qipipe - Quantitative Imaging pipeline¶
Synopsis¶
qipipe processes DICOM study images.
API: | http://qipipe.readthedocs.org/en/latest/api/index.html |
---|---|
Git: | https://github.com/ohsu-qin/qipipe |
Feature List¶
- Recognizes new study images.
- Stages images for submission to The Cancer Imaging Archive (TCIA) QIN collection.
- Masks images to subtract extraneous image content.
- Corrects motion artifacts.
- Performs pharmokinetic modeling.
- Imports the input scans and processing results into the XNAT image database.
Installation¶
The following instructions assume that you start in your home directory.
We recommend the Anaconda environment for scientific packages and pip
for the remaining Python packages. Install qipipe
using the
following procedure:
Install and activate a qixnat Anaconda environment as described in the qixnat Installation Instructions.
Install the
qipipe
dependencies hosted by Anaconda:wget -q --no-check-certificate -O \ - https://www.github.com/ohsu-qin/qipipe/raw/master/requirements_conda.txt \ | xargs conda install --yes
Download the
qipipe
constraints file:wget -q --no-check-certificate -O \ - https://www.github.com/ohsu-qin/qipipe/raw/master/constraints.txt \ > /tmp/constraints.txt
Install the
qipipe
package using pip:pip install qipipe --constraint /tmp/constraints.txt && rm /tmp/constraints.txt
For ANTS registration, build the ants package from source using the ANTS Compile Instructions:
pushd ~/workspace git clone git://github.com/stnava/ANTs.git mkdir $HOME/ants cd $HOME/ants ccmake ../workspace/ANTs cmake #=> Enter “c" #=> Enter “g” #=> Exit back to the terminal make -j 4 popd
Then, prepend ANTS to your shell login script. E.g., for Linux or Mac OS X, open an editor on
$HOME/.bashrc
or$HOME/.bash_profile
and add the following lines:# Prepend ANTS to the path. ANTS_HOME=$HOME/ants export PATH=$ANTS_HOME/bin
and refresh your environment:
. $HOME/.bash_profile
Development¶
Download¶
Download the source by cloning the source repository, e.g.:
cd ~/workspace
git clone https://github.com/ohsu-qin/qipipe.git
cd qipipe
Installing from a local qipipe clone requires the constraints option:
pip install -c constraints.txt -e .
Testing¶
Testing is performed with the nose package, which can be installed separately as follows:
conda install nose
The unit tests are then run as follows:
nosetests test/unit/
Documentation¶
API documentation is built automatically by ReadTheDocs when the
project is pushed to GitHub. The modules documented are defined in
doc/api
. If you add a new Python file to a package directory
pkg, then include it in the doc/api
pkg ``.rst`` file.
Documentation can be generated locally as follows:
Install Sphinx and
docutils
, if necessary:conda install Sphinx docutils
Run the following in the
doc
subdirectory:make html
Read The Docs builds occur in a limited context that sometimes fails
on dependencies, e.g. when an install a requires C extension. In that
case, the project has a requirements_read_the_doc.txt
that
eliminates the problematic dependency and specify the requirements
file in the Read The Docs project Advance Settings.
Release¶
Building a release requires a PyPI account and the twine package, which can be installed separately as follows:
pip install twine
The release is then published as follows:
Confirm that the unit tests run without failure.
Add a one-line summary release theme to
History.rst
.Update the
__init__.py
version.Commit these changes:
git add --message 'Bump version.' History.rst qipipe/__init__.py
Merge changes on a branch to the current master branch, e.g.:
git checkout master git pull git merge --no-ff <branch>
Reconfirm that the unit tests run without failure.
Build the release:
python setup.py sdist
Upload the release:
twine upload dist/qipipe-<version>.tar.gz
Tag the release:
git tag v<n.n.n>
Update the remote master branch:
git push git push --tags
API Documentation¶
helpers¶
pipeline
helpers¶
The helpers
module includes convenience utilities.
bolus_arrival
¶
-
exception
qipipe.helpers.bolus_arrival.
BolusArrivalError
¶ Bases:
exceptions.Exception
Error calculating the bolus arrival.
-
qipipe.helpers.bolus_arrival.
bolus_arrival_index
(time_series)¶ Determines the DCE bolus arrival time point index. The bolus arrival is the first occurence of a difference in average signal larger than double the difference from first two points.
Parameters: time_series – the 4D NIfTI scan image file path Returns: the bolus arrival time point index Raises: BolusArrivalError – if the bolus arrival could not be determined
colors
¶
-
qipipe.helpers.colors.
colorize
(lut_file, *inputs, **opts)¶ Transforms each input voxel value to a color lookup table reference.
The input voxel values are uniformly partitioned for the given colormap LUT. For example, if the voxel values range from 0.0 to 3.0, then the a voxel value of 0 is transformed to the first LUT color, 3.0 is transformed to the last LUT color, and the intermediate values are transformed to intermediate colors.
The voxel -> reference output file name appends
_color
to the input file basename and preserves the input file extensions, e.g. the input filek_trans_map.nii.gz
is transformed tok_trans_map_color.nii.gz
in the output directory.Parameters: - lut_file – the color lookup table file location
- inputs – the image files to transform
- opts – the following keyword arguments:
Option dest: the destination directory (default current working directory)
Option threshold: the threshold in the range 0 to nvalues (default 0)
-
qipipe.helpers.colors.
create_lookup_table
(ncolors, colormap='jet', out_file=None)¶ Generates a colormap lookup table with the given number of colors.
Parameters: - ncolors – the number of colors to generate
- colormap – the matplotlib colormap name
- out_file – the output file path (default is the colormap
name followed by
_colors.txt
in the current directory)
-
qipipe.helpers.colors.
label_map_basename
(location)¶ Parameters: location – the input file path Returns: the corresponding color file name
command
¶
Command qipipe command options.
-
qipipe.helpers.command.
configure_log
(**opts)¶ Configure the logger for the qi* modules.
constants
¶
-
qipipe.helpers.constants.
CONF_DIR
= '/home/docs/checkouts/readthedocs.org/user_builds/qipipe/checkouts/stable/qipipe/conf'¶ The common configuration directory.
-
qipipe.helpers.constants.
MASK_FILE
= 'mask.nii.gz'¶ The XNAT mask file name with extension.
-
qipipe.helpers.constants.
MASK_RESOURCE
= 'mask'¶ The XNAT mask resource name.
-
qipipe.helpers.constants.
SCAN_TS_BASE
= 'scan_ts'¶ The XNAT scan time series file base name without extension.
-
qipipe.helpers.constants.
SCAN_TS_FILE
= 'scan_ts.nii.gz'¶ The XNAT scan time series file name with extension.
-
qipipe.helpers.constants.
SESSION_FMT
= 'Session%02d'¶ The XNAT session name format with argument session number.
-
qipipe.helpers.constants.
SUBJECT_FMT
= '%s%03d'¶ The XNAT subject name format with argument collection and subject number.
-
qipipe.helpers.constants.
VOLUME_DIR_PAT
= <_sre.SRE_Pattern object>¶ The volume directory name pattern. The directory name is
volume``*number*, where *number* is the zero-padded, one-based volume number matched as the ``volume_number
group, as determined by theqipipe.pipeline.staging.volume_format()
function.
-
qipipe.helpers.constants.
VOLUME_FILE_PAT
= <_sre.SRE_Pattern object>¶ The volume file name pattern. The image file name is the
VOLUME_DIR_PAT
pattern followed by the extension.nii.gz
.
distributable
¶
-
qipipe.helpers.distributable.
DISTRIBUTABLE
= False¶ Flag indicating whether the workflow can be distributed over a cluster. This flag is True if
qsub
is in the execution path, False otherwise.
image
¶
-
qipipe.helpers.image.
discretize
(in_file, out_file, nvalues, start=0, threshold=None, normalizer=<function normalize>)¶ Transforms the given input image file to an integer range with the given number of values. The range starts at the given start value. The input values are uniformly mapped into the output range. For example, if the input values range from 0.0 to 3.0 nvalues is 101, and the start is 0, then an input value of 0 is transformed to 0, 3.0 is transformed to 100, and the intermediate input values are proportionately transformed to the output range.
If a threshold is specified, then every input value which maps to an output value less than (threshold * nvalues) - start is transformed to the output start value. For example, if the input values range from 0.0 to 3.0, then:
discretize(in_file, out_file, 1001, threshold=0.5)
transforms input values as follows:
- If the input value maps to the first half of the output range, then the output value is 0.
- Otherwise, the input value v maps to the output value (v * 1000) / 3.
Parameters: - in_file – the input file path
- out_file – the output file path
- nvalues – the number of output entries
- start – the starting output value (default 0)
- threshold – the threshold in the range start to nvalues (default start)
- normalize – an optional function to normalize the input
value (default
normalize()
)
Raises: IndexError – if the threshold is not in the color range
-
qipipe.helpers.image.
normalize
(value, vmin, vspan)¶ Maps the given input value to [0, 1].
Parameters: - value – the input value
- vmin – the minimum input range value
- vspan – the value range span (maxium - minimum)
Returns: (in_val - vmin) / vspan
logging
¶
-
qipipe.helpers.logging.
NIPYPE_LOG_DIR_ENV_VAR
= 'NIPYPE_LOG_DIR'¶ The environment variable used by Nipype to set the log directory.
-
qipipe.helpers.logging.
configure
(**opts)¶ Configures the logger as follows:
- If there is a log option,
then the logger is a conventional
qiutil.logging
logger which writes to the given log file. - Otherwise, the logger delegates to a mock logger that writes to stdout.
Note
In a cluster environment, Nipype kills the dispatched job log config. Logging falls back to the default. For this reason, the default mock logger level is
DEBUG
rather thanINFO
. The dispatched node’s log is the stdout captured in the file work/batch/
node_name.o
node_id, where work the execution work directory.Parameters: opts – the qiutil.command.configure_log
optionsReturns: the logger factory - If there is a log option,
then the logger is a conventional
-
qipipe.helpers.logging.
logger
(name)¶ This method overrides
qiutil.logging.logger
to work around the following Nipype bug:- Nipype stomps on any other application’s logging. The work-around is to mock a “logger” that writes to stdout.
Parameters: name – the caller’s context __name__
Returns: the logger facade
metadata
¶
-
qipipe.helpers.metadata.
EXCLUDED_OPTS
= set(['plugin_args', 'run_without_submitting'])¶ The config options to exclude in the profile.
-
exception
qipipe.helpers.metadata.
MetadataError
¶ Bases:
exceptions.Exception
Metadata parsing error.
-
qipipe.helpers.metadata.
create_profile
(configuration, sections, dest, **opts)¶ Creates a metadata profile from the given configuration. The configuration input is a {section: {option: value}} dictionary. The target profile is a Python configuration file which includes the given sections. The section content is determined by the input configuration and the keyword arguments. The keyword item overrides a matching input configuration item. The resulting profile is written to a new file.
Parameters: - configuration – the configuration dictionary
- sections – the target profile sections
- dest – the target profile file location
- opts – additional {section: {option: value}} items
Returns: the target file location
roi
¶
ROI utility functions.
-
class
qipipe.helpers.roi.
Extent
(points, scale=None)¶ Bases:
object
The line segments which span the largest volume or area between a set of points.
Parameters: - points – the points array
- scale (tuple) – the anatomical dimension scaling factors (default unit scale)
-
__init__
(points, scale=None)¶ Parameters: - points – the points array
- scale (tuple) – the anatomical dimension scaling factors (default unit scale)
-
boundary
= None¶ The convex hull boundary in image space.
-
bounding_box
()¶ Returns the (least, most) points of a rectangle circumscribing the extent.
Returns: the (least, most) rectangle points Return type: tuple
-
scale
= None¶ The anatomical dimension scaling factors (default unit scale).
-
segments
= None¶ The orthogonal extent segments.
-
show
()¶ Displays the ROI boundary points and extent segments.
-
class
qipipe.helpers.roi.
ExtentSegmentFactory
(points)¶ Bases:
object
A utility factory class that computes the extent line segments from a set of convex hull vertex points.
Parameters: points – the convex hull vertex points -
__init__
(points)¶ Parameters: points – the convex hull vertex points
-
create
()¶ Returns the orthogonal segments end point indexes as the tuple (longest, widest, deepest), where each of the tuple elements is a (from, to) segment end point pair of indexes into the
points
, e.g.:>>> points.shape (128, 3) >>> factory = ExtentSegmentFactory(points) >>> segment_indexes = factory.create() >>> segment_indexes ((34, 12), (122, 14), (48, 111)) >>> segments = points[segments] >>> np.all(np.equal(segments[0][0], points[34])) True >>> np.all(np.equal(segments[0][1], points[12])) True
The bounding segments procedure is as follows:
- Find the length segment (r1, r2) which maximizes the Cartesian distance between points.
- Find the point r3 furthest from r1 and r2.
- Compute the point o orthogonal to r3 on the segment (r1, r2).
- The width segment is then (r3, r4), where the point r4 minimizes the angle between the segments (r3, p) and (r3, o) for all points p.
- Iterate on a generalization of the above algorithm to
find the depth segment (r5, r6), where:
- r5 maximizes the distance to the plane formed by the
- length segment (r1, r2) and the width segment (r3, r4).
- r6 is the point which is most orthogonal to the length
- and width segments.
Returns: the orthogonal segment end point index tuples Return type: list
-
distances
= None¶ The N x N point distance array, where N is the number of points and
self.distances[i][j]
is the distance fromself.points[i]
toself.points[j]
.
-
points
= None¶ The ndarray of boundary points.
-
-
class
qipipe.helpers.roi.
ROI
(points, scale=None)¶ Bases:
object
Summary information for a 3D ROI mask.
Parameters: - points – the ROI mask points
- scale (tuple) – the (x, y, z) scaling factors
-
__init__
(points, scale=None)¶ Parameters: - points – the ROI mask points
- scale (tuple) – the (x, y, z) scaling factors
-
maximal_slice_index
()¶ Returns: the zero-based slice index with maximal planar extent
-
qipipe.helpers.roi.
load
(location, scale=None)¶ Loads a ROI mask file.
Parameters: - location – the ROI mask file location
- scale (tuple) – the (x, y, z) scaling factors
Returns: the
ROI
encapsulationReturn type:
-
qipipe.helpers.roi.
reorder_bolero_mask
(in_file, out_file=None)¶ Since the OHSU Bolero ROI is drawn over DICOM slice displays, the converted NIfTI file x and y must be transposed and flipped to match the time series. The mask data shape is assumed to be [x, y, slice].
Parameters: - in_file – the input Bolero mask file path
- out_file – the optional output file path
Returns: the reordered mask ndarray data
interfaces¶
interfaces
Package¶
The interfaces
module includes the custom Nipype interface classes.
As a convenience, this interfaces
module imports all of the
non-proprietary interface classes. The proprietary interface class
qipipe.interfaces.fastfit.Fastfit
must be imported
separately from the qipipe.interfaces.fastfit
module, e.g.:
from qipipe.interfaces.fastfit import Fastfit
Importing fastfit
in an environment that does not provide the
fastfit application will raise an ImportError.
compress
¶
convert_bolero_mask
¶
OHSU - This module wraps the proprietary OHSU AIRC bolero_mask_conv
utility. bolero_mask_conv
converts a proprietary OHSU format
mask file into a NIfTI mask file.
copy
¶
-
class
qipipe.interfaces.copy.
Copy
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The Copy interface copies a file to a destination directory.
dce_to_r1
¶
OHSU - This module wraps the proprietary OHSU AIRC dce_to_r1
utility.
-
class
qipipe.interfaces.dce_to_r1.
DceToR1
(**inputs)¶ Bases:
nipype.interfaces.base.CommandLine
Convert a T1-weighted DCE time series of signal intensities to a series of R1 values.
-
__init__
(**inputs)¶
-
-
qipipe.interfaces.dce_to_r1.
MASK_FILE_NAME
= 'valid_mask.nii.gz'¶ The dce_to_r1 output mask file base name.
-
qipipe.interfaces.dce_to_r1.
OUTPUT_FILE_NAME
= 'r1_series.nii.gz'¶ The dce_to_r1 output R1 file base name.
fastfit
¶
OHSU - This module wraps the proprietary OHSU AIRC fastfit
software. fastfit
optimizes the input pharmacokinetic model.
Note
this interface is adapted from the OHSU AIRC cluster file
/usr/global/scripts/fastfit_iface.py
.
fix_dicom
¶
-
class
qipipe.interfaces.fix_dicom.
FixDicom
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The FixDicom interface wraps the
qipipe.staging.fix_dicom.fix_dicom_headers()
function.
group_dicom
¶
interface_error
¶
lookup
¶
-
class
qipipe.interfaces.lookup.
Lookup
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.io.IOBase
The Lookup Interface wraps a dictionary look-up.
Example:
>>> from qipipe.interfaces import Lookup >>> lookup = Lookup(key='a', dictionary=dict(a=1, b=2)) >>> result = lookup.run() >>> result.outputs.value 1
map_ctp
¶
Maps the DICOM Patient IDs to the CTP Patient IDs.
-
class
qipipe.interfaces.map_ctp.
MapCTP
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The MapCTP interface wraps the
qipipe.interfaces.map_ctp.map_ctp()
method.
move
¶
-
class
qipipe.interfaces.move.
Move
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The Move interface moves a file to a destination using
shutil.move
. Unlikeshutil.move
, the dest parent directory is created if it does not yet exist (likemkdir -p
).
mri_volcluster
¶
-
class
qipipe.interfaces.mri_volcluster.
MriVolCluster
(command=None, **inputs)¶ Bases:
nipype.interfaces.base.CommandLine
MriVolCluster encapsulates the FSL mri_volcluster command.
preview
¶
-
class
qipipe.interfaces.preview.
Preview
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
Preview creates a JPEG image from an input DICOM image.
reorder_bolero_mask
¶
This module reorders the OHSU AIRC bolero_mask_conv
result to conform with the time series x and y order.
-
class
qipipe.interfaces.reorder_bolero_mask.
ReorderBoleroMask
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
Interface to the ROI reordering utility.
sticky_identity
¶
-
class
qipipe.interfaces.sticky_identity.
StickyIdentityInterface
(fields=None, mandatory_inputs=True, **inputs)¶ Bases:
nipype.interfaces.io.IOBase
The StickyIdentityInterface interface class is a copy of the Nipype IdentityInterface. Since Nipype over-zealously elides IdentityInterface nodes from the execution graph, IdentityInterface cannot be used to capture workflow output nor to constrain execution order, as in the examples below. StickyIdentityInterface is an IdentityInterface look-alike that preserves the node connection in the execution graph.
Example:
>> from qipipe.interfaces import StickyIdentityInterface >> gate = Node(StickyIdentityInterface(fields=['a', 'b'])) >> workflow.connect(upstream1, 'a', gate, 'a') >> workflow.connect(upstream2, 'b', gate, 'b') >> workflow.connect(gate, 'a', downstream, 'a')
In this example, the
gate
node starts after bothupstream1
andupstream2
finish. Consequently, thedownstream
node starts only after bothupstream1
andupstream2
finish. This execution precedence constraint does not hold if gate were an IdentityInterface.Example:
>> from qipipe.interfaces import StickyIdentityInterface >> output_spec = Node(StickyIdentityInterface(fields=['a'])) >> workflow.connect(upstream, 'a', output_spec, 'a') >> upstream.inputs.a = 1 >> # The magic incantation to get a Nipype workflow output. >> wf_res = workflow.run() >> output_res = next(n for n in wf_res.nodes() ... if n.name == 'output_spec') >> output_res.inputs.get()['a'] 1 >> # But, oddly: >> output_res.outputs.get()['a'] # bad! <undefined>
Note
a better solution is to set a preserve flag on IdentityInterface. If this solution is implemented by Nipype, then this
StickyIdentityInterface
class will be deprecated.-
__init__
(fields=None, mandatory_inputs=True, **inputs)¶
-
input_spec
¶ alias of
DynamicTraitedSpec
-
output_spec
¶ alias of
DynamicTraitedSpec
-
touch
¶
-
class
qipipe.interfaces.touch.
Touch
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The Touch interface emulates the Unix
touch
command. This interface is useful for stubbing out processing nodes during workflow development.
uncompress
¶
unpack
¶
-
class
qipipe.interfaces.unpack.
Unpack
(input_name, output_names, mandatory_inputs=True, **inputs)¶ Bases:
nipype.interfaces.io.IOBase
The Unpack Interface converts a list input field to one output field per list item.
Example:
>>> from qipipe.interfaces.unpack import Unpack >>> unpack = Unpack(input_name='list', output_names=['a', 'b'], list=[1, 2]) >>> result = unpack.run() >>> result.outputs.a 1 >>> result.outputs.b 2
Parameters: - input_name – the input list field name
- output_names – the output field names
- mandatory_inputs – a flag indicating whether every input field is required
- inputs – the input field name => value bindings
-
__init__
(input_name, output_names, mandatory_inputs=True, **inputs)¶ Parameters: - input_name – the input list field name
- output_names – the output field names
- mandatory_inputs – a flag indicating whether every input field is required
- inputs – the input field name => value bindings
-
input_spec
¶ alias of
DynamicTraitedSpec
-
output_spec
¶ alias of
DynamicTraitedSpec
update_qiprofile
¶
-
class
qipipe.interfaces.update_qiprofile.
UpdateQIProfile
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The
UpdateQIProfile
Nipype interface updates the Imaging Profile database.
xnat_copy
¶
-
class
qipipe.interfaces.xnat_copy.
XNATCopy
(command=None, **inputs)¶ Bases:
nipype.interfaces.base.CommandLine
The
XNATCopy
Nipype interface wraps thecpxnat
command.-
input_spec
¶ alias of
XNATCopyInputSpec
-
-
class
qipipe.interfaces.xnat_copy.
XNATCopyInputSpec
(**kwargs)¶ Bases:
nipype.interfaces.base.CommandLineInputSpec
The input spec with arguments in the following order: * options * the input files, for an upload * the XNAT object path * the destination directory, for a download
Initialize handlers and inputs
xnat_download
¶
-
qipipe.interfaces.xnat_download.
CONTAINER_OPTS
= ['container_type', 'scan', 'reconstruction', 'assessor']¶ The download input container options.
-
class
qipipe.interfaces.xnat_download.
XNATDownload
(from_file=None, **inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The
XNATDownload
Nipype interface wraps theqixnat.facade.XNAT.download()
method.Note
only one XNAT operation can run at a time.
Examples:
>>> # Download the scan NIfTI files. >>> from qipipe.interfaces import XNATDownload >>> XNATDownload(project='QIN', subject='Breast003', ... session='Session02', scan=1, resource='NIFTI', ... dest='data').run()
>>> # Download the scan DICOM files. >>> from qipipe.interfaces import XNATDownload >>> XNATDownload(project='QIN', subject='Breast003', ... session='Session02', scan=1, resource='DICOM', ... dest='data').run()
>>> # Download the registration reg_H3pIz4s images. >>> from qipipe.interfaces import XNATDownload >>> XNATDownload(project='QIN', subject='Breast003', ... session='Session02', resource='reg_H3pIz4', ... dest='data').run()
xnat_find
¶
-
class
qipipe.interfaces.xnat_find.
XNATFind
(**inputs)¶ Bases:
nipype.interfaces.base.BaseInterface
The
XNATFind
Nipype interface wraps theqixnat.facade.XNAT
find_one
andfind_or_create
methods.Note
concurrent XNAT operations can fail. See the
qipipe.pipeline.staging.StagingWorkflow
note.-
__init__
(**inputs)¶
-
pipeline¶
pipeline
Package¶
This pipeline
module includes the following workflows:
qipipe.pipeline.qipipeline
: the soup-to-nuts pipeline to stage, mask, register and model new imagesqipipe.pipeline.staging
: executes the staging workflow to detect new images, group them by volume, import them into XNAT and prepare them for TCIA importqipipe.pipeline.mask
: creates a mask to subtract extraneous tissue from the input imagesqipipe.pipeline.registration
: masks the target tissue and corrects motion artifactsqipipe.pipeline.modeling
: performs pharmokinetic modeling
mask
¶
-
class
qipipe.pipeline.mask.
MaskWorkflow
(**opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The MaskWorkflow class builds and executes the mask workflow.
The workflow creates a mask to subtract extraneous tissue for a given input session 4D NIfTI time series. The new mask is uploaded to XNAT as a session resource named
mask
.The mask workflow input is the input_spec node consisting of the following input fields:
- subject: the XNAT subject name
- session: the XNAT session name
- scan: the XNAT scan number
- time_series: the 4D NIfTI series image file
The mask workflow output is the output_spec node consisting of the following output field:
- mask: the mask file
The optional workflow configuration file can contain the following sections:
fsl.MriVolCluster
: theqipipe.interfaces.mri_volcluster.MriVolCluster
interface options
If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: opts – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments, as well as the following keyword arguments:Option crop_posterior: crop posterior to the center of gravity, e.g. for a breast tumor -
__init__
(**opts)¶ If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: opts – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments, as well as the following keyword arguments:Option crop_posterior: crop posterior to the center of gravity, e.g. for a breast tumor
-
run
(subject, session, scan, time_series)¶ Runs the mask workflow on the scan NIfTI files for the given time series.
Parameters: - subject – the input subject
- session – the input session
- scan – the input scan number
- time_series – the input 3D NIfTI time series to mask
Returns: the mask file location
-
workflow
= None¶ The mask creation workflow.
-
qipipe.pipeline.mask.
run
(subject, session, scan, time_series, **opts)¶ Creates a
qipipe.pipeline.mask.MaskWorkflow
and runs it on the given inputs.Parameters: - subject – the input subject
- session – the input session
- scan – the input scan number
- time_series – the input 4D NIfTI time series to mask
- opts – additional
MaskWorkflow
initialization parameters
Returns: the mask file location
modeling
¶
-
qipipe.pipeline.modeling.
FASTFIT_CONF_PROPS
= ['model_name', 'optimization_params', 'optional_outs']¶ The Fastfit configuration property names.
-
qipipe.pipeline.modeling.
FASTFIT_PARAMS_FILE
= 'params.csv'¶ The Fastfit parameters CSV file name.
-
qipipe.pipeline.modeling.
FXL_MODEL_PREFIX
= 'ext_tofts.'¶ The Fastfit Standard TOFTS model prefix.
-
qipipe.pipeline.modeling.
MODELING_CONF_FILE
= 'modeling.cfg'¶ The modeling workflow configuration.
-
qipipe.pipeline.modeling.
MODELING_PREFIX
= 'pk_'¶ The modeling XNAT object label prefix.
-
class
qipipe.pipeline.modeling.
ModelingWorkflow
(**opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The ModelingWorkflow builds and executes the Nipype pharmacokinetic mapping workflow.
The workflow calculates the modeling parameters for an input 4D time series NIfTI image file as follows:
- Compute the R10 value, if it is not given in the options
- Convert the DCE time series to a R1 map series
- Determine the AIF and R1 fit parameters from the time series
- Optimize the OHSU pharmacokinetic model
- Upload the modeling result to XNAT
The modeling workflow input is the input_spec node consisting of the following input fields:
- subject: the subject name
- session: the session name
- mask: the mask to apply to the images
- time_series: the 4D time series NIfTI file to model
- bolus_arrival_index: the bolus uptake volume index
- the R1 modeling parameters described below
If an input field is defined in the configuration file
R1
section, then the input field is set to that value.If the R10 option is not set, then it is computed from the proton density weighted scans and DCE series baseline image.
The outputs are collected in the output_spec node for the FXL (Tofts standard) model and the FXR (shutter speed) model with the following fields:
- r1_series: the R1 series files
- pk_params: the AIF and R1 parameter CSV file
- fxr_k_trans, fxl_k_trans: the Ktrans vascular permeability
- transfer constant
- delta_k_trans: the FXR-FXL Ktrans difference
- fxr_v_e, fxl_v_e: the ve extravascular extracellular volume
- fraction
- fxr_tau_i: the τi intracellular H2O mean lifetime
- fxr_chi_sq, fxl_chi_sq: the χ2 intensity goodness of fit
In addition, if R10 is computed, then the output includes the following fields:
- pdw_file: the proton density weighted image
- dce_baseline: the DCE series baseline image
- r1_0: the computed R10 value
This workflow is adapted from the AIRC DCE implementation.
Note
This workflow uses proprietary OHSU AIRC software, notably the OHSU implementation of the shutter speed model.
The modeling parameters can be defined in either the options or the configuration as follows:
- The parameters can be defined in the configuration
R1
section. - The keyword arguments take precedence over the configuration settings.
- The r1_0_val takes precedence over the R1_0 computation fields pd_dir and max_r1_0. If r1_0_val is set in the input options, then pd_dir and max_r1_0 are not included from the result.
- If pd_dir and max_r1_0 are set in the input options and r1_0_val is not set in the input options, then a r1_0_val configuration setting is ignored.
- The base_end defaults to 1 if it is not set in either the input options or the configuration.
Parameters: - opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments, as well as the following keyword arguments: - r1_0_val – the optional fixed R10 value
- max_r1_0 – the maximum computed R10 value, if the fixed R10 option is not set
- pd_dir – the proton density files parent directory, if the fixed R10 option is not set
- base_end – the number of volumes to merge into a R1 series baseline image (default is 1)
-
__init__
(**opts)¶ The modeling parameters can be defined in either the options or the configuration as follows:
- The parameters can be defined in the configuration
R1
section. - The keyword arguments take precedence over the configuration settings.
- The r1_0_val takes precedence over the R1_0 computation fields pd_dir and max_r1_0. If r1_0_val is set in the input options, then pd_dir and max_r1_0 are not included from the result.
- If pd_dir and max_r1_0 are set in the input options and r1_0_val is not set in the input options, then a r1_0_val configuration setting is ignored.
- The base_end defaults to 1 if it is not set in either the input options or the configuration.
Parameters: - opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments, as well as the following keyword arguments: - r1_0_val – the optional fixed R10 value
- max_r1_0 – the maximum computed R10 value, if the fixed R10 option is not set
- pd_dir – the proton density files parent directory, if the fixed R10 option is not set
- base_end – the number of volumes to merge into a R1 series baseline image (default is 1)
- The parameters can be defined in the configuration
-
resource
= None¶ The XNAT resource name for all executions of this
qipipe.pipeline.modeling.ModelingWorkflow
instance. The name is unique, which permits more than one model to be stored for each input volume without a name conflict.
-
run
(subject, session, scan, time_series, **opts)¶ Executes the modeling workflow described in
qipipe.pipeline.modeling.ModelingWorkflow
on the given input time series resource. The time series can be the merged scan NIFTI files or merged registration files.This run method connects the given inputs to the modeling workflow inputs. The execution workflow is then executed, resulting in a new uploaded XNAT resource.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- time_series – the 4D modeling input time series file location
- opts – the following keyword parameters:
Option bolus_arrival_index: the bolus uptake volume index
Option mask: the XNAT mask resource name
Returns: the modeling result dictionary
-
technique
= None¶ The modeling technique. Built-in techniques include
mock
.
-
workflow
= None¶ The modeling workflow described in
qipipe.pipeline.modeling.ModelingWorkflow
.
-
qipipe.pipeline.modeling.
OHSU_CONF_SECTIONS
= ['Fastfit', 'R1', 'AIF']¶ The OHSU AIRC modeling configuration sections.
-
qipipe.pipeline.modeling.
associate
(names, values)¶ Captures the synchronized names and values in a dictionary.
Parameters: - names – the field names
- values – the field values
Returns: the target {name: value} dictionary
-
qipipe.pipeline.modeling.
create_profile
(technique, time_series, configuration, sections, dest)¶ qipipe.helpers.metadata.create_profile()
wrapper.Parameters: - technique – the modeling technique
- time_series – the modeling input time series file path
- configuration – the modeling workflow interface settings
- sections – the profile sections
- dest – the output profile file path
-
qipipe.pipeline.modeling.
get_aif_shift
(time_series, bolus_arrival_index)¶ Calculates the arterial input function offset as:
tarrival - t0
where t0 is the first slice acquisition time and tarrival averages the acquisition times at and immediately following bolus arrival.
Parameters: - time_series – the modeling input 4D NIfTI image file path
- bolus_arrival_index – the bolus uptake series index
Returns: the parameter CSV file path
-
qipipe.pipeline.modeling.
get_fit_params
(cfg_file, aif_shift)¶ Makes the CSV file containing the following modeling fit parameters:
- aif_shift: arterial input function parameter array
- aif_delta_t: acquisition time deltas
- aif_shift: acquisition time shift
- r1_cr: contrast R1
- r1_b_pre: pre-contrast R1
The aif_shift is calculated by
get_aif_shift()
and passed to this function. The remaining parameters are read from theMODELING_CONF_FILE
.Parameters: cfg_file – the modeling configuration file Returns: the parameter CSV file path
-
qipipe.pipeline.modeling.
get_r1_0
(pdw_file, t1w_file, max_r1_0, mask=None)¶ Returns the R1_0 map NIfTI file from the given proton density and T1-weighted images. The R1_0 map is computed using the
pdw_t1w_to_r1
function. Thepdw_t1w_to_r1
module must be in the Python path.Parameters: - pdw_file – the proton density NIfTI image file path
- t1w_file – the T1-weighted image file path
- max_r1_0 – the R1_0 range maximum
- mask – the optional mask image file path to use
Returns: the R1_0 map NIfTI image file path
-
qipipe.pipeline.modeling.
make_baseline
(time_series, base_end)¶ Makes the R1_0 computation baseline NIfTI file.
Parameters: - time_series – the modeling input 4D NIfTI image file path
- base_end – the exclusive limit of the baseline computation input series
Returns: the baseline NIfTI file name
Raises: ModelingError – if the end index is a negative number
-
qipipe.pipeline.modeling.
run
(subject, session, scan, time_series, **opts)¶ Creates a
qipipe.pipeline.modeling.ModelingWorkflow
and runs it on the given inputs.Parameters: - subject – the input subject
- session – the input session
- scan – input scan
- time_series – the input 4D NIfTI time series
- opts – the
qipipe.pipeline.modeling.ModelingWorkflow
initializer and run options
Returns:
pipeline_error
¶
-
exception
qipipe.pipeline.pipeline_error.
PipelineError
¶ Bases:
exceptions.Exception
The common pipeline error class.
qipipeline
¶
-
qipipe.pipeline.qipipeline.
MULTI_VOLUME_ACTIONS
= ['stage', 'roi', 'register', 'model']¶ The workflow actions which apply to a multi-volume scan.
-
class
qipipe.pipeline.qipipeline.
QIPipelineWorkflow
(project, scan_input, actions, **opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
QIPipeline builds and executes the imaging workflows. The pipeline builds a composite workflow which stitches together the following constituent workflows:
- staging: Prepare the new DICOM visits, as described in
qipipe.pipeline.staging.StagingWorkflow
- mask: Create the mask from the staged images,
as described in
qipipe.pipeline.mask.MaskWorkflow
- registration: Mask, register and realign the staged images,
as described in
qipipe.pipeline.registration.RegistrationWorkflow
- modeling: Perform PK modeling as described in
qipipe.pipeline.modeling.ModelingWorkflow
The constituent workflows are determined by the initialization options
stage
,register
andmodel
. The default is to perform each of these subworkflows.The workflow steps are determined by the input options as follows:
- If staging is enabled, then the DICOM files are staged for the subject directory inputs. Otherwise, staging is not performed. In that case, if registration is enabled as described below, then the previously staged volume scan stack images are downloaded.
- If modeling is enabled and the
registration
resource option is set, then the previously realigned images with the given resource name are downloaded. - If registration or modeling is enabled and the XNAT
mask
resource is found, then that resource file is downloaded. Otherwise, the mask is created from the staged images.
The workflow input node is input_spec with the following fields:
- subject: the subject name
- session: the session name
- scan: the scan number
The constituent workflows are combined as follows:
- The staging workflow input is the workflow input.
- The mask workflow input is the newly created or previously staged scan NIfTI image files.
- The modeling workflow input is the combination of the previously uploaded and newly realigned image files.
The pipeline workflow is available as the
qipipe.pipeline.qipipeline.QIPipelineWorkflow.workflow
instance variable.Parameters: - project – the XNAT project name
- scan_input – the
qipipe.staging.iterator.iter_stage()
scan input - actions – the actions to perform
- opts – the
qipipe.staging.WorkflowBase
initialization options as well as the following keyword arguments: - dest – the staging destination directory
- collection – the image collection name
- registration_resource – the XNAT registration resource name
- registration_technique – the class:qipipe.pipeline.registration.RegistrationWorkflow technique
- modeling_resource – the modeling resource name
- modeling_technique – the class:qipipe.pipeline.modeling.ModelingWorkflow technique
- scan_time_series – the scan time series resource name
- realigned_time_series – the registered time series resource name
-
__init__
(project, scan_input, actions, **opts)¶ Parameters: - project – the XNAT project name
- scan_input – the
qipipe.staging.iterator.iter_stage()
scan input - actions – the actions to perform
- opts – the
qipipe.staging.WorkflowBase
initialization options as well as the following keyword arguments: - dest – the staging destination directory
- collection – the image collection name
- registration_resource – the XNAT registration resource name
- registration_technique – the class:qipipe.pipeline.registration.RegistrationWorkflow technique
- modeling_resource – the modeling resource name
- modeling_technique – the class:qipipe.pipeline.modeling.ModelingWorkflow technique
- scan_time_series – the scan time series resource name
- realigned_time_series – the registered time series resource name
-
modeling_resource
= None¶ The modeling XNAT resource name.
-
modeling_technique
= None¶ The modeling technique.
-
registration_resource
= None¶ The registration resource name.
-
registration_technique
= None¶ The registration technique.
-
run_with_dicom_input
(actions, scan_input)¶ Parameters: - actions – the workflow actions to perform
- scan_input – the
qipipe.staging.iterator.iter_stage()
scan input - dest – the TCIA staging destination directory (default is the current working directory)
-
run_with_scan_download
(project, scan_input, actions)¶ Runs the execution workflow on downloaded scan image files.
Parameters: - project – the project name
- scan_input – the {project, subject, session} object
- actions – the workflow actions
-
workflow
= None¶ The pipeline execution workflow. The execution workflow is executed by calling the
run_with_dicom_input()
orrun_with_scan_download()
method.
- staging: Prepare the new DICOM visits, as described in
-
qipipe.pipeline.qipipeline.
SINGLE_VOLUME_ACTIONS
= ['stage']¶ The workflow actions which apply to a single-volume scan.
-
qipipe.pipeline.qipipeline.
exclude_files
(in_files, exclusions)¶ Parameters: - in_files – the input file paths
- exclusions – the file names to exclude
Returns: the filtered input file paths
-
qipipe.pipeline.qipipeline.
run
(*inputs, **opts)¶ Creates a
qipipe.pipeline.qipipeline.QIPipelineWorkflow
and runs it on the given inputs. The pipeline execution depends on the actions option, as follows:- If the workflow actions includes
stage
orroi
, then the input is theQIPipelineWorkflow.run_with_dicom_input()
DICOM subject directories input. - Otherwise, the input is the
QIPipelineWorkflow.run_with_scan_download()
XNAT session labels input.
Parameters: - inputs – the input directories or XNAT session labels to process
- opts – the
qipipe.staging.iterator.iter_stage()
andQIPipelineWorkflow
initializer options, as well as the following keyword options: - project – the XNAT project name
- collection – the image collection name
- actions – the workflow actions to perform
(default
MULTI_VOLUME_ACTIONS
)
- If the workflow actions includes
registration
¶
-
qipipe.pipeline.registration.
ANTS_CONF_SECTIONS
= ['ants.Registration']¶ The common ANTs registration configuration sections.
-
qipipe.pipeline.registration.
ANTS_INITIALIZER_CONF_SECTION
= 'ants.AffineInitializer'¶ The initializer ANTs registration configuration sections.
-
qipipe.pipeline.registration.
FSL_CONF_SECTIONS
= ['fsl.FLIRT', 'fsl.FNIRT']¶ The FSL registration configuration sections.
-
qipipe.pipeline.registration.
REG_PREFIX
= 'reg_'¶ The XNAT registration resource name prefix.
-
class
qipipe.pipeline.registration.
RegisterImageWorkflow
(technique, **opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The RegisterImageWorkflow registers an input NIfTI scan image against a reference image.
Three registration techniques are supported:
ants
: ANTS SyN symmetric normalization diffeomorphic registration (default)fsl
: FSL FNIRT non-linear registrationmock
: Test technique which copies each input scan image to the output image file
The optional workflow configuration file can contain overrides for the Nipype interface inputs in the following sections:
AffineInitializer
: theqipipe.interfaces.ants.utils.AffineInitializer
options
ants.Registration
: the ANTs Registration interface optionsants.ApplyTransforms
: the ANTs ApplyTransform interface optionsfsl.FNIRT
: the FSL FNIRT interface options
Note
Since the XNAT resource name is unique, a
qipipe.pipeline.registration.RegisterScanWorkflow
instance can be used for only one registration workflow. Different registration inputs require differentqipipe.pipeline.registration.RegisterScanWorkflow
instances.If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: - technique – the required registration
technique
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer options, as well as the following keyword arguments: - initialize – flag indicating whether to create an initial affine transform (ANTs only, default false)
-
__init__
(technique, **opts)¶ If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: - technique – the required registration
technique
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer options, as well as the following keyword arguments: - initialize – flag indicating whether to create an initial affine transform (ANTs only, default false)
- technique – the required registration
-
run
(in_file, reference, **opts)¶ Runs the realignment workflow on the given session scan image.
Parameters: - reference – the volume to register against
- in_file – the input session scan volume image file
- opts – the following keyword arguments:
Option mask: the image mask file path
Returns: the realigned output file paths
-
technique
= None¶ The lower-case XNAT registration technique. The built-in techniques include
ants
, fnirt` andmock
.
-
workflow
= None¶ The realignment workflow.
-
class
qipipe.pipeline.registration.
RegisterScanWorkflow
(reference, **opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The RegistrationWorkflow registers input NIfTI scan images against a reference image.
The mask can be obtained by running the
qipipe.pipeline.mask.MaskWorkflow
workflow.Three registration techniques are supported:
ants
: ANTS SyN symmetric normalization diffeomorphic registration (default)fsl
: FSL FNIRT non-linear registrationmock
: Test technique which copies each input scan image to the output image file
The optional workflow configuration file can contain overrides for the Nipype interface inputs in the following sections:
AffineInitializer
: theqipipe.interfaces.ants.utils.AffineInitializer
options
ants.Registration
: the ANTs Registration interface optionsants.ApplyTransforms
: the ANTs ApplyTransform interface optionsfsl.FNIRT
: the FSL FNIRT interface options
Note
Since the XNAT resource name is unique, a
qipipe.pipeline.registration.RegisterScanWorkflow
instance can be used for only one registration workflow. Different registration inputs require differentqipipe.pipeline.registration.RegisterScanWorkflow
instances.If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: - reference – the volume to register against
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
andRegisterImageWorkflow
options, as well as the following keyword arguments: - technique – the optional registration
technique
(defaultDEF_TECHNIQUE
)
-
__init__
(reference, **opts)¶ If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: - reference – the volume to register against
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
andRegisterImageWorkflow
options, as well as the following keyword arguments: - technique – the optional registration
technique
(defaultDEF_TECHNIQUE
)
-
resource
= None¶ The unique XNAT registration resource name. Uniqueness permits more than one registration to be stored for a given session without a name conflict.
-
run
(subject, session, scan, in_files, mask=None)¶ Runs the registration workflow on the given session scan images.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- in_files – the input session scan volume image files
- mask – the optional image mask file path
Returns: the realigned 4D time series file path
-
technique
= None¶ The registration technique (default
DEF_TECHNIQUE
).
-
workflow
= None¶ The registration workflow.
-
qipipe.pipeline.registration.
run
(subject, session, scan, in_files, **opts)¶ Runs the registration workflow on the given session scan images.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- in_files – the input session scan 3D NIfTI images
- opts – the
RegisterScanWorkflow
initializer andRegisterScanWorkflow.run()
options as well as the following keyword option: - reference – the volume number of the image to register against (default is the first image)
Returns: the 4D registration time series
roi
¶
The proprietary OHSU mask conversion workflow.
-
class
qipipe.pipeline.roi.
ROIWorkflow
(**kwargs)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The ROIWorkflow class builds and executes the ROI workflow which converts the BOLERO mask
.bqf
files to NIfTI.The ROI workflow input consists of the input_spec and iter_slice nodes. The input_spec contains the following input fields:
- subject: the subject name
- session: the session name
- scan: the scan number
- time_series: the 4D time series file path
- lesion: the lesion number
The iter_slice contains the following input fields:
- slice_sequence_number: the one-based slice sequence number
- in_file: the ROI mask``.bqf`` file to convert
The output is the 3D mask NIfTI file location. The file name is lesion
.nii.gz
.If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: kwargs – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments-
__init__
(**kwargs)¶ If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: kwargs – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments
-
run
(subject, session, scan, time_series, *inputs)¶ Runs the ROI workflow on the given session scan images.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- time_series – the 4D scan time series file path
- inputs – the input (lesion number, slice sequence number, in_file) tuples to convert
Returns: the XNAT converted ROI resource name, or None if there were no inputs
-
workflow
= None¶ The ROI workflow.
-
qipipe.pipeline.roi.
ROI_FNAME_PAT
= 'lesion%d'¶ The ROI file name pattern.
-
qipipe.pipeline.roi.
ROI_RESOURCE
= 'roi'¶ The XNAT ROI resource name.
-
qipipe.pipeline.roi.
base_name
(lesion)¶ Parameters: lesion – the lesion number Returns: the base name to use
-
qipipe.pipeline.roi.
run
(subject, session, scan, time_series, *inputs, **opts)¶ Runs the ROI workflow on the given session ROI mask files.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- time_series – the 4D scan time series
- inputs – the
ROIWorkflow.run()
(lesion number, slice sequence number, in_file) inputs - opts – the
ROIWorkflow
initializer options
Returns: the
ROIWorkflow.run()
result
staging
¶
-
qipipe.pipeline.staging.
SCAN_CONF_FILE
= 'scan.cfg'¶ The XNAT scan configuration file name.
-
qipipe.pipeline.staging.
SCAN_METADATA_RESOURCE
= 'metadata'¶ The label of the XNAT resource holding the scan configuration.
-
class
qipipe.pipeline.staging.
ScanStagingWorkflow
(is_multi_volume=True, **opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The ScanStagingWorkflow class builds and executes the scan staging supervisory Nipype workflow. This workflow delegates to
qipipe.pipeline.staging.stage_volume()
for each iterated scan volume.The scan staging workflow input is the input_spec node consisting of the following input fields:
- collection: the collection name
- subject: the subject name
- session: the session name
- scan: the scan number
The scan staging workflow has one iterable:
- the iter_volume node with input fields volume and in_files
This iterable must be set prior to workflow execution.
The staging workflow output is the output_spec node consisting of the following output field:
- out_file: the 3D volume stack NIfTI image file
Parameters: - is_multi_volume – flag indicating whether to include volume merge tasks
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments
-
__init__
(is_multi_volume=True, **opts)¶ Parameters: - is_multi_volume – flag indicating whether to include volume merge tasks
- opts – the
qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments
-
run
(collection, subject, session, scan, vol_dcm_dict, dest)¶ Executes this scan staging workflow.
Parameters: - collection – the collection name
- subject – the subject name
- session – the session name
- scan – the scan number
- vol_dcm_dict – the input {volume: DICOM files} dictionary
- dest – the destination directory
Returns: the (time series, volume files) tuple
-
workflow
= None¶ The scan staging workflow sequence described in
qipipe.pipeline.staging.StagingWorkflow
.
-
class
qipipe.pipeline.staging.
VolumeStagingWorkflow
(**opts)¶ Bases:
qipipe.pipeline.workflow_base.WorkflowBase
The StagingWorkflow class builds and executes the staging Nipype workflow. The staging workflow includes the following steps:
- Group the input DICOM images into volume.
- Fix each input DICOM file header using the
qipipe.interfaces.fix_dicom.FixDicom
interface. - Compress each corrected DICOM file.
- Upload each compressed DICOM file into XNAT.
- Stack each new volume’s 2-D DICOM files into a 3-D volume NIfTI file using the DcmStack interface.
- Upload each new volume stack into XNAT.
- Make the CTP QIN-to-TCIA subject id map.
- Collect the id map and the compressed DICOM images into a target directory in collection/subject/session/volume format for TCIA upload.
The staging workflow input is the input_spec node consisting of the following input fields:
- collection: the collection name
- subject: the subject name
- session: the session name
- scan: the scan number
The staging workflow has two iterables:
- the iter_volume node with input fields volume and dest
- the iter_dicom node with input fields volume and dicom_file
These iterables must be set prior to workflow execution. The iter_volume dest input is the destination directory for the iter_volume volume.
The iter_dicom node itersource is the
iter_volume.volume
field. Theiter_dicom.dicom_file
iterables is set to the {volume: [DICOM files]} dictionary.The DICOM files to upload to TCIA are placed in the destination directory in the following hierarchy:
/path/to/dest/
- subject/
- session/
volume
volume number/- file ...
where:
- subject is the subject name, e.g.
Breast011
- session is the session name, e.g.
Session03
- volume number is determined by the
qipipe.staging.image_collection.Collection.patterns
volume
DICOM tag - file is the DICOM file name
The staging workflow output is the output_spec node consisting of the following output field:
- image: the 3D volume stack NIfTI image file
Note
Concurrent XNAT upload fails unpredictably due to one of
the causes described in the
qixnat.facade.XNAT.find
method documentation.The errors are addressed by the following measures:
- setting an isolated
pyxnat
cache_dir for each execution node - serializing the XNAT find-or-create access points with ``JoinNode``s
- increasing the SGE submission resource parameters as shown in
the
conf/staging.cfg [upload]
section
If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: opts – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments-
__init__
(**opts)¶ If the optional configuration file is specified, then the workflow settings in that file override the default settings.
Parameters: opts – the qipipe.pipeline.workflow_base.WorkflowBase
initializer keyword arguments
-
run
(collection, subject, session, scan, volume, dest, *in_files)¶ Executes this volume staging workflow.
Parameters: - collection – the collection name
- subject – the subject name
- session – the session name
- scan – the scan number
- volume – the volume number
- dest – the destination directory
- in_files – the input DICOM files
Returns: the output 3D NIfTI volume file path
-
workflow
= None¶ The staging workflow sequence described in
qipipe.pipeline.staging.StagingWorkflow
.
-
qipipe.pipeline.staging.
run
(subject, session, scan, *in_dirs, **opts)¶ Runs the staging workflow on the given DICOM input directory. The return value is a {volume: file} dictionary, where volume is the volume number and file is the 3D NIfTI volume file.
Parameters: - subject – the subject name
- session – the session name
- scan – the scan number
- in_dirs – the input DICOM file directories
- opts – the
ScanStagingWorkflow
initializer options
Returns: the
ScanStagingWorkflow.run()
result
-
qipipe.pipeline.staging.
stage_volume
(collection, subject, session, scan, volume, in_files, dest, opts)¶ Stages the given volume. The processed DICOM
.dcm.gz
files are placed in the dest/volume subdirectory. The childVolumeStagingWorkflow
runs in the _parent_/volume_volume_ directory, where:- _parent_ is the parent base directory specified in the options (default current directory)
- _volume_ is the volume argument
Parameters: - collection – the collection name
- subject – the subject name
- session – the session name
- scan – the scan number
- volume – the volume number
- in_files – the input DICOM files
- dest – the parent destination directory
- opts – the
VolumeStagingWorkflow
initializer options
Returns: the 3D NIfTI volume file
-
qipipe.pipeline.staging.
upload_dicom
(project, subject, session, scan, dcm_dir)¶ Uploads the staged
.dcm.gz
files in dcm_dir to the XNAT scanDICOM
resourceParameters: - project – the project name
- subject – the subject name
- session – the session name
- scan – the scan number
- dcm_dir – the input staged directory
-
qipipe.pipeline.staging.
upload_nifti
(project, subject, session, scan, files)¶ Uploads the staged NIfTI files to the XNAT scan
NIFTI
resource.Parameters: - project – the project name
- subject – the subject name
- session – the session name
- scan – the scan number
- files – the NIfTI files to upload
-
qipipe.pipeline.staging.
volume_format
(collection)¶ The DcmStack format for making a file name from the DICOM volume tag.
Example:
>> volume_format('Sarcoma') "volume%(AcquisitionNumber)03d"
Parameters: collection – the collection name Returns: the volume file name format
workflow_base
¶
-
class
qipipe.pipeline.workflow_base.
WorkflowBase
(name, **opts)¶ Bases:
object
The WorkflowBase class is the base class for the qipipe workflow wrapper classes.
If the distributable flag is set, then the execution is distributed using the Nipype plug-in specified in the configuration plug_in parameter.
The workflow plug-in arguments and node inputs can be specified in a
qiutil.ast_config.ASTConfig
file. The configuration directory order consist of the order consist of the search locations in low-to-high precedence order consist of the following:- the qipipe module
conf
directory - the config_dir initialization keyword option
The common configuration is loaded from the
default.cfg
file or in the directory locations. The workflow-specific configuration file name is the lower-case name of theWorkflowBase
subclass with.cfg
extension, e.g.registration.cfg
forqipipe.workflow.registration.RegistrationWorkflow
. The configuration settings are then loaded from the common configuration files followed by the workflow-specific configuration files.Initializes this workflow wrapper object. The parent option obviates the other options.
Parameters: - name – the module name
- opts – the following keyword arguments:
- project – the
project
- parent – the parent workflow for a child workflow
- base_dir – the
base_dir
- config_dir – the optional workflow node
configuration
file location or dictionary - dry_run – the
dry_run
flag - distributable – the
distributable
flag
Raises: PipelineError – if there is neither a project nor a parent argument
-
INTERFACE_PREFIX_PAT
= <_sre.SRE_Pattern object>¶ Regexp matcher for an interface module.
Example:
>>> from qipipe.pipeline.workflow_base import WorkflowBase >>> WorkflowBase.INTERFACE_PREFIX_PAT.match('nipype.interfaces.ants.util.AverageImages').groups() ('nipype.',)
-
MODULE_PREFIX_PAT
= <_sre.SRE_Pattern object>¶ Regexp matcher for a module prefix.
Example:
>>> from qipipe.pipeline.workflow_base import WorkflowBase >>> WorkflowBase.MODULE_PREFIX_PAT.match('ants.util.AverageImages').groups() ('ants.', 'ants.', 'util.', 'AverageImages') >>> WorkflowBase.MODULE_PREFIX_PAT.match('AverageImages') None
-
__init__
(name, **opts)¶ Initializes this workflow wrapper object. The parent option obviates the other options.
Parameters: - name – the module name
- opts – the following keyword arguments:
- project – the
project
- parent – the parent workflow for a child workflow
- base_dir – the
base_dir
- config_dir – the optional workflow node
configuration
file location or dictionary - dry_run – the
dry_run
flag - distributable – the
distributable
flag
Raises: PipelineError – if there is neither a project nor a parent argument
-
base_dir
= None¶ The workflow execution directory (default a new temp directory).
-
config_dir
= None¶ The workflow node inputs configuration directory.
-
configuration
= None¶ The workflow node inputs configuration.
-
depict_workflow
(workflow)¶ Diagrams the given workflow graph. The diagram is written to the name
.dot.png
in the workflow base directory.:param workflow the workflow to diagram
-
dry_run
= None¶ Flag indicating whether to prepare but not run the workflow.
-
is_distributable
= None¶ Flag indicating whether to submit jobs to a cluster.
-
logger
= None¶ This workflow’s logger.
-
project
= None¶ The XNAT project name.
- the qipipe module
qiprofile¶
qiprofile
Package¶
breast_pathology
¶
This module updates the qiprofile database Subject pathology information from the pathology Excel workbook file.
-
class
qipipe.qiprofile.breast_pathology.
BreastPathologyUpdate
(subject)¶ Bases:
qipipe.qiprofile.pathology.PathologyUpdate
The Breast pathology update facade.
Parameters: subject – the Subject
Mongo Engine database object to update-
__init__
(subject)¶ Parameters: subject – the Subject
Mongo Engine database object to update
-
encounter_type
(row)¶ Overrides
qipipe.qiprofile.Pathology.encounter_type()
to specialize the intervention_type toBreastSurgery
.Parameters: row – the input row Returns: the REST data model Encounter subclass
-
pathology_content
(row)¶ Collects the pathology object from the given input row. This subclass implementation adds the non-empty embedded fields specific to this tumor type.
Parameters: row – the input row Returns: the {attribute: value} content dictionary
-
-
qipipe.qiprofile.breast_pathology.
HORMONES
= ['estrogen', 'progesterone']¶ The receptor status hormones.
-
qipipe.qiprofile.breast_pathology.
read
(workbook, **condition)¶ This is a convenience method that wraps
BreastPathologyWorksheet
qipipe.qiprofile.xls.Worksheet.read()
.Parameters: - workbook – the read-only
openpyxl
workbook object - condition – the
qipipe.qiprofile.xls.Worksheet.read()
filter condition
Returns: the
qipipe.qiprofile.xls.Worksheet.read()
rows- workbook – the read-only
chemotherapy
¶
This module updates the qiprofile database Subject chemotherapy protocol information from a Chemotherapy Excel worksheet.
-
qipipe.qiprofile.chemotherapy.
COL_ATTRS
= {'Cumulative Amount (mg/m2 BSA)': 'amount'}¶ The following non-standard column-attribute associations: * The Cumulative Amount column is the amount attribute.
-
qipipe.qiprofile.chemotherapy.
SHEET
= 'Chemotherapy'¶ The input XLS sheet name.
-
qipipe.qiprofile.chemotherapy.
read
(workbook, **condition)¶ This is a convenience method that wraps
ChemotherapyWorksheet
qipipe.qiprofile.xls.Worksheet.read()
.Parameters: - workbook – the read-only
openpyxl
workbook object - condition – the
qipipe.qiprofile.xls.Worksheet.read()
filter condition
Returns: the
qipipe.qiprofile.xls.Worksheet.read()
rows- workbook – the read-only
clinical
¶
This module updates the qiprofile database clinical information from the clinical Excel workbook file.
-
qipipe.qiprofile.clinical.
update
(subject, in_file)¶ Updates the subject clinical database content from the given workbook file.
Parameters: - subject – the target qiprofile Subject to update
- filename – the input file location
demographics
¶
This module updates the qiprofile database Subject demographics information from the demographics Excel workbook file.
-
qipipe.qiprofile.demographics.
COL_ATTRS
= {'Race': 'races'}¶ The following non-standard column-attribute associations: * The Race column is the races attribute.
-
qipipe.qiprofile.demographics.
SHEET
= 'Demographics'¶ The input XLS sheet name.
-
qipipe.qiprofile.demographics.
read
(workbook, **condition)¶ Reads the demographics XLS row which matches the given subject.
Parameters: condition – the row selection filter Returns: the Demographics sheet qipipe.qiprofile.xls.Worksheet.read()
row bundle which matches the given subject, or None if no match was found
-
qipipe.qiprofile.demographics.
update
(subject, rows)¶ Updates the given subject data object from the given Demographics sheet rows.
There can be no more than one Demographics update input row for the given subject. The rows parameter is an iterable in order to conform to other sheet facade modules.
Parameters: - subject – the
Subject
Mongo Engine database object to update - rows – the input Demographics
read()
rows
Raises: DemographicsError – if there is more than one input row
- subject – the
dosage
¶
This module updates the qiprofile database Subject drug dosage information from a Chemotherapy Excel worksheet.
-
class
qipipe.qiprofile.dosage.
DosageUpdate
(subject, agent_class, **defaults)¶ Bases:
object
The dosage update abstract class.
Parameters: - subject – the
Subject
Mongo Engine database object to update - agent_class – the dosage agent class
- defaults – the {attribute: value} row defaults
-
DEFAULTS
= {'duration': 1}¶ The default duration is 1 day.
-
__init__
(subject, agent_class, **defaults)¶ Parameters: - subject – the
Subject
Mongo Engine database object to update - agent_class – the dosage agent class
- defaults – the {attribute: value} row defaults
- subject – the
-
update
(rows)¶ Updates the subject data object from the given dosage XLS rows.
Parameters: rows – the input dosage qipipe.qiprofile.xls.Worksheet.read()
rows list
- subject – the
-
class
qipipe.qiprofile.dosage.
DosageWorksheet
(workbook, sheet, agent_class, **opts)¶ Bases:
qipipe.qiprofile.xls.Worksheet
The dosage worksheet facade.
Parameters: - workbook – the
qipipe.qiprofile.xls.Workbook
object - sheet – the sheet name
- agent_class – the agent class
- opts – the additional
qipipe.qiprofile.xls.Worksheet
initializer options
-
__init__
(workbook, sheet, agent_class, **opts)¶ Parameters: - workbook – the
qipipe.qiprofile.xls.Workbook
object - sheet – the sheet name
- agent_class – the agent class
- opts – the additional
qipipe.qiprofile.xls.Worksheet
initializer options
- workbook – the
- workbook – the
imaging
¶
This module updates the qiprofile database imaging information from a XNAT scan.
-
qipipe.qiprofile.imaging.
update
(subject, experiment, **opts)¶ Updates the imaging content for the qiprofile REST Subject from the XNAT experiment.
Parameters: - collection – the
qipipe.staging.image_collection.name`
- subject – the target qiprofile Subject to update
- experiment – the XNAT experiment object
- opts – the :class`Updater` keyword arguments
- collection – the
modeling
¶
This module updates the qiprofile database modeling information from a XNAT experiment.
-
qipipe.qiprofile.modeling.
update
(session, resource)¶ Updates the modeling content for the given qiprofile session database object from the given XNAT modeling resource object.
Parameters: - session – the target qiprofile Session to update
- resource – the XNAT modeling resource object
parse
¶
-
qipipe.qiprofile.parse.
COMMA_DELIM_REGEX
= <_sre.SRE_Pattern object>¶ Match a comma with optional white space.
-
qipipe.qiprofile.parse.
FALSE_REGEX
= <_sre.SRE_Pattern object>¶ The valid False string representations are a case-insensitive match for
F(alse)?
,Neg(ative)?
,Absent
orN(o)?
.
-
qipipe.qiprofile.parse.
TRAILING_NUM_REGEX
= <_sre.SRE_Pattern object>¶ A regular expression to extract the trailing number from a string.
-
qipipe.qiprofile.parse.
TRUE_REGEX
= <_sre.SRE_Pattern object>¶ The valid True string representations are a case-insensitive match for
T(rue)?
,Pos(itive)?
,Present
orY(es)?
.
-
qipipe.qiprofile.parse.
TYPE_PARSERS
= {<class 'mongoengine.fields.DateTimeField'>: <function <lambda>>, <class 'mongoengine.fields.BooleanField'>: <function <lambda>>, <class 'mongoengine.fields.ListField'>: <function <lambda>>, <class 'mongoengine.fields.IntField'>: <type 'int'>, <class 'mongoengine.fields.StringField'>: <type 'str'>, <class 'mongoengine.fields.FloatField'>: <type 'float'>}¶ The following type cast conversion parsers: * string field =>
str
* integer field =>int
* float field =>float
* boolean field =>parse_boolean()
* list field =>parse_list_string()
-
qipipe.qiprofile.parse.
default_parsers
(*classes)¶ Associates the data model class fields to a parse function composed as follows:
- The type cast function in
TYPE_PARSERS
, if present - The controlled value lookup, if the field has controlled values
Parameters: classes – the data model classes Returns: the {attribute: function} dictionary - The type cast function in
-
qipipe.qiprofile.parse.
extract_trailing_number
(value)¶ Returns the integer at the end of the given input value, as follows:
- If the input value is an integer, then the result is the input value.
- Otherwise, if the input value has a string type, then the result is the trailing digits converted to an integer.
- Any other value is an error.
Parameters: value – the input integer or string Returns: the trailing integer Raises: ParseError – if the input value type is not int or a string type
-
qipipe.qiprofile.parse.
parse_boolean
(value)¶ Parses the input value as follows:
- If the input value is already a boolean, then return the value
- If the input is None or the empty string, then return None
- Otherwise, if the input is a string which matches
TRUE_REGEX
, then return True
- Otherwise, if the input is a string which matches
FALSE_REGEX
, then return False
- Any other value is an error.
Parameters: value – the input value Returns: the value as a boolean Raises: ParseError – if the value cannot be converted
-
qipipe.qiprofile.parse.
parse_list_string
(value)¶ Converts a comma-separated list input string to a list, e.g.:
>> from qipipe.qiprofile.parse import parse_list_string >> parse_list_string(‘White, Asian’) [‘White’, ‘Asian’]
Parameters: value – the input value Returns: the value converted to a list
-
qipipe.qiprofile.parse.
parse_trailing_number
(s)¶ Parameters: s – the input string Returns: the trailing number in the string Raises: ParseError – if the input string does not have a trailing number
pathology
¶
This module updates the qiprofile database Subject pathology information from the pathology Excel workbook file.
-
qipipe.qiprofile.pathology.
COL_ATTRS
= {'Tumor Width (mm)': 'width', 'Tumor Depth (mm)': 'depth', 'Tumor Size Score': 'size', 'Patient Weight (kg)': 'weight', 'Tumor Length (mm)': 'length'}¶ The following non-standard column-attribute associations:
Patient Weight (kg)
: Encounter.weight attributeTumor Size Score
: TNM.size attributeTumor Length (mm)
: TumorExtent.length attributeTumor Width (mm)
: TumorExtent.width attributeTumor Depth (mm)
: TumorExtent.depth attribute
-
qipipe.qiprofile.pathology.
ENCOUNTER_TYPES
= {'Surgery': <class 'qirest_client.model.clinical.Surgery'>, 'Biopsy': <class 'qirest_client.model.clinical.Biopsy'>}¶ The encounter {name: class} dictionary.
-
qipipe.qiprofile.pathology.
PARSERS
= {'size': <function <lambda>>, 'body_part': <function <lambda>>, 'lesion_number': <type 'int'>, 'subject_number': <type 'int'>, 'intervention_type': <function <lambda>>}¶ The following parser associations:
- subject_number is an int
- intervention_type converts the string to an Encounter subclass
- body_part is capitalized
- size is a
qirest_client.clinical.TNM.Size
object
-
class
qipipe.qiprofile.pathology.
PathologyUpdate
(subject, tumor_type, grade_class, pathology_class)¶ Bases:
object
The pathology update abstract class.
Parameters: - subject – the
Subject
Mongo Engine database object to update - tumor_type – the subclass tumor type
Option pathology_class: the REST data model TumorPathology subclass
Option grade_class: the REST data model Grade subclass
-
__init__
(subject, tumor_type, grade_class, pathology_class)¶ Parameters: - subject – the
Subject
Mongo Engine database object to update - tumor_type – the subclass tumor type
Option pathology_class: the REST data model TumorPathology subclass
Option grade_class: the REST data model Grade subclass
- subject – the
-
encounter_type
(row)¶ Infers the encounter type from the given row. This base implementation returns the parsed row intervention_type value.
Parameters: row – the input row Returns: the REST data model Encounter subclass
-
pathology_content
(row)¶ Collects the TumorPathology content from the given input row. This base implementation collects the pathology attribute values from the matching input row attribute value. Other updates are a subclass responsibility.
Parameters: row – the input row Returns: the {attribute: value} content dictionary
-
update
(rows)¶ Updates the subject data object from the given pathology XLS rows.
Parameters: rows – the input pathology read()
rows list
-
update_encounter
(encounter, rows)¶ Update the encounter object from the given input row. This base implementation sets the encounter attribute values from the matching input row attribute value and calls
update_pathology()
to update the pathology. Other updates are a subclass responsibility.Parameters: - encounter – the encounter object
- rows – the input pathology
read()
rows for the encounter
- subject – the
-
class
qipipe.qiprofile.pathology.
PathologyWorksheet
(workbook, *classes, **opts)¶ Bases:
qipipe.qiprofile.xls.Worksheet
The Pathology worksheet facade.
Parameters: - workbook – the
qipipe.qiprofile.xls.Workbook
object - classes – the subclass-specific REST data model subclasses
- opts – the following keyword arguments:
Option parsers: the non-standard parsers {attribute: function} dictionary
Option column_attributes: the non-standard {column name: attribute} dictionary
-
__init__
(workbook, *classes, **opts)¶ Parameters: - workbook – the
qipipe.qiprofile.xls.Workbook
object - classes – the subclass-specific REST data model subclasses
- opts – the following keyword arguments:
Option parsers: the non-standard parsers {attribute: function} dictionary
Option column_attributes: the non-standard {column name: attribute} dictionary
- workbook – the
- workbook – the
-
qipipe.qiprofile.pathology.
SHEET
= 'Pathology'¶ The worksheet name.
radiotherapy
¶
This module updates the qiprofile database Subject radiation protocol information from a Radiotherapy Excel worksheet.
-
qipipe.qiprofile.radiotherapy.
AGENT_DEFAULTS
= {'beam_type': 'photon'}¶ The default beam type is
photon
.
-
qipipe.qiprofile.radiotherapy.
COL_ATTRS
= {'Cumulative Amount (Gy)': 'amount'}¶ The following non-standard column-attribute associations: * The Cumulative Amount column is the amount attribute.
-
qipipe.qiprofile.radiotherapy.
SHEET
= 'Radiotherapy'¶ The input XLS sheet name.
-
qipipe.qiprofile.radiotherapy.
read
(workbook, **condition)¶ This is a convenience method that wraps
RadiotherapyWorksheet
qipipe.qiprofile.xls.Worksheet.read()
.Parameters: - workbook – the read-only
openpyxl
workbook object - condition – the
qipipe.qiprofile.xls.Worksheet.read()
filter condition
Returns: the
qipipe.qiprofile.xls.Worksheet.read()
rows- workbook – the read-only
sarcoma_pathology
¶
This module updates the qiprofile database Subject pathology information from the pathology Excel workbook file.
-
qipipe.qiprofile.sarcoma_pathology.
COL_ATTRS
= {'Tumor Location': 'location'}¶ The following special column: attribute associations:
- The
Tumor Location
column corresponds to the pathologylocation
attribute
- The
-
qipipe.qiprofile.sarcoma_pathology.
PARSERS
= {'necrosis_percent': <function <lambda>>}¶ The following special parsers: * The necrosis percent can be an integer or a range, e.g.
80-90
.
-
class
qipipe.qiprofile.sarcoma_pathology.
SarcomaPathologyUpdate
(subject)¶ Bases:
qipipe.qiprofile.pathology.PathologyUpdate
The Sarcoma pathology update facade.
Parameters: subject – the Subject
Mongo Engine database object to update-
__init__
(subject)¶ Parameters: subject – the Subject
Mongo Engine database object to update
-
pathology_content
(row)¶ Collects the pathology object from the given input row. This subclass implementation adds the following items:
- If there are necrosis_percent and tnm items, then the TNM necrosis_score is inferred from the necrosis percent
Parameters: row – the input row Returns: the {attribute: value} content dictionary
-
-
qipipe.qiprofile.sarcoma_pathology.
read
(workbook, **condition)¶ This is a convenience method that wraps
SarcomaPathologyWorksheet
qipipe.qiprofile.xls.Worksheet.read()
.Parameters: - workbook – the read-only
openpyxl
workbook object - condition – the
qipipe.qiprofile.xls.Worksheet.read()
filter condition
Returns: the
qipipe.qiprofile.xls.Worksheet.read()
rows- workbook – the read-only
scan
¶
This module updates the qiprofile database scan information from a XNAT experiment.
-
qipipe.qiprofile.scan.
update
(session, xscan)¶ Updates the scan content for the given qiprofile session database object from the given XNAT scan object.
Parameters: - session – the target qiprofile Session to update
- xscan – the XNAT scan object
update
¶
-
qipipe.qiprofile.update.
update
(project, collection, subject, session, in_file)¶ Updates the qiprofile database from the clinical spreadsheet and XNAT database for the given session.
Parameters: - project – the XNAT project name
- collection – the image collection name
- subject – the subject number
- session – the XNAT session number
- in_file – the input spreadsheet file location
xls
¶
-
class
qipipe.qiprofile.xls.
Reader
(worksheet, attributes, **condition)¶ Bases:
object
Reads an Excel worksheet.
Parameters: - worksheet – the
worksheet
object - conditional – the optional {attribute: value} row filter condition
-
__init__
(worksheet, attributes, **condition)¶ Parameters: - worksheet – the
worksheet
object - conditional – the optional {attribute: value} row filter condition
- worksheet – the
-
read
()¶ Returns a row generator, where each row is a {attribute: value} bunch. This generator yields each row which satisfies the following condition:
- the row is non-empty, i.e. has at least one cell value, and
- if this reader has a filter, then the row satisfies the filter condition
Returns: the filtered openpyxl
row iterator
-
worksheet
= None¶ The wrapped openpyxl worksheet.
- worksheet – the
-
qipipe.qiprofile.xls.
load_workbook
(filename)¶ Parameters: filename – the XLS workbook file location Returns: the read-only openpyxl
workbook object
staging¶
staging
Package¶
Image processing preparation.
The staging package defines the functions used to prepare the study image files for import into XNAT, submission to the TCIA QIN collections and pipeline processing.
ctp_config
¶
-
qipipe.staging.ctp_config.
ctp_collection_for_name
(name)¶ Parameters: name – the QIN collection name Returns: the CTP collection name
fix_dicom
¶
-
qipipe.staging.fix_dicom.
COMMENT_PREFIX
= <_sre.SRE_Pattern object>¶ OHSU - the
Image Comments
tag value prefix.
-
qipipe.staging.fix_dicom.
DATE_FMT
= '%Y%m%d'¶ The DICOM date format is YYYYMMDD.
-
qipipe.staging.fix_dicom.
fix_dicom_headers
(collection, subject, *in_files, **opts)¶ Fix the given input DICOM files as follows:
- Replace the
Patient ID
value with the subject number, e.g. Sarcoma001
- Replace the
- Add the
Body Part Examined
tag - Anonymize the
Patient's Birth Date
tag - Standardize the file name
OHSU - The
Body Part Examined
tag is set as follows:- If the collection is
Sarcoma
, then the body part is the qipipe.staging.sarcoma_config.sarcoma_location()
.
- If the collection is
- Otherwise, the body part is the capitalized collection name, e.g.
BREAST
.
OHSU - Remove extraneous
Image Comments
tag value content which might contain PHI.The output file name is standardized as follows:
- The file name is lower-case
- The file extension is
.dcm
- Each non-word character is replaced by an underscore
Parameters: - collection – the collection name
- subject – the input subject name
- opts – the following keyword arguments:
- dest – the location in which to write the modified files (default is the current directory)
Returns: the files which were created
Raises: StagingError – if the collection is not supported
image_collection
¶
-
class
qipipe.staging.image_collection.
Collection
(name, **opts)¶ Bases:
object
The image collection.
Parameters: - name – the
name
- opts – the following keyword options:
Option subject: the subject directory name match regular expression
Option session: the session directory name match regular expression
Option scan_types: the
scan_types
Option scan: the {scan number: {dicom, roi}} dictionary
Option volume: the DICOM tag which identifies a scan volume
Option crop_posterior: the
crop_posterior
flag-
__init__
(name, **opts)¶ Parameters: - name – the
name
- opts – the following keyword options:
Option subject: the subject directory name match regular expression
Option session: the session directory name match regular expression
Option scan_types: the
scan_types
Option scan: the {scan number: {dicom, roi}} dictionary
Option volume: the DICOM tag which identifies a scan volume
Option crop_posterior: the
crop_posterior
flag- name – the
-
crop_posterior
= None¶ A flag indicating whether to crop the image posterior in the mask, e.g. for a breast tumor (default False).
-
instances
= {'sarcoma': <qipipe.staging.image_collection.Collection object>, 'breast': <qipipe.staging.image_collection.Collection object>}¶ The collection {name: object} dictionary.
-
name
= None¶ The capitalized collection name.
-
patterns
= None¶ The DICOM and ROI meta-data patterns. This
patterns
attribute consists of the entriesdicom
androi
, Each of these fields has a mandatoryglob
entry and an optionalregex
entry. Theglob
entry matches the scan subdirectory containing the DICOM or ROI files. Theregex
entry matches the DICOM or ROI files in the subdirectory. The default in the absence of aregex
entry is to include all files in the subdirectory.
-
scan_types
= None¶ The scan {number: type} dictionary.
- name – the
-
qipipe.staging.image_collection.
with_name
(name)¶ Returns: the Collection
whose name is a case-insensitive match for the given name, or None if no match is found
iterator
¶
-
class
qipipe.staging.iterator.
VisitIterator
(project, collection, *session_dirs, **opts)¶ Bases:
object
Scan DICOM generator class .
Parameters: - project – the XNAT project name
- collection – the image collection name
- session_dirs – the session directories over which to iterate
- opts – the
iter_stage()
options
-
__init__
(project, collection, *session_dirs, **opts)¶ Parameters: - project – the XNAT project name
- collection – the image collection name
- session_dirs – the session directories over which to iterate
- opts – the
iter_stage()
options
-
collection
= None¶ The
iter_stage()
collection name parameter.
-
project
= None¶ The
iter_stage()
project name parameter.
-
scan
= None¶ The
iter_stage()
scan number option.
-
session_dirs
= None¶ The input directories.
-
skip_existing
= None¶ The
iter_stage()
skip_existing flag option.
-
qipipe.staging.iterator.
iter_stage
(project, collection, *inputs, **opts)¶ Iterates over the the scans in the given input directories. This method is a staging generator which yields a tuple consisting of the {subject, session, scan, dicom, roi} object.
The input directories conform to the
qipipe.staging.image_collection.Collection.patterns
subject
regular expression.Each iteration {subject, session, scan, dicom, roi} object is formed as follows:
- The subject is the XNAT subject name formatted by
SUBJECT_FMT
. - The session is the XNAT experiment name formatted by
SESSION_FMT
. - The scan is the XNAT scan number.
- dicom is the DICOM directory.
- roi is the ROI directory.
Parameters: - project – the XNAT project name
- collection – the
qipipe.staging.image_collection.Collection.name
- inputs – the source subject directories to stage
- opts – the following keyword option:
- scan – the scan number to stage (default stage all detected scans)
- skip_existing – flag indicating whether to ignore each existing session, or scan if the scan option is set (default True)
Yield: the {subject, session, scan, dicom, roi} objects
- The subject is the XNAT subject name formatted by
map_ctp
¶
TCIA CTP preparation utilities.
-
class
qipipe.staging.map_ctp.
CTPPatientIdMap
¶ Bases:
dict
CTPPatientIdMap is a dictionary augmented with a
map_subjects()
input method to build the map and awrite()
output method to print the CTP map properties.-
CTP_FMT
= '%s-%04d'¶ The CTP Patient ID format with arguments (CTP collection name, input Patient ID number).
-
MAP_FMT
= 'ptid/%s=%s'¶ The ID lookup entry format with arguments (input Paitent ID, CTP patient id).
-
MSG_FMT
= 'Mapped the QIN patient id %s to the CTP subject id %s.'¶ The log message format with arguments (input Paitent ID, CTP patient id).
-
SOURCE_PAT
= <_sre.SRE_Pattern object>¶ The input Patient ID pattern is the study name followed by a number, e.g.
Breast10
.
-
add_subjects
(collection, *patient_ids)¶ Adds the input => CTP Patient ID association for the given input DICOM patient ids.
Parameters: - collection – the image collection name
- patient_ids – the DICOM Patient IDs to map
Raises: StagingError – if an input patient id format is not the study followed by the patient number
-
write
(dest=<open file '<stdout>', mode 'w'>)¶ Writes this id map in the standard CTP format.
Parameters: dest – the IO stream on which to write this map (default stdout)
-
-
qipipe.staging.map_ctp.
PROP_FMT
= 'QIN-%s-OHSU.ID-LOOKUP.properties'¶ The format for the Patient ID map file name specified by CTP.
-
qipipe.staging.map_ctp.
map_ctp
(collection, *subjects, **opts)¶ Creates the TCIA patient id map. The map is written to a property file in the destination directory. The property file name is given by
property_filename()
.Parameters: - collection – the image collection
- subjects – the subject names
- opts – the following keyword option:
- dest – the destination directory
Returns: the subject map file path
-
qipipe.staging.map_ctp.
property_filename
(collection)¶ Returns the CTP id map property file name for the given collection. The Sarcoma collection is capitalized in the file name, Breast is not.
ohsu
¶
This module contains the OHSU-specific image collections.
- The following OHSU QIN scan numbers are captured:
- 1: T1
- 2: T2
- 4: DW
- 6: PD
These scans have DICOM files specified by the
qipipe.staging.image_collection.Collection.patterns
dicom
attribute. The T1 scan has ROI files as well, specified
by the patterns roi.glob
and roi.regex
attributes.
-
qipipe.staging.ohsu.
BREAST_DW_PAT
= '*sorted/*Diffusion'¶ The Breast DW DICOM directory match pattern.
-
qipipe.staging.ohsu.
BREAST_PD_PAT
= '*sorted/*PD*'¶ The Breast pseudo-proton density DICOM directory match pattern.
-
qipipe.staging.ohsu.
BREAST_ROI_PAT
= 'processing/R10_0.[456]*/slice*'¶ The Breast ROI glob filter. The
.bqf
ROI files are in the following session subdirectory:processing/<R10 directory>/slice<slice index>/
-
qipipe.staging.ohsu.
BREAST_ROI_REGEX
= <_sre.SRE_Pattern object at 0x3500c00>¶ The Breast ROI .bqf ROI file match pattern.
-
qipipe.staging.ohsu.
BREAST_SESSION_REGEX
= <_sre.SRE_Pattern object>¶ The Sarcoma session directory match pattern. The variations
Visit_3
,Visit3
,visit3
,BC4V3
,BC4_V3
andB4V3
all match Breast Session03.
-
qipipe.staging.ohsu.
BREAST_SUBJECT_REGEX
= <_sre.SRE_Pattern object>¶ The Breast subject directory match pattern.
-
qipipe.staging.ohsu.
BREAST_T2_PAT
= '*sorted/2_tirm_tra_bilat'¶ The Breast T2 DICOM directory match pattern.
-
qipipe.staging.ohsu.
MULTI_VOLUME_SCAN_NUMBERS
= [1]¶ Only T1 scans can have more than one volume.
-
qipipe.staging.ohsu.
SARCOMA_DW_PAT
= '*Diffusion'¶ The Sarcoma DW DICOM directory match pattern.
-
qipipe.staging.ohsu.
SARCOMA_ROI_PAT
= 'Breast processing results/multi_slice/slice*'¶ The Sarcoma ROI glob filter. The
.bqf
ROI files are in the session subdirectory:Breast processing results/<ROI directory>/slice<slice index>/(Yes, the Sarcoma processing results is in the “Breast processing results” subdirectory)!
-
qipipe.staging.ohsu.
SARCOMA_ROI_REGEX
= <_sre.SRE_Pattern object>¶ The Sarcoma ROI .bqf ROI file match pattern.
Note
The Sarcoma ROI directories are inconsistently named, with several alternatives and duplicates.
TODO - clarify which of the Sarcoma ROI naming variations should be used.
Note
There are no apparent lesion number indicators in the Sarcoma ROI input.
TODO - confirm that there is no Sarcoma lesion indicator.
-
qipipe.staging.ohsu.
SARCOMA_SESSION_REGEX
= <_sre.SRE_Pattern object>¶ The Sarcoma session directory match pattern. The variations
Visit_3
,Visit3
,visit3
S4V3
, andS4_V3
all match Sarcoma Session03.
-
qipipe.staging.ohsu.
SARCOMA_SUBJECT_REGEX
= <_sre.SRE_Pattern object>¶ The Sarcoma subject directory match pattern.
-
qipipe.staging.ohsu.
SARCOMA_T2_PAT
= '*T2*'¶ The Sarcoma T2 DICOM directory match pattern.
-
qipipe.staging.ohsu.
SESSION_REGEX_PAT
= "\n (?: # Don't capture the prefix\n [vV]isit # The Visit or visit prefix form\n _? # with an optional underscore delimiter\n | # ...or...\n %s\\d+_?V # The alternate prefix form, beginning with\n # a leading collection abbreviation\n # substituted into the pattern below\n ) # End of the prefix\n (\\d+)$ # The visit number\n"¶ The session directory match pattern. This pattern must be specialized for each collection by replacing the %s place-holder with a string.
-
qipipe.staging.ohsu.
T1_PAT
= '*concat*'¶ The T1 DICOM directory match pattern.
-
qipipe.staging.ohsu.
VOLUME_TAG
= 'AcquisitionNumber'¶ The DICOM tag which identifies the volume. The OHSU QIN collections are unusual in that the DICOM images which comprise a 3D volume have the same DICOM Series Number and Acquisition Number tag. The series numbers are consecutive, non-sequential integers, e.g. 9, 11, 13, ..., whereas the acquisition numbers are consecutive, sequential integers starting at 1. The Acquisition Number tag is selected as the volume number identifier.
roi
¶
OHSU - ROI utility functions.
TODO - move this to ohsu-qipipe.
-
class
qipipe.staging.roi.
LesionROI
(lesion, volume_number, slice_sequence_number, location)¶ Bases:
object
Aggregate with attributes
lesion
volume
,slice
andlocation
.Parameters: -
__init__
(lesion, volume_number, slice_sequence_number, location)¶ Parameters:
-
lesion
= None¶ The lesion number.
-
location
= None¶ The absolute BOLERO ROI .bqf file path.
-
slice
= None¶ The one-based slice sequence number.
-
volume
= None¶ The one-based volume number.
-
-
qipipe.staging.roi.
PARAM_REGEX
= <_sre.SRE_Pattern object>¶ The regex to parse a parameter file.
-
qipipe.staging.roi.
iter_roi
(regex, *in_dirs)¶ Iterates over the the OHSU ROI
.bqf
mask files in the given input directories. This method is aLesionROI
generator, e.g.:>>> # Find .bqf files anywhere under /path/to/session/processing. >>> next(iter_roi('.*/\.bqf', '/path/to/session')) {lesion: 1, slice: 12, path: '/path/to/session/processing/rois/roi.bqf'}
;param regex: the file name match regular expression Parameters: in_dirs – the ROI directories to search Yield: the LesionROI
objects
sort
¶
-
qipipe.staging.sort.
sort
(collection, scan, *in_dirs)¶ Groups the DICOM files in the given location by volume.
Parameters: - collection – the collection name
- scan – the scan number
- in_dirs – the input DICOM directories
Returns: the {volume: files} dictionary
sarcoma_config
¶
-
qipipe.staging.sarcoma_config.
CFG_FILE
= '/home/docs/checkouts/readthedocs.org/user_builds/qipipe/checkouts/stable/qipipe/conf/sarcoma.cfg'¶ The Sarcoma Tumor Location configuration file. This file contains properties that associate the subject name to the location, e.g.:
Sarcoma004 = SHOULDER
The value is the SNOMED anatomy term.
-
qipipe.staging.sarcoma_config.
sarcoma_config
()¶ Returns: the sarcoma configuration Return type: ConfigParser
-
qipipe.staging.sarcoma_config.
sarcoma_location
(subject)¶ Parameters: subject – the XNAT Subject ID Returns: the subject tumor location