

    
      
          
            
  
QMachine



	Overview
	How it works

	How to use it

	How to contribute





	HTTP API
	Stable

	Experimental





	Browser client
	Getting started

	Basic use

	Advanced use





	Node.js
	Getting started

	API client

	API server





	Ruby
	Getting started

	API client

	API server





	Running a local sandbox
	Prerequisites

	Node.js

	Ruby





	Running on Platform-as-a-Service
	One-click deployment to Heroku

	Other platforms





	Source code
	Browser client

	Main project

	Node.js

	Python

	R

	Ruby













          

      

      

    

  

    
      
          
            
  
Overview

QMachine [https://www.qmachine.org/] (QM) is a web service for distributed computing. Its design relaxes
the usual requirements of a distributed computer so far that it can be powered
completely by web browsers – without installing anything. As a model for
computation, QM has been detailed in a recent paper,
QMachine: commodity supercomputing in web browsers [http://www.biomedcentral.com/1471-2105/15/176]. This manual details QM as a
software platform, with particular focuses on how it works, how to use it, and
how to contribute to the open-source project.


How it works

Coordination of a distributed computing effort requires a common data
interchange format and a common communications protocol. As a web service, QM
provides an Application Programming Interface (API) that uses JavaScript Object
Notation (JSON) as its common data interchange format and Hypertext Transfer
Protocol (HTTP) as its communications protocol. In short, QM’s API allows
JSON-encoded messages sent to URLs over HTTP to become a message-passing
interface for distributed computing. The use of web-friendly technologies is
deliberate – QM is designed to be as universal as the World Wide Web itself.

Most QM-related software falls into two categories. API clients are programs
that consume QM’s API, and API servers are programs that provide the API. Web
servers represent a third category, however, that is important only for hosting
content such as the browser client library.


API clients

An API client is a program that consumes QM’s API by sending JSON-encoded
messages over HTTP to specific URLs, as defined by QM’s HTTP API. The
vast majority of programs will fall into this category, and most of these
programs will use a client library for convenience. Currently, the only client
library supported by the QM project is the
browser client, which is written completely in
JavaScript. An outdated Node.js [http://nodejs.org/] client is now being resurrected, and a Ruby [https://www.ruby-lang.org/]
client is planned.




API servers

An API server, by way of contrast, is a program that provides QM’s API by
listening for and responding to specific HTTP requests, as defined by
QM’s HTTP API. There are two implementations to choose from: the
original reference version written in Node.js and the
“teaching version” written in Ruby. The Node.js version is
recommended for production.




Web servers

For convenience in hosting, basic web servers are packaged alongside the API
servers. A web server listens for and responds to HTTP requests for files and
other resources that are published online. A web server is not strictly
necessary as part of QM, but it is useful for making the browser client
available to web browsers. The web servers bundled with the API servers are
present only for convenience, and it is trivial to use off-the-shelf web
servers like Apache [https://httpd.apache.org/] or Nginx [http://nginx.org/] instead. (In fact, QM’s own homepage uses
Nginx.)






How to use it

See Running a local sandbox and Running on Platform-as-a-Service.




How to contribute

See Source code.







          

      

      

    

  

    
      
          
            
  
HTTP API

QM’s Application Programming Interface (API) uses JavaScript Object Notation
(JSON) as its common data interchange format and Hypertext Transfer Protocol
(HTTP) as its communications protocol. It also supports
Cross-Origin Resource Sharing [http://www.w3.org/TR/cors/].


Stable

This table specifies the “routes” understood by QM’s API server. Request and
response data use JSON format, but data may be omitted where values are left
blank. JSON objects are denoted {}, and JSON arrays are denoted [].











	
	HTTP Request

	HTTP Response



	Purpose

	Method

	URL

	Data

	Code

	Data





	Get avar

	GET

	/box/cardboard?key=982770f29

	
	200

	{}



	Get list

	GET

	/box/cardboard?status=waiting

	
	200

	[]



	Set avar

	POST

	/box/cardboard?key=982770f29

	{}

	201

	





The data model is based on Quanah [https://qmachine.github.io/quanah/]’s asynchronous variables (“avars”). An
avar is a JavaScript object that acts as a generic container for other types by
storing data in its “val” property. QM extends this model by adding “box”,
“key”, and optional “status” properties. The “box” property is useful for
grouping avars in various ways, while the “key” property is a unique identifier
for each avar. The optional “status” property is present on avars that
represent job descriptions.


Get avar

To get the value of an avar, a client must request it by known box and known
key. For the example shown in the table, an avar with “cardboard” as its box,
“982770f29” as its key, and 2 as its value would look like

{"box":"cardboard","key":"982770f29","val":2}








Get list

Because job descriptions are avars that must be accessed by a known box and a
known key, a volunteer which knows only the box cannot run a job until it also
knows the job’s key. Clients may request a list of jobs’ keys using a known
box and a known status; this list is represented as a JSON array. For the
example shown in the table, an array containing three avars’ keys might look
like

["job_key_1","job_key_2","job_key_3"]








Set avar

To set the value of an avar, a client must send the new value in a request by
known box and known key. No response data will be returned, but a successful
response will be indicated by an HTTP status code of 201.






Experimental

The latest version of the API (1.2.4) includes extensions that enable
versioned API calls. These routes were added in anticipation of future needs
to support legacy APIs without running legacy servers. Although deprecating the
word “box” in favor of “v1” seems desirable, it is possible that it anticipates
needs that will never arise in practice. Discussion and input here would be
much appreciated.











	
	HTTP Request

	HTTP Response



	Purpose

	Method

	URL

	Data

	Code

	Data





	Get avar

	GET

	/v1/cardboard?key=982770f29

	
	200

	{}



	Get list

	GET

	/v1/cardboard?status=waiting

	
	200

	[]



	Set avar

	POST

	/v1/cardboard?key=982770f29

	{}

	201

	











          

      

      

    

  

    
      
          
            
  
Browser client


Getting started

The first step in getting started with any piece of software is installation,
but “installation” is a misnomer when developing web applications. Browsers use
JavaScript (JS) as their “native” programming language, but JS programs are
never truly installed because they cannot alter or extend the browsers
themselves. Instead, JS programs are downloaded according to the contents of
webpages, and they run in “disposable” sandboxed environments that exist only
while the webpages are open. Thus, the “installation” of QM’s browser client
into a webpage is as simple as adding a single line of HTML:

<script src="https://www.qmachine.org/qm.js"></script>





When the webpage loads, its JS environment will contain a QM object that
will allow other programs to submit jobs to and volunteer to execute jobs from
the official QM servers – for free!


Note

Modern web browsers can often be programmed “externally” to the webpages
themselves. For example, browsers may load custom user scripts, or they may
be scripted by external programs to run unit tests. These capabilities are
not leveraged in any way by the QM browser client. It may or may not run
correctly within Web Worker contexts, but the client described in this
manual expects to run within the “ordinary” webpage context of a modern web
browser, unassisted by applets, extensions, plugins, etc.



For the hardcore software engineers out there, QM’s browser client is available
for “installation” with Bower [http://bower.io/]:

$ bower install qm








Basic use


Submitting jobs

See http://www.biomedcentral.com/1471-2105/15/176#sec4 for now.




Using volunteers’ machines

Two convenience functions, QM.start and QM.stop, are provided in order
to control a simple non-blocking (asynchronous) event loop externally. The loop
“fires” approximately once per second, and if appropriate, it runs the
QM.volunteer function. This internal event loop is neither externally
configurable nor necessary for using QM – it simply wraps the QM.volunteer
function for convenience, rather than forcing application code to implement its
own non-blocking loop.






Advanced use

QM’s browser client leverages asynchronous variables (“avars”) extensively to
manage concurrency issues in an object-oriented way, and this programming model
is provided by Quanah [https://qmachine.github.io/quanah/] and its JavaScript library. Tutorials for advanced use
are forthcoming, but they will essentially discuss working with avars. For now,
the best reference on Quanah is its manual [https://quanah.readthedocs.org].







          

      

      

    

  

    
      
          
            
  
Node.js


Getting started

A Node.js [http://nodejs.org/] module is available for installation with
Node Package Manager [https://www.npmjs.org/] (NPM). To install it in the current directory,

$ npm install qm








API client

A client for Node.js is planned, but it not yet available as part of the
module. When it becomes available, it will be possible to submit jobs from a
Node.js program to be executed by volunteer compute nodes.




API server

The original, reference version of QM is available as part of the module, and
a basic web server is also provided to enable the use of web browsers as
compute nodes if so desired.

A QM server can be launched by a Node.js program as shown in the following
example, which includes default configuration values and commented database
connection strings:

var qm = require('qm');

qm.launch_service({
    avar_ttl:           86400,      //- expire avars after 24 hours
    enable_api_server:  false,
    enable_cors:        false,
    enable_web_server:  false,
    gc_interval:        60,         //- evict old avars every _ seconds
    hostname:           '0.0.0.0',  //- aka INADDR_ANY
    log: function (request) {
     // This function is the default logging function.
        return {
            host: request.headers.host,
            method: request.method,
            timestamp: new Date(),
            url: request.url
        };
    },
    match_hostname:     false,
    max_body_size:      65536,      //- 64 * 1024 = 64 KB
    max_http_sockets:   500,
    persistent_storage: {
     // couch:          'http://127.0.0.1:5984/db',
     // mongo:          'mongodb://localhost:27017/test'
     // postgres:       'postgres://localhost:5432/' + process.env.USER
     // redis:          'redis://:@127.0.0.1:6379'
     // sqlite:         'qm.db'
    },
    port:               8177,
    static_content:     'katamari.json',
    trafficlog_storage: {
     // couch:          'http://127.0.0.1:5984/traffic'
     // mongo:          'mongodb://localhost:27017/test'
     // postgres:       'postgres://localhost:5432/' + process.env.USER
    },
    worker_procs:       1
});





The Node.js version of the API server can use any of five different databases
to provide persistent storage for its message-passing interface: CouchDB [http://couchdb.apache.org],
MongoDB [http://www.mongodb.org/], PostgreSQL [http://www.postgresql.org/], Redis [http://redis.io/], and SQLite [https://www.sqlite.org/]. It can also log traffic data into
CouchDB, MongoDB, or PostgreSQL if desired.


Try it live

Live, interactive demonstrations of the API and web servers are
available at runnable.com [http://runnable.com/qmachine]. These will give you a different insight into the
guts of QM by allowing you to make your own copies to play with and debug,
completely for free.









          

      

      

    

  

    
      
          
            
  
Ruby


Getting started

A Ruby [https://www.ruby-lang.org/] gem is available for installation with RubyGems [https://rubygems.org/]. To install it
globally,

$ gem install qm








API client

A client for Ruby is under development. Basic low-level functions are now
available in the stable release, but no effort has been made to leverage any of
Ruby’s language-level concurrency features. It is possible to use the current
functions in a Ruby program to submit jobs to be executed by volunteer compute
nodes, but it is not yet convenient.




API server

The “teaching version” of QMachine has now been merged into the Ruby gem, and
a basic web server is also provided to enable the use of web browsers as
compute nodes if so desired.

A QM server can be launched by a Ruby program as shown in the following
example, which includes default configuration values and commented database
connection strings:

require 'qm'

QM.launch_service({
    avar_ttl:           86400, # seconds to store avars (default: 24 hours)
    enable_api_server:  false,
    enable_cors:        false,
    enable_web_server:  false,
    hostname:           '0.0.0.0',
    max_body_size:      65536, # 64 * 1024 = 64 KB
    persistent_storage: {
      # mongo:          'mongodb://localhost:27017/test'
    },
    port:               8177,
    public_folder:      'public',
    trafficlog_storage: {
      # mongo:          'mongodb://localhost:27017/test'
    },
    worker_procs:       1
})





The Ruby version of the API server has less flexibility than the original
Node.js version does. The only choice to persist storage for the
message-passing interface is MongoDB [http://www.mongodb.org/], and MongoDB is also the only supported
database for logging traffic data.







          

      

      

    

  

    
      
          
            
  
Running a local sandbox

QMachine (QM) can be installed and run locally, which can be extremely
useful for development as well as for deployment behind firewalls.


Prerequisites

QM is developed on Mac and Linux systems, and the Makefile located in the root
of the main project’s Git repository contains live instructions for building
and testing everything.

To get up and running, you will need GNU Make [https://www.gnu.org/software/make/], a standard POSIX development
environment, and Git [http://git-scm.com/].

To build and run an API server, you will need MongoDB [http://www.mongodb.org/] and either Node.js [http://nodejs.org/] or
Ruby [https://www.ruby-lang.org/]. If you choose the Node.js version, you can use CouchDB [http://couchdb.apache.org], PostgreSQL [http://www.postgresql.org/],
Redis [http://redis.io/], or SQLite [https://www.sqlite.org/] instead, but the Makefile assumes Mongo by default.

To build the homepage and/or custom images, you will need ImageMagick [http://www.imagemagick.org/].

PhantomJS [http://phantomjs.org/] is used for regression testing and for creating snapshots that can
be converted into thumbnails.


Mac OS X

To get started on Mac OS X with your own local sandbox, you will want to
install the Homebrew [https://mxcl.github.io/homebrew/] package manager using directions from its website. It
will allow you to install all of the software mentioned previously by launching
Terminal and typing

$ brew install couchdb imagemagick mongodb node phantomjs postgresql redis





I highly recommend installing Git through Homebrew, as well, but it isn’t
required. I prefer Apache’s official CouchDB.app [http://couchdb.apache.org/#download] and Heroku’s Postgres.app [http://postgresapp.com/]
over the distributions installed by Homebrew because they include convenient
launchers that live in the menu bar.




Ubuntu Linux

Ubuntu has a great built-in package manager that we can take advantage of, but
package names vary by version. Incantations are forthcoming.






Node.js

First, make sure that you have NPM [https://www.npmjs.org/] installed:

$ which npm || echo 'NPM is missing'





If NPM is missing, refer to its documentation [https://www.npmjs.org/doc/README.html] for the
installation procedure.

Next, check out QM’s source code from GitHub [https://github.com/]:

$ git clone https://github.com/qmachine/qmachine.git





Now, select your local copy of the repository as the current directory:

$ cd qmachine/





Finally, start MongoDB and then launch QM on localhost:

$ make node-app





QM defaults to MongoDB for storage, but a different database can be specified
explicitly:

$ make node-app db=couch
$ make node-app db=mongo
$ make node-app db=postgres
$ make node-app db=redis
$ make node-app db=sqlite








Ruby

A Ruby implementation of QM is also available in the project repository, and
its directions are similar to those for Node.js. If you don’t already use RVM [http://rvm.io/],
you should – it’s fantastic and highly recommended.

First, make sure that you have Bundler [http://bundler.io/] installed:

$ which bundler || echo 'Bundler is missing'





If Bundler is missing, install it:

$ gem install bundler





Next, check out QM’s source code from GitHub:

$ git clone https://github.com/qmachine/qmachine.git





Now, select your local copy of the repository as the current directory:

$ cd qmachine/





Finally, start MongoDB and then launch QM on localhost:

$ make ruby-app





QM defaults to MongoDB for storage, but the Ruby version only supports MongoDB
anyway. Thus, explicit configuration at the command-line is unnecessary:

$ make ruby-app db=mongo











          

      

      

    

  

    
      
          
            
  
Running on Platform-as-a-Service

QMachine is easy to deploy using Platform-as-a-service (PaaS) because its
design was driven by the goal to be as far “above the metal” as possible.


One-click deployment to Heroku

In fact, QM is so far above the metal that it can be deployed to Heroku [https://www.heroku.com/] with
a single click. If you’re reading this in a digital format like HTML or PDF,
you can do it without even leaving this page.


[image: (Button that deploys QM to Heroku)]
 [https://heroku.com/deploy?template=https://github.com/qmachine/qm-ruby-turnkey]To deploy your own turnkey system, click the button. Seriously, try it.



It’s okay if you’re leery of clicking things, if your computer’s security
settings blocked the coolness, or if you’re using a hard copy of the manual.
The idea here appears again and again in QM: a workflow can be launched simply
by loading a URL. In this case, your click sends a message to Heroku to create
a new app from a template in a version-controlled repository,
https://github.com/qmachine/qm-ruby-turnkey. This template contains the
“blueprint” for a turnkey QM system, complete with an API server, a web server,
and a barebones webpage that loads the browser client. It uses the
Ruby version of QM for simplicity and the
Heroku Button [https://devcenter.heroku.com/articles/heroku-button] for
convenience.




Other platforms

Full directions for platforms such as Bluemix [https://bluemix.net/], Heroku, and OpenShift [https://www.openshift.com/] are
forthcoming.







          

      

      

    

  

    
      
          
            
  
Source code

There are a number of repositories associated with QMachine, and they are all
being transferred to the QMachine organization [https://github.com/qmachine] on GitHub.


Browser client

The source code for the browser client is available at
https://github.com/qmachine/qm-browser-client.




Main project

The main project repository is the best place to start with development. It is
structured as a superproject [https://en.wikibooks.org/wiki/Git/Submodules_and_Superprojects], which means that cloning it requires cloning
its submodules, too:

$ git clone --recursive https://github.com/qmachine/qmachine.git





There are also “mirrors” available at Bitbucket [https://bitbucket.org/wilkinson/qmachine], CodePlex [https://qmachine.codeplex.com/], Gitorious [https://gitorious.org/qmachine/qmachine],
Google Code [https://code.google.com/p/qmachine/], and SourceForge [http://sourceforge.net/projects/qm-project/].




Node.js

The source code for the Node.js module is available at
https://github.com/qmachine/qm-nodejs.




Python

The source code for a very incomplete Python package is available at
https://github.com/qmachine/qmachine-python.




R

The source code for an experimental R package is available at
https://github.com/qmachine/qm-r.




Ruby

The source code for the Ruby gem is available at
https://github.com/qmachine/qm-ruby.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  

          

      

      

    

  _static/ajax-loader.gif





_images/heroku-button.png
@ Deploy to Heroku





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          QMachine
        


        		
          Overview
          
            		
              How it works
              
                		
                  API clients
                


                		
                  API servers
                


                		
                  Web servers
                


              


            


            		
              How to use it
            


            		
              How to contribute
            


          


        


        		
          HTTP API
          
            		
              Stable
              
                		
                  Get avar
                


                		
                  Get list
                


                		
                  Set avar
                


              


            


            		
              Experimental
            


          


        


        		
          Browser client
          
            		
              Getting started
            


            		
              Basic use
              
                		
                  Submitting jobs
                


                		
                  Using volunteers’ machines
                


              


            


            		
              Advanced use
            


          


        


        		
          Node.js
          
            		
              Getting started
            


            		
              API client
            


            		
              API server
              
                		
                  Try it live
                


              


            


          


        


        		
          Ruby
          
            		
              Getting started
            


            		
              API client
            


            		
              API server
            


          


        


        		
          Running a local sandbox
          
            		
              Prerequisites
              
                		
                  Mac OS X
                


                		
                  Ubuntu Linux
                


              


            


            		
              Node.js
            


            		
              Ruby
            


          


        


        		
          Running on Platform-as-a-Service
          
            		
              One-click deployment to Heroku
            


            		
              Other platforms
            


          


        


        		
          Source code
          
            		
              Browser client
            


            		
              Main project
            


            		
              Node.js
            


            		
              Python
            


            		
              R
            


            		
              Ruby
            


          


        


      


    
  

_static/plus.png





_static/heroku-button.png
@ Deploy to Heroku





_static/minus.png





_static/up-pressed.png





_static/up.png





