free space










	
classmethod prefs(**kwargs)

	Set class preferences.

This is just like Quantity.set_prefs(), except it is designed to
work as a context manager, meaning that it is meant to be used with
Python’s with statement. It allows preferences to be set to new values
temporarily. They are reset upon exiting the with statement. For
example:

>>> with Quantity.prefs(ignore_sf=True):
...     t = Quantity('600_000 K')
>>> t_bad = Quantity('600_000 K')
>>> print(t, t_bad, sep=newline)
600 kK
600M





See Quantity.set_prefs() for list of available arguments.


	Raises

	
	UnknownPreference(QuantiPhyError, KeyError) – Unknown preference.


	UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or factors.













	
render(*, form=None, show_units=None, prec=None, show_label=None, strip_zeros=None, strip_radix=None, scale=None, negligible=None)

	Convert quantity to a string.


	Parameters

	
	form (str) – Specifies the form to use for representing numbers by default.
Choose from ‘si’, ‘sia’, ‘eng’, ‘fixed’, and ‘binary’. As an example
0.25 A is represented with 250 mA when form is ‘si’, as 250e-3 A
when form is ‘eng’, and with 0.25 A when from is ‘fixed’.
‘sia’ (SI ASCII) is like ‘si’, but causes map_sf preference to be
ignored.  ‘binary’ is like ‘sia’, but specifies that binary scale
factors be used.  Default is ‘si’.


	show_units (bool) – Whether the units should be included in the string.


	prec (integer or 'full') – The desired precision (one plus this value is the desired number of
digits). If specified as ‘full’, the full original precision is used.


	show_label ('f', 'a', or boolean) – Add the name and possibly the description when rendering a quantity
to a string.  Either label_fmt or label_fmt_full is used to
label the quantity.


	neither is used if show_label is False,


	otherwise label_fmt is used if quantity does not have a
description or if show_label is ‘a’ (short for abbreviated),


	otherwise label_fmt_full is used if show_desc is True or
show_label is ‘f’ (short for full).







	strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.


	strip_radix (boolean) – Remove radix if there is nothing to the right of it.  If not
specified, the global strip_radix setting is used.


	scale (real or dict) – 
	If a float or a quantity, it scales the displayed value (the
quantity is multiplied by scale before being converted to the
string).  If a quantity, the units are ignored.


	If a tuple, the first value, a float, is treated as a scale factor
and the second value, a string, is take to be the units of the
displayed value.


	If a function, it takes two arguments, the value and the units of
the quantity and it returns two values, the value and units of
the displayed value.


	If a string, it is taken to the be desired units. This value along
with the units of the quantity are used to select a known unit
conversion, which is applied to create the displayed value.







	negligible – If the absolute value of the quantity is equal to or smaller than
negligible, it is rendered as 0.  To make negligible a function
of the units of the quantity, pass a dictionary where the keys are
the units and the values are the value to use for negligible. A key
of ‘’ is used for quantities with no units and a key of None
provides a default value for negligible that is used if the units
of the quantity are not found in the dictionary.






	Raises

	
	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.


	UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’ contains an unknown format key.








Example:

>>> c = Quantity('c')
>>> print(
...     c.render(),
...     c.render(form='si'),
...     c.render(form='eng'),
...     c.render(form='fixed'),
...     c.render(show_units=False),
...     c.render(prec=6),
...     c.render(prec='full'),
...     c.render(show_label=True),
...     c.render(show_label='f'),
...     sep=newline
... )
299.79 Mm/s
299.79 Mm/s
299.79e6 m/s
299792458 m/s
299.79M
299.7925 Mm/s
299.792458 Mm/s
c = 299.79 Mm/s
c = 299.79 Mm/s — speed of light

>>> print(
...     Tfreeze.render(scale='°F'),
...     Tboil.render(scale='°F'),
...     sep=newline
... )
32 °F
212 °F










	
classmethod reset_prefs()

	Reset preferences

Resets all preferences to the current preferences of the parent class.
If there is no parent class, they are reset to their defaults.






	
scale(scale, cls=None)

	Scale a quantity to create a new quantity.


	Parameters

	
	scale (real, pair, function, string, or quantity) – 
	If a float, it scales the existing value (a new quantity is
returned whose value equals the existing quantity multiplied by
scale. In this case the scale is assumed unitless and so the units
of the new quantity are the same as those of the existing
quantity).


	If a tuple, the first value, a float, is treated as a scale factor
and the second value, a string, is taken to be the units of the
new quantity.


	If a function, it takes two arguments, the value to be scaled and
its units.  The value is guaranteed to be a Quantity that includes
the units, so the second argument is redundant and will eventually
be deprecated.  The function returns two values, the value and
units of the new value.


	If a string, it is taken to the be desired units, perhaps with a
scale factor. This value along with the units of the quantity are
used to select a known unit conversion, which is applied to create
the new value.


	If a quantity, the units are ignored and the scale is treated as
if were specified as a unitless float.


	If a subclass of Quantity that includes units, the units
are taken to the be desired units and the behavior is the same as
if a string were given, except that cls defaults to the given
subclass.







	cls (class) – Class to use for return value. If not given, the class of self is
used it the units do not change, in which case Quantity is
used.






	Raises

	UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested and there is no corresponding unit
converter.





Example:

>>> Tf = Tfreeze.scale('°F')
>>> Tb = Tboil.scale('°F')
>>> print(Tf, Tb, sep=newline)
32 °F
212 °F










	
classmethod set_prefs(**kwargs)

	Set class preferences.

Any values not passed in are left alone.
Pass in None to reset a preference to its default value.


	Parameters

	
	abstol (float) – Absolute tolerance, used by Quantity.is_close() when
determining equivalence.  Default is 10⁻¹².


	accept_binary (bool) – Allow use of binary scale factors (Ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi).
Default is False.


	assign_rec (str) – Regular expression used to recognize an assignment.  Used in
constructor and extract(). By default an ‘=’ or ‘:’ separates the
name from the value and a ‘—’, ‘–’, ‘#’, or ‘//’ separates the
value from the description, if a description is given. So the
default recognizes the following forms:

'vel = 60 m/s'
'vel = 60 m/s — velocity'
'vel = 60 m/s -- velocity'
'vel = 60 m/s # velocity'
'vel = 60 m/s // velocity'
'vel: 60 m/s'
'vel: 60 m/s — velocity'
'vel: 60 m/s -- velocity'
'vel: 60 m/s # velocity'
'vel: 60 m/s // velocity'





The name, value, and description are identified in the regular
expression using named groups the names name, val and desc.
For example:

assign_req = r'(?P<name>.*+) = (?P<val>.*?) — (?P<desc>.*?)',





The regular expression is interpreted using the re.VERBOSE flag.

When used with Quantity.extract() there are a few
more features.

First, you may also introduce comments using ‘—’, ‘–’, ‘#’, or ‘//’:

'— comment'
'-- comment'
'# comment'
'// comment'





Second, you can specify an alternate name using by placing in within
parentheses following the name:

'wavelength (λ) = 21 cm — wavelength of hydrogen line'





In this case, the name attribute for the quantity will be ‘λ’ and
the quantity will be filed in the output dictionary using
‘wavelength’ as the key. If the alternate name is not given, then
‘wavelength’ is used for the quantity name and dictionary key.

Third, the value may be an expression involving the previously
specified values. When doing so, you can specify the units by
following the value expression with a double-quoted string. The
expressions may contain numeric literals, previously defined
quantities, and the constants pi and tau.  For example:

parameters = Quantity.extract(r'''
    Fin = 250MHz — frequency of input stimulus
    Tstop = 10/Fin "s" — simulation stop time
''')





In this example, the value for Tstop is given as an expression
involving Fin.




	comma (str) – The character to be used as the thousands separator.  It is very
common to use a comma, but using a space, period, or an underscore
can be used.
For your convenience, you can access a non-breaking space using
Quantity.non_breaking_space,
Quantity.narrow_non_breaking_space, or
Quantity.thin_space.


	form (str) – Specifies the form to use for representing numbers by default.
Choose from ‘si’, ‘sia’, ‘eng’, ‘fixed’, and ‘binary’. As an
example, 0.25 A is represented with 250 mA when form is ‘si’, as
250e-3 A when form is ‘eng’, and with 0.25 A when from is ‘fixed’.
‘sia’ (SI ASCII) is like ‘si’, but causes map_sf to be ignored.
‘binary’ is like ‘sia’, but specifies that binary scale factors be
used.  Default is ‘si’.


	full_prec (int) – Default full precision in digits where 0 corresponds to 1 digit.
Must be nonnegative.  This precision is used when the full precision
is requested and the precision is not otherwise known. Default is 12.


	ignore_sf (bool) – Whether all scale factors should be ignored by default when
recognizing numbers.  Default is False.


	inf (str) – The text to be used to represent infinity.  By default its value is
‘inf’, but is often set to ‘∞’ (the unicode infinity symbol).  You
can access the Unicode infinity symbol using
Quantity.infinity_symbol.


	input_sf (str) – Which scale factors to recognize when reading numbers.  The default
is ‘YZEPTGMKk_cmuµμnpfazy’.  You can use this to ignore the scale
factors you never expect to reduce the chance of a scale factor/unit
ambiguity.  For example, if you expect to encounter temperatures in
Kelvin and can do without ‘K’ as a scale factor, you might use
‘TGMK_munpfa’. This also gets rid of the unusual scale factors.


	keep_components (bool) – Indicate whether components should be kept if quantity value was
given as string. Doing so takes a bit of space, but allows the
original precision of the number to be recreated when full precision
is requested.  Default is True.


	known_units (list or string) – List of units that are expected to be used in preference to a scale
factor when the leading character could be mistaken as a scale
factor.  If a string is given, it is split at white space to form
the list. When set, any previous known units are overridden.
Default is empty.


	label_fmt (str) – Format string used when label is requested if the quantity does not
have a description or if the description was not requested (if
show_desc is False).  Is passed through string .format() method.
Format string takes two possible arguments named n and v
for the name and value.  A typical values include:

'{n} = {v}'    (default)
'{n}: {v}'








	label_fmt_full (str) – Format string used when label is requested if the quantity
has a description and the description was requested (if
show_desc is True).  Is passed through string .format() method.
Format string takes four possible arguments named n, v, d and V
for the name, value, description, and value as formatted by label_fmt.
Typical value include:

'{n} = {v} — {d}'    (default)
'{n} = {v} -- {d}'
'{n} = {v} # {d}'
'{n} = {v} // {d}'
'{n}: {v} — {d}'
'{n}: {v} -- {d}'
'{V} — {d}'
'{V} -- {d}'
'{V:<20}  # {d}'





The last example shows the V argument with alignment and width
modifiers.  In this case the modifiers apply to the name and value
after being they are combined with the label_fmt. This is
typically done when printing several quantities, one per line,
because it allows you to line up the descriptions.




	map_sf (dictionary or function) – Use this to change the way individual scale factors are rendered,
ex: map_sf={‘u’: ‘μ’} to render micro using mu. If a function is
given, it takes a single string argument, the nominal scale factor
(which would be the exponent if no scale factor fits), and returns
either a string or a tuple. The string is the desired scale factor.
The tuple consists of the string and a flag. If the flag is True the
string is treated as an exponent, otherwise it is treated as a scale
factors. The difference between an exponent and a scale factor is
that the spacer goes after an exponent and before a scale factor.
QuantiPhy provides two predefined functions intended for use with
maps_sf: Quantity.map_sf_to_greek() and
Quantity.map_sf_to_sci_notation().
Default is empty.


	minus (str) – The text to be used as the minus sign.  By default its value is ‘-‘,
but is sometimes ‘−’ (the unicode minus sign).  You can access the
Unicode minus sign using Quantity.minus_sign.

This preference only affects how numbers are rendered.  Both - and
the unicode − are always accepted as a minus sign when interpreting
strings as numbers.




	nan (str) – The text to be used to represent a value that is not-a-number.
By default its value is ‘NaN’.


	negligible (real or dictionary) – If the absolute value of the quantity is equal to or smaller than
negligible, it is rendered as 0.  To make negligible a function
of the units of the quantity, pass a dictionary where the keys are
the units and the values are the value to use for negligible. A key
of ‘’ is used for quantities with no units and a key of None
provides a default value for negligible that is used if the units
of the quantity are not found in the dictionary.


	number_fmt (dictionary or function) – Format string used to convert the components of the number into the
number itself.  Normally this is not necessary. However, it can be
used to perform special formatting that is helpful when aligning
numbers in tables.  It allows you to specify the widths and
alignments of the individual components. There are three named
components: whole, frac, and units.  whole contains the
portion of the mantissa to the left of the radix (decimal point). It
is the whole mantissa if there is no radix. It also includes the
sign and the leading units (currency symbols), if any. frac
contains the radix and the fractional part.  It also contains the
exponent if the number has one. units contains the scale factor
and units.  The following value can be used to align both the radix
and the units, and give the number a fixed width:

number_fmt = '{whole:>3s}{frac:<4s} {units:<3s}'





The various widths and alignments could be adjusted to fit a variety
of needs.

It is also possible to specify a function as number_fmt, in which
case it is passed the three values in order (whole, frac and
units) and is expected to return the number as a string.




	output_sf (str) – Which scale factors to output, generally one would only use familiar
scale factors. The default is ‘TGMkmunpfa’, which gets rid or the
very large (‘QRYZEP’) and very small (‘zyrq’) scale factors that many
people do not recognize.  You can set this to Quantity.all_sf to
configure Quantity to use all available output scale factors.


	radix (str) – The character to be used as the radix.  By default it is ‘.’.


	plus (str) – The text to be used as the plus sign.  By default it is ‘+’,
but is sometimes ‘＋’ (the unicode full width plus sign) or ‘’ to
simply eliminate plus signs from numbers.  You can access the
Unicode full width plus sign using
Quantity.plus_sign.

This preference only affects how numbers are rendered.  Both + and
the unicode ＋ are always accepted as a plus sign when interpreting
strings as numbers.

QuantiPhy currently does not add leading plus signs to either
mantissa or exponent, so this setting is ignored.




	prec (int or str) – Default precision  in digits where 0 corresponds to 1 digit.  Must
be nonnegative.  This precision is used when the full precision is
not required. Default is 4.


	preferred_units (dict) – A dictionary that is used when looking up the preferred units when
rendering.  For example, if preferred_units contains the entry:
{“Ω”: “Ohms Ohm ohms ohm”}, then when rendering a quantity with
units “Ohms”, “Ohm”, “ohms”, or “ohm”, the units are rendered as
“Ω”.


	reltol (float) – Relative tolerance, used by Quantity.is_close() when
determining equivalence.  Default is 10⁻⁶.


	show_commas (bool) – When rendering to fixed-point string, add commas to the whole part
of the mantissa, every three digits. By default this is False.


	show_desc (bool) – Whether the description should be shown if it is available when
showing the label.  By default show_desc is False.


Deprecated since version 2.1: Use show_label='f' instead.






	show_label ('f', 'a', or bool) – Add the name and possibly the description when rendering a quantity
to a string.  Either label_fmt or label_fmt_full is used to
label the quantity.


	Neither is used if show_label is False,


	otherwise label_fmt is used if quantity does not have a
description or if show_label is ‘a’ (short for abbreviated),


	otherwise label_fmt_full is used if show_desc is True or
show_label is ‘f’ (short for full).







	spacer (str) – The spacer text to be inserted in a string between the numeric value
and the scale factor when units are present.  Is generally specified
to be ‘’ or ‘ ‘; use the latter if you prefer a space between the
number and the units. Generally using ‘ ‘ makes numbers easier to
read, particularly with complex units, and using ‘’ is easier to
parse.  You could also use a Unicode non-breaking space ‘ ’. For
your convenience, you can access a non-breaking space using
Quantity.non_breaking_space,
Quantity.narrow_non_breaking_space, or
Quantity.thin_space.

Certain units, as defined using the tight_units preference, cause
the spacer to be suppressed.




	strip_radix (bool or str) – When rendering, strip the radix (decimal point) if not needed from
numbers even if they could then be mistaken for integers.

There are three valid values: True, False, and “cover”.  If
True, the radix is removed if it is the last character in the
mantissa, so 1 is rendered as “1”.  If False, it is not removed,
so 1 is rendered as “1.”.  If “cover”, the radix is replaced by
“.0”, so 1 is rendered as “1.0”.  Thus, “cover” is a variant of
False; it also retains the radix but adds a 0 to avoid a ‘hanging’
radix.

If this setting is False, the radix is still stripped if the number
has a scale factor. The default value is True.

Set strip_radix to False when generating output that will be read by
a parser that distinguishes between integers and reals based on the
presence of a decimal point or scale factor.

Be aware that use of “cover” can give the impression of more
precision than is intended.  For example, 1.4 if rendered with
prec=0 would be “1.0”, which suggests a precision of 1 rather than
0.  This true only if prec is less than 3.




	strip_zeros (bool) – When rendering, strip off any unneeded zeros from the number. By
default this is True.

Set strip_zeros to False when you would like to indicated the
precision of your numbers based on the number of digits shown.




	tight_units (list of strings) – The spacer is suppressed with these units.
By default, this is done for: % ° ‘ ” ′ ″.
Some add °F and °C as well.


	unity_sf (str) – The output scale factor for unity, generally ‘’ or ‘_’. The default
is ‘’, but use ‘_’ if you want there to be no ambiguity between
units and scale factors. For example, 0.3 would be rendered as
‘300m’, and 300 m would be rendered as ‘300_m’.






	Raises

	
	UnknownPreference(QuantiPhyError, KeyError) – Unknown preference.


	UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or factors.








Example:

>>> mu0 = Quantity('mu0')
>>> print(mu0)
1.2566 uH/m

>>> Quantity.set_prefs(prec=6, map_sf={'u': 'μ'})
>>> print(mu0)
1.256637 μH/m

>>> Quantity.set_prefs(prec=None, map_sf=None)
>>> print(mu0)
1.2566 uH/m














Quantity Functions

These functions are provided for those that prefer use QuantiPhy to convert
numbers in strings directly to floats, rather than keep the values around as
Quantity objects.


	
quantiphy.as_real(*args, **kwargs)

	Convert to real.

Takes the same arguments as Quantity, but returns a float rather
than a Quantity.  Takes one additional optional keyword argument …


	Parameters

	cls (class) – Quantity subclass used to do the conversion.
If not given, Quantity is used.





Examples:

>>> from quantiphy import as_real
>>> print(as_real('1 uL'))
1e-06

>>> print(as_real('1.2 mg/L', scale='M', params=74.55))
1.6096579476861166e-05










	
quantiphy.as_tuple(*args, **kwargs)

	Convert to tuple (value, units).

Takes the same arguments as Quantity, but returns a tuple consisting
of the value and units.  Takes one additional optional keyword argument …


	Parameters

	cls (class) – Quantity subclass used to do the conversion.
If not given, Quantity is used.





Examples:

>>> from quantiphy import as_tuple
>>> print(as_tuple('1 uL'))
(1e-06, 'L')

>>> print(as_tuple('1.2 mg/L', scale='M', params=74.55))
(1.6096579476861166e-05, 'M')










	
quantiphy.render(value, units, params=None, *args, **kwargs)

	Render value and units to string (SI scale factors format).

The first two arguments are the value and the units and are required.  The
remaining arguments are the same as those of Quantity.render().

Examples:

>>> from quantiphy import render
>>> print(render(1e-6, 'L'))
1 uL

>>> print(render(16.097e-6, 'M', scale='g/L', params=74.55))
1.2 mg/L










	
quantiphy.fixed(value, units, params=None, *args, **kwargs)

	Render value and units to string (fixed-point format).

The first two arguments are the value and the units and are required.  The
remaining arguments are the same as those of Quantity.fixed().

Example:

>>> from quantiphy import fixed
>>> print(fixed(1e7, '$', show_commas=True, strip_zeros=False, prec=2))
$10,000,000.00










	
quantiphy.binary(value, units, params=None, *args, **kwargs)

	Render value and units to string (binary scale factors format)

The first two arguments are the value and the units and are required.  The
remaining arguments are the same as those of Quantity.binary().

Example:

>>> from quantiphy import binary
>>> print(binary(2**32, 'B'))
4 GiB














Unit Conversion


	
class quantiphy.UnitConversion(to_units, from_units, slope=1, intercept=0)

	
Public Methods:







	activate()

	Re-activate a unit conversion.



	convert([value, from_units, to_units])

	Convert value to quantity with new units.



	clear_all()

	Remove all previously defined unit conversions.



	fixture(converter_func)

	A decorator fixture for unit conversion functions that can be used when creating parametrized unit conversions.











	
activate()

	Re-activate a unit conversion.

Normally it is not necessary to call this method, however it can be used
re-activate a previously created unit conversion that has since been
overridden by a different unit conversion with the same to and from units.






	
classmethod clear_all()

	Remove all previously defined unit conversions.






	
convert(value=1, from_units=None, to_units=None)

	Convert value to quantity with new units.

A convenience method. Normally it is not needed because once created, a
unit conversion becomes directly accessible to quantities and can be
used both when creating or rendering the quantity.


	Parameters

	
	value – The value to convert. May be a real number or a quantity.
Alternately, may simply be a string, in which case it is taken to be
the from_units. If the value is not given it is taken to be 1.


	from_units (str) – The units to convert from.
If not given, the class’s first from_units are used.


	to_units (str) – The units to convert to.
If not given, the class’s first to_units are used.








If the from_units were found among the class’s from_units, and the
to_units were found among the class’s to_units, then a forward
conversion is performed.

If the from_units were found among the class’s to_units, and the
to_units were found among the class’s from_units, then a reverse
conversion is performed.


	Raises

	UnknownConversion(QuantiPhyError, KeyError) – The given units are not supported by the underlying class.





Example:

>>> print(str(m2pc))
m ← 3.0857e+16*pc

>>> m = m2pc.convert()
>>> print(str(m))
30.857e15 m

>>> pc = m2pc.convert(m)
>>> print(str(pc))
1 pc

>>> m = m2pc.convert(pc)
>>> print(str(m))
30.857e15 m

>>> m2pc.convert(30.857e15, 'm')
Quantity('1 pc')

>>> m2pc.convert(1000, 'pc')
Quantity('30.857e18 m')

>>> m2pc.convert('pc')
Quantity('30.857e15 m')










	
static fixture(converter_func)

	A decorator fixture for unit conversion functions that can be used when
creating parametrized unit conversions.

Creates an argument list for the decorated function based on the type of
value given for the params argument to Quantity.

If params is a dictionary or mapping, its values are passed as named
parameters.

If params is a tuple or list, its values are passed as positional
arguments.

Otherwise, the value of params is passed as the second argument.

In all cases, the value being converted (an instance of
Quantity) is passed as the first argument to the decorated
converter function.

For example, when performing conversions between the molarity of a
solution and its concentration in terms of g/L, the molecular weight of
the compound used to make the solution is needed:

>>> from quantiphy import Quantity, UnitConversion

>>> @UnitConversion.fixture
... def from_molarity(M, mw):
...     return M * mw

>>> @UnitConversion.fixture
... def to_molarity(g_L, mw):
...     return g_L / mw

>>> conv = UnitConversion('g/L', 'M', from_molarity, to_molarity)

>>> KCl_M = Quantity('1.2 mg/L', scale='M', params=74.55)
>>> print(KCl_M)
16.097 uM
>>> print(f"{KCl_M:qg/L}")
1.2 mg/L

>>> NaCl_M = Quantity('5.0 mg/L', scale='M', params=58.44277)
>>> print(NaCl_M)
85.554 uM
>>> print(f"{NaCl_M:qg/L}")
5 mg/L





However, if you want to convert between mass and molarity where the mass
is the amount of a compound needed to create a solution of a particular
volume with a particular concentration, both the molecular weight and
the volume are required parameters:

>>> @UnitConversion.fixture
... def to_molarity(mass, vol, mw):
...     moles = mass/mw
...     return moles/vol

>>> @UnitConversion.fixture
... def to_grams(molarity, vol, mw):
...     return molarity*vol*mw

>>> conv = UnitConversion('g', 'M', to_grams, to_molarity)

>>> KCl_M = Quantity('1.2 g', scale='M', params=dict(mw=74.55, vol=0.250))
>>> print(KCl_M)
64.386 mM
>>> print(f"{KCl_M:pg}")
1.2 g

>>> NaCl_M = Quantity('5.0 g', scale='M', params=dict(mw=58.44277, vol=0.250))
>>> print(NaCl_M)
342.22 mM
>>> print(f"{NaCl_M:pg}")
5 g
















Constants and Unit Systems


	
quantiphy.add_constant(value, alias=None, unit_systems=None)

	Create a new constant.

Save a quantity in such a way that it can later be recalled by name when
creating new quantities.


	Parameters

	
	value (quantity) – The value of the constant. Must be a quantity or a string that can be
directly converted to a quantity.


	alias (str) – An alias for the constant. Can be used to access the constant from as an
alternative to the name given in the value, which itself is optional.
If the value has a name, specifying this name is optional. If both are
given, the constant is accessible using either name.  alias may also
be a list of aliases.


	unit_systems (list or str) – Name or names of the unit systems to which the constant should be added.
If given as a string, string will be split at white space to create the
list.  If a constant is associated with a unit system, it is only
available when that unit system is active. You need not limit yourself
to the predefined ‘mks’ and ‘cgs’ unit systems. Giving a name creates
the corresponding unit system if it does not already exist.  If
unit_systems is not given, the constant is not associated with a unit
system, meaning that it is always available regardless of which unit
system is active.






	Raises

	
	ExpectedQuantity(QuantiPhyError, ValueError) – value must be an instance of Quantity or it must be
a string that can be converted to a quantity.


	MissingName(QuantiPhyError, NameError) – alias was not specified and no name was available from value.








The constant is saved under name if given, and under the name contained
within value if available.  It is not necessary to supply both names, one
is sufficient.

Example:

>>> from quantiphy import Quantity, add_constant
>>> add_constant('f_hy = 1420.405751786 MHz — Frequency of hydrogen line')
>>> print(Quantity('f_hy').render(show_label='f'))
f_hy = 1.4204 GHz — Frequency of hydrogen line










	
quantiphy.set_unit_system(unit_system)

	Activates a unit system.

The default unit system is ‘mks’. Calling this function changes the active
unit system to the one with the specified name.  Only constants associated
with the active unit system or not associated with a unit system are
available for use.


	Parameters

	unit_system (str) – Name of the desired unit system.



	Raises

	UnknownUnitSystem(QuantiPhyError, KeyError) – unit_system does not correspond to a known unit system.





Example:

>>> from quantiphy import Quantity, set_unit_system
>>> set_unit_system('cgs')
>>> print(Quantity('h').render(show_label='f'))
h = 6.6261e-27 erg-s — Plank's constant

>>> set_unit_system('mks')
>>> print(Quantity('h').render(show_label='f'))
h = 662.61e-36 J-s — Plank's constant












Exceptions


	
exception quantiphy.QuantiPhyError(*args, **kwargs)

	QuantiPhy base exception.

All of the specific QuantiPhy exceptions subclass this exception.


	
render(template=None)

	Convert exception to a string under guidance of format string.


	Parameters

	template (str) – This string, along with the positional and keyword arguments of
the exception are passed to the Python format() function and the
result is returned. template may also be a list of strings. In
this case the first string found that renders without error is used.
If template is not given, the exception is rendered with the
built-in template.














	
exception quantiphy.ExpectedQuantity(*args, **kwargs)

	The value is required to be a Quantity or a string that can be converted to
a Quantity.






	
exception quantiphy.IncompatiblePreferences(*args, **kwargs)

	Two preferences are not compatible






	
exception quantiphy.IncompatibleUnits(*args, **kwargs)

	The units of the contribution do not match those of the underlying quantity.






	
exception quantiphy.InvalidNumber(*args, **kwargs)

	The value given could not be converted to a number.






	
exception quantiphy.InvalidRecognizer(*args, **kwargs)

	The assign_rec preference is expected to be a regular expression that
defines one or more named fields, one of which must be val. This exception
is raised when the current value of assign_rec does not satisfy this
requirement.






	
exception quantiphy.MissingName(*args, **kwargs)

	alias was not specified and no name was available from value.






	
exception quantiphy.UnknownConversion(*args, **kwargs)

	The given units are not supported by the underlying class, or a unit
conversion was requested and there is no corresponding unit converter.






	
exception quantiphy.UnknownFormatKey(*args, **kwargs)

	The label_fmt and label_fmt_full are expected to be format strings that
may interpolate certain named arguments. The valid named arguments are n
for name, v for value, and d for description. This exception is raised
when some other name is used for an interpolated argument.






	
exception quantiphy.UnknownPreference(*args, **kwargs)

	The name given for a preference is unknown.






	
exception quantiphy.UnknownScaleFactor(*args, **kwargs)

	The input_sf preference gives the list of scale factors that should be
accepted on a number. The output_sf preference gives the list of scale
factors that should be used when rendering numbers. This exception is raised
if input_sf or output_sf contains an unknown scale factor.






	
exception quantiphy.UnknownUnitSystem(*args, **kwargs)

	The name given does not correspond to a known unit system.











            

          

      

      

    

  

    
      
          
            
  
Examples


Motivating Example

QuantiPhy is a light-weight package that allows numbers to be combined with
units into quantities.  Quantities are very commonly encountered when working
with real-world systems when numbers are involved. And when encountered, the
numbers often use SI scale factors to make them easier to read and write.
Surprisingly, most computer languages do not support numbers in this form. This
is even more surprising when you realize that this form is a very well
established international standard and has been for more than 50 years.

When working with quantities, one often has to choose between using a form that
is easy for computers to read or one that is easy for humans to read. For
example, consider this table of critical frequencies needed in jitter tolerance
measurements in optical communication:

>>> table1 = """
...     SDH     | Rate          | f1      | f2       | f3      | f4
...     --------+---------------+---------+----------+---------+--------
...     STM-1   | 155.52 Mb/s   | 500 Hz  | 6.5 kHz  | 65 kHz  | 1.3 MHz
...     STM-4   | 622.08 Mb/s   | 1 kHz   | 25 kHz   | 250 kHz | 5 MHz
...     STM-16  | 2.48832 Gb/s  | 5 kHz   | 100 kHz  | 1 MHz   | 20 MHz
...     STM-64  | 9.95328 Gb/s  | 20 kHz  | 400 kHz  | 4 MHz   | 80 MHz
...     STM-256 | 39.81312 Gb/s | 80 kHz  | 1.92 MHz | 16 MHz  | 320 MHz
... """





This table was formatted to be easily read by humans. If it were formatted for
computers, the numbers would be given without units and in exponential notation
because they have dramatically different sizes. For example, it might look like
this:

>>> table2 = """
...     SDH     | Rate (b/s)    | f1 (Hz) | f2 (Hz)  | f3 (Hz) | f4 (Hz)
...     --------+---------------+---------+----------+---------+--------
...     STM-1   | 1.5552e8      | 5e2     | 6.5e3    | 6.5e3   | 1.3e6
...     STM-4   | 6.2208e8      | 1e3     | 2.5e3    | 2.5e5   | 5e6
...     STM-16  | 2.48832e9     | 5e3     | 1e5      | 1e6     | 2e7
...     STM-64  | 9.95328e9     | 2e4     | 4e5      | 4e6     | 8e7
...     STM-256 | 3.981312e10   | 8e4     | 1.92e6   | 1.6e7   | 3.2e8
... """





This contains the same information, but it is much harder for humans to read and
interpret.  Often the compromise of partially scaling the numbers can be used to
make the table easier to interpret:

>>> table3 = """
...     SDH     | Rate (Mb/s)   | f1 (kHz)| f2 (kHz) | f3 (kHz)| f4 (MHz)
...     --------+---------------+---------+----------+---------+---------
...     STM-1   | 155.52        | 0.5     | 6.5      | 65      | 1.3
...     STM-4   | 622.08        | 1       | 2.5      | 250     | 5
...     STM-16  | 2488.32       | 5       | 100      | 1000    | 20
...     STM-64  | 9953.28       | 20      | 400      | 4000    | 80
...     STM-256 | 39813.12      | 80      | 1920     | 16000   | 320
... """





This looks cleaner, but it involves perhaps even more effort to interpret
because the values are distant from their corresponding scaling and units,
because the large and small values are oddly scaled (0.5 kHz is more naturally
given as 500Hz and 39813 MHz is more naturally given as 39.8 GHz), and because
each column may have a different scaling factor. While these might seem like
minor inconveniences on this table, they can become quite annoying as tables
become larger or more numerous.  This problem exists with both tables and
graphs.  Fundamentally the issue is that your eyes are naturally drawn to the
number, but the numbers are not complete.  Your eyes need to hunt further and it
is not obvious where to hunt.  If not next to the number, the scaling and units
for the numbers may be found in the column headings, the axes, the labels, the
title, the caption, or in the body of the text.  The sheer number of places to
look can dramatically slow the interpretation of the data.  This problem does
not exist in the first table where each number is complete as it includes both
its scaling and its units. The eye gets the full picture on the first glance.

This last version of the table represents a very common mistake people make when
presenting data. They feel that adding units and scale factors to each number
adds clutter and wastes space and so removes them from the data and places them
somewhere else. Doing so results in a data that perhaps is visually cleaner but
is harder for the reader to interpret.  All these tables contain the same
information, but in the second two tables the readability has been traded off in
order to make the data easier to read into a computer because in most languages
there is no easy way to read numbers that have either units or scale factors.

QuantiPhy makes it easy to read and generate numbers with units and scale
factors so you do not have to choose between human and computer readability.
For example, the above tables could be read with the following code (it must be
tweaked somewhat to handle tables 2 and 3):

>>> from quantiphy import Quantity

>>> # parse the table
>>> sdh = []
>>> lines = table1.strip().split('\n')
>>> for line in lines[2:]:
...     fields = line.split('|')
...     name = fields[0].strip()
...     rate = Quantity(fields[1])
...     critical_freqs = [Quantity(f) for f in fields[2:]]
...     sdh.append((name, rate, critical_freqs))

>>> # print the table in a form suitable for humans
>>> for name, rate, freqs in sdh:
...     print('{:8s}: {:12q} {:9q} {:9q} {:9q} {:9q}'.format(name, rate, *freqs))
STM-1   :  155.52 Mb/s    500 Hz   6.5 kHz    65 kHz   1.3 MHz
STM-4   :  622.08 Mb/s     1 kHz    25 kHz   250 kHz     5 MHz
STM-16  :  2.4883 Gb/s     5 kHz   100 kHz     1 MHz    20 MHz
STM-64  :  9.9533 Gb/s    20 kHz   400 kHz     4 MHz    80 MHz
STM-256 :  39.813 Gb/s    80 kHz  1.92 MHz    16 MHz   320 MHz

>>> # print the table in a form suitable for machines
>>> for name, rate, freqs in sdh:
...     print('{:8s}: {:12.4e} {:9.2e} {:9.2e} {:9.2e} {:9.2e}'.format(name, rate, *freqs))
STM-1   :   1.5552e+08     5e+02   6.5e+03   6.5e+04   1.3e+06
STM-4   :   6.2208e+08     1e+03   2.5e+04   2.5e+05     5e+06
STM-16  :   2.4883e+09     5e+03     1e+05     1e+06     2e+07
STM-64  :   9.9533e+09     2e+04     4e+05     4e+06     8e+07
STM-256 :   3.9813e+10     8e+04  1.92e+06   1.6e+07   3.2e+08

>>> # print the table in a compromise form
>>> for name, rate, freqs in sdh:
...     print(
...         '{:8s}: {:12.2f} {:9.1f} {:9.1f} {:9.1f} {:9.1f}'.format(
...             name, rate.scale(1e-6), freqs[0].scale(1e-3),
...             freqs[1].scale(1e-3), freqs[2].scale(1e-3), freqs[3].scale(1e-6)
...         )
...     )
STM-1   :       155.52       0.5       6.5        65       1.3
STM-4   :       622.08         1        25       250         5
STM-16  :      2488.32         5       100      1000        20
STM-64  :      9953.28        20       400      4000        80
STM-256 :     39813.12        80      1920     16000       320





The code reads the data and then produces three outputs.  The first output shows
that quantities can be displayed in easily readable forms with their units
(approximates table1).  The second output shows that the values are easily
accessible for computation (approximates table2).  Finally, the third output
represents a compromise between being human and machine readable (approximates
table3).

Quantity is used to convert a number string, such as ‘155.52 Mb/s’ into
an internal representation that includes the value and the units: 155.52e6 and
‘b/s’.  The scaling factor is properly interpreted. Once a value is converted to
a Quantity, it can be treated just like a normal float. The main difference
occurs when it is time to convert it back to a string. When doing so, the scale
factor and units are included by default.




DRAM Prices

Here is a table that was found on the Internet that gives the number of bits of
dynamic RAM a dollar would purchase over time:

>>> bits_per_dollar = '''
...    1973 490
...    1978 2780
...    1983 16400
...    1988 91800
...    1993 368000
...    1998 4900000
...    2003 26300000
...    2008 143000000
...    2013 833000000
...    2018 5000000000
... '''





It is pretty easy to read in the early years, but by the turn of the millennium
you have to start counting the zeros by hand to understand the number.  And are
those bits or bytes?  Reformatting with QuantiPhy makes it much more readable:

>>> for line in bits_per_dollar.strip().split('\n'):
...     year, bits = line.split()
...     bits = Quantity(bits, 'b')
...     print(f'{year}  {bits:11.2q}   {bits:11.2qB}')
1973        490 b        61.2 B
1978      2.78 kb         348 B
1983      16.4 kb       2.05 kB
1988      91.8 kb       11.5 kB
1993       368 kb         46 kB
1998       4.9 Mb        612 kB
2003      26.3 Mb       3.29 MB
2008       143 Mb       17.9 MB
2013       833 Mb        104 MB
2018         5 Gb        625 MB





Notice that bits was printed twice. The first time the formatting code
included a width specification, but in the second the desired unit of measure
was specified (B), which caused the underlying value to be converted from bits
to bytes.

It is important to recognize that QuantiPhy is using decimal rather than
binary scale factors. So 5 GB is 5 gigabyte and not 5 gibibyte.  In other words
5 GB represents 5×10⁹ B and not 5×2³⁰ B. This table can be reformulated to use
the binary scale factors by changing the q format characters to b:

>>> for line in bits_per_dollar.strip().split('\n'):
...     year, bits = line.split()
...     bits = Quantity(bits, 'b')
...     print(f'{year}  {bits:11.2b}   {bits:11.2bB}')
1973        490 b        61.2 B
1978     2.71 Kib         348 B
1983       16 Kib         2 KiB
1988     89.6 Kib      11.2 KiB
1993      359 Kib      44.9 KiB
1998     4.67 Mib       598 KiB
2003     25.1 Mib      3.14 MiB
2008      136 Mib        17 MiB
2013      794 Mib      99.3 MiB
2018     4.66 Gib       596 MiB








Thermal Voltage Example

In this example, quantities are used to represent all of the values used to
compute the thermal voltage: Vt = kT/q. It is not terribly useful, but does
demonstrate several of the features of QuantiPhy.

>>> from quantiphy import Quantity
>>> with Quantity.prefs(
...     show_label = 'f',
...     label_fmt = '{n} = {v}',
...     label_fmt_full = '{V:<18}  # {d}',
... ):
...     T = Quantity(300, 'T K ambient temperature')
...     k = Quantity('k')
...     q = Quantity('q')
...     Vt = Quantity(k*T/q, f'Vt V thermal voltage at {T:q}')
...     print(T, k, q, Vt, sep='\n')
T = 300 K           # ambient temperature
k = 13.806e-24 J/K  # Boltzmann's constant
q = 160.22e-21 C    # elementary charge
Vt = 25.852 mV      # thermal voltage at 300 K





The first part of this example imports Quantity and sets the
show_label, label_fmt and label_fmt_full preferences to display both the
value and the description by default.  label_fmt is used when the description
is not present and label_fmt_full is used when it is present.  In label_fmt
the {n} is replaced by the name and {v} is replaced by the value
(numeric value and units).  In label_fmt_full, the {V:<18} is replaced by
the expansion of label_fmt, left justified with a field width of 18, and the
{d} is replaced by the description.

The second part defines four quantities. The first is given in a very specific
way to avoid the ambiguity between units and scale factors. In this case, the
temperature is given in Kelvin (K), and normally if the temperature were given
as the string ‘300 K’, the units would be confused for the scale factor. As
mentioned in Ambiguity of Scale Factors and Units the ‘K’ would be treated as a scale factor unless
you took explicit steps. In this case, this issue is circumvented by specifying
the units in the model along with the name and description. The model is
also used when creating Vt to specify the name, units, and description.

The last part simply prints the four values. The show_label preference is set
so that names and descriptions are printed along with the values. In this case,
since all the quantities have descriptions, label_fmt_full is used to format
the output.




Casual Time Units

This example shows how one could allow users to enter time durations using
a variety of casual units of time.  QuantiPhy only pre-defines conversions for
time units that are unambiguous and commonly used in scientific computation, so
that leaves out units like months and years. However, in many situations the
goal is simplicity rather than precision. In such a situation, it is convenient
to support any units a user may reasonably expect to use. In a casual setting it
would be very unusual to use SI scale factors, so there use will be prohibited
to allow a greater range of units (ex. m for minutes).

This example assumes that a collection of time duration values are contained in
a configuration file, in this example represented by configuration. Normally
these values would be contained in a separate file that is opened and read, but
for the sake of simplicity in the example, the ‘contents’ of the file is just
given as a multiline string. The user can give the durations using any units
they like, but internally they are all converted to seconds.

>>> from quantiphy import Quantity, UnitConversion
>>> _ = UnitConversion('s', 'sec second seconds')
>>> _ = UnitConversion('s', 'm min minute minutes', 60)
>>> _ = UnitConversion('s', 'h hr hour hours', 60*60)
>>> _ = UnitConversion('s', 'd day days', 24*60*60)
>>> _ = UnitConversion('s', 'w week weeks', 7*24*60*60)
>>> _ = UnitConversion('s', 'M month months', 30*24*60*60)
>>> _ = UnitConversion('s', 'y year years', 365*24*60*60)
>>> Quantity.set_prefs(ignore_sf=True)

>>> configuration = '''
...     time_to_live = 3 months
...     time_limit = 1 day
...     time_out = 10m
... '''
>>> limits = Quantity.extract(configuration)

>>> for k, v in limits.items():
...     print(f'{k} = {v:ps}')
time_to_live = 7776000 s
time_limit = 86400 s
time_out = 600 s





Notice that the return values from UnitConversion are captured in a variable
(_) in the code above.  This is not necessary. It is done in this case to
satisfy the testing framework that tests the code found in this documentation;
normally the return value is discarded.

Another example of using QuantiPhy to implement casual time units is the
remind script, which reminds you to do something after a specified amount of
time has passed. You can find remind [https://github.com/KenKundert/remind]
on GitHub.




Unicode Text Example

In this example QuantiPhy formats quantities to be embedded in text.  To make
the text as clean as possible, QuantiPhy is configured to use Unicode scale
factors and the Unicode narrow non-breaking space as the spacer.  The
non-breaking space prevents units from being placed on a separate line from
their number, making the quantity easier to read. The plus and minus signs are
also replaced by their Unicode forms.

>>> from quantiphy import Quantity
>>> import textwrap

>>> Quantity.set_prefs(
...     map_sf = Quantity.map_sf_to_sci_notation,
...     spacer = Quantity.narrow_non_breaking_space,
...     plus = Quantity.plus_sign,
...     minus = Quantity.minus_sign
... )

>>> constants = [
...     Quantity('h'),
...     Quantity('hbar'),
...     Quantity('k'),
...     Quantity('q'),
...     Quantity('c'),
...     Quantity('0C'),
...     Quantity('eps0'),
...     Quantity('mu0'),
...     Quantity('0', 'K', scale='°C', desc='Absolute zero'),
... ]

>>> # generate some sentences that contain quantities
>>> sentences = [f'{q.desc.capitalize()} is {q}.' for q in constants]

>>> # combine the sentences into a left justified paragraph
>>> print(textwrap.fill('  '.join(sentences)))
Plank's constant is 662.61×10⁻³⁶ J-s.  Reduced plank's constant is
105.46×10⁻³⁶ J-s.  Boltzmann's constant is 13.806×10⁻²⁴ J/K.
Elementary charge is 160.22×10⁻²¹ C.  Speed of light is 299.79 Mm/s.
Zero degrees celsius is 273.15 K.  Permittivity of free space is
8.8542 pF/m.  Permeability of free space is 1.2566 µH/m.  Absolute
zero is −273.15 °C.





When rendered in your browser with a variable width font, the result looks like
this:


Plank’s constant is 662.61×10⁻³⁶ J-s.  Reduced plank’s constant is
105.46×10⁻³⁶ J-s.  Boltzmann’s constant is 13.806×10⁻²⁴ J/K.
Elementary charge is 160.22×10⁻²¹ C.  Speed of light is 299.79 Mm/s.
Zero degrees celsius is 273.15 K.  Permittivity of free space is
8.8542 pF/m.  Permeability of free space is 1.2566 µH/m.  Absolute
zero is −273.15 °C.







Timeit Example

A Python module that benefits from QuantiPhy is timeit, a package in the
standard library that runs a code snippet a number of times and prints the
elapsed time for the test. However, from a usability perspective it has several
issues. First, it prints out the elapsed time of all the repetitions rather than
dividing the elapsed time by the number of repetitions and reporting the average
time per operation.  So it can quickly allow you to compare the relative speed
of various operations, but it does not directly give you a sense of the time
required in absolute terms. Second, it does not label its output, so it is not
clear what is being displayed.  Here is an example where timeit has been
fortified with QuantiPhy to make the output more readable.  To make it more
interesting, the timing results are run on QuantiPhy itself.  The results give
you a feel for how much slower QuantiPhy is to both convert strings to
quantities and quantities to strings compared into the built-in float class.

#!/usr/bin/env python3
from timeit import timeit
from random import random, randint
from quantiphy import Quantity

# preferences
trials = 100_000
Quantity.set_prefs(
    prec = 2,
    show_label = True,
    label_fmt = '{n:>40}: {v}',
    map_sf = Quantity.map_sf_to_greek
)

# build the raw data, arrays of random numbers
s_numbers = []
s_quantities = []
numbers = []
quantities = []
for i in range(trials):
    mantissa = 20*random()-10
    exponent = randint(-35, 35)
    number = '%0.25fe%s' % (mantissa, exponent)
    quantity = number + ' Hz'
    s_numbers.append(number)
    s_quantities.append(quantity)
    numbers.append(float(number))
    quantities.append(Quantity(number, 'Hz'))

# define testcases
testcases = [
    '[float(v) for v in s_numbers]',
    '[Quantity(v) for v in s_quantities]',
    '[str(v) for v in numbers]',
    '[str(v) for v in quantities]',
]

# run testcases and print results
print(f'For {Quantity(trials)} values ...')
for case in testcases:
    elapsed = timeit(case, number=1, globals=globals())
    result = Quantity(elapsed/trials, units='s/op', name=case)
    print(result)





The results are:

For 100k iterations ...
           [float(v) for v in s_numbers]: 638 ns/op
     [Quantity(v) for v in s_quantities]: 15.3 µs/op
               [str(v) for v in numbers]: 1.03 µs/op
            [str(v) for v in quantities]: 28.1 µs/op





You can see that QuantiPhy is considerably slower than the float class, which
you should be aware of if you are processing large quantities of numbers.

Contrast this with the normal output from timeit:

0.05213119700783864
1.574107409993303
0.10471829099697061
2.3749650190002285





The essential information is there, but it takes longer to make sense of it.




Disk Usage Example

Here is a simple example that uses QuantiPhy to clean up the output from the
Linux disk usage utility.  It runs the du command, which prints out the disk
usage of files and directories.  The results from du are gathered and then
sorted by size and then the size and name of each item is printed.

Quantity is used to scale the filesize reported by du from KB to B. Then the
list of files is sorted by size. Here we are exploiting the fact that quantities
act like floats, and so the sorting can be done with no extra effort.  Finally,
the ability to render to a number with a scale factor and units is used when
presenting the results.

#!/usr/bin/env python3
# runs du and sorts the output while suppressing any error messages from du

from quantiphy import Quantity
from inform import display, fatal, os_error
from shlib import Run
import sys

try:
    du = Run(['du', '-xd1'] + sys.argv[1:], modes='sWEO1')

    files = []
    for line in du.stdout.splitlines():
        if line:
            size, _, filename = line.partition('\t')
            files += [(Quantity(size, scale=(1024, 'B')), filename)]

    files.sort(key=lambda x: x[0])

    for size, name in files:
        display('{:8.2b}  {}'.format(size, name))

except OSError as err:
    fatal(os_error(err))
except KeyboardInterrupt:
    display('dus: killed by user.')





And here is an example of the programs output:

 460 KiB  quantiphy/examples/delta-sigma
 464 KiB  quantiphy/examples
1.54 KiB  quantiphy/doc
3.48 MiB  quantiphy








Parameterized Simulation Example

In this example, Python is used to perform a simulation of a ΔΣ modulator. There
are a collection of parameters that control the simulation, which are placed at
the top of the Python file as documentation. Quantity.extract() is used to
access these parameters and control the simulation. In this way, modifying the
simulation parameters is easy and the documentation is always up to date.

#!/usr/bin/env python3

r"""
Simulates a second-order ΔΣ modulator with the following parameter values:

    Fclk = 50MHz            -- clock frequency
    Fin = 200kHz            -- input frequency
    Vin = 950mV             -- input voltage amplitude (peak)
    gain1 = 0.5             -- gain of first integrator
    gain2 = 0.5             -- gain of second integrator
    Vmax = 1V               -- quantizer maximum input voltage
    Vmin = -1V              -- quantizer minimum input voltage
    # levels = 16             -- quantizer output levels
    levels = 4              -- quantizer output levels
    Tstop = 1/Fin "s"       -- simulation stop time
    Tstart = -0.5/Fin "s"   -- simulation start time (points with t<0 are discarded)
    vin_file = 'vin.wave'   -- output data file for vin
    vout_file = 'vout.wave' -- output data file for vout
    dout_file = 'dout.wave' -- output data file for dout
"""
# The values given above are used in the simulation, no further modification
# of the code given below is required when changing these parameters.

from quantiphy import Quantity
from math import sin, tau
from inform import display, error, os_error

class Integrator:
    def __init__(self, gain=1):
        self.state = 0
        self.gain = gain

    def update(self, vin):
        self.state += self.gain*vin
        return self.state


class Quantizer:
    def __init__(self, v_max, v_min, levels):
        self.v_min = v_min
        self.levels = levels
        self.delta = (v_max - v_min)/(levels - 1)

    def update(self, v_in):
        level = (v_in - self.v_min) // self.delta
        level = 0 if level < 0 else level
        level = self.levels-1 if level >= self.levels else level
        return int(level), self.delta*level + self.v_min


class Source:
    def __init__(self, f_in, amp):
        self.omega = tau*f_in
        self.amp = amp

    def update(self, t):
        return self.amp*sin(self.omega*t)


# read simulation parameters and load into module namespace
parameters = Quantity.extract(__doc__)
globals().update(parameters)

# display the simulation parameters
display('Simulation parameters:')
for k, v in parameters.items():
    try:
        display(f'   ', v.render(show_label='f'))
    except AttributeError:
        display(f'    {k} = {v}')

# instantiate components
integrator1 = Integrator(gain1)
integrator2 = Integrator(gain2)
quantizer = Quantizer(Vmax, Vmin, levels)
sine = Source(Fin, Vin)

# run simulation
t = Tstart
dt = 1/Fclk
v_out = 0
t_stop = Tstop
try:
    fvin = open(vin_file, 'w')
    fvout = open(vout_file, 'w')
    fdout = open(dout_file, 'w')
    while t < t_stop:
        v_in = sine.update(t)
        v_int1 = integrator1.update(v_in - v_out)
        v_int2 = integrator2.update(v_int1 - v_out)
        d_out, v_out = quantizer.update(v_int2)
        if (t >= 0):
            print(t, v_in, file=fvin)
            print(t, v_out, file=fvout)
            print(t, d_out, file=fdout)
        t += dt
except OSError as e:
    error(os_error(e))





Notice that levels was specified twice, but the first proceeded by # causing
it to be ignored.

The output of this example can be used as the input to the next. With these
parameters, it produces this waveform:

[image: _images/wave.png]



MatPlotLib Example

In this example QuantiPhy is used to create easy to read axis labels in
MatPlotLib. It uses NumPy to do a spectral analysis of a signal and then
produces an SVG version of the results using MatPlotLib.

#!/usr/bin/env python3

import numpy as np
from numpy.fft import fft, fftfreq, fftshift
import matplotlib as mpl
mpl.use('SVG')
from matplotlib.ticker import FuncFormatter
import matplotlib.pyplot as pl
from quantiphy import Quantity
Quantity.set_prefs(map_sf=Quantity.map_sf_to_sci_notation)

# read the data from delta-sigma.smpl
data = np.fromfile('delta-sigma.smpl', sep=' ')
time, wave = data.reshape((2, len(data)//2), order='F')

# print out basic information about the data
timestep = Quantity(time[1] - time[0], name='Time step', units='s')
nonperiodicity = Quantity(wave[-1] - wave[0], name='Nonperiodicity', units='V')
points = Quantity(len(time), name='Time points')
period = Quantity(timestep * len(time), name='Period', units='s')
freq_res = Quantity(1/period, name='Frequency resolution', units='Hz')
with Quantity.prefs(show_label=True, prec=2):
    print(timestep, nonperiodicity, points, period, freq_res, sep='\n')

# create the window
window = np.kaiser(len(time), 11)/0.37
    # beta=11 corresponds to alpha=3.5 (beta = pi*alpha)
    # the processing gain with alpha=3.5 is 0.37
windowed = window*wave

# transform the data into the frequency domain
spectrum = 2*fftshift(fft(windowed))/len(time)
freq = fftshift(fftfreq(len(wave), timestep))

# define the axis formatting routines
freq_formatter = FuncFormatter(lambda v, p: str(Quantity(v, 'Hz')))
volt_formatter = FuncFormatter(lambda v, p: str(Quantity(v, 'V')))

# generate graphs of the resulting spectrum
fig = pl.figure()
ax = fig.add_subplot(111)
ax.plot(freq, np.absolute(spectrum))
ax.set_yscale('log')
ax.xaxis.set_major_formatter(freq_formatter)
ax.yaxis.set_major_formatter(volt_formatter)
pl.savefig('spectrum.svg')
ax.set_xlim((0, 1e6))
ax.set_ylim((1e-7, 1))
pl.savefig('spectrum-zoomed.svg')





This script produces the following textual output:

Time step = 20 ns
Nonperiodicity = 2.3 pV
Time points = 28k
Period = 560 µs
Frequency resolution = 1.79 kHz





And the following is one of the two graphs produced:

[image: _images/spectrum-zoomed.png]
Notice the axis labels in the generated graph.  Use of QuantiPhy makes the
widely scaled units compact and easy to read.

MatPlotLib provides the EngFormatter [https://matplotlib.org/examples/api/engineering_formatter.html] that you can
use as an alternative to QuantiPhy for formatting your axes with SI scale
factors, which also provides the format_eng function for converting floats to
strings formatted with SI scale factors and units. So if your needs are limited,
as they are in this example, that is generally a good way to go. One aspect of
QuantiPhy that you might prefer is the way it handles very large or very small
numbers. As the numbers get either very large or very small EngFormatter
starts by using unfamiliar scale factors (YZPEzy) and then reverts to
e-notation. QuantiPhy allows you to control whether to use unfamiliar scale
factors but does not use them by default. It also can be configured to revert to
engineering scientific notation (ex: 13.806×10⁻²⁴ J/K) when no scale factors are
appropriate.  Though not necessary for this example, that was done above with
the line:

Quantity.set_prefs(map_sf=Quantity.map_sf_to_sci_notation)








Flicker Noise

This example represents a very typical use of QuantiPhy in a simulation
script.  As in the two previous examples, it includes both extraction of
simulation parameters from the script’s documentation and attractive formatting
of units in MatPlotLib graphs.  It is a bit long and you cannot run it yourself
as it requires access to a proprietary circuit simulator, and as such the code
is not included here.  But it is an excellent example of how to use QuantiPhy
in a variety of ways.  You can find the Flicker Noise code [https://github.com/KenKundert/flicker-noise] on GitHub.  It produces results
like the following:

[image: _images/flicker.svg]


Cryptocurrency Example

This example displays the current price of various cryptocurrencies and the
total value of a hypothetical portfolio of currencies. QuantiPhy performs
conversions from the prices of various currencies to dollars.  The latest prices
are downloaded from cryptocompare.com.  A summary of the prices is printed and
then they are multiplied by the portfolio holdings to find the total worth of
the portfolio, which is also printed.

It demonstrates some of the features of UnitConversion.

#!/usr/bin/env python3

import requests
from inform import display, fatal, os_error, terminate
from quantiphy import Quantity, UnitConversion, InvalidNumber
Quantity.set_prefs(prec=2)

# read holdings
try:
    with open('holdings') as f:
        lines = f.read().splitlines()
    holdings = {
        q.units: q for q in [
            Quantity(l, ignore_sf=True) for l in lines if l
        ]
    }
except OSError as e:
    fatal(os_error(e))
except InvalidNumber as e:
    fatal(e)

# download latest asset prices from cryptocompare.com
currencies = dict(
    fsyms = ','.join(holdings.keys()),  # from symbols
    tsyms = 'USD',                      # to symbols
)
url_args = '&'.join(f'{k}={v}' for k, v in currencies.items())
base_url = f'https://min-api.cryptocompare.com/data/pricemulti'
url = '?'.join([base_url, url_args])
try:
    response = requests.get(url)
except KeyboardInterrupt:
    terminate('Killed by user.)
except Exception as e:
    fatal('cannot connect to cryptocompare.com.')
conversions = response.json()

# define unit conversions
converters = {
    sym: UnitConversion(('$', 'USD'), sym, conversions[sym]['USD'])
    for sym in holdings
}

# sum total holdings
total = Quantity(sum(q.scale('$') for q in holdings.values()), '$')

# show summary of holdings and conversions
for sym, q in holdings.items():
    value = f'{q:>9q} = {q:<7q$} {100*q.scale("$")/total:.0f}%'
    price = f'1 {sym} = {converters[sym].convert()}'
    display(f'{value:<25s} ({price})')
display(f'    Total = {total:q}')





This script reads a file ‘holdings’ that contains the number of tokens you hold
of each of your cryptocurrencies.  That file would contain one currency per line
and look like this:

10 BTC
100 ETH
100 BCH
100 ZEC
10,000 EOS
100,000 ADA





The output of the script looks like this:

  10 BTC = $65.8k  30%   (1 BTC = $6.58k)
 100 ETH = $22.4k  10%   (1 ETH = $224)
 100 BCH = $51.5k  24%   (1 BCH = $515)
 100 ZEC = $12.7k  6%    (1 ZEC = $127)
 10 kEOS = $57.6k  26%   (1 EOS = $5.76)
100 kADA = $8.16k  4%    (1 ADA = $81.6m)
   Total = $218k





If you prefer the output in fixed-point format, you can replace the last part of
this code with:

# show summary of holdings and conversions
for sym, q in holdings.items():
    value = f'{q:>10.2p} = {q:>#11,.2p$}  {100*q.scale("$")/total:,.0f}%'
    price = f'1 {sym} = {converters[sym].convert():>#9,.2p}'
    display(f'{value:<30s} ({price})')
display(f'     Total = {total:>#11,.2p}')





If you do, the output of the script looks like this:

    10 BTC =  $65,847.10  30%  (1 BTC = $6,584.71)
   100 ETH =  $22,401.00  10%  (1 ETH =   $224.01)
   100 BCH =  $51,450.00  24%  (1 BCH =   $514.50)
   100 ZEC =  $12,726.00  6%   (1 ZEC =   $127.26)
 10000 EOS =  $57,600.00  26%  (1 EOS =     $5.76)
100000 ADA =   $8,203.00  4%   (1 ADA =     $0.08)
     Total = $218,227.10





A more sophisticated version of cryptocurrency [https://github.com/KenKundert/cryptocurrency/blob/master/cryptocurrency]
this example can be found on GitHub.




Dynamic Unit Conversions

Normally unit conversions are static, meaning that once the conversion values
are set they do not change during the life of the process.  However, that need
not be true if functions are used to perform the conversion.  In the following
example, the current price of Bitcoin is queried from a price service and used
in the conversion.  The price service is queried each time a conversion is
performed, so it is always up-to-date, no matter how long the program runs.

#!/usr/bin/env python3

# Bitcoin
# This example demonstrates how to use UnitConversion to convert between
# bitcoin and dollars at the current price.

from quantiphy import Quantity, UnitConversion
import requests

# get the current bitcoin price from coingecko.com
url = 'https://api.coingecko.com/api/v3/simple/price'
params = dict(ids='bitcoin', vs_currencies='usd')
def get_btc_price():
    try:
        resp = requests.get(url=url, params=params)
        prices = resp.json()
        return prices['bitcoin']['usd']
    except Exception as e:
        print('error: cannot connect to coingecko.com.')

# use UnitConversion from QuantiPhy to perform the conversion
bitcoin_units = ['BTC', 'btc', 'Ƀ', '₿']
satoshi_units = ['sat', 'sats', 'ș']
dollar_units = ['USD', 'usd', '$']
UnitConversion(
    dollar_units, bitcoin_units,
    lambda b: b*get_btc_price(), lambda d: d/get_btc_price()
)
UnitConversion(satoshi_units, bitcoin_units, 1e8)
UnitConversion(
    dollar_units, satoshi_units,
    lambda s: s*get_btc_price()/1e8, lambda d: d/(get_btc_price()/1e8),
)

unit_btc = Quantity('1 BTC')
unit_dollar = Quantity('$1')

print(f'{unit_btc:>8,.2p} = {unit_btc:,.2p$}')
print(f'{unit_dollar:>8,.2p} = {unit_dollar:,.0psat}')





When run, the script prints something like this:

1 BTC = $17,211.91
   $1 = 5,810 sat











            

          

      

      

    

  

    
      
          
            
  
Accessories

A collection utility programs have been developed that employ QuantiPhy to
enhance their functionality.  These utilities are not included as part of
QuantiPhy, but are available via PyPi.


Engineering Calculator

ec [https://github.com/KenKundert/ec] is a handy command-line calculator for
engineers and scientists that employs Reverse-Polish Notation (RPN) and allows
numbers to be specified with units and SI scale factors.  With  RPN, the
arguments are pushed onto a stack and the operators pull the needed argument
from the stack and push the result back onto the stack.  For example, to compute
the effective resistance of two parallel resistors:

> ec
0: 100k 50k ||
33.333k:





And here is a fuller example that shows some of the features of ec. In this
case we create initialization scripts, ~/.ecrc and ./.ecrc, and a dedicated
script, compute-zo, and use it to compute the output impedance of a simple RC
circuit:

> cat ~/.ecrc
# define some functions useful in phasor analysis
(2pi * "rads/s")to_omega    # convert frequency in Hertz to radians/s
(mag 2pi / "Hz")to_freq     # convert frequency in radians/s to Hertz
(j2pi * "rads/s")to_jomega  # convert frequency in Hertz to imaginary radians/s

> cat ./.ecrc
# define default values for parameters
10MHz =freq   # operating frequency
1nF =Cin      # input capacitance
50Ω =Rl       # load resistance

> cat ./compute-zo
freq to_jomega           # enter 10MHz and convert to radial freq.
Cin * recip              # enter 1nF, multiply by 𝑥 and reciprocate
                         # to compute impedance of capacitor at 10MHz
Rl ||                    # enter 50 Ohms and compute impedance of
                         # parallel combination
"Ω" =Zo                  # apply units of Ω and save to Zo
ph                       # compute the phase of impedance
Zo mag                   # recall complex impedance from Zo and compute its magnitude
`Zo = $0 ∠ $1 @ $freq.`  # display the magnitude and phase of Zo
quit

> ec compute-zo
Zo = 15.166 Ω ∠ -72.343 degs @ 10 MHz.

> ec 500pF =Cin compute-zo
Zo = 26.851 Ω ∠ -57.518 degs @ 10 MHz.





It may be a bit confusing, just remember that with RPN you give the values first
by pushing them on to the stack, and then act on them.  And once you get use to
it, you’ll likely find it quite efficient.

The source code is available from the ec repository [https://github.com/KenKundert/ec] on GitHub, or you can install it directly
with:

pip install --user engineering_calculator








Time-Value of Money

Time-Value of Money (TVM) is a command line program that is used to perform
calculations involving interest rates.  It benefits from QuantiPhy in that it
allows values to be given quite flexibly and concisely. The goal of the program
is to allow you to quickly run what-if experiments involving financial
calculations. So the fact that QuantiPhy allows the user to type 1.2M rather
than 1200000 or 1.2e6 helps considerably to reach that goal.  For example, when
running the program, this is what you would type to calculate the monthly
payments for a mortgage:

tvm  -p -250k -r 4.5 pmt





The program would respond with:

pmt = $1,266.71
pv = -$250,000.00
fv = $0.00
r = 4.5%
N = 360





The act of converting strings to numbers on the way in and converting numbers to
strings on the way out is performed by QuantiPhy.

QuantiPhy is quite flexible when it comes to converting a string to a number,
so the present value can be given in any of the following ways: -$250k,
-$250,000, -$2.5e5.  You can also specify the value without the currency symbol,
which is desirable as it generally confuses the shell.

The source code is available from the tvm repository [https://github.com/KenKundert/tvm] on GitHub, or you can install it directly
with:

pip install --user tvm








PSF Utils

PSF Utils [https://github.com/KenKundert/psf_utils] is a library that allows
you to read data from a Spectre PSF ASCII file.
Spectre is a commercial circuit simulator produced by Cadence Design Systems.
PSF files contain signals generated by Spectre.  This package also contains two
programs that are useful in their own right, but also act as demonstrators as to
how to use the library. They are list-psf and plot-psf.  The first lists the
available signals in a file, and the other displays them.

QuantiPhy is used by plot-psf when generating the axis labels.

The source code is available from the psf_utils repository [https://github.com/KenKundert/psf_utils] on GitHub, or you can install it
directly with:

pip install --user psf_utils








Evaluate Expressions in Strings

QuantiPhy Eval [https://github.com/KenKundert/quantiphy_eval] is yet another
calculator, this one is a Python API that allows you to evaluate expressions
that contain numbers with units and SI scale factors that are embedded in
strings.

>>> from quantiphy_eval import evaluate

>>> avg_price = evaluate('($1.2M + $1.3M)/2', '$')
>>> print(avg_price)
$1.25M





The source code is available from the quantiphy_eval repository [https://github.com/KenKundert/quantiphy_eval] on GitHub, or you can install
it directly with:

pip install --user quantiphy_eval








Schedule Reminders

remind [https://github.com/KenKundert/remind] is command line reminder
program. At the appointed time it sends you a notification to remind you of some
of event.  Such a program has no need for SI scale factors. Instead, this
program uses the ability of QuantiPhy to scale numbers based on their units to
provide a user-interface that takes convenient descriptions of time intervals
such as 20m or 2h.

> remind 45m remove roast from oven
Alarm scheduled for 6:36 PM, 45 minutes from now.
Message: remove roast from oven





You can specify the time as either a time-of-day or an elapsed time. You can
even combine them to do simple calculations:

> remind 10am -15m meet with Jamie
Alarm scheduled for 9:45 AM, 108 minutes from now.
Message: meet with Jamie





The source code is available from the remind repository [https://github.com/KenKundert/remind] on GitHub, or you can install it
directly with:

pip install --user schedule-reminder








RKM Codes

RKM codes are a way of writing numbers that is often used for specifying the
sizes of resistors and capacitors on schematics and on the components
themselves.  In RKM codes the radix is replaced by the scale factor and the
units are suppressed.  Doing so results in a compact representation that is less
likely to be misinterpreted if the number is poorly rendered.  For example,
a 6.8KΩ could be read as 68KΩ if the decimal point is somehow lost.  The RKM
version of 6.8KΩ is 6K8.  RKM codes are described on Wikipedia [https://en.wikipedia.org/wiki/RKM_code].

The popularity of RKM codes was fading because they address a problem that is
less common today. However they are making something of a come back as all the
characters in a RKM code are either letters or digits and so they can be
embedded in a software identifier without introducing illegal characters.

>>> from rkm_codes import from_rkm, to_rkm

>>> r = from_rkm('6K8')
>>> r
Quantity('6.8k')

>>> to_rkm(r)
'6K8'





As a practical example of the use of RKM codes, imagine wanting a program that
creates pin names for an electrical circuit based on a naming convention where
the pin names must be valid identifiers (must consist only of letters, digits,
and underscores).  It would take a table of pin characteristics that are used to
create the names.

For example:

>>> from quantiphy import Quantity
>>> from rkm_codes import to_rkm, set_prefs as set_rkm_prefs

>>> pins = [
...     dict(kind='ibias', direction='out', polarity='sink', dest='dac', value='250nA'),
...     dict(kind='ibias', direction='out', polarity='src', dest='rampgen', value='2.5µA'),
...     dict(kind='vref', direction='out', dest='dac', value='1.25V'),
...     dict(kind='vdda', direction='in', value='2.5V'),
... ]
>>> set_rkm_prefs(map_sf={}, units_to_rkm_base_code=None)

>>> for pin in pins:
...     components = []
...     if 'value' in pin:
...         pin['VALUE'] = to_rkm(Quantity(pin['value']))
...     for name in ['dest', 'kind', 'direction', 'VALUE', 'polarity']:
...         if name in pin:
...             components.append(pin[name])
...     print('_'.join(components))
dac_ibias_out_250n_sink
rampgen_ibias_out_2u5_src
dac_vref_out_1v2
vdda_in_2v5





The source code is available from the rkm_codes repository [https://github.com/KenKundert/rkm_codes] on GitHub, or you can install it
directly with:

pip install --user rkm_codes











            

          

      

      

    

  

    
      
          
            
  
Releases


Latest development release


Version: 2.19.2

Released: 2024-02-01




	Include full quantities if available in class:IncompatibleUnits errors







2.19 (2023-01-05)


	Added new standard SI scale factors (Q, R, r, q).


	Subclasses of Quantity with units now convert values to the desired
units rather than allowing the units of the class to be overridden by those of
the value.


	Added scale factor conversion.


	Added quantity functions: as_real(), as_tuple(), render(),
fixed(), and binary().


	Fixed rendering of full precision numbers in Quantity.fixed().


	Added preferred_units Quantity preference.


	Added “cover” option to strip_radix Quantity preference.


	Added type hints.







2.18 (2022-08-31)


	Support parametrized unit conversions (such as molarity).


	Allow % to act as a scale factor.


	First argument of scaling functions are now guaranteed to be quantities.


	Added UnitConversion.fixture() decorator function.


	Added UnitConversion.activate() method
(allows overridden converters to be re-activated).







2.17 (2022-04-04)


	Refine the list of currency symbols.


	Allows currency symbols to be given before or after the underlying number.


	Allow Quantity subclasses to be used in scaling if they have units.







2.16 (2021-12-14)


	Add support for — as comment character and make it the default.







2.15 (2021-08-03)


	Updated predefined physical constants to CODATA 2018 values.


	Switched to more permissive MIT license.


	Add feet to the available length/distance unit conversions.







2.14 (2021-06-18)


	Allow primary argument of Quantity.is_close() and Quantity.add()
to be a string.







2.13 (2020-10-13)


	Allow currency symbols in compound units (ex: $/oz or lbs/$).







2.12 (2020-07-25)


	Bug fix release.







2.11 (2020-07-19)


	Dropping support for all versions of Python older than 3.5.


	Added sia form (ASCII only SI scale factors).


	Added only_e_notation argument to Quantity.all_from_conv_fmt().


	Added Quantity.reset_prefs() method.







2.10 (2020-03-2)


	Added negligible, tight_units, nan, and inf preferences.


	Added negligible argument to render.


	Added infinity_symbol attribute.


	Changed the return values for Quantity.is_nan() and Quantity.is_infinite().







2.9 (2020-01-28)


	Made Quantity.extract() more forgiving.


	Support radix and comma processing when converting strings to Quantity.







2.8 (2020-01-08)


	Fix nit in installer (setup.py).







2.7 (2019-12-17)


	Improve the ability of both Quantity.add() and Quantity.scale() to retain attributes.


	Added accept_binary preference.


	Support all preferences as class attributes.


	Allow radix and comma to be replaced by adding radix and comma preferences.







2.6 (2019-09-24)


	Now support Quantity arguments with Quantity.extract().


	Allow plus and minus signs to be replaced with Unicode equivalents.







2.5 (2019-01-16)


	Added RKM codes example.


	Added check_value = ‘strict’ to Quantity.add().


	Added backward compatibility for form argument of Quantity.render() if it is passed as unnamed argument.


	Made Quantity.extract() a bit more general.


	Reformulated exceptions.


	Added support for binary scale factors and Quantity.binary().







2.4 (2018-09-12)


	Fixed bug in format that resulted in several format codes ignoring width


	Follow Python convention of right-justifying numbers by default.


	Add Quantity.add() (adds a number to a quantity returning a new quantity)


	Added # alternate form of string formatting.


	Change show_si to form (argument on Quantity.set_prefs() and Quantity.render() (show_si is now obsolete, use form=’si’ instead).


	Added concept of equivalent units for unit conversion to documentation.


	Enhance UnitConversion so that it supports nonlinear conversions.







2.3 (2018-03-11)


	Enhanced Quantity.extract()


	non-conforming lines are now ignored


	values may be expressions


	values need not be quantities


	can specify a quantity name distinct from dictionary name






	Enhanced the formatting capabilities.


	added center alignment


	added p format


	added show_commas preference.


	added strip_zeros, strip_radix to Quantity.render()


	added Quantity.fixed() method


	added Quantity.format() method


	support any format specifier supported by Python for floats











2.2 (2017-11-22)


	Added Quantity.scale()


	Added UnitConversion.convert()


	Added strip_zeros


	Added no-op conversions (units change but value stays the same, ex: $ → USD)







2.1 (2017-07-30)

The primary focus of this release was on improving the documentation, though
there are a few small feature enhancements.


	Added support for SI standard composite units


	Added support for non-breaking space as spacer


	Removed constraint in Quantity.extract() that names must be identifiers







2.0 (2017-07-15)

This is a ‘coming of age’ release where the emphasis shifts from finding the
right interface to providing an interface that is stable over time. This
release includes the first formal documentation and a number of new features
and refinements to the API.


	Created formal documentation


	Enhanced label_fmt to accept {V}


	Allow quantity to be passed as value to Quantity


	Replaced Quantity.add_to_namespace with Quantity.extract()


	Raise NameError rather than AssertionError for unknown preferences


	Added Quantity.all_from_conv_fmt() and Quantity.all_from_si_fmt()


	Change assign_rec to support more formats


	Changed Constant() to add_constant()


	Changed the way preferences are implemented


	Changed name of preference methods: set_preferences → set_prefs, get_preference → get_pref


	Added Quantity.prefs() (preferences context manager)


	Split label_fmt preference into two: label_fmt and label_fmt_full


	Added show_desc preference


	Allow show_label to be either ‘a’ or ‘f’ as well True or False


	Renamed strip_dp option to strip_radix


	Added number_fmt option







1.3 (2017-03-19)


	Reworked constants


	Added unit systems for physical constants







1.2 (2017-02-24)


	Allow digits after decimal point to be optional


	Support underscores in numbers


	Allow options to be monkey-patched on to Quantity objects


	Add strip_dp option


	Fix some issues in full precision mode


	Ranamed some options, arguments and methods







1.1 (2016-11-27)


	Added known_units preference.


	Added get_preference class method.







1.0 (2016-11-26)


	Initial production release.










            

          

      

      

    

  

    
      
          
            

Index



 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | Z
 | Ħ
 | Ε
 | Μ
 


Symbols


  	
      	0C (0 Celsius)


  





A


  	
      	accessories


      	activate() (quantiphy.UnitConversion method)


      	add() (quantiphy.Quantity method)


      	add_constant() (in module quantiphy)


      	all_from_conv_fmt() (quantiphy.Quantity class method)


  

  	
      	all_from_si_fmt() (quantiphy.Quantity class method)


      	ambiguity of scale factors and units


      	as_real() (in module quantiphy)


      	as_tuple() (in module quantiphy)

      
        	(quantiphy.Quantity method)


      


  





B


  	
      	binary() (in module quantiphy)

      
        	(quantiphy.Quantity method)


      


  





C


  	
      	c (speed of light)


      	clear_all() (quantiphy.UnitConversion class method)


  

  	
      	constants


      	convert() (quantiphy.UnitConversion method)


  





D


  	
      	dB, [1], [2]


  





E


  	
      	Engineering Calculator (ec) package


      	eps0 (permittivity of free space)


      	equivalence


  

  	
      	exceptions


      	ExpectedQuantity


      	extract() (quantiphy.Quantity class method)


      	extracting quantities from text


  





F


  	
      	fixed() (in module quantiphy)

      
        	(quantiphy.Quantity method)


      


  

  	
      	fixture() (quantiphy.UnitConversion static method)


      	Flicker Noise


      	format() (quantiphy.Quantity method)


  





G


  	
      	get_pref() (quantiphy.Quantity class method)


  





H


  	
      	h (Plank's constant)


  





I


  	
      	IncompatiblePreferences


      	IncompatibleUnits


      	infinity


      	InvalidNumber


  

  	
      	InvalidRecognizer


      	is_close() (quantiphy.Quantity method)


      	is_infinite() (quantiphy.Quantity method)


      	is_nan() (quantiphy.Quantity method)


  





K


  	
      	k (Boltzmann's constant)


  

  	
      	Kelvin/kilo ambiguity


  





L


  	
      	localization


  

  	
      	logarithmic units


  





M


  	
      	map_sf_to_greek() (quantiphy.Quantity static method)


      	map_sf_to_sci_notation() (quantiphy.Quantity static method)


      	matplotlib


  

  	
      	meter/milli ambiguity


      	MissingName


      	mu0 (permeability of free space)


  





N


  	
      	negligible


  

  	
      	not a number


  





P


  	
      	parametrized unit conversions


      	physical constants


  

  	
      	preferences


      	prefs() (quantiphy.Quantity class method)


      	PSF Utils package


  





Q


  	
      	q (elementary charge)


      	QuantiPhy Eval package


  

  	
      	QuantiPhyError


      	Quantity (class in quantiphy)


  





R


  	
      	Remind package


      	render() (in module quantiphy)

      
        	(quantiphy.QuantiPhyError method)


        	(quantiphy.Quantity method)


      


  

  	
      	reset_prefs() (quantiphy.Quantity class method)


      	RKM codes


  





S


  	
      	scale factor conversions


      	scale() (quantiphy.Quantity method)


  

  	
      	set_prefs() (quantiphy.Quantity class method)


      	set_unit_system() (in module quantiphy)


  





T


  	
      	tabular data


  

  	
      	Time-Value of Money (tvm) package


      	translating quantities in text


  





U


  	
      	unit conversions


      	UnitConversion (class in quantiphy)


      	UnknownConversion


  

  	
      	UnknownFormatKey


      	UnknownPreference


      	UnknownScaleFactor


      	UnknownUnitSystem


  





Z


  	
      	Z0 (characteristic impedance of free space)


  





Ħ


  	
      	ħ (Plank's constant)


  





Ε


  	
      	ε₀ (permittivity of free space)


  





Μ


  	
      	μ₀ (permeability of free space)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          QuantiPhy: Physical Quantities
        


        		
          Users’ Guide
          
            		
              Overview
            


            		
              Quantities
              
                		
                  Specifying Quantities
                


                		
                  Scaling When Creating a Quantity
                


                		
                  Creating a Quantity by Scaling an Existing Quantity
                


                		
                  Creating a Quantity by Adding to an Existing Quantity
                


                		
                  Accessing Quantity Values
                


                		
                  Scaling When Rendering a Quantity
                


                		
                  String Formatting
                


              


            


            		
              Ambiguity of Scale Factors and Units
            


            		
              Subclassing Quantity
              
                		
                  Scaling with Subclasses
                


                		
                  Scaling Upon Subclass Creation
                


              


            


            		
              Unit Converters
              
                		
                  Parametrized Unit Converters
                


              


            


            		
              Scale Factor Conversions
            


            		
              Quantity Functions
            


            		
              Physical Constants
            


            		
              Preferences
            


            		
              Localization
            


            		
              Formatting Tabular Data
            


            		
              Extract Quantities
            


            		
              Translating Quantities
            


            		
              Equivalence
            


            		
              Negligible Values
            


            		
              Exceptional Values
            


            		
              Exceptions
            


          


        


        		
          Classes and Functions
          
            		
              Quantities
              
                		
                  Quantity
                


                		
                  Quantity Functions
                


              


            


            		
              Unit Conversion
              
                		
                  UnitConversion
                


              


            


            		
              Constants and Unit Systems
              
                		
                  add_constant()
                


                		
                  set_unit_system()
                


              


            


            		
              Exceptions
              
                		
                  QuantiPhyError
                


                		
                  ExpectedQuantity
                


                		
                  IncompatiblePreferences
                


                		
                  IncompatibleUnits
                


                		
                  InvalidNumber
                


                		
                  InvalidRecognizer
                


                		
                  MissingName
                


                		
                  UnknownConversion
                


                		
                  UnknownFormatKey
                


                		
                  UnknownPreference
                


                		
                  UnknownScaleFactor
                


                		
                  UnknownUnitSystem
                


              


            


          


        


        		
          Examples
          
            		
              Motivating Example
            


            		
              DRAM Prices
            


            		
              Thermal Voltage Example
            


            		
              Casual Time Units
            


            		
              Unicode Text Example
            


            		
              Timeit Example
            


            		
              Disk Usage Example
            


            		
              Parameterized Simulation Example
            


            		
              MatPlotLib Example
            


            		
              Flicker Noise
            


            		
              Cryptocurrency Example
            


            		
              Dynamic Unit Conversions
            


          


        


        		
          Accessories
          
            		
              Engineering Calculator
            


            		
              Time-Value of Money
            


            		
              PSF Utils
            


            		
              Evaluate Expressions in Strings
            


            		
              Schedule Reminders
            


            		
              RKM Codes
            


          


        


        		
          Releases
          
            		
              Latest development release
            


            		
              2.19 (2023-01-05)
            


            		
              2.18 (2022-08-31)
            


            		
              2.17 (2022-04-04)
            


            		
              2.16 (2021-12-14)
            


            		
              2.15 (2021-08-03)
            


            		
              2.14 (2021-06-18)
            


            		
              2.13 (2020-10-13)
            


            		
              2.12 (2020-07-25)
            


            		
              2.11 (2020-07-19)
            


            		
              2.10 (2020-03-2)
            


            		
              2.9 (2020-01-28)
            


            		
              2.8 (2020-01-08)
            


            		
              2.7 (2019-12-17)
            


            		
              2.6 (2019-09-24)
            


            		
              2.5 (2019-01-16)
            


            		
              2.4 (2018-09-12)
            


            		
              2.3 (2018-03-11)
            


            		
              2.2 (2017-11-22)
            


            		
              2.1 (2017-07-30)
            


            		
              2.0 (2017-07-15)
            


            		
              1.3 (2017-03-19)
            


            		
              1.2 (2017-02-24)
            


            		
              1.1 (2016-11-27)
            


            		
              1.0 (2016-11-26)
            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





_images/spectrum-zoomed.png
1v l

100 mv
10 mv
1mv
100 pv.

10 pv
1pv ﬁ
100 nv
0 Hz 200 kHz 400 kHz 600 kHz 800 kHz 1 MHz






_images/wave.png
1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

0s

s

2us

3

aus

s






