

QSRlib’s docs

QSRlib is a library that allows computation of Qualitative Spatial Relations and Calculi, as well as a development framework for rapid implementation of new QSRs.

The aims of QSRlib are to:

	provide a number of QSRs that are well known, and in common use in scientific community;

	expose these QSRs via a standard IO interface that allows quick and easy re-usability, including a ROS interface to allow use in cognitive robotic systems;

	provide a flexible and easy to use infrastructure that allows rapid development of new QSRs that extend the library;

	deliver abstracted QSRs over time in an aggregated representation that facilitates further inference.

A typical usage of QSRlib would be an intelligent system, such as a robot for example, which acquires visual data via an RGB-D camera, such as a Kinect, and via object recognition and skeleton tracking is able to perceive the individual entities in the world. The system can then make calls to QSRlib in order to abstract this input data and form a qualitative representation of the perceived world scene. This could then be used to recognise activities in natural scenes such as the one shown in the image below, using already learnt models expressed using QSRs in the QSRlib library.

[image: Image of a person having breakfast.]
QSRlib has been used in various research and teaching projects. Some selective case studies are briefly described. In 1 QSRlib was used to rapidly experiment with multiple different types of qualitative representations in order to identify the most suitable one for learning human motion behaviours as perceived by a mobile robot that was deployed for a duration of 6 weeks in an office environment. QSRlib was used to quickly experiment with suitable representations for classifying scenes and environments from visual data 2 3. The library was also used to compute qualitative relations between a robot and humans moving in order to plan and execute safe path navigation taking into consideration their movement patterns 4. The library has also been used in a number of teaching projects (e.g. recognizing gestures for controlling a device, recognizing someone having breakfast, etc.), allowing the students to concentrate on the more interesting, high level, parts of their projects rather than spending a good portion of their project time in developing the low level tools they need (and which are the same from project to project).

	1

	Duckworth, P.; Gatsoulis, Y.; Jovan, F.; Hawes, N.; Hogg, D. C.; and Cohn, A. G. 2016. Unsupervised Learning of Qualitative Motion Behaviours by a Mobile Robot. In Proc. of the Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS’16).

	2

	Thippur, A.; Burbridge, C.; Kunze, L.; Alberti, M.; Folkesson, J.; Jensfelt, P.; and Hawes, N. 2015. A Comparison of Qualitative and Metric Spatial Relation Models for Scene Understanding. In 29th Conference on Artificial Intelligence (AAAI’15).

	3

	Kunze, L.; Burbridge, C.; Alberti, M.; Thippur, A.; Folkesson, J.; Jensfelt, P.; and Hawes, N. 2014. Com- bining Top-down Spatial Reasoning and Bottom-up Object Class Recognition for Scene Understanding. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’14).

	4

	Dondrup, C.; Bellotto, N.; Hanheide, M.; Eder, K.; and Leonards, U. 2015. A Computational Model of Human- Robot Spatial Interactions Based on a Qualitative Trajectory Calculus. Robotics 4(1):63–102.

Indices and tables

	Index

	Module Index

Get Started

A list of included QSRs can be found in this link.

For installation instructions refer to the install guidelines.

To get started with using QSRlib read and go through the usage examples.

For QSR developers this documentation page provides all the details.

If you run into an issue please submit a ticket at https://github.com/strands-project/strands_qsr_lib/issues.

For comments and feedback please use the ticket system as well at https://github.com/strands-project/strands_qsr_lib/issues.

QSRlib is released under MIT license.

QSRs

Currently, the following QSRs are included in the library:

	ID

	Name

	Links

	Reference

	argd

	Qualitative Distance Calculus

	descr. | api

	7

	argprobd

	Probablistic Qualitative Distance Calculus

	descr. | api

	

	cardir

	Cardinal Directions

	descr. | api

	1

	mos

	Moving or Stationary

	descr. | api

	

	mwe

	Minimal Working Example

	descr. | api

	

	qtcbs

	Qualitative Trajectory Calculus b

	descr. | api

	8 9

	qtccs

	Qualitative Trajectory Calculus c

	descr. | api

	8 9

	qtcbcs

	Qualitative Trajectory Calculus bc

	descr. | api

	8 9

	ra

	Rectangle Algebra

	descr. | api

	5

	rcc2

	Region Connection Calculus 2

	descr. | api

	2 3

	rcc4

	Region Connection Calculus 4

	descr. | api

	2 3

	rcc5

	Region Connection Calculus 5

	descr. | api

	2 3

	rcc8

	Region Connection Calculus 8

	descr. | api

	2 3

	tpcc

	Ternary Point Configuration Calculus

	descr. | api

	4

Special Topics

Allen’s Interval Algebra

Allen’s Interval Algebra is a calculus for temporal reasoning. For further details see this page.

Qualitative Spatio-Temporal Activity Graphs

QSRlib provides also functionalities to represent time-series QSRs as a graph structure,
called Qualitative Spatio-Temporal Activity Graphs (QSTAG).
For details, please refer to its documentation.

References

	1

	Frank, A. U. 1990. Qualitative Spatial Reasoning about Cardinal Directions. In Mark, M., and White, D., eds., Au- tocarto 10. Baltimore: ACSM/ASPRS.

	2(1,2,3,4)

	
	
	Randell, Z. Cui and A. G. Cohn: A spatial logic based on regions and connection. In Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992.

	3(1,2,3,4)

	
	
	Cohn, B. Bennett, J. Gooday and M. M. Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, pp. 275–316, 1997.

	4

	Moratz, R.; Nebel, B.; and Freksa, C. 2003. Qualita- tive spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. In Freksa, C.; Brauer, W.; Habel, C.; and Wender, K. F., eds., Lecture Notes in Artificial Intelligence 2685: Spatial Cognition III. Berlin, Heidelberg: Springer Verlag. 385–400.

	5

	
	Balbiani, J.-F. Condotta and L. F. del Cerro: A model for reasoning about bi-dimensional temporal relations. In Proc. of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR‘98), A.G. Cohn, L. K. Schubert and S. C. Shapiro (eds). Morgan Kaufmann, pp. 124–130. Trento, Italy, June 2–5 1998.

	6

	
	Chen, A. G. Cohn, D. Liu, S. Wang, J. Ouyang and Q. Yu: A survey of qualitative spatial representations. The Knowledge Engineering Review, 30 , pp 106-136, 2015.

	7

	Clementini, E.; Felice, P. D.; and Hernandez, D. 1997. Qualitative representation of positional information. Artificial Intelligence 95(2):317–356.

	8(1,2,3)

	Van de Weghe, N.; Cohn, A.; De Tre ́, B.; and De Maeyer, P. 2005. A Qualitative Trajectory Calculus as a basis for representing moving objects in Geographical Information Systems. Control and Cybernetics 35(1):97–120.

	9(1,2,3)

	Delafontaine, M.; Cohn, A. G.; and Van de Weghe, N. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5):5187–5196.

Qualitative Distance Calculus

Description

Qualitative Distance Calculus (QDC) relations define qualitative spatial distance relations between two objects according to the relations names and distance thresholds defined by the user.

Relations

The relations are defined by the user-specified relations names and the corresponding distance thresholds.

API

The API can be found here.

References

	1

	Clementini, E.; Felice, P. D.; and Hernandez, D. 1997. Qualitative representation of positional information. Artificial Intelligence 95(2):317–356.

Probabilistic Qualitative Distance Calculus

Description

Probabilistic Qualitative Distance Calculus (PQDC) relations define qualitative spatial distance relations between two objects according to the relations names and distance thresholds defined by the user, just like Qualitative Distance Calculus, with the difference that they are modelled as Gaussian distributions allowing overlap between the boundaries and fuzzy selection in the common areas.

Relations

The relations are defined by the user-specified relations names and the corresponding distance thresholds.

API

The API can be found here.

Cardinal Directions

Description

Cardinal Directions (CarDir) are compass relations between two objects, and their minimum set consists of four relations north (n), east (e), south (s) and west (w). Intermediate relations between the main relations are north-east (ne), south-east (se), south-west (sw) and north-west (nw). These relations are shown schematically in the compass rose shown in the figure below, with the addition of an ‘equal’ (eq) relation when the objects are together.

For the computation of cardinal directions between two regions we use a point-based model (examples are 1 2 3 4), i.e. we approximate the regions by their centroid.

[image: Cardinal Directions diagram]

API

The API can be found api.

References

	1

	Frank, A.U., 1990. Qualitative Spatial Reasoning about Cardinal Directions. In M. Mark & D. White, eds. Autocarto 10. Baltimore: ACSM/ASPRS.

	2

	Frank, A.U., 1992. Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages & Computing, 3(4), pp.343–371.

	3

	Frank, A.U., 1996. Qualitative Spatial Reasoning: Cardinal Directions as an Example. Geographical Information Systems, 10(3), pp.269–290.

	4

	Ligozat, G.E., 1998. Reasoning about Cardinal Directions. Journal of Visual Languages & Computing, 9(1), pp.23–44.

Moving or Stationary

Description

Moving or Stationary (MOS) is a simple qualitative relation of an object determining whether it is moving or not with respect to its coordinate frame origin.

Relations

The relations are simply:

	moving when the object is found to have changed its position between two given frames,

	stationary when the object is found to not have changed its position between two given frames.

API

The API can be found here.

Minimal Working Example

Description

Minimal Working Example (MWE) is a simple directional QSR aimed to demonstrate how to implement a new QSR and integrate it in QSRlib.

Relations

All the possible MWE relations between a blue object X and a red object Y are:

	Relation

	Illustration

	Interpretation

	X left Y

	[image: ../../../_images/mwe_left.png]

	X is to the left of Y.

	X right Y

	[image: ../../../_images/mwe_right.png]

	X is to the right of Y.

	X together Y

	[image: ../../../_images/mwe_together.png]

	X and Y are together.

API

The API can be found here.

Qualitative Trajectory Calculus b

Description

API

The API can be found here.

References

	1

	Van de Weghe, N.; Cohn, A.; De Tre ́, B.; and De Maeyer, P. 2005. A Qualitative Trajectory Calculus as a basis for representing moving objects in Geographical Information Systems. Control and Cybernetics 35(1):97–120.

	2

	Delafontaine, M.; Cohn, A. G.; and Van de Weghe, N. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5):5187–5196.

Qualitative Trajectory Calculus c

Description

API

The API can be found here.

References

	1

	Van de Weghe, N.; Cohn, A.; De Tre ́, B.; and De Maeyer, P. 2005. A Qualitative Trajectory Calculus as a basis for representing moving objects in Geographical Information Systems. Control and Cybernetics 35(1):97–120.

	2

	Delafontaine, M.; Cohn, A. G.; and Van de Weghe, N. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5):5187–5196.

Qualitative Trajectory Calculus bc

Description

API

The API can be found here.

References

	1

	Van de Weghe, N.; Cohn, A.; De Tre ́, B.; and De Maeyer, P. 2005. A Qualitative Trajectory Calculus as a basis for representing moving objects in Geographical Information Systems. Control and Cybernetics 35(1):97–120.

	2

	Delafontaine, M.; Cohn, A. G.; and Van de Weghe, N. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5):5187–5196.

Rectangle Algebra

Description

Rectangle Algebra (RA) 1 2 computes Allen’s Interval Algebra relations on the projected to their xy-axes segments between two 2D-rectangles.

Relations

For example the RA relation between boxes A and B in the case depicted in the figure below is A(<, o)B.

[image: RA relation: ``A(<, o)B``]

The full set of the RA relations is determined by Allen’s Interval Algebra relations.
Therefore, since there are 13 Allen’s relations, RA defines 169 possible relations over the xy segments
of two rectangles.

API

The API can be found here.

References

	1

	
	Balbiani, J.-F. Condotta and L. F. del Cerro: A model for reasoning about bi-dimensional temporal relations. In Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR‘98), A.G. Cohn, L. K. Schubert and S. C. Shapiro (eds). Morgan Kaufmann, pp. 124–130. Trento, Italy, June 2–5 1998.

	2

	
	Balbiani, J.-F. Condotta and L. F. del Cerro: A new tractable subclass of the rectangle algebra. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI‘99), T. Dean (ed.). Morgan Kaufmann, pp. 442–447. Stockholm, Sweden, July 31–August 6, 1999.

Region Connection Calculus 2

Description

Region Connection Calculus (RCC) 1 2 is intended to serve for qualitative spatial representation and reasoning. RCC abstractly describes regions (in Euclidean space, or in a topological space) by their possible relations to each other.

RCC2 is the simplest form of RCC and consists of 2 basic relations that are possible between two regions. It is a stripped down version
of RCC8. The mapping from RCC8 to RCC2 can be seen below:

	RCC8

	RCC2

	dc

	dc

	ec

	c

	po

	tpp

	ntpp

	eq

	tppi

	ntppi

Relations

All the possible RCC5 relations between a blue object X and a red object Y are:

	Relation

	Illustration

	Interpretation

	X dc Y

	[image: ../../../_images/rcc8_dc.png]

	X is disconnected from Y.

	X c Y

	[image: ../../../_images/rcc8_ec.png]

	X is connected to Y.

	[image: ../../../_images/rcc8_po.png]

	[image: ../../../_images/rcc8_tpp.png]

	[image: ../../../_images/rcc8_ntpp.png]

	[image: ../../../_images/rcc8_eq.png]

	[image: ../../../_images/rcc8_tppi.png]

	[image: ../../../_images/rcc8_ntppi.png]

API

The API can be found here.

References

	1

	Randell, D. A., Cui, Z. and Cohn, A. G.: A spatial logic based on regions and connection, Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992. (link) [http://wenxion.net/ac/randell92spatial.pdf]

	2

	Anthony G. Cohn, Brandon Bennett, John Gooday, Micholas Mark Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, 275–316, 1997.

Region Connection Calculus 4

Description

Region Connection Calculus (RCC) 1 2 is intended to serve for qualitative spatial representation and reasoning. RCC abstractly describes regions (in Euclidean space, or in a topological space) by their possible relations to each other.

RCC4 consists of 4 basic relations that are possible between two regions; it is a stripped down version
of RCC8. The mapping from RCC8 to RCC4 can be seen below:

	RCC8

	RCC4

	dc

	dc

	ec

	po

	po

	tpp

	pp

	ntpp

	eq

	tppi

	ppi

	ntppi

Relations

All the possible RCC4 relations between a blue object X and a red object Y are:

	Relation

	Illustration

	Interpretation

	X dc Y

	[image: ../../../_images/rcc8_dc.png]

	X is disconnected from Y.

	X po Y

	[image: ../../../_images/rcc8_ec.png]

	X is partially overlapping Y.

	[image: ../../../_images/rcc8_po.png]

	X pp Y

	[image: ../../../_images/rcc8_tpp.png]

	X is a proper part of Y.

	[image: ../../../_images/rcc8_ntpp.png]

	[image: ../../../_images/rcc8_eq.png]

	X ppi Y

	[image: ../../../_images/rcc8_tppi.png]

	X is a proper part inverse of Y.

	[image: ../../../_images/rcc8_ntppi.png]

API

The API can be found here.

References

	1

	Randell, D. A., Cui, Z. and Cohn, A. G.: A spatial logic based on regions and connection, Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992. (link) [http://wenxion.net/ac/randell92spatial.pdf]

	2

	Anthony G. Cohn, Brandon Bennett, John Gooday, Micholas Mark Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, 275–316, 1997.

Region Connection Calculus 5

Description

Region Connection Calculus (RCC) 1 2 is intended to serve for qualitative spatial representation and reasoning. RCC abstractly describes regions (in Euclidean space, or in a topological space) by their possible relations to each other.

RCC5 consists of 5 basic relations that are possible between two regions; it is a stripped down version of RCC8. The mapping from RCC8 to RCC5 can be seen below:

	RCC8

	RCC5

	dc

	dr

	ec

	po

	po

	tpp

	pp

	ntpp

	eq

	eq

	tppi

	ppi

	ntppi

Relations

All the possible RCC5 relations between a blue object X and a red object Y are:

	Relation

	Illustration

	Interpretation

	X dr Y

	[image: ../../../_images/rcc8_dc.png]

	X is discrete from Y.

	[image: ../../../_images/rcc8_ec.png]

	X po Y

	[image: ../../../_images/rcc8_po.png]

	X is partially overlapping Y.

	X pp Y

	[image: ../../../_images/rcc8_tpp.png]

	X is a proper part of Y.

	[image: ../../../_images/rcc8_ntpp.png]

	X eq Y

	[image: ../../../_images/rcc8_eq.png]

	X is equal to Y.

	X ppi Y

	[image: ../../../_images/rcc8_tppi.png]

	X is a proper part inverse of Y.

	[image: ../../../_images/rcc8_ntppi.png]

API

The API can be found here.

References

	1

	Randell, D. A., Cui, Z. and Cohn, A. G.: A spatial logic based on regions and connection, Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992. (link) [http://wenxion.net/ac/randell92spatial.pdf]

	2

	Anthony G. Cohn, Brandon Bennett, John Gooday, Micholas Mark Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, 275–316, 1997.

Region Connection Calculus 8

Description

Region Connection Calculus (RCC) 1 2 is intended to serve for qualitative spatial representation and reasoning. RCC abstractly describes regions (in Euclidean space, or in a topological space) by their possible relations to each other.

RCC8 consists of 8 basic relations that are possible between two regions.

Relations

All the possible RCC8 relations between a blue object X and a red object Y are:

	Relation

	Illustration

	Interpretation

	X dc Y

	[image: ../../../_images/rcc8_dc.png]

	X is disconnected from Y.

	X ec Y

	[image: ../../../_images/rcc8_ec.png]

	X is externally connected to Y.

	X po Y

	[image: ../../../_images/rcc8_po.png]

	X is partially overlapping Y.

	X tpp Y

	[image: ../../../_images/rcc8_tpp.png]

	X is a tangential proper part of Y.

	X ntpp Y

	[image: ../../../_images/rcc8_ntpp.png]

	X is a non-tangential proper part of Y.

	X eq Y

	[image: ../../../_images/rcc8_eq.png]

	X is equal to Y.

	X tppi Y

	[image: ../../../_images/rcc8_tppi.png]

	X is a tangential proper part inverse of Y.

	X ntppi Y

	[image: ../../../_images/rcc8_ntppi.png]

	X is a non-tangential proper part inverse of Y.

API

The API can be found here.

References

	1

	Randell, D. A., Cui, Z. and Cohn, A. G.: A spatial logic based on regions and connection, Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp. 165–176, 1992. (link) [http://wenxion.net/ac/randell92spatial.pdf]

	2

	Anthony G. Cohn, Brandon Bennett, John Gooday, Micholas Mark Gotts: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica, 1, 275–316, 1997.

Ternary Point Configuration Calculus

Description

Ternary Point Configuration Calculus (TPCC) deals with point-like objects in the 2D-plane. It is a application based variant of the Double Cross calculus, allowing finer distinctions of positional information than the calculi presented before.

Relations

See also

Introduction to the Ternary Point Configuration Calculus [http://www.sfbtr8.spatial-cognition.de/project/r3/QualitativeCalculi/TPCC/index.html]

API

The API can be found here.

References

	1

	Moratz, R.; Nebel, B.; and Freksa, C. 2003. Qualitative spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. In Freksa, C.; Brauer, W.; Habel, C.; and Wender, K. F., eds., Lecture Notes in Artificial Intelligence 2685: Spatial Cognition III. Berlin, Heidelberg: Springer Verlag. 385–400.

	2

	Dylla, F., and Moratz, R. 2004. Empirical complexity issues of practical qualitative spatial reasoning about relative position. In Workshop on Spatial and Temporal Reasoning, ECAI’04.

	3

	Introduction to the Ternary Point Configuration Calculus http://www.sfbtr8.spatial-cognition.de/project/r3/QualitativeCalculi/TPCC/index.html

Allen’s Interval Algebra

Description

Allen’s Interval Algebra 1 (AIA) is a system for reasoning about temporal relations. The calculus defines possible relations between time intervals and provides a composition table that can be used as a basis for reasoning about temporal descriptions of events 2.

AIA is used in a variety of QSRs and other topics in QSRlib, e.g. in the
Regional Algebra QSR, in the QSR graphs, etc.

Relations

Allen’s Interval Algebra defines 13 possible qualitative temporal base relations between two intervals X and Y:

	Relation

	Inverse

	Illustration

	Interpretation

	X < Y

	Y > X

	[image: allen_before]

	X takes place before Y.

	X = Y

	Y = X

	[image: allen_equal]

	X is equal to Y.

	X m Y

	Y mi X

	[image: allen_meets]

	X meets Y.

	X o Y

	Y oi X

	[image: allen_overlaps]

	X overlaps with Y.

	X d Y

	Y di X

	[image: allen_during]

	X takes place during Y.

	X s Y

	Y si X

	[image: allen_starts]

	X starts Y.

	X f Y

	Y fi X

	[image: allen_finishes]

	X finishes Y.

References

	1

	James F. Allen: Maintaining knowledge about temporal intervals. Communications of the ACM, 1983.

	2

	Wikipedia: Allen’s interval algebra. Wikipedia, accessed October 2015, https://en.wikipedia.org/wiki/Allen%27s_interval_algebra

Qualitative Spatio-Temporal Activity Graphs

Description

A Qualitative Spatio-Temporal Activity Graph (QSTAG) provides a compact and efficient graph structure to represent both qualitative spatial and temporal information about entities, allowing the use of standard graph comparison techniques.

We request the QSTAG in the QSRLib framework using the dynamic
argument dictionary: dynamic_args[“qstag”] in the QSRLib Request Message, and it is returned in the QSRLib Response Message as a class qstag(), with main class components episodes (list), graph (iGraph object) and graphlets() (class).

Episodes

To begin, the QSR_World_Trace is converted into a QSR Episode representation.
We define a QSR episode as a compressed, subsequent, set of the same qualitative relation between a set of entities. An episode is then expressed as a tuple containing an entity set, a set of QSR relations, and an interval of time over which they hold. An example episode:

([human, door], {QTCbs: [+, 0]}, (0, 10)).

The list of all QSR episodes generated from the QSR_World_Trace is returned in:

QSRLib_Response_Message.qstag.episodes

QSTAG

From a list of QSR episodes, a QSTAG is generated by abstracting over the temporal sequence of episodes. This is done by taking the Allen interval algebra (IA) 1 relation between each pair of episodes in the set.
The structure of a QSTAG is comprised of the following three layers, and a directed edge set:

	An objects layer, containing one nodes per unique object in the set of QSR episodes.

	A spatial episode layer, containing one node per QSR episode in the given set.

	An Allen temporal relations layer, containing one node per pair of QSR episodes and encoding the IA relation that holds between the two QSR episodes.

An example of a QSTAG:

[image: ../../../_images/qstag.png]
consisting of two objects, three QSR episodes (encoding Argument Distance and QTCbs relations), and three IA relation nodes which hold between the episodes’ intervals.

For a QSTAG, an iGraph object is returned in QSRLib_Response_Message.qstag.graph and a utility function is provided for creating a dot image file, available in qsrlib_qstag.utils.graph2dot(<< qstag >>, “<<file_path>>.dot”)} module.

Graphlets

A graphical representation of a timeseries of QSRs facilitates the use of graph matching techniques. Given a QSTAG, it is possible to represent this as a set of overlapping subgraphs with certain properties. We define these sub-graphs as graphlets with properties:

	they maintain the layer structure of a QSTAG,

	the objects layer is restricted to at most n objects,

	the spatial episode layer contains up to m QSR episode nodes which are contiguous in time; this allows the sub-graphs to temporally overlap,

	the temporal layer contains up to (m*(m-1))/2 IA relation nodes (one per pair of spatial episode nodes), where n and m are supplied parameters in the dynamic argument dictionary (more details below).

This allows the QSTAG to be represented as a bag of overlapping graphlets, where each graphlet obeys the four properties. The example QSTAG above can be represented as a set of six graphlets which hold the above properties using n=2 and m=3. All are displayed here:

[image: ../../../_images/graphlets.png]
Graphlets() is a sub-class of a QSTAG and contains all the information about the graphlets of a QSTAG and is returned in:

QSRLib_Response_Message.qstag.graphlets

The main members of the Graphlet class are graphlets (a dictionary), code_book (a list) and histogram (a list).

Each graphlet generated from a QSTAG is represented as both an iGraph object, and also as a graph hash code for efficient comparisons. The Graphlets.graphlets dictionary combines the two as key-value pairs, where keys are unique hash codes, and values are the corresponding iGraph objects; Returned in:

QSRLib_Response_Message.qstag.graphlets.graphlets.

Also returned in the Response Message is a code book of the unique hash codes, and a histogram of the number of occurrences in the QSTAG (both lists - in the same order); Returned in:

QSRLib_Response_Message.qstag.graphlets.code_book
QSRLib_Response_Message.qstag.graphlets.histogram

A code book and histogram lists are intended to be zipped together and allow for easy post analysis of multiple QSTAGs representing multiple observations. Implementation details of these attributes are given in the below section.

Usage

To use, first create a QSR_World_Trace (qsrlib_response_message) in the normal way.

Standard Steps for Creating QSR_World_Trace:

	Create a QSRlib object

	Convert your data in to QSRlib standard input format

	Make a request to QSRlib (or a request to QSRlib using ROS)

Steps for Creating a QSTAG:

Make sure “qstag” is a key of the dynamic argument dictionary when you make a request to QSRLib.
Then the response message will contain a QSTAG object:

qstag = qsrlib_response_message.qstag

The value of the dynamic_args[“qstag”] dictionary must contain a dictionary of graphlet parameters, which includes the min and max number of object rows included in the graohlet and a maximum number of spatial episode nodes. Optionally a dictionary of object types can also be supplied. Also, if you want the spatial relations only created for certain objects, use the qsr_for dictionary. An example is give here:

object_types = {"o1": "Human",
 "o2": "Chair"}

which_qsr = ["qtcbs", "argd", "mos"]

dynamic_args = {"qtcbs": {"quantisation_factor": args.quantisation_factor,
 "validate": args.validate,
 "no_collapse": args.no_collapse,
 "qsrs_for": [("o1", "o2"),("o1", "o3")]},

 "argd": {"qsr_relations_and_values": args.distance_threshold,
 "qsrs_for": [("o1", "o2")]},

 "mos": {"qsrs_for": [("o1"), ("o2")]},

 "qstag": {"params" : {"min_rows":1, "max_rows":1, "max_eps":3}
 {"object_types" : object_types}}
 }

Visualize the QSTAG

A utility function to save the QSTAG as a dot file, and convert it to a png image is provided in the qsrlib_qstag.utils.graph2dot(<qstag>, “<file_path>.dot”) module. E.g.

qstag = qsrlib_response_message.qstag
qsrlib_qstag.utils.graph2dot(qstag, '/tmp/act_gr.dot')
os.system('dot -Tpng /tmp/act_gr.dot -o /tmp/act_gr.png')

Parse the Episodes, QSTAG and Graphlets

qstag = qsrlib_response_message.qstag

print("All the Episodes...")
for episode in qstag.episodes:
 print(episode)

print("The QSTAG iGraph: \n", qstag.graph)

print("All the Graph NODES:")
for node in qstag.graph.vs():
 print(node)

print("All the Graph EDGES:")
for edge in qstag.graph.es():
 print(edge, " from: ", edge.source, " to: ", edge.target)

print("Graphlets:")
for i, j in qstag.graphlets.graphlets.items():
 print("\n", i, j)

print("Histogram:")
for i, j in zip(qstag.graphlets.code_book, qstag.graphlets.histogram):
 print("\n", i, ": ", j)

Example of QSTAG code

An example script for generating a simple QSTAG is available in /strands_qsr_lib/qsr_lib/scripts/:

./qstag_example.py <qsr_name>

e.g.

./qstag_example.py qtcbs

References

	1

	James F. Allen: Maintaining knowledge about temporal intervals. Communications of the ACM, 1983.

Installation

Dependencies

	numpy which usually gets installed with python.

	matplotlib is used by some visualization modules, but again it should be already installed in your system.

	igraph (used by QSTAGs).

	In linux it should be in your distro’s repositories. For example in modern ubuntu you can install it as apt-get install python-igraph (don’t forget the sudo if needed).

	For other systems please refer to igraph [http://igraph.org/python/] installation instructions.

Install as

You can install QSRlib as a standalone python package, or if you have ROS installed and you want to use it within ROS you can install as a ROS package. The installation steps for each are explained below.

standalone python package

Installation as a python package consists of the following two steps:

	Clone the QSRlib git repository [https://github.com/strands-project/strands_qsr_lib.git].

	Include the QSRlib source folder.

For example, let’s say you want to install it in your home directory.
Then the bash commands for the above two steps are:

git clone https://github.com/strands-project/strands_qsr_lib.git
export PYTHONPATH=$HOME/strands_qsr_lib/qsr_lib/src:$PYTHONPATH

Note

You can also include the export in your .bashrc file.

ROS catkin package

You need to firstly follow the installation instructions for ROS [http://www.ros.org/install]. Then clone the QSRlib git repository [https://github.com/strands-project/strands_qsr_lib.git]
in your catkin workspace src folder, and don’t forget to make it.

Note

For STRANDS [http://strands.acin.tuwien.ac.at] developers and users, note that QSRlib can be installed using the usual software guidelines [http://strands.acin.tuwien.ac.at/software.html].

Verify installation

Depending on whether it has been installed as a standalone python package as a ROS package, you can test that the installation and setup works as follows repsectively:

standalone python package

If QSRlib was installed as standalone python package, then firstly from the root directory where you installed QSRlib go to qsr_lib/scripts/ directory and run the mwe.py script as follows:

./mwe rcc8

If you see an output similar to the following then everything is working fine.

rcc8 request was made at 2016-05-17 10:14:39.482158 and received at 2016-05-17 10:14:39.482166 and finished at 2016-05-17 10:14:39.482805

Response is:
0.0: o2,o1:{'rcc8': 'dc'}; o2,o3:{'rcc8': 'po'}; o1,o3:{'rcc8': 'po'}; o1,o2:{'rcc8': 'dc'}; o3,o2:{'rcc8': 'po'}; o3,o1:{'rcc8': 'po'};
1.0: o2,o1:{'rcc8': 'dc'}; o2,o3:{'rcc8': 'po'}; o1,o3:{'rcc8': 'po'}; o1,o2:{'rcc8': 'dc'}; o3,o2:{'rcc8': 'po'}; o3,o1:{'rcc8': 'po'};
2.0: o2,o1:{'rcc8': 'po'}; o2,o3:{'rcc8': 'po'}; o1,o3:{'rcc8': 'po'}; o1,o2:{'rcc8': 'po'}; o3,o2:{'rcc8': 'po'}; o3,o1:{'rcc8': 'po'};
3.0: o2,o1:{'rcc8': 'ec'}; o2,o3:{'rcc8': 'po'}; o1,o3:{'rcc8': 'po'}; o1,o2:{'rcc8': 'ec'}; o3,o2:{'rcc8': 'po'}; o3,o1:{'rcc8': 'po'};
4.0: o2,o1:{'rcc8': 'ec'}; o2,o3:{'rcc8': 'po'}; o1,o3:{'rcc8': 'dc'}; o1,o2:{'rcc8': 'ec'}; o3,o2:{'rcc8': 'po'}; o3,o1:{'rcc8': 'dc'};

ROS catkin package

If QSRlib was installed as a ROS package and given that your ROS installation is setup and works, then firstly bring a roscore up if you don’t have one already:

roscore

Then bring the QSRlib server node up:

rosrun qsr_lib qsrlib_ros_server.py

You should see a message:

[INFO] [WallTime: 1463477006.669860] QSRlib_ROS_Server up and running, listening to: qsr_lib/request

Then you can request QSRs by running for example:

rosrun qsr_lib example_extended.py rcc8 --ros

And you should see an output similar to the one below:

rcc8 request was made at 2016-05-17 10:24:49.355499 and received at 2016-05-17 10:24:50.014800 and finished at 2016-05-17 10:24:50.015549

Response is:
0.0: o2,o1:{'rcc8': 'dc'}; o1,o2:{'rcc8': 'dc'}; o1,o3:{'rcc8': 'dc'}; o1,o4:{'rcc8': 'dc'}; o2,o4:{'rcc8': 'dc'}; o2,o3:{'rcc8': 'dc'}; o3,o2:{'rcc8': 'dc'}; o3,o1:{'rcc8': 'dc'}; o3,o4:{'rcc8': 'ntpp'}; o4,o3:{'rcc8': 'ntppi'}; o4,o2:{'rcc8': 'dc'}; o4,o1:{'rcc8': 'dc'};
1.0: o2,o1:{'rcc8': 'dc'}; o1,o2:{'rcc8': 'dc'}; o1,o3:{'rcc8': 'dc'}; o1,o4:{'rcc8': 'dc'}; o2,o4:{'rcc8': 'dc'}; o2,o3:{'rcc8': 'dc'}; o3,o2:{'rcc8': 'dc'}; o3,o1:{'rcc8': 'dc'}; o3,o4:{'rcc8': 'ntpp'}; o4,o3:{'rcc8': 'ntppi'}; o4,o2:{'rcc8': 'dc'}; o4,o1:{'rcc8': 'dc'};
2.0: o2,o1:{'rcc8': 'dc'}; o1,o2:{'rcc8': 'dc'}; o1,o3:{'rcc8': 'ec'}; o1,o4:{'rcc8': 'po'}; o2,o4:{'rcc8': 'dc'}; o2,o3:{'rcc8': 'dc'}; o3,o2:{'rcc8': 'dc'}; o3,o1:{'rcc8': 'ec'}; o3,o4:{'rcc8': 'ntpp'}; o4,o3:{'rcc8': 'ntppi'}; o4,o2:{'rcc8': 'dc'}; o4,o1:{'rcc8': 'po'};

For users

The following figure presents a flowchart with the main step processes for computing QSRs via the library. Raw data first needs to be converted into the common input data format of QSRlib, which represents a timeseries of the states of the perceived objects, such Cartesian position and rotation, size of the object in each dimension, and allows other custom information about the objects to be kept on a per QSR-need basis. Utility functions are provided that allow easy conversion of the raw data to this standard input data structure. This input data structure, the names of the requested QSRs to be computed and other options that control their behaviours are used to create a request message to the QSRlib server, which upon computation returns a response message that includes the computed QSRs as an output data structure similar to the input one, i.e. a timeseries of the QSRs between the objects, as well as other information.

[image: Flowchart showing the main step processes for computing QSRs via the library.]
The following minimal working example explains how to conduct these steps and use the library to compute QSRs from your data.

Minimal Working Example

Compute QSRs with the MWE script mwe.py in strands_qsr_lib/qsr_lib/scripts/:

./mwe.py <qsr_name>

e.g.

./mwe.py rcc8

MWE source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-
from __future__ import print_function, division
from qsrlib.qsrlib import QSRlib, QSRlib_Request_Message
from qsrlib_io.world_trace import Object_State, World_Trace
import argparse

def pretty_print_world_qsr_trace(which_qsr, qsrlib_response_message):
 print(which_qsr, "request was made at ", str(qsrlib_response_message.timestamp_request_made)
 + " and received at " + str(qsrlib_response_message.timestamp_request_received)
 + " and computed at " + str(qsrlib_response_message.timestamp_qsrs_computed))
 print("---")
 print("Response is:")
 for t in qsrlib_response_message.qsrs.get_sorted_timestamps():
 foo = str(t) + ": "
 for k, v in zip(qsrlib_response_message.qsrs.trace[t].qsrs.keys(),
 qsrlib_response_message.qsrs.trace[t].qsrs.values()):
 foo += str(k) + ":" + str(v.qsr) + "; "
 print(foo)

if __name__ == "__main__":
 # **
 # create a QSRlib object if there isn't one already
 qsrlib = QSRlib()

 # **
 # parse command line arguments
 options = sorted(qsrlib.qsrs_registry.keys())
 parser = argparse.ArgumentParser()
 parser.add_argument("qsr", help="choose qsr: %s" % options, type=str)
 args = parser.parse_args()
 if args.qsr in options:
 which_qsr = args.qsr
 else:
 raise ValueError("qsr not found, keywords: %s" % options)

 # **
 # make some input data
 world = World_Trace()
 o1 = [Object_State(name="o1", timestamp=0, x=1., y=1., width=5., length=8.),
 Object_State(name="o1", timestamp=1, x=1., y=2., width=5., length=8.),
 Object_State(name="o1", timestamp=2, x=1., y=3., width=5., length=8.)]

 o2 = [Object_State(name="o2", timestamp=0, x=11., y=1., width=5., length=8.),
 Object_State(name="o2", timestamp=1, x=11., y=2., width=5., length=8.),
 Object_State(name="o2", timestamp=2, x=11., y=3., width=5., length=8.)]
 world.add_object_state_series(o1)
 world.add_object_state_series(o2)

 # **
 # make a QSRlib request message
 qsrlib_request_message = QSRlib_Request_Message(which_qsr=which_qsr, input_data=world)
 # request your QSRs
 qsrlib_response_message = qsrlib.request_qsrs(request_message=qsrlib_request_message)

 # **
 # print out your QSRs
 pretty_print_world_qsr_trace(which_qsr, qsrlib_response_message)

Line-by-line explanation

Basically the above code consists of the following simple steps:

	Create a QSRlib object

	Convert your data in to QSRlib standard input format

	Make a request to QSRlib

	Parse the QSRlib response

With the first three being the necessary ones and the parsing step
provided as an example to give you insight on the QSRlib response data
structure.

Create a QSRlib object

qsrlib = QSRlib()

Note

This step can be omitted if you want to use QSRlib with ROS.

Convert your data in to QSRlib standard input format

Below is one way of creating your input data. You can find more details on how to convert your data
in QSRlib input format in the Section about the I/O data structures.

world = World_Trace()
o1 = [Object_State(name="o1", timestamp=0, x=1., y=1., width=5., length=8.),
 Object_State(name="o1", timestamp=1, x=1., y=2., width=5., length=8.),
 Object_State(name="o1", timestamp=2, x=1., y=3., width=5., length=8.)]

o2 = [Object_State(name="o2", timestamp=0, x=11., y=1., width=5., length=8.),
 Object_State(name="o2", timestamp=1, x=11., y=2., width=5., length=8.),
 Object_State(name="o2", timestamp=2, x=11., y=3., width=5., length=8.)]
world.add_object_state_series(o1)
world.add_object_state_series(o2)

Make a request to QSRlib

make a QSRlib request message
qsrlib_request_message = QSRlib_Request_Message(which_qsr=which_qsr, input_data=world)
request your QSRs
qsrlib_response_message = qsrlib.request_qsrs(request_message=qsrlib_request_message)

Via ROS

If you want to use ROS then you need to firstly run the QSRlib ROS
server as follows:

rosrun qsr_lib qsrlib_ros_server.py

and the request is slightly different:

try:
 import rospy
 from qsrlib_ros.qsrlib_ros_client import QSRlib_ROS_Client
except ImportError:
 raise ImportError("ROS not found")
try:
 import cPickle as pickle
except:
 import pickle
client_node = rospy.init_node("qsr_lib_ros_client_example")
cln = QSRlib_ROS_Client()
qsrlib_request_message = QSRlib_Request_Message(which_qsr=which_qsr, input_data=world)
req = cln.make_ros_request_message(qsrlib_request_message)
res = cln.request_qsrs(req)
qsrlib_response_message = pickle.loads(res.data)

Parse the QSRlib response

def pretty_print_world_qsr_trace(which_qsr, qsrlib_response_message):
 print(which_qsr, "request was made at ", str(qsrlib_response_message.timestamp_request_made)
 + " and received at " + str(qsrlib_response_message.timestamp_request_received)
 + " and computed at " + str(qsrlib_response_message.timestamp_qsrs_computed))
 print("---")
 print("Response is:")
 for t in qsrlib_response_message.qsrs.get_sorted_timestamps():
 foo = str(t) + ": "
 for k, v in zip(qsrlib_response_message.qsrs.trace[t].qsrs.keys(),
 qsrlib_response_message.qsrs.trace[t].qsrs.values()):
 foo += str(k) + ":" + str(v.qsr) + "; "
 print(foo)

Advanced Topics

I/O data structures

Input: World_Trace

QSRlib acccepts input in its own standard format,
which is a World_Trace object.

World_Trace provides a number of convenience methods to convert your data into this format.
One additional handy method, further to the one presented earlier in the MWE section, is
add_object_track_from_list,
which allows to add an object’s positions stored in a list of tuples.

The main member of World_Trace is trace, which is a python dictionary with keys being timestamps
and values being objects of the class
World_State. In a World_State object the main member is
objects, which is again a dictionary with keys being the unique name of the object and values
objects of the class Object_State. An Object_State object
holds the information about an object in the world at that particular timestamp.

So for example to get the x-coordinate of an object called o1 at timestamp 4 from a World_Trace
object called world we would write:

world.trace[4].objects['o1'].x

Note

World_Trace should not be confused with the QSRlib request message.

Output: World_QSR_Trace

The standard output data structure is an object of type
World_QSR_Trace.

The main member of World_QSR_Trace is trace, which is a dictionary with keys being the timestamps
of the QSRs and usually matching those of World_Trace
(depends on QSR type, request parameters, missing values, etc.), and values being objects of the class
World_QSR_State. In a World_QSR_State object the main
member is qsrs, which is a dictionary where the keys are unique combinations of the objects for which
the QSR is, and values being objects of the class QSR. The QSR object
holds, among other information, the QSR value.

For example, for readinging the RCC8 relation at timestamp 4 between objects 'o1,o2'
of a world_qsr object we would do:

world_qsr.trace[4].qsrs['o1,o2'].qsr['rcc8']

A number of convenience slicing functions exist in the class.

Note

World_QSR_Trace should not be confused with the QSRlib response message.

Request/Response messages

Request message

Once we have our input data in the standard QSRlib input format, i.e. as a World_Trace object, the next step is
to create a request message that is passed as argument in the QSRlib request call (as also explained in the
MWE example).

The request message is an object of the class QSRlib_Request_Message.
The compulsory arguments are input_data which is your World_Trace object that you created before and
the which_qsr which is your requested QSR. If you want only one QSR to be computed it is a string, otherwise
if you want to compute multiple QSRs in one call pass their names as a list. The optional argument req_made_at
can be safely ignored. The second optional argument dynamic_args is in brief a dictionary with your call and QSR
specific parameters.

Response message

The response message of QSRlib is an object of the
class QSRlib_Response_Message.
The main field of it is the qsrs one that holds your computed QSRs as a World_QSR_Trace object.
The remaining ones are simply timestamps of the process and can be safely ignored.

dynamic_args

Requesting QSRs for specific objects only

Each QSR has a default behavior for which objects to compute QSRs for. Typically, this is for all valid combinations
of the objects in the World_Trace. One way to compute QSRs for specific objects is to use the slicing utilities
and subsample the World_Trace. Still, this might not have the desired effect as most QSRs will also create relations
for mirror pairs as well, e.g. the RCC relations computed for two objects o1 and o2 will be for both o1,o2 as well as
o2,o1.

For these reasons QSRlib allows the user to specify valid objects that are passed in the request in the dynamic_args
field. It is easier to explain the usage with the examples shown below.

For all cases assument that we have a World_Trace of three objects o1, o2 and o3, and we want to compute two dyadic QSRs
CARDIR and RCC8, and one monadic MOS.

By default the dyadic QSRs will be computed for o1,o2; o1,o3; o2,o3; o3,o1; and o3,o2; and mos relations will be
computed for o1;o2; and o3.

Example 1:
Suppose we want to compute QSR relations for o1,o2 for the dyadic QSRs and for o1 and o2 for MOS. All we need to do is
define a dynamic_args as follows (and then pass it to our request).

dynamic_args = {'for_all_qsrs': {'qsrs_for': [('o1', 'o2'), 'o1', 'o2']}}

Example 2:
Now, suppose that we want to compute CARDIR relations for o1,o2 and o2,o3, RCC8 relations for o1,o3 and MOS
relations for o1 only. This is possible by defining the following dynamic_args:

dynamic_args = {'cardir': {'qsrs_for': [('o1', 'o2'), ('o2', 'o3')]},
 'rcc8': {'qsrs_for': [('o1', 'o3')]},
 'mos': {'qsrs_for': ['o1']}}

Note

We can mix the global namespace ‘for_all_qsrs’ with the QSR specific namespace, but note that
parameters in the QSR namespace always take precedence over the global one.

QSR specific parameters

Further to the qsrs_for option of dynamic args which is common for all QSRs,
some of the QSRs allow some form of customization during the request call via their namespace in dynamic_args.
What options are available depends on each QSR and is the options are given and described in their own API pages.

An example is shown below using MOS, which can take a parameter called ‘quantisation_factor’
that determines the minimum distance of an object between two frames in order to be considered that it has moved.

dynamic_args = {'mos': {'quantisation_factor': 1.0}}

Of course we can still mix QSR specific parameters with common ones. So we wanted to compute MOS relations with the
above quantisation factor for only object o1 when there are more we could do:

dynamic_args = {'mos': {'quantisation_factor': 1.0,
 'qsrs_for': ['o1']}}

Graph representation

QSRlib provides also functionalities to represent time-series QSRs as a graph structure,
called Qualitative Spatio-Temporal Activity Graphs (QSTAG).
For details, please refer to its documentation.

ROS calls

The example of a ROS call in the MWE provides a good summary of the usage.
For further details have a look in the API of the
ROS QSRlib client.

For developers

This section provides information for developers that wish extend QSRlib with new QSRs.
This process consists of two steps:

	Implement a new QSR

	Register the new QSR with QSRlib

Howto: New QSRs

Implementation

Find below a minimally working example:

from __future__ import print_function, division
from qsrlib_qsrs.qsr_dyadic_abstractclass import QSR_Dyadic_1t_Abstractclass

class QSR_MWE(QSR_Dyadic_1t_Abstractclass):
 _unique_id = "mwe"
 _all_possible_relations = ("left", "together", "right")
 _dtype = "points"

 def __init__(self):
 super(QSR_MWE, self).__init__()

 def _compute_qsr(self, data1, data2, qsr_params, **kwargs):
 return {
 data1.x < data2.x: "left",
 data1.x > data2.x: "right"
 }.get(True, "together")

Line-by-line explanation

class QSR_MWE(QSR_Dyadic_1t_Abstractclass):

Our class inherits from one of the special case abstract classes (more
to this later). For now, we need to define the following abstract properties.

_unique_id = "mwe"
_all_possible_relations = ("left", "together", "right")
_dtype = "points"

	_unique_id: This is the name of the QSR. You can call it what you want but it must be unique among all QSRs and preferably as short as possible with.

	all_possible_relations: A list (or tuple) of all the possible values that the QSR can take. It can be anything you like.

	_dtype: With what type of data your QSR works with. For example, they might be points, or they might be bounding boxes. For what you can use look in the QSR abstractclass self._dtype_map.

Then you need to write one function that computes the QSR.

def _compute_qsr(self, data1, data2, qsr_params, **kwargs):
 return {
 data1.x < data2.x: "left",
 data1.x > data2.x: "right"
 }.get(True, "together")

Note

There are different types of parent classes that you
can inherit from. You can see them in the
qsr_monadic_abstractclass.py,
qsr_dyadic_abstractclass.py, and,
qsr_triadic_abstractclass.py
module files.

If one of the “special case” classes like in this example the
class QSR_Dyadic_1t_Abstractclass
does not suit you then you can inherit from one level higher, i.e. from
QSR_Dyadic_Abstractclass
(or from QSR_Monadic_Abstractclass).
In this case you will also have to provide
your own
make_world_qsr_trace
(see the special cases for some example ideas).

Lastly, if none of the monadic and dyadic family classes allow you to
implement your QSR (e.g. you want a triadic QSR) then feel free to
extend it in a similar manner, or file an issue [https://github.com/strands-project/strands_qsr_lib/issues] and we will consider
implementing it the quickest possible.

Registration

Add to strands_qsr_lib/qsr_lib/src/qsrlib_qsrs/__init__.py the
following:

Import your class name in the imports (before the qsrs_registry
line). E.g. for above QSR add the following line:

from qsr_new_mwe import QSR_MWE

Add the new QSR class name in qsrs_registry. E.g. for above QSR:

qsrs_registry = (<some other QSR class names>,
 QSR_MWE)

Advanced Topics

QSR specific parameters

It is possible to change the behavior of a QSR via passing dynamically during the request call argument parameters in
one of its fields that is called dynamic_args. It is recommended to read first the documentation on how it is used in
this page.

In order use QSR specific parameters you will have to overwrite the method
_process_qsr_parameters_from_request_parameters(self, req_params, **kwargs) in your QSR implementation.

Below is an example on how to do it from
MOS QSR.

def _process_qsr_parameters_from_request_parameters(self, req_params, **kwargs):
 """Extract QSR specific parameters from the QSRlib request call parameters.

 :param req_params: QSRlib request call parameters.
 :type req_params: dict
 :param kwargs: kwargs arguments.
 :return: QSR specific parameter settings.
 :rtype: dict
 """
 qsr_params = self.__qsr_params_defaults.copy()
 try:
 qsr_params["quantisation_factor"] = float(req_params["dynamic_args"][self._unique_id]["quantisation_factor"])
 except (KeyError, TypeError):
 try:
 qsr_params["quantisation_factor"] = float(req_params["dynamic_args"]["for_all_qsrs"]["quantisation_factor"])
 except (TypeError, KeyError):
 pass
 return qsr_params

Note

Make sure that the QSR namespace has precedence over the global ‘for_all_qsrs’ one.

Software Architecure

General overview

QSRlib is based on a client-server architecture implemented in python 2.7
although measures for compatibility with 3.x have been adopted. Furthermore, the library is seamlessly exposed to ROS [http://www.ros.org], via a provided interface. The following figures presents a flowchart with the main step processes for computing QSRs via the library. Raw data first needs to be converted into the common input data format of QSRlib, which represents a timeseries of the states of the perceived objects, such Cartesian position and rotation, size of the object in each dimension, and allows other custom information about the objects to be kept on a per QSR-need basis. Utility functions are provided that allow easy conversion of the raw data to this standard input data structure. This input data structure, the names of the requested QSRs to be computed and other options that control their behaviours are used to create a request message to the QSRlib server, which upon computation returns a response message that includes the computed QSRs as an output data structure similar to the input one, i.e. a timeseries of the QSRs between the objects, as well as other information. This was explained in detail in the for users section.

[image: Flowchart showing the main step processes for computing QSRs via the library.]
The following tree shows the list of the main packages and classes that provide the key functionalities.

[image: Tree showing the main packages and classes]

Packages and classes

QSRlib class

[image: UML class diagram]
The QSRlib class is responsible for handling the requests via the request_qsrs method, which takes a QSRlib_Request_Message object as an argument. It also holds a registry of the QSRs included in the library through a dictionary whose keys are the unique names of the QSRs and values are class instantiations of the corresponding QSR classes.

Request message class

[image: UML class diagram]
The information needed for QSRlib to process a request is packed in the
QSRlib_Request_Message class. The minimum information needed is the input data (input_data) in the format of a World_Trace object and which QSR(s) are to be computed (which_qsr) in the form of a unique string QSR identifier for computing a single QSR, or a list of string identifiers for multiple ones. Optionally, it is possible to change the default behaviours of the requested QSRs by passing a dictionary of appropriate values in the dynamic_args argument.

Response message class

[image: UML class diagram]
The information returned by QSRlib is an object of the class QSRlib_Request_Message, which mainly consists of the computed QSRs in the qsrs member and is a World_QSR_Trace object. If requested, a graph representation of QSRs, which contains additional temporal information about them is also returned in the qstag member.

Input data structure classes

[image: UML class diagram]
QSRs usually require input Cartesian poses of some objects (e.g. TPCC and
distance-based), size of the objects as they work with regions (e.g. RCC and RA), time-series of poses (e.g. QTC). As such, a common and complete representation is needed in order to be able to re-use the data easily and
transparently with a number of different QSRs.

For this reason, QSRlib uses its own input format, which is an object of the
World_Trace class. This allows to re-use the input data, once the raw data are converted into this standard input format, without the need to do each time specific pre-processing depending on the QSRs’ requirements. A further advantage is that developers of new QSRs can expect that the input will always have the same structure.

The variable that holds the objects data is the World_Trace.trace member, which is a python dictionary with keys being float timestamps and values being objects of the class World_State. The World_State class describes the state of the world at one particular time. Its main members are timestamp which is a float variable representing the time of this world state and is the same as the corresponding key in World_Trace.trace dictionary, and, objects which holds the information about the objects. Like trace, objects is a dictionary with keys being the unique name of the object and values being objects of the class Object_State. Finally, an Object_State object holds the information about an object in the world at that particular timestamp. Object_State has already members for the most common spatial information about an object, such as coordinates, size and rotation, and allows dynamic expandability if needed by a QSR via dynamic arguments in its constructor.

Output data structure class

[image: UML class diagram]
QSRs are commonly represented symbolically, for example RCC8 relations are denoted as ‘dc’ for ‘disconnected’, ‘po’ for ‘partially overlapping’, ‘eq’ for ‘is equal to’, etc. The output of QSRlib is in a standard format similar to the input one. It is an object of the class World_QSR_Trace. The main member is trace which is a dictionary where typically with the exception of specific QSRs (e.g. validated QTC series) the keys are the same timestamps as in the World_Trace.trace dictionary, and the values are objects of World_QSR_State. A World_QSR_State object holds the QSRs at a particular time in the form of a dictionary, called qsrs, which has as keys unique string identifiers obtained from the object(s), and values are objects of the class QSR. The main member of a QSR object is a dictionary, called qsr, that has as keys the unique names of the QSRs and values the corresponding computed QSR strings.

QSR classes

Each QSR is implemented in its own class which inherits from one of the
pre-defined abstract prototype classes. The lower level, with respect to inheritance hierachy, prototypes aim to make the implementation of new QSRs as quick and easy as possible by providing interfaces that hide most of the common QSRlib backend code. Higher level prototypes provide incremental freedom at the cost of writing more code, with the top level abstract class giving complete flexibility to implement any type of QSR.

The following diagram shows a sample of the existing QSRs and their inheritance hierarchy.

[image: Class inheritance diagram]
Typically a QSR class should not need to inherit directly from the top level prototype (QSR_Abstractclass). Level 2 abstract classes specify generic prototypes for computing QSRs over a single object (QSR_Monadic_Abstractclass), a pair of objects (QSR_Dyadic_Abstractclass) or three objects (QSR_Triadic_Abstractclass). If a new QSR requires four objects or more then it can inherit directly from the top level (QSR_Abstractclass). Alternatively, it can firstly implement a level~2 abstract class in a similar manner to the others (and optionally a level~3 also), and inherit directly from it; this is the recommended approach. Level~3 abstract classes are common time-specific special cases. For example, QSR_Monadic_2t_Abstractclass implements the interface for QSRs that require input data of a single object over two different time points; QSR_Dyadic_1t_Abstractclass requires input data from two different objects for a single time point, etc.

A specific example of a QSR inheritance is shown in the following UML diagram.

[image: QSR inheritance example]

License

The MIT License (MIT)

Copyright (c) 2014 STRANDS http://strands-project.eu

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

People

	Yiannis Gatsoulis <y.gatsoulis@leeds.ac.uk>, University of Leeds

	Christian Dondrup <cdondrup@lincoln.ac.uk>, University of Lincoln

	Chris Burbridge <c.j.c.burbridge@cs.bham.ac.uk>, University of Birmigham

	Peter Lightbody <pet1330@gmail.com>, University of Lincoln

	Paul Duckworth <scpd@leeds.ac.uk>, University of Leeds

	Muhannad Alomari <scmara@leeds.ac.uk>, University of Leeds

	Marc Hanheide <marc@hanheide.net>, University of Lincoln

	Nick Hawes <n.a.hawes@cs.bham.ac.uk>, University of Birmigham

	Tony Cohn <a.g.cogn@leeds.ac.uk>, University of Leeds

We would like to gratefull acknowledge the financial support of the EC under FP7 project STRANDS, 600623.

API

	qsrlib package
	Submodules
	qsrlib.qsrlib module

	Module contents

	qsrlib_io package
	Submodules
	qsrlib_io.world_trace module

	qsrlib_io.world_qsr_trace module

	Module contents

	qsrlib_qsrs package
	Submodules
	qsrlib_qsrs.qsr_abstractclass module

	qsrlib_qsrs.qsr_arg_prob_relations_distance module

	qsrlib_qsrs.qsr_arg_relations_abstractclass module

	qsrlib_qsrs.qsr_arg_relations_distance module

	qsrlib_qsrs.qsr_cardinal_direction module

	qsrlib_qsrs.qsr_dyadic_abstractclass module

	qsrlib_qsrs.qsr_monadic_abstractclass module

	qsrlib_qsrs.qsr_moving_or_stationary module

	qsrlib_qsrs.qsr_new_mwe module

	qsrlib_qsrs.qsr_qtc_b_simplified module

	qsrlib_qsrs.qsr_qtc_bc_simplified module

	qsrlib_qsrs.qsr_qtc_c_simplified module

	qsrlib_qsrs.qsr_qtc_simplified_abstractclass module

	qsrlib_qsrs.qsr_ra module

	qsrlib_qsrs.qsr_rcc2 module

	qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d module

	qsrlib_qsrs.qsr_rcc4 module

	qsrlib_qsrs.qsr_rcc5 module

	qsrlib_qsrs.qsr_rcc8 module

	qsrlib_qsrs.qsr_rcc_abstractclass module

	qsrlib_qsrs.qsr_tpcc module

	qsrlib_qsrs.qsr_triadic_abstractclass module

	Module contents

	qsrlib_qstag package
	Submodules
	qsrlib_qstag.qsr_episodes module

	qsrlib_qstag.qstag module

	Module contents

	qsrlib_ros package
	Submodules
	qsrlib_ros.qsrlib_ros_client module

	Module contents

	qsrlib_utils package
	Submodules
	qsrlib_utils.combinations_and_permutations module

	qsrlib_utils.ros_utils module

	qsrlib_utils.utils module

	Module contents

qsrlib package

Submodules

	qsrlib.qsrlib module

Module contents

qsrlib.qsrlib module

qsrlib_io package

Submodules

	qsrlib_io.world_trace module

	qsrlib_io.world_qsr_trace module

Module contents

qsrlib_io.world_trace module

	
class qsrlib_io.world_trace.Object_State(name, timestamp, x=nan, y=nan, z=nan, xsize=nan, ysize=nan, zsize=nan, rotation=(), *args, **kwargs)

	Bases: object

Data class structure that is holding various information about an object.

	
args = None

	Optional args.

	
kwargs = None

	Optional kwargs.

	
name = None

	str: Name of the object.

	
return_bounding_box_2d(xsize_minimal=0, ysize_minimal=0)

	Compute the 2D bounding box of the object.

	Parameters

	
	xsize_minimal (positive int or float) – If object has no x-size (i.e. a point) then compute bounding box based on this minimal x-size.

	ysize_minimal (positive int or float) – If object has no y-size (i.e. a point) then compute bounding box based on this minimal y-size.

	Returns

	The 2D coordinates of the first (closest to origin) and third (farthest from origin) corners of the bounding box.

	Return type

	list of 4 int or float

	
rotation

	tuple or list of float: Rotation of the object in roll-pitch-yaw form (r,p,y) or quaternion (x,y,z,w) one.

	
timestamp = None

	float: Timestamp of the object state, which matches the corresponding key t in World_Trace.trace[t].

	
x = None

	int or float: x-coordinate of the center point.

	
xsize

	positive int or float: Total x-size.

	
y = None

	int or float: y-coordinate of the center point.

	
ysize

	positive int or float: Total y-size.

	
z = None

	int or float: z-coordinate of the center point.

	
zsize

	positive int or float: Total z-size.

	
class qsrlib_io.world_trace.World_State(timestamp, objects=None)

	Bases: object

Data class structure that is holding various information about the world at a particular time.

	
add_object_state(object_state)

	Add/Overwrite an object state.

	Parameters

	object_state (Object_State) – Object state to be added in the world state.

	
objects = None

	dict: Holds the state of the objects that exist in this world state, i.e. a dict of objects of type
Object_State with the keys being the objects names.

	
timestamp = None

	float: Timestamp of the object, which matches the corresponding key t in World_Trace.trace[t].

	
class qsrlib_io.world_trace.World_Trace(description='', trace=None)

	Bases: object

Data class structure that is holding a time series of the world states.

	
add_object_state(object_state, timestamp=None)

	Add/Overwrite an Object_State object.

	Parameters

	
	object_state (Object_State) – The object state.

	timestamp (int or float) – The timestamp where the object state is to be inserted, if not given it is added in the timestamp of the object state.

	
add_object_state_series(object_states)

	Add a series of object states.

	Parameters

	object_states (list or tuple) – The object states, i.e. a list of Object_State objects.

	
add_object_track_from_list(track, obj_name, t0=0, **kwargs)

	Add the objects data to the world_trace from a list of values.

It is capable of handling 2D and 3D points, 2D and 3D bounding boxes.

Basically:

	2D points: tuples have length of 2 (x, y).

	3D points: tuples have length of 3 (x, y, z).

	2D bounding boxes: tuples have length of 4 (x, y, xsize,y_size).

	3D bounding boxes: tuples have length of 6 (x, y, z, xsize, ysize, zsize).

	Parameters

	
	track (list or tuple of list(s) or tuple(s)) – List of tuples of data.

	obj_name (str) – Name of the object.

	t0 (int or float) – First timestamp to offset timestamps.

	kwargs – kwargs arguments.

	
description = None

	str: Optional description of the world.

	
get_at_timestamp_range(start=None, stop=None, istep=1, copy_by_reference=False, include_finish=True)

	Return a subsample between start and stop timestamps.

	Parameters

	
	start (int or float) – Start timestamp.

	stop (int or float) – Finish timestamp. If empty then stop is set to the last timestamp.

	istep (int) – subsample based on step measured in timestamps list index

	copy_by_reference (bool) – Return a copy or by reference.

	include_finish (bool) – Whether to include or not the world state at the stop timestamp.

	Returns

	Subsample between start and stop.

	Return type

	World_Trace

	
get_for_objects(objects_names, copy_by_reference=False)

	Return a subsample for requested objects.

	Parameters

	
	objects_names (list or tuple of str) – Requested objects names.

	copy_by_reference (bool) – Return a copy or by reference.

	Returns

	Subsample for the requested objects.

	Return type

	World_Trace

	
get_last_state(copy_by_reference=False)

	Get the last world state.

	Parameters

	copy_by_reference (bool) – Return a copy or by reference.

	Returns

	The last state in self.trace.

	Return type

	World_State

	
get_sorted_timestamps()

	Return a sorted list of the timestamps.

	Returns

	Sorted list of the timestamps.

	Return type

	list

	
trace = None

	dict: Time series of world states, i.e. a dict of objects of type World_State with the keys being the timestamps.

qsrlib_io.world_qsr_trace module

	
class qsrlib_io.world_qsr_trace.QSR(timestamp, between, qsr, qsr_type='')

	Bases: object

Data class structure that is holding the QSR and other related information.

	
between = None

	str: For which object(s) is the QSR for. Multiple objects are comma separated, e.g. “o1,o2”.

	
qsr = None

	dict: QSR value(s). It is a dictionary where the keys are the unique names of each QSR and the values
are the QSR values as strings.

	
timestamp = None

	float: Timestamp of the QSR, which usually matches the corresponding key t in World_QSR_Trace.trace[t].

	
type = None

	str: Name of the QSR. For multiple QSRs it is usually a sorted comma separated string.

	
class qsrlib_io.world_qsr_trace.World_QSR_State(timestamp, qsrs=None)

	Bases: object

Data class structure that is holding various information about the QSR world at a particular time.

	
add_qsr(qsr)

	Add/Overwrite a QSR object to the state.

	Parameters

	qsr (QSR) – QSR to be added in the world QSR state.

	
qsrs = None

	dict: Holds the QSRs that exist in this world QSR state, i.e. a dict of objects of type QSR with the keys
being the object(s) names that these QSR are for.

	
timestamp = None

	float: Timestamp of the state, which matches the corresponding key t in World_QSR_Trace.trace[t].

	
class qsrlib_io.world_qsr_trace.World_QSR_Trace(qsr_type, trace=None)

	Bases: object

Data class structure that is holding a time series of the world QSR states.

	
add_qsr(qsr, timestamp)

	Add/Overwrite a QSR at timestamp.

	Parameters

	
	qsr (QSR) – QSR object to be added.

	timestamp (float) – Timestamp of the QSR.

	
add_world_qsr_state(world_qsr_state)

	Add/Overwrite a world QSR state.

	Parameters

	world_qsr_state (World_QSR_State) – World QSR state to be added.

	
get_at_timestamp_range(start=None, stop=None, istep=1, copy_by_reference=False, include_finish=True)

	Return a subsample between start and stop timestamps.

	Parameters

	
	start (int or float) – Sstart timestamp.

	stop (int or float) – Finish timestamp. If empty then stop is set to the last timestamp.

	istep (int) – subsample based on istep measured in timestamps list index

	copy_by_reference (bool) – Return a copy or by reference.

	include_finish (bool) – Whether to include or not the world state at the stop timestamp.

	Returns

	Subsample between start and stop.

	Return type

	World_QSR_Trace

	
get_for_objects(objects_names, copy_by_reference=False)

	Return a subsample for requested objects.

	Parameters

	
	objects_names (list or tuple of str) – Requested objects names.

	copy_by_reference (bool) – Return a copy or by reference.

	Returns

	Subsample for the requested objects.

	Return type

	World_QSR_Trace

	
get_for_qsrs(qsrs_list)

	Return a subsample for requested QSRs only.

	Parameters

	qsrs_list (list of str) – List of requested QSRs.

	Returns

	Subsample for the requested QSRs.

	Return type

	World_QSR_Trace

	
get_last_state(copy_by_reference=False)

	Get the last world QSR state.

	Parameters

	copy_by_reference (bool) – Return a copy or by reference.

	Returns

	Last world QSR state in self.trace.

	Return type

	World_QSR_State

	
get_sorted_timestamps()

	Return a sorted list of the timestamps.

	Returns

	Sorted list of the timestamps.

	Return type

	list of floats

	
put_empty_world_qsr_state(timestamp)

	Put an empty World_QSR_State object at timestamp.

	Parameters

	timestamp (float) – Timestamp of where to add an empty World_QSR_State

	Returns

	

	
qsr_type = None

	str: Name of the QSR. For multiple QSRs it is usually a sorted comma separated string.

	
trace = None

	dict: Time series of world QSR states, i.e. a dict of objects of type World_QSR_State with the keys being the timestamps.

qsrlib_qsrs package

Submodules

	qsrlib_qsrs.qsr_abstractclass module

	qsrlib_qsrs.qsr_arg_prob_relations_distance module

	qsrlib_qsrs.qsr_arg_relations_abstractclass module

	qsrlib_qsrs.qsr_arg_relations_distance module

	qsrlib_qsrs.qsr_cardinal_direction module

	qsrlib_qsrs.qsr_dyadic_abstractclass module

	qsrlib_qsrs.qsr_monadic_abstractclass module

	qsrlib_qsrs.qsr_moving_or_stationary module

	qsrlib_qsrs.qsr_new_mwe module

	qsrlib_qsrs.qsr_qtc_b_simplified module

	qsrlib_qsrs.qsr_qtc_bc_simplified module

	qsrlib_qsrs.qsr_qtc_c_simplified module

	qsrlib_qsrs.qsr_qtc_simplified_abstractclass module

	qsrlib_qsrs.qsr_ra module

	qsrlib_qsrs.qsr_rcc2 module

	qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d module

	qsrlib_qsrs.qsr_rcc4 module

	qsrlib_qsrs.qsr_rcc5 module

	qsrlib_qsrs.qsr_rcc8 module

	qsrlib_qsrs.qsr_rcc_abstractclass module

	qsrlib_qsrs.qsr_tpcc module

	qsrlib_qsrs.qsr_triadic_abstractclass module

Module contents

qsrlib_qsrs.qsr_abstractclass module

	
class qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass

	Bases: object

Root abstract class of the QSR implementators.

	Abstract properties

	
	_unique_id (str): Unique identifier of a QSR.

	_all_possible_relations (tuple): All possible relations of a QSR.

	_dtype (str): Kind of data the QSR operates with, see self._dtype_map for possible values.

	Members

	
	_dtype_map (dict): Mapping of _dtype to methods. It contains:

	“points”: self._return_points

	“bounding_boxes”: self._return_bounding_boxes_2d

	“bounding_boxes_2d”: self._return_bounding_boxes_2d

	
all_possible_relations

	Getter for all the possible relations of a QSR.

	Returns

	self._all_possible_relations

	Return type

	tuple

	
get_qsrs(**req_params)

	Compute the QSRs.

This method is called from QSRlib so no need to call it directly from anywhere else.

	Parameters

	req_params (dict) – Request parameters.

	Returns

	Computed world qsr trace.

	Return type

	World_QSR_Trace

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	The main function that generates the world QSR trace.

	QSR classes inheriting from the general purpose meta-abstract classes (e.g. QSR_Monadic_Abstractclass, QSR_Dyadic_Abstractclass , etc.) need to provide this function.

	When inheriting from one of the special case meta-abstract classes (e.g. QSR_Monadic_2t_Abstractclass, QSR_Dyadic_1t_Abstractclass, etc.) then usually there is no need to do so; check with the documentation of these special cases to see if they already implement one.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	dynamic_args (dict) – Dynamic arguments passed with the request.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
unique_id

	Getter for the unique identifier of a QSR.

	Returns

	self._unique_id

	Return type

	str

qsrlib_qsrs.qsr_arg_prob_relations_distance module

	
class qsrlib_qsrs.qsr_arg_prob_relations_distance.QSR_Arg_Prob_Relations_Distance

	Bases: qsrlib_qsrs.qsr_arg_relations_distance.QSR_Arg_Relations_Distance

Probabilistic ard-distances.

	Values of the abstract properties

	
	_unique_id = “argprobd”

	_all_possible_relations = depends on what user has passed

	_dtype = “points”

	QSR Parameters (for dynamic_args)

	
	‘qsr_relations_and_values’: A dictionary with keys being the relations labels and values

See also

For further details, refer to its description.

	
allowed_value_types = None

	tuple of datatypes: ?

	
value_sort_key = None

	?

qsrlib_qsrs.qsr_arg_relations_abstractclass module

	
class qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

Abstract class of argument relations.

	
all_possible_values = None

	tuple: List of distance thresholds from qsr_relations_and_values, corresponding to the order of self._all_possible_relations.

	
allowed_value_types = None

	tuple: Allowed types of the thresholds.

	
qsr_relations_and_values = None

	dict: Holds the passed qsr_relations_and_values dict in dynamic_args.

	
value_sort_key = None

	type depends on implementation: The method that the QSR labels are sorted based on their values.

qsrlib_qsrs.qsr_arg_relations_distance module

	
class qsrlib_qsrs.qsr_arg_relations_distance.QSR_Arg_Relations_Distance

	Bases: qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass

Argument distance relations.

Note

The relations are defined on the intervals of distance thresholds [dk, dk+1).

	Values of the abstract properties

	
	_unique_id = “argd”

	_all_possible_relations = depends on what user has passed

	_dtype = “points”

	QSR specific dynamic_args

	
	‘qsr_relations_and_values’: A dictionary with keys being the relations labels and values the distance thresholds as an int or a float.

See also

For further details, refer to its description.

	
allowed_value_types = None

	tuple: distance thresholds can only be int or float

	
value_sort_key = None

	operator.itemgetter: Sort keys/values by threshold value.

qsrlib_qsrs.qsr_cardinal_direction module

	
class qsrlib_qsrs.qsr_cardinal_direction.QSR_Cardinal_Direction

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

Cardinal direction relations.

	Values of the abstract properties

	
	_unique_id = “cardir”

	_all_possible_relations = (“n”, “ne”, “e”, “se”, “s”, “sw”, “w”, “nw”, “eq”)

	_dtype = “bounding_boxes_2d”

Some explanation about the QSR or better link to a separate webpage explaining it. Maybe a reference if it exists.

qsrlib_qsrs.qsr_dyadic_abstractclass module

	
class qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_Abstractclass

Special case abstract class of dyadic QSRs. Works with dyadic QSRs that require data over one timestamp.

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	Compute the world QSR trace from the arguments.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	req_params (dict) – Request parameters.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
class qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_Abstractclass

	Bases: qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass

Abstract class of dyadic QSRs, i.e. QSRs that are computed over two objects.

qsrlib_qsrs.qsr_monadic_abstractclass module

	
class qsrlib_qsrs.qsr_monadic_abstractclass.QSR_Monadic_2t_Abstractclass

	Bases: qsrlib_qsrs.qsr_monadic_abstractclass.QSR_Monadic_Abstractclass

Special case abstract class of monadic QSRs. Works with monadic QSRs that require data over two timestamps.

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	Compute the world QSR trace from the arguments.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	req_params (dict) – Request parameters.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
class qsrlib_qsrs.qsr_monadic_abstractclass.QSR_Monadic_Abstractclass

	Bases: qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass

Abstract class of monadic QSRs, i.e. QSRs that are computed over a single object.

qsrlib_qsrs.qsr_moving_or_stationary module

	
class qsrlib_qsrs.qsr_moving_or_stationary.QSR_Moving_or_Stationary

	Bases: qsrlib_qsrs.qsr_monadic_abstractclass.QSR_Monadic_2t_Abstractclass

Computes moving or stationary relations.

	Values of the abstract properties

	
	_unique_id = “mos”

	_all_possible_relations = (“m”, “s”)

	_dtype = “points”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines minimal Euclidean distance to be considered as moving.

Some explanation about the QSR or better link to a separate webpage explaining it. Maybe a reference if it exists.

qsrlib_qsrs.qsr_new_mwe module

	
class qsrlib_qsrs.qsr_new_mwe.QSR_MWE

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

Minimal Working Example (MWE) of making a new QSR.

	Values of the abstract properties

	
	_unique_id = “mwe”

	_all_possible_relations = (“left”, “together”, “right”)

	_dtype = “points”

See also

For further details about MWE, refer to its description.

qsrlib_qsrs.qsr_qtc_b_simplified module

	
class qsrlib_qsrs.qsr_qtc_b_simplified.QSR_QTC_B_Simplified

	Bases: qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass

QTCB simplified relations.

	Values of the abstract properties

	
	_unique_id = “qtcbs”

	_all_possible_relations = ?

	_dtype = “points”

Some explanation about the QSR or better link to a separate webpage explaining it. Maybe a reference if it exists.

	
qtc_to_output_format(qtc)

	Return QTCBS specific from QTCCS.

	Parameters

	qtc (list or tuple) – Full QTCC tuple [q1,q2,q4,q5].

	Returns

	{“qtcbs”: “q1,q2”}

	Return type

	dict

	
qtc_type = None

	?

qsrlib_qsrs.qsr_qtc_bc_simplified module

	
class qsrlib_qsrs.qsr_qtc_bc_simplified.QSR_QTC_BC_Simplified

	Bases: qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass

QTCBC simplified relations.

	Values of the abstract properties

	
	_unique_id = “qtcbcs”

	_all_possible_relations = ?

	_dtype = “points”

Some explanation about the QSR or better link to a separate webpage explaining it. Maybe a reference if it exists.

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	Compute the world QSR trace from the arguments.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	req_params – Dynamic arguments passed with the request.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
qtc_to_output_format(qtc)

	Overwrite this for the different QTC variants to select only the parts from the QTCCS tuple that you would
like to return. Example for QTCBS: return qtc[0:2].

	Parameters

	qtc (list or tuple) – Full QTCC tuple [q1,q2,q4,q5].

	Returns

	{“qtcbcs”: “q1,q2,q4,q5”}

	Return type

	dict

	
qtc_type = None

	str: QTC specific type.

qsrlib_qsrs.qsr_qtc_c_simplified module

	
class qsrlib_qsrs.qsr_qtc_c_simplified.QSR_QTC_C_Simplified

	Bases: qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass

QTCB simplified relations.

	Values of the abstract properties

	
	_unique_id = “qtccs”

	_all_possible_relations = ?

	_dtype = “points”

Some explanation about the QSR or better link to a separate webpage explaining it. Maybe a reference if it exists.

	
qtc_to_output_format(qtc)

	Return QTCCS.

	Parameters

	qtc (list or tuple) – Full QTCC tuple [q1,q2,q4,q5].

	Returns

	{“qtccs”: “q1,q2,q4,q5”}

	Return type

	dict

	
qtc_type = None

	str: QTC specific type.

qsrlib_qsrs.qsr_qtc_simplified_abstractclass module

	
class qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_Abstractclass

QTCS abstract class.

	
create_qtc_string(qtc)

	

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	Compute the world QSR trace from the arguments.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	req_params (dict) – Request parameters.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
qtc_to_output_format(qtc)

	Overwrite this for the different QTC variants to select only the parts
from the QTCC tuple that you would like to return.
Example for QTCB: return qtc[0:2]

	Parameters

	qtc – The full QTCC tuple [q1,q2,q4,q5]

	Returns

	The part of the tuple you would to have as a result using create_qtc_string

	
qtc_type = None

	?

	
return_all_possible_state_combinations()

	Return all possible state combinations for the qtc_type defined for this class instance.

	Returns

	All possible state combinations.

	Return type

	
	String representation as a list of possible tuples, or,

	Integer representation as a list of lists of possible tuples

	
exception qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QTCException

	Bases: exceptions.Exception

?

qsrlib_qsrs.qsr_ra module

	
class qsrlib_qsrs.qsr_ra.QSR_RA

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

Rectangle Algebra.

	Members:

	
	_unique_id: “ra”

	_all_possible_relations: (“<”, “>”, “m”, “mi”, “o”, “oi”, “s”, “si”, “d”, “di”, “f”, “fi”, “=”)

	_dtype: “bounding_boxes”

See also

For further details about RA, refer to its description.

qsrlib_qsrs.qsr_rcc2 module

	
class qsrlib_qsrs.qsr_rcc2.QSR_RCC2

	Bases: qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

Symmetrical RCC2 relations.

	Values of the abstract properties

	
	_unique_id = “rcc2”

	_all_possible_relations = (“dc”, “c”)

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

See also

For further details about RCC2, refer to its description.

qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d module

	
class qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d.QSR_RCC3_Rectangle_Bounding_Boxes_2D

	Bases: qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

Symmetrical RCC5 relations.

Warning

RCC3 relations symbols are under consideration and might change in the near future.

	Values of the abstract properties

	
	_unique_id = “rcc3”

	_all_possible_relations = (“dc”, “po”, “o”)

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

See also

For further details about RCC3, refer to its description.

qsrlib_qsrs.qsr_rcc4 module

	
class qsrlib_qsrs.qsr_rcc4.QSR_RCC4

	Bases: qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

Symmetrical RCC4 relations.

	Values of the abstract properties

	
	_unique_id = “rcc4”

	_all_possible_relations = (“dc”, “po”, “pp”, “ppi”)

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

See also

For further details about RCC4, refer to its description.

qsrlib_qsrs.qsr_rcc5 module

	
class qsrlib_qsrs.qsr_rcc5.QSR_RCC5

	Bases: qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

Symmetrical RCC5 relations.

	Values of the abstract properties

	
	_unique_id = “rcc5”

	_all_possible_relations = (“dr”, “po”, “pp”, “ppi”, “eq”)

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

See also

For further details about RCC5, refer to its description.

qsrlib_qsrs.qsr_rcc8 module

	
class qsrlib_qsrs.qsr_rcc8.QSR_RCC8

	Bases: qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

Symmetrical RCC5 relations.

	Values of the abstract properties

	
	_unique_id = “rcc8”

	_all_possible_relations = (“dc”, “ec”, “po”, “eq”, “tpp”, “ntpp”, “tppi”, “ntppi”)

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	‘quantisation_factor’ (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

See also

For further details about RCC8, refer to its description.

qsrlib_qsrs.qsr_rcc_abstractclass module

	
class qsrlib_qsrs.qsr_rcc_abstractclass.QSR_RCC_Abstractclass

	Bases: qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass

Abstract class of RCC relations.

	Values of the abstract properties

	
	_unique_id = defined by the RCC variant.

	_all_possible_relations = defined by the RCC variant.

	_dtype = “bounding_boxes_2d”

	QSR specific dynamic_args

	
	quantisation_factor (float) = 0.0: Threshold that determines whether two rectangle regions are disconnected.

qsrlib_qsrs.qsr_tpcc module

	
class qsrlib_qsrs.qsr_tpcc.QSR_TPCC

	Bases: qsrlib_qsrs.qsr_triadic_abstractclass.QSR_Triadic_1t_Abstractclass

TPCC QSRs.

See also

For further details about TPCC, refer to its description.

qsrlib_qsrs.qsr_triadic_abstractclass module

	
class qsrlib_qsrs.qsr_triadic_abstractclass.QSR_Triadic_1t_Abstractclass

	Bases: qsrlib_qsrs.qsr_triadic_abstractclass.QSR_Triadic_Abstractclass

Special case abstract class of triadic QSRs. Works with triadic QSRs that require data over one timestamp.

	
make_world_qsr_trace(world_trace, timestamps, qsr_params, req_params, **kwargs)

	Compute the world QSR trace from the arguments.

	Parameters

	
	world_trace (World_Trace) – Input data.

	timestamps (list) – List of sorted timestamps of world_trace.

	qsr_params (dict) – QSR specific parameters passed in dynamic_args.

	req_params (dict) – Request parameters.

	kwargs – kwargs arguments.

	Returns

	Computed world QSR trace.

	Return type

	World_QSR_Trace

	
class qsrlib_qsrs.qsr_triadic_abstractclass.QSR_Triadic_Abstractclass

	Bases: qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass

Abstract class of triadic QSRs, i.e. QSRs that are computed over three objects.

qsrlib_qstag package

Submodules

	qsrlib_qstag.qsr_episodes module

	qsrlib_qstag.qstag module

Module contents

qsrlib_qstag.qsr_episodes module

qsrlib_qstag.qstag module

Qualitative Spatio-Temporal Activity Graph module

	
class qsrlib_qstag.qstag.Activity_Graph(world, world_qsr, object_types={}, params={})

	Activity Graph class:
Lower level is a set of only nodes of type ‘object’. Middle level nodes are only of
type ‘spatial_relation’. Top level nodes are only of type ‘temporal_relation’.

Accepts a QSRLib.World_Trace and QSRLib.QSR_World_Trace as input.

	
abstract_graph

	Getter.

	Returns

	self.abstract_graph

	Return type

	igraph.Graph

	
abstract_object_nodes

	Getter.

	Returns

	object_nodes from abstract_graph

	Return type

	list

	
episodes

	Getter.

	Returns

	self.__episodes

	Return type

	list

	
static get_objects_types(objects_types, world)

	Generates a dictionary of object name and object type pairs
Using both the dynamic_args dictionary where key = objects_types, and the
**kwargs value [object_type] in the World Trace object

	Parameters

	
	objects_types (dictionary) – Uses the dynamic_args dictionary where key = objects_types if provided

	world (World_Trace) – Otherwise, looks at the **kwargs value [object_type] in the World Trace object

	Returns

	A dictionary with the object name as keys and the generic object type as value.

	Return type

	dict

	
graph = None

	igraph.Graph: An igraph graph object containing all the object, spatial and temporal nodes.
list: A list of edges connecting the spatial nodes to the object nodes.
list: A list of edges connecting the spatial nodes to the temporal nodes.

	
graphlets = None

	Creates a Graphlets object containing lists of, unique graphlets, hashes and histogram of graphlets.

	
histogram

	Getter.

	Returns

	self.__histogram

	Return type

	dict

	
object_nodes

	Getter.

	Returns

	object_nodes

	Return type

	list

	
spatial_nodes

	Getter.

	Returns

	spatial_nodes

	Return type

	list

	
spatial_obj_edges

	Getter.

	Returns

	self.__spatial_obj_edges

	Return type

	list

	
temp_spatial_edges

	Getter.

	Returns

	self.__temp_spatial_edges

	Return type

	list

	
temporal_nodes

	Getter.

	Returns

	temporal_nodes

	Return type

	list

	
class qsrlib_qstag.qstag.Graphlets(episodes, params, object_types)

	Graphlet class:
Minimal subgraphs of the same structure as the Activity Graph.

	
code_book = None

	list: The list of graphlet hashes (zip with histogram for count of each).

	
graphlets = None

	dict: dictionary of the graphlet hash as key, and the iGraph object as value.

	
histogram = None

	list: The list of graphlet counts (zip with codebook for a hash of each, and check graphlets for the iGraph).

	
qsrlib_qstag.qstag.get_graph(episodes, object_types={})

	Generates a graph from a set of input episode QSRs.

	Parameters

	
	episodes (list) – list of episodes, where one episode = [[obj_list], {QSR dict}, (start, end_tuple)]

	object_types (dict) – a dictionary of object ID and object type.

	Returns

	igraph.Graph: An igraph graph object containing all the object, spatial and temporal nodes.

	Return type

	igraph.Graph

	
qsrlib_qstag.qstag.get_graphlet_selections(episodes, params, object_types, vis=False)

	This function implements Sridar’s validity criteria to select all valid
graphlets from an activity graph: see Sridar_AAAI_2010 for more details.

	Parameters

	
	episodes (list) – list of episodes, where one episode = [[obj_list], {QSR dict}, (start, end_tuple)]

	params (dict) – a dictionary containing parameters for the generation of the QSTAG. i.e. “min_rows”, “max_rows”, “max_eps”

	Return list_of_graphlets

	a list of iGraph graphlet objects

	Return type

	list

	Return list_of_graphlet_hashes

	a list of hashes, relating to the graphlets

	Return type

	list

qsrlib_ros package

Submodules

	qsrlib_ros.qsrlib_ros_client module

Module contents

qsrlib_ros.qsrlib_ros_client module

	
class qsrlib_ros.qsrlib_ros_client.QSRlib_ROS_Client(service_node_name='qsr_lib')

	Bases: object

ROS client of QSRlib.

	
make_ros_request_message(qsrlib_request_message)

	Make a QSRlib ROS service request message from standard QSRlib request message.

	Parameters

	qsrlib_request_message (QSRlib_Request_Message) – The standard QSRlib request message.

	Returns

	The ROS service request message.

	Return type

	qsr_lib.srv.RequestQSRsRequest

	
request_qsrs(req)

	Request to compute QSRs.

	Parameters

	req (qsr_lib.srv.RequestQSRsRequest) – Request message.

	Returns

	ROS service response.

	Return type

	qsr_lib.srv.RequestQSRsResponse

	
service_topic_names = None

	dict: Topic names of the services.

qsrlib_utils package

Submodules

	qsrlib_utils.combinations_and_permutations module

	qsrlib_utils.ros_utils module

	qsrlib_utils.utils module

Module contents

qsrlib_utils.combinations_and_permutations module

	
qsrlib_utils.combinations_and_permutations.possible_pairs(s, mirrors=True)

	Return possible pairs from a set of values.

Assume s = [‘a’, ‘b’]. Then return examples for the following calls are:

	possible_pairs(s) returns [(‘a’, ‘b’), (‘b’, ‘a’)]

	possible_pairs(s, mirros=False) returns [(‘a’, ‘b’)]

	Parameters

	
	s (set or list or tuple) – Names of the elements from which the pairs will be created.

	mirrors (bool) – Include mirrors or not.

	Returns

	List of pairs as tuples.

	Return type

	list of tuples of str

	
qsrlib_utils.combinations_and_permutations.possible_pairs_between_two_lists(s1, s2, mirrors=True)

	Return possible pairs between the elements of two sets.

Assume s1 = [‘a’, ‘b’] and s2 = [‘c’, ‘d’]. Then return examples for the following calls are:

	possible_pairs_between_two_lists(s1, s2) returns [(‘a’, ‘c’), (‘a’, ‘d’), (‘b’, ‘c’), (‘b’, ‘d’), (‘c’, ‘a’), (‘c’, ‘b’), (‘d’, ‘a’), (‘d’, ‘b’)].

	possible_pairs_between_two_lists(s1, s2, mirrors=False) returns [(‘a’, ‘c’), (‘a’, ‘d’), (‘b’, ‘c’), (‘b’, ‘d’)].

	Parameters

	
	s1 (set or list or tuple) – Names of the first elements.

	s2 (set or list or tuple) – Names of the second elements.

	mirrors (bool) – Include mirrors or not.

	Returns

	List of pairs as tuples.

	Return type

	list of tuples of str

	
qsrlib_utils.combinations_and_permutations.possible_triplets(s, mirrors=True)

	Return the possible triplets from the list s.

qsrlib_utils.ros_utils module

	
qsrlib_utils.ros_utils.convert_pythondatetime_to_rostime(pythondatetime)

	Convert datetime from python format to ROS format.

	Parameters

	pythondatetime (datetime) – Python format datetime.

	Returns

	ROS time.

	Return type

	rospy.Time

qsrlib_utils.utils module

 Python Module Index

 q

 		 	

 		
 q	

 	
 	
 qsrlib	

 	[image: -]
 	
 qsrlib_io	

 	
 	
 qsrlib_io.world_qsr_trace	

 	
 	
 qsrlib_io.world_trace	

 	[image: -]
 	
 qsrlib_qsrs	

 	
 	
 qsrlib_qsrs.qsr_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_arg_prob_relations_distance	

 	
 	
 qsrlib_qsrs.qsr_arg_relations_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_arg_relations_distance	

 	
 	
 qsrlib_qsrs.qsr_cardinal_direction	

 	
 	
 qsrlib_qsrs.qsr_dyadic_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_monadic_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_moving_or_stationary	

 	
 	
 qsrlib_qsrs.qsr_new_mwe	

 	
 	
 qsrlib_qsrs.qsr_qtc_b_simplified	

 	
 	
 qsrlib_qsrs.qsr_qtc_bc_simplified	

 	
 	
 qsrlib_qsrs.qsr_qtc_c_simplified	

 	
 	
 qsrlib_qsrs.qsr_qtc_simplified_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_ra	

 	
 	
 qsrlib_qsrs.qsr_rcc2	

 	
 	
 qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d	

 	
 	
 qsrlib_qsrs.qsr_rcc4	

 	
 	
 qsrlib_qsrs.qsr_rcc5	

 	
 	
 qsrlib_qsrs.qsr_rcc8	

 	
 	
 qsrlib_qsrs.qsr_rcc_abstractclass	

 	
 	
 qsrlib_qsrs.qsr_tpcc	

 	
 	
 qsrlib_qsrs.qsr_triadic_abstractclass	

 	[image: -]
 	
 qsrlib_qstag	

 	
 	
 qsrlib_qstag.qstag	

 	[image: -]
 	
 qsrlib_ros	

 	
 	
 qsrlib_ros.qsrlib_ros_client	

 	[image: -]
 	
 qsrlib_utils	

 	
 	
 qsrlib_utils.combinations_and_permutations	

 	
 	
 qsrlib_utils.ros_utils	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	abstract_graph (qsrlib_qstag.qstag.Activity_Graph attribute)

 	abstract_object_nodes (qsrlib_qstag.qstag.Activity_Graph attribute)

 	Activity_Graph (class in qsrlib_qstag.qstag)

 	add_object_state() (qsrlib_io.world_trace.World_State method)

 	(qsrlib_io.world_trace.World_Trace method)

 	add_object_state_series() (qsrlib_io.world_trace.World_Trace method)

 	add_object_track_from_list() (qsrlib_io.world_trace.World_Trace method)

 	add_qsr() (qsrlib_io.world_qsr_trace.World_QSR_State method)

 	(qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	
 	add_world_qsr_state() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	all_possible_relations (qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass attribute)

 	all_possible_values (qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass attribute)

 	allowed_value_types (qsrlib_qsrs.qsr_arg_prob_relations_distance.QSR_Arg_Prob_Relations_Distance attribute)

 	(qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass attribute)

 	(qsrlib_qsrs.qsr_arg_relations_distance.QSR_Arg_Relations_Distance attribute)

 	args (qsrlib_io.world_trace.Object_State attribute)

B

 	
 	between (qsrlib_io.world_qsr_trace.QSR attribute)

C

 	
 	code_book (qsrlib_qstag.qstag.Graphlets attribute)

 	
 	convert_pythondatetime_to_rostime() (in module qsrlib_utils.ros_utils)

 	create_qtc_string() (qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass method)

D

 	
 	description (qsrlib_io.world_trace.World_Trace attribute)

E

 	
 	episodes (qsrlib_qstag.qstag.Activity_Graph attribute)

G

 	
 	get_at_timestamp_range() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	(qsrlib_io.world_trace.World_Trace method)

 	get_for_objects() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	(qsrlib_io.world_trace.World_Trace method)

 	get_for_qsrs() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	get_graph() (in module qsrlib_qstag.qstag)

 	get_graphlet_selections() (in module qsrlib_qstag.qstag)

 	get_last_state() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	(qsrlib_io.world_trace.World_Trace method)

 	
 	get_objects_types() (qsrlib_qstag.qstag.Activity_Graph static method)

 	get_qsrs() (qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass method)

 	get_sorted_timestamps() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

 	(qsrlib_io.world_trace.World_Trace method)

 	graph (qsrlib_qstag.qstag.Activity_Graph attribute)

 	Graphlets (class in qsrlib_qstag.qstag)

 	graphlets (qsrlib_qstag.qstag.Activity_Graph attribute)

 	(qsrlib_qstag.qstag.Graphlets attribute)

H

 	
 	histogram (qsrlib_qstag.qstag.Activity_Graph attribute)

 	(qsrlib_qstag.qstag.Graphlets attribute)

K

 	
 	kwargs (qsrlib_io.world_trace.Object_State attribute)

M

 	
 	make_ros_request_message() (qsrlib_ros.qsrlib_ros_client.QSRlib_ROS_Client method)

 	make_world_qsr_trace() (qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass method)

 	(qsrlib_qsrs.qsr_dyadic_abstractclass.QSR_Dyadic_1t_Abstractclass method)

 	(qsrlib_qsrs.qsr_monadic_abstractclass.QSR_Monadic_2t_Abstractclass method)

 	(qsrlib_qsrs.qsr_qtc_bc_simplified.QSR_QTC_BC_Simplified method)

 	(qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass method)

 	(qsrlib_qsrs.qsr_triadic_abstractclass.QSR_Triadic_1t_Abstractclass method)

N

 	
 	name (qsrlib_io.world_trace.Object_State attribute)

O

 	
 	object_nodes (qsrlib_qstag.qstag.Activity_Graph attribute)

 	
 	Object_State (class in qsrlib_io.world_trace)

 	objects (qsrlib_io.world_trace.World_State attribute)

P

 	
 	possible_pairs() (in module qsrlib_utils.combinations_and_permutations)

 	possible_pairs_between_two_lists() (in module qsrlib_utils.combinations_and_permutations)

 	
 	possible_triplets() (in module qsrlib_utils.combinations_and_permutations)

 	put_empty_world_qsr_state() (qsrlib_io.world_qsr_trace.World_QSR_Trace method)

Q

 	
 	QSR (class in qsrlib_io.world_qsr_trace)

 	qsr (qsrlib_io.world_qsr_trace.QSR attribute)

 	QSR_Abstractclass (class in qsrlib_qsrs.qsr_abstractclass)

 	QSR_Arg_Prob_Relations_Distance (class in qsrlib_qsrs.qsr_arg_prob_relations_distance)

 	QSR_Arg_Relations_Abstractclass (class in qsrlib_qsrs.qsr_arg_relations_abstractclass)

 	QSR_Arg_Relations_Distance (class in qsrlib_qsrs.qsr_arg_relations_distance)

 	QSR_Cardinal_Direction (class in qsrlib_qsrs.qsr_cardinal_direction)

 	QSR_Dyadic_1t_Abstractclass (class in qsrlib_qsrs.qsr_dyadic_abstractclass)

 	QSR_Dyadic_Abstractclass (class in qsrlib_qsrs.qsr_dyadic_abstractclass)

 	QSR_Monadic_2t_Abstractclass (class in qsrlib_qsrs.qsr_monadic_abstractclass)

 	QSR_Monadic_Abstractclass (class in qsrlib_qsrs.qsr_monadic_abstractclass)

 	QSR_Moving_or_Stationary (class in qsrlib_qsrs.qsr_moving_or_stationary)

 	QSR_MWE (class in qsrlib_qsrs.qsr_new_mwe)

 	QSR_QTC_B_Simplified (class in qsrlib_qsrs.qsr_qtc_b_simplified)

 	QSR_QTC_BC_Simplified (class in qsrlib_qsrs.qsr_qtc_bc_simplified)

 	QSR_QTC_C_Simplified (class in qsrlib_qsrs.qsr_qtc_c_simplified)

 	QSR_QTC_Simplified_Abstractclass (class in qsrlib_qsrs.qsr_qtc_simplified_abstractclass)

 	QSR_RA (class in qsrlib_qsrs.qsr_ra)

 	QSR_RCC2 (class in qsrlib_qsrs.qsr_rcc2)

 	QSR_RCC3_Rectangle_Bounding_Boxes_2D (class in qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d)

 	QSR_RCC4 (class in qsrlib_qsrs.qsr_rcc4)

 	QSR_RCC5 (class in qsrlib_qsrs.qsr_rcc5)

 	QSR_RCC8 (class in qsrlib_qsrs.qsr_rcc8)

 	QSR_RCC_Abstractclass (class in qsrlib_qsrs.qsr_rcc_abstractclass)

 	qsr_relations_and_values (qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass attribute)

 	QSR_TPCC (class in qsrlib_qsrs.qsr_tpcc)

 	QSR_Triadic_1t_Abstractclass (class in qsrlib_qsrs.qsr_triadic_abstractclass)

 	QSR_Triadic_Abstractclass (class in qsrlib_qsrs.qsr_triadic_abstractclass)

 	qsr_type (qsrlib_io.world_qsr_trace.World_QSR_Trace attribute)

 	qsrlib (module)

 	qsrlib_io (module)

 	qsrlib_io.world_qsr_trace (module)

 	qsrlib_io.world_trace (module)

 	qsrlib_qsrs (module)

 	qsrlib_qsrs.qsr_abstractclass (module)

 	qsrlib_qsrs.qsr_arg_prob_relations_distance (module)

 	qsrlib_qsrs.qsr_arg_relations_abstractclass (module)

 	
 	qsrlib_qsrs.qsr_arg_relations_distance (module)

 	qsrlib_qsrs.qsr_cardinal_direction (module)

 	qsrlib_qsrs.qsr_dyadic_abstractclass (module)

 	qsrlib_qsrs.qsr_monadic_abstractclass (module)

 	qsrlib_qsrs.qsr_moving_or_stationary (module)

 	qsrlib_qsrs.qsr_new_mwe (module)

 	qsrlib_qsrs.qsr_qtc_b_simplified (module)

 	qsrlib_qsrs.qsr_qtc_bc_simplified (module)

 	qsrlib_qsrs.qsr_qtc_c_simplified (module)

 	qsrlib_qsrs.qsr_qtc_simplified_abstractclass (module)

 	qsrlib_qsrs.qsr_ra (module)

 	qsrlib_qsrs.qsr_rcc2 (module)

 	qsrlib_qsrs.qsr_rcc3_rectangle_bounding_boxes_2d (module)

 	qsrlib_qsrs.qsr_rcc4 (module)

 	qsrlib_qsrs.qsr_rcc5 (module)

 	qsrlib_qsrs.qsr_rcc8 (module)

 	qsrlib_qsrs.qsr_rcc_abstractclass (module)

 	qsrlib_qsrs.qsr_tpcc (module)

 	qsrlib_qsrs.qsr_triadic_abstractclass (module)

 	qsrlib_qstag (module)

 	qsrlib_qstag.qstag (module)

 	qsrlib_ros (module)

 	qsrlib_ros.qsrlib_ros_client (module)

 	QSRlib_ROS_Client (class in qsrlib_ros.qsrlib_ros_client)

 	qsrlib_utils (module)

 	qsrlib_utils.combinations_and_permutations (module)

 	qsrlib_utils.ros_utils (module)

 	qsrs (qsrlib_io.world_qsr_trace.World_QSR_State attribute)

 	qtc_to_output_format() (qsrlib_qsrs.qsr_qtc_b_simplified.QSR_QTC_B_Simplified method)

 	(qsrlib_qsrs.qsr_qtc_bc_simplified.QSR_QTC_BC_Simplified method)

 	(qsrlib_qsrs.qsr_qtc_c_simplified.QSR_QTC_C_Simplified method)

 	(qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass method)

 	qtc_type (qsrlib_qsrs.qsr_qtc_b_simplified.QSR_QTC_B_Simplified attribute)

 	(qsrlib_qsrs.qsr_qtc_bc_simplified.QSR_QTC_BC_Simplified attribute)

 	(qsrlib_qsrs.qsr_qtc_c_simplified.QSR_QTC_C_Simplified attribute)

 	(qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass attribute)

 	QTCException

R

 	
 	request_qsrs() (qsrlib_ros.qsrlib_ros_client.QSRlib_ROS_Client method)

 	return_all_possible_state_combinations() (qsrlib_qsrs.qsr_qtc_simplified_abstractclass.QSR_QTC_Simplified_Abstractclass method)

 	
 	return_bounding_box_2d() (qsrlib_io.world_trace.Object_State method)

 	rotation (qsrlib_io.world_trace.Object_State attribute)

S

 	
 	service_topic_names (qsrlib_ros.qsrlib_ros_client.QSRlib_ROS_Client attribute)

 	
 	spatial_nodes (qsrlib_qstag.qstag.Activity_Graph attribute)

 	spatial_obj_edges (qsrlib_qstag.qstag.Activity_Graph attribute)

T

 	
 	temp_spatial_edges (qsrlib_qstag.qstag.Activity_Graph attribute)

 	temporal_nodes (qsrlib_qstag.qstag.Activity_Graph attribute)

 	timestamp (qsrlib_io.world_qsr_trace.QSR attribute)

 	(qsrlib_io.world_qsr_trace.World_QSR_State attribute)

 	(qsrlib_io.world_trace.Object_State attribute)

 	(qsrlib_io.world_trace.World_State attribute)

 	
 	trace (qsrlib_io.world_qsr_trace.World_QSR_Trace attribute)

 	(qsrlib_io.world_trace.World_Trace attribute)

 	type (qsrlib_io.world_qsr_trace.QSR attribute)

U

 	
 	unique_id (qsrlib_qsrs.qsr_abstractclass.QSR_Abstractclass attribute)

V

 	
 	value_sort_key (qsrlib_qsrs.qsr_arg_prob_relations_distance.QSR_Arg_Prob_Relations_Distance attribute)

 	(qsrlib_qsrs.qsr_arg_relations_abstractclass.QSR_Arg_Relations_Abstractclass attribute)

 	(qsrlib_qsrs.qsr_arg_relations_distance.QSR_Arg_Relations_Distance attribute)

W

 	
 	World_QSR_State (class in qsrlib_io.world_qsr_trace)

 	World_QSR_Trace (class in qsrlib_io.world_qsr_trace)

 	
 	World_State (class in qsrlib_io.world_trace)

 	World_Trace (class in qsrlib_io.world_trace)

X

 	
 	x (qsrlib_io.world_trace.Object_State attribute)

 	
 	xsize (qsrlib_io.world_trace.Object_State attribute)

Y

 	
 	y (qsrlib_io.world_trace.Object_State attribute)

 	
 	ysize (qsrlib_io.world_trace.Object_State attribute)

Z

 	
 	z (qsrlib_io.world_trace.Object_State attribute)

 	
 	zsize (qsrlib_io.world_trace.Object_State attribute)

Filters Available:

This section provides information about the filters that are available in QSRLib.
Currently available filters include:

	Median Filter

Median Filter:

To use the filter, simply add the “filters” key into your dynamic arguments list
when you call QSRlib_Request_Message(), where the value is a parameter dictionary.
The parameters dictionary should have key = “window” and value = integer equal to half the window for the median
filter.

A small example:

dynamic_args = {"qtcbs": {"quantisation_factor": quantisation_factor,
 "validate": validate,
 "no_collapse": no_collapse},

 "filters": {"median_filter" : {"window": 3}}
 }

qsrlib_request_message = QSRlib_Request_Message(which_qsr=qtcbs, \
 input_data=world, dynamic_args=dynamic_args)

How it works:

def apply_median_filter(qsr_world, params):

This function takes a qsrlib_io.World_QSR_Trace object as input, and performs the following steps:

	Inspects all timepoints in World_QSR_Trace.

	Generates a list of states for each type of requested QSR in the World_QSR_Trace along with a list of timepoints at which they hold.

	These one dimensional lists are passed to a median_filter function

	Multiple requested QSR types are merged back together

	The qsrs in the World_QSR_Trace are then overwritten with the filtered QSRs.

median_filter(data, n):

This function implements the median filter over a list of states in data
using a window of 2*n.

Note

Because the QSRs are not always ordinal, this function selects the most frequent state inside the requested window. If the most frequent state is ambiguous, then the previous state is returned.

Note

The filter returns a World Trace with the same number of timepoints as the original. So the first 2*n -1 timepoints will not have used the entire length window.

Region Connection Calculus 3

Warning

RCC3 will be deprecated.

 _images/graphlets.png

_images/lad_img1.jpg

_images/classes_tree.png
src/

L gsrlib: Provides the client-server architecture

L QSRIib: Provides the server side functionalities

I gsrlib_t0: Provides the standard IO data structures

I QSRIib_Request_Message: The input to the server request

I QSRIib_Response_Message: The return response from the server

L World_Trace: Standard input format that QSRs are computed

upon

L World_QSR_Trace: Standard output format that holds the com-
puted QSRs from a World_Trace

L gsrlib_gsrs: Provides the implementations of the QSRs

| QSR classes: Each QSR is implemented as a separate class inher-
iting from one of the standard prototypes

L gsrlib_gstag: Provides spatio-temporal graph representations

LActz'm'ty_Gmph: Implements a spatio-temporal graph representa-
tion for a timeseries of QSRs

L gsrlib_ros: Provides the ROS client module

L gsrlib_utils: Provides common utilities used by the other packages

_images/compass_rose.png

_images/mwe_together.png

_images/qstag.png
[Allen temporal layer

T spatial episode layer

T objects layer

_images/mwe_left.png

_images/mwe_right.png

_images/ra_example.png

_images/rcc8_dc.png

_images/rcc8_ec.png

nav.xhtml

 Table of Contents

 		
 QSRlib’s docs

_images/rcc8_ntppi.png

_images/rcc8_po.png

_images/rcc8_eq.png

_images/rcc8_ntpp.png

_static/ajax-loader.gif

_images/rcc8_tpp.png

_images/rcc8_tppi.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/qsrlib_logo.png

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/allen_meets.png

_images/allen_overlaps.png

_images/allen_equal.png

_images/allen_finishes.png

_images/allen_starts.png

_images/allen_before.png

_images/allen_during.png

