
QA-DKRZ Documentation
Release 0.5

hdh

Nov 30, 2017

Contents

1 QA-DKRZ - Quality Assurance Tool for Climate Data 3
1.1 Getting Started . 3
1.2 Documentation . 4
1.3 Getting Help . 4

1.3.1 Mailing list . 4
1.4 Bug tracker . 4
1.5 Contributing . 4
1.6 License . 4

2 Frequently Asked Questions 5
2.1 Questions . 5

2.1.1 Q: Why does ...? . 5

3 Glossary 7

4 Change History 9
4.1 0.6 . 9
4.2 0.5 . 9
4.3 0.4 . 9
4.4 0.3 . 10
4.5 0.2 . 10
4.6 0.1 . 10

5 User-guide 11
5.1 User Guide . 11

5.1.1 Overview . 11
5.1.2 Best Practices . 12
5.1.3 Installation . 13
5.1.4 Update . 15
5.1.5 Work-flow . 16
5.1.6 Configuration . 16
5.1.7 Results . 18
5.1.8 CF Conventions Checker . 19

6 Indices and tables 21

i

ii

QA-DKRZ Documentation, Release 0.5

Contents:

Contents 1

QA-DKRZ Documentation, Release 0.5

2 Contents

CHAPTER 1

QA-DKRZ - Quality Assurance Tool for Climate Data

Version 0.6.7

The Quality Assurance tool QA-DKRZ developed at DKRZ checks conformance of meta-data of climate simulations
given in NetCDF format with conventions and rules of projects. At present, checking of CF Conventions, CORDEX,
CMIP5, and CMIP6, the latter with the option to run PrePARE (D. Nadeau, LLNL) is supported. The check results
are summarised in json-formatted files.

1.1 Getting Started

The recommended way to install QA-DKRZ is by the conda package manager. External tables are downloaded at
run-time, when needed for dedicated projects.

$ conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

Note: CMIP6: The development of the internal CMOR checker of QA-DKRZ is frozen. Instead, PrePARE (https:
//cmor.llnl.gov) is run by qa-dkrz. The output of PrePARE is merged into the flow of QA-DKRZ annotations.

$ conda create -n cmor -c conda-forge -c pcmdi cmor

There are different ways to access the QA-DKRZ checker qa-dkrz:

• source [conda-path/]activate qa-dkrz and run with qa-dkrz

• path/miniconda/envs/qa-dkrz/bin/qa-dkrz

• alias qa-dkrz=path/miniconda/envs/qa-dkrz/bin/qa-dkrz

If a machine is not suited for Linux-64Bits or you would like to work with the sources, then see Installation for details.

The success of the installation may be checked by running qa-dkrz for a single NetCDF file. Provision of a project
name, e.g. -P CORDEX, is required in this simple case. Initially, you’ll be asked for a path to QA-TABLES (to put it
simply, a directory for external tables; details in Installation).

3

https://cmor.llnl.gov
https://cmor.llnl.gov

QA-DKRZ Documentation, Release 0.5

$ qa-dkrz -P PROJECT-Name file.nc

The QA-DKRZ module for checking CF Conventions is also available stand-alone:

$ dkrz-cf-checker [ops] file.nc

Running the QA_DKRZ tool requires external tables which are not provided by conda packages. qa-dkrz delegates
installation and updates to a script, when the first argument is install .

$ qa-dkrz install [opts] PROJECT-Name

1.2 Documentation

QA-DKRZ applies Sphinx, and the latest documentation can be found on ReadTheDocs.

1.3 Getting Help

Please, direct questions or comments to hollweg@dkrz.de

1.3.1 Mailing list

Join the mailing list ...

1.4 Bug tracker

If you have any suggestions, bug reports or annoyances, please, report to our issue tracker at https://github.com/
IS-ENES-Data/QA-DKRZ/issues

1.5 Contributing

The sources of QA-DKRZ are available on Github: https://github.com/IS-ENES-Data/QA-DKRZ

You are highly encouraged to participate in the development.

1.6 License

Please notice the Disclaimer of Warranty (DoW.txt) file in the top distribution directory.

4 Chapter 1. QA-DKRZ - Quality Assurance Tool for Climate Data

http://qa-dkrz.readthedocs.org
mailto:hollweg@dkrz.de
https://github.com/IS-ENES-Data/QA-DKRZ/issues
https://github.com/IS-ENES-Data/QA-DKRZ/issues
https://github.com/IS-ENES-Data/QA-DKRZ

CHAPTER 2

Frequently Asked Questions

2.1 Questions

2.1.1 Q: Why does ...?

Answer: Just because ...

5

QA-DKRZ Documentation, Release 0.5

6 Chapter 2. Frequently Asked Questions

CHAPTER 3

Glossary

Quality Assurance Quality assurance (QA) is a way of preventing mistakes ... (Wikipedia).

7

QA-DKRZ Documentation, Release 0.5

8 Chapter 3. Glossary

CHAPTER 4

Change History

4.1 0.6

release-date 2017

• bash scripts exchanged by python

• annotation summary re-developed (python, stand-alone)

• restructered flow (run/update strictly separated)

• abstraction of DRS checks (same for CORDEX, CMIP5/6)

• PROJECT_AS for checking projects similar to the standard ones

• shipping QA-DKRZ without internet

4.2 0.5

release-date 2015

• packaged as conda.

• travis continous integration added.

• published docs as sphinx on ReadTheDocs.

• prototype (bash) for summarising annotations.

4.3 0.4

release-date 2014

• CORDEX meta-data checker added

9

QA-DKRZ Documentation, Release 0.5

• CF Convention checker developed

• user control of annotations

• Annotation output by the YAML format

4.4 0.3

release-date 2012

• CMIP5 checker for meta-data completed

4.5 0.2

release-date 2010

• prototype of CMIP5 checker for meta-data added

• partial selection from a data pool

4.6 0.1

release-date 2007

• check of data/time values of NetCDF files

• prototype of bash script for managing the work-flow

10 Chapter 4. Change History

CHAPTER 5

User-guide

5.1 User Guide

Release 0.5

Date Nov 30, 2017

5.1.1 Overview

What is checked?

The Quality Assurance (QA) tool developed at DKRZ tests the compliance of meta-data of climate simulations given
in NetCDF format to conventions and rules of projects. Additionally, the QA checks time sequences and the technical
state of data (i.e. occurrences of Inf or NaN, gaps, replicated sub-sets, etc.) for atomic data set entities, i.e. variable and
frequency, e.g. tas and mon for monthly means of near-surface air temperature‘. When atomic data sets are subdivided
into several files, then changes between these files in terms of (auxiliary) coordinate variables will be detected as well
as gaps or overlapping time ranges. This may also apply to follow-up experiments.

At present, the QA checks data of the projects CMIP5, CMIP6 and CORDEX by consulting tables based on requested
controlled vocabulary and requirements. When such pre-defined information is given about directory structures, format
of file names, variables and attributes, geographical domain, etc., then any deviation from compliance will be annotated
in the QA results.

Files with meta-data similar to a project, but a few deviating features from the default tables can also be checked.
User-defined tables may disable particular checks and supersede e.g. the default project name.

While former versions took for granted that meta-data of files were valid in terms of the NetCDF Climate and Forecast
(CF) Meta Data Conventions, compliance is now verified. The CF check is both embedded in the QA tool itself and
provided by a stand-alone tool, which is described below. Also available is a test suite used during the development
phase.

The development of a QA-DKRZ CMOR3 check module was frozen with the 2016-ESGF_F2F_Conference (http:
//esgf.llnl.gov). Since then, the CMOR3 checker PrePARE is applied for checking CMIP6 files (http://cmor.llnl.gov/
mydoc_cmip6_validator). The output by PrePARE is merged into the flow of QA-DKRZ annotations.

11

http://esgf.llnl.gov
http://esgf.llnl.gov
http://cmor.llnl.gov/mydoc_cmip6_validator
http://cmor.llnl.gov/mydoc_cmip6_validator

QA-DKRZ Documentation, Release 0.5

After installation, QA-DKRZ runs are started on the command-line.

$ qa-dkrz [command-line opts, -f task-file, config-opts] [file.nc]

• command-line opts: usually for non-operational usage; mostly prefixed by --

• - -help displays description of command-line options.

• task-file: a container with config-options for specific settings

• config-opts: given in project specific files, e.g. CORDEX_qa.conf; provides a default. Every option of
PROJECT_qa.conf can be provided on the command-line with the prefix -e|E[|_]option, e.g. -e next.
Note that option names are case-insensitive while values are not.

• file.nc: only for a quick test.

Available Versions

The QA-DKRZ package is a rolling release, however tagged.

5.1.2 Best Practices

Installation

• conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

• CMIP6 with PrePARE: conda create -n cmor -c conda-forge -c pcmdi cmor

• run qa-dkrz install [opts] PROJECT-name for downloading/updating required external tables (up-
dating not when frozen).

Operation

• run qa-dkrz -f task-file with the following options contained in a task_file:

– PROJECT_DATA path to the root of the data tree.

– QA_RESULTS path to results (created by qa-dkrz) containing log information.

– DRS_PATH_BASE directory name indicating the beginning of the DRS sub-path within the data path.
May be omitted, when it equals the name of the project in capital letters. If your data path does
not match a DRS pattern, set also LOG_PATH_INDEX and LOG_FILE_INDEX depending on your
requirements. This will determine the name of the log-file in QA_RESULTS/check_logs.

– SELECT partitioning of a data directory-tree. Usually starting with the next one behind
PROJECT_DATA; regular expressions enabled.

– NUM_EXEC_THREADS number of asynchronous, parallel proccesses; each for an atomic variable.

– EMAIL_SUMMARY=name@site.xy a summary of the results are emailed.

– QA_CONF=PROJECT_qa.conf default setting of options for a given project.

• Before starting to check data, please make sure that the configuration was set as expected by running qa-dkrz
[opts] -e_show_conf.

• Check the selected experiments: qa_DKRZ [opts] -e_show_exp.

• Try for a single file first and inspect the log-file, i.e. run qa-dkrz [opts -f task-file] -e_next. If
accepted, then resume without -e_next.

12 Chapter 5. User-guide

mailto:EMAIL_SUMMARY=name@site.xy

QA-DKRZ Documentation, Release 0.5

• Files having checked before are skipped when they are scheduled again for a check. Use option -e_clear=note
for rechecking files causing annotations.

• Use nohup for long-term execution in the background.

• If the script is run in the foreground, then command-line option ‘-m’ may be helpful by showing the current file
name that .

• Have a look at the QA results in directory QA_RESULTS/check_logs; annotations are summarised in sub-
directory Annotation/experiment-name.json .

• Manual termination of a session: if an immediate break is required, please inquire the process-id (pid), e.g. by
ps -ef | grep qa-dkrz, and execute the command ‘kill -TERM pid’. This will close the current session
neatly leaving no remnants and being ready for resumption.

General remarks:

• Projects taken into account are CORDEX, CMIP5/6, HAPPI.

• There is a proceeding with tables:

– QA-DKRZ based tables, which are taken by default, reside in QA-DKRZ/tables/projects/
PROJECT. Note that changes would be lost after an update, regardless of whether by conda or git.

– the default tables as well as external tables are copied to the QA-TABLES path given in HOME/.qa-
dkrz/config.txt or asked initially.

– user-define adjustments have to be placed in QA-TABLES/tables/PROJECT, where
PROJECT_DRS_CSV.csv has to be copied entirely and adjusted, while PROJECT_check-list.conf
and PROJECT_qa.conf may only contain adjusted statements from the respective default table.

– all tables required for a particular run are copied to QA_RESULTS/tables. Depending on the QA_RESULT
managment, these may be overwriten when changed. The checking program will read from here.

• If the recommendations above are sufficient for checking your project, you may skipp reading from here.

• If you would like to check something similar to supported project, then you may try option PROJECT_AS and
copy/adjust main-project tables to the user-defined tables.

• If the machine you’re on does not have the ability to run the code, then you would like to download from GitHub
and compile the executables.

• QA-DKRZ may be used in multi-user and multi-tasking mode. If everybody should use the same configuration,
then install --freeze would be an option. Otherwise, each user may have his own HOME/.qa-dkrz/
config.txt and external tables.

5.1.3 Installation

QA-DKRZ may be installed either by the conda package manager or from a GitHub repository. Recommended is
conda installing a ready-to-use package (a 64-bit processor is required). If you want to work with sources or use a
different machine architecture, then the installation from GitHUb should be the first choice.

Running the QA_DKRZ tool requires external tables which are not provided by conda packages (neither by
QA_DKRZ from GitHub). qa-dkrz starts a script for installation and updates, when the first argument is install
.

For CMIP6, QA-DKRZ binds the CMOR validator PrePARE (D. Nadeau, LLNL, https://cmor.llnl.gov). The CMOR
package is downloaded by

5.1. User Guide 13

https://cmor.llnl.gov

QA-DKRZ Documentation, Release 0.5

$ conda create -n cmor -c conda-forge -c pcmdi cmor

Details in section Work-flow below.

No matter what the preference is conda or git, operational and update processes are separated.

Note:

• qa-dkrz: just for runs. While the completeness of required tables is checked, but the state whether tables /
programs are up-to-date is not. If this check fails, the user is asked to run the command below.

• qa-dkrz install [opts] PROJECT: get/update external tables and, when installed from GitHub, also
compile executables. If run initially, you are asked for a path to put external tables. The user is disengaged from
knowing table names or their internet access.

Conda Package Manager

Make sure that you have a working conda environment. The quick steps to install miniconda on Linux 64-bit are:

$ search and download Miniconda-latest-Linux-x86_64.sh
$ bash Miniconda-latest-Linux-x86_64.sh

Have the conda in your PATH or execute it by path/miniconda/bin/conda. Conda provides the QA-DKRZ
package with all dependencies included. It is recommended to use conda’s default for named environments found in
path/miniconda/envs .

$ conda create -n qa-dkrz -c conda-forge -c h-dh qa-dkrz

GitHUB repository

Requirements

The tool requires the BASH shell and a C/C++ compiler (works for AIX, too).

Building the QA tool

The sources are downloaded from GitHub by

$ git clone https://github.com/IS-ENES-Data/QA-DKRZ

Any installation is done with the script install (a prefix ‘./’ could be helpful in some cases) within the QA-DKRZ
root directory. Please, have also a look at the Work-flow section.

• A file install_configure in QA-DKRZ binds necessary lib and include directories. If
install_configure is not available, a template is created and the user is asked to edit the file.

• Environmental variables CC, CXX, CFLAGS, and CXXFLAGS are accepted.

• qa-dkrz install establishes access to libraries, which may be linked (recommended) or built (triggered
by option --build. Note that this is rarely tested of the courwse of development).

• Proceedings are logged in file install.log.

• The executables are compiled for projects named on the command-line.

14 Chapter 5. User-guide

QA-DKRZ Documentation, Release 0.5

• If qa-dkrz install is started the first time for a given project, then corresponding external tables and
programs are downloaded to directory QA_TABLES; the user is asked for the path.

• The user’s home directory contains a config.txt file in directory .qa-dkrz by default, created and updated by
qa-dkrz install.

The full set of options is described by:

$ qa-dkrz install --help

Building Libraries

If you decide to use your own set of libraries (accessing provided ones is preferred by respective settings in the
install_configure file), then this is accomplished by

$ qa-dkrz install --build [opts]

Sources of the following libraries are downloaded and installed:

• zlib: www.zlib.net,

• hdf5: www.hdfgroup.org,

• netcdf-4: www.unidata.ucar.edu (shared, no FORTRAN, non-parallel),

• udunits: http://www.unidata.ucar.edu/packages/udunits.

• uuid: mostly provided by the operating system.

The libraries are built in sub-directory local/source. If libraries had been built previously, then the sources are
updated and the libraries are rebuilt.

5.1.4 Update

Updates of tables are downloaded from external sources by

$ qa-dkrz install [opts] PROJECT-Name

with options:

PROJECT-name (as single parameter) installation of external tables for the named project. Additionally, compila-
tion of executables for PROJECT, but only for GitHub based installation.

- -force [PROJECT] Unconditional update. Also required to unlock a frozen state.

- -freeze Lock current installation; HOME/.qa-dkrz/config.txt is copied to the root directory of QA-DKRZ. This is
applied by every user of this particular installation and can not be modified.

- -up [PROJECT] Updating tables only when there was no update on that day before. The frequency may be pro-
longed by option --uf=num with num in days.

- -ship Prepare a working installation for transferring it to internet-free devices. (in preparation)

- -shipped internet-free installation. (in preparation)

5.1. User Guide 15

http://www.unidata.ucar.edu/packages/udunits

QA-DKRZ Documentation, Release 0.5

5.1.5 Work-flow

Please note that the work-flow has changed. By now, operational usage is generally distinct from installation or
updating. However, users may trigger that tables are updated regularly (by default daily). But, conda built packages
are updated only manually. The work-flow is generally as:

Installation/update

• download the QA-DKRZ package (conda or GitHub)

• CMIP6: download the CMOR3 package (both conda and GitHub)

• run qa-dkrz install [opts] PROJECT : download external tables (both conda and HitHub), compila-
tion of executables (only GitHub)

• file HOME/.qa-dkrz/config.txt is created

The paths to the qa-dkrz install script (bash) is:

conda-built path: miniconda/env/qa-dkrz/opt/qa-dkrz/install

GitHub path: QA-DKRZ/install

Paths and times of next updates are kept in a configuration file located in HOME/.qa-dkrz/config.txt by default. It is
not necessary for a user to edit it, but permitted. It ismanaged by qa-dkrz install calls.

Operation

The names of the operational executables are different between conda-built and GitHub-based packages, because of
backward-compatibility. However, all work (almost) the same.

conda-built
qa-dkrz: python script, path= miniconda/env/qa-dkrz/bin
qa-dkrz.sh: bash script, path= miniconda/env/qa-dkrz/bin

GitHub
qa-dkrz.py: python script, path= QA-DKRZ/python/qa-dkrz/qa-dkrz.py
qa-dkrz: bash script, path= QA-DKRZ/scripts/qa-dkrz

Operation is conducted (with some reasonable options) by e.g.

$ qa-dkrz -f task-file

with task-file containing frequently modified or task-specific options like PROJECT_DATA, QA_RESULTS, SELECT,
EMAIL_SUMMARY, NUM_EXEC_THREADS, CHECK_MODE and PROJECT or QA_CONF. The full set of options used
by default is given and explained in file QA_DKRZ/tables/projects/PROJECT/PROJECT_qa.conf with
QA_DKRZ indicating the root of the QA-DKRZ package. Additionally, every valid option may be provided on the
command-line by prefixing -e|E[].

Note that option RUN_CMOR3_LLNL must be given for running PrePARE, however is set for CMIP6 by default .

The separation of operation and install/updating is superseded by option --auto-up for backward-compatibility and
convenience, respectively.

A corrupt or incomplete installation becoming apparent during an operational run would issue a message for resolving
the conflict.

5.1.6 Configuration

The QA would run basically on the command-line only with the specification of the target(s) to be checked. However,
using options and gathering these in configure files facilitates checks.

16 Chapter 5. User-guide

QA-DKRZ Documentation, Release 0.5

Configuration options follow a specific syntax with option names.

KEY-WORD enable key-word; equivalent to key-word=t
KEY-WORD = value[,value ...] assign key-word a [comma-separated] value;
→˓overwrite
KEY-WORD += value[,value ...] same, but appended

Partitioning of Data Sets

The specification of a path to a data directory tree by option PROJECT_DATA results in a check of every NetCDF
files found within the directory-tree. This can be further customised by key-words SELECT and LOCK, which follow
special rules.

KEY-WORD var1[,var2,...] specified variables for every
→˓path; += mode
KEY-WORD path1[,path2,...] [=] all variables within the
→˓specified path; +=mode
KEY-WORD path1[,path2,...] = [var1[,var2,...] specified variables within the
→˓given paths; += mode
KEY-WORD = path1[,path2,...] = [var1[,var2,...] same, but overwrite mode
KEY-WORD += path1[,path2,...] = [var1[,var2,...] append to a previous assignment

Some options act on other options:

• Option names on the command-line are case-insensitive, they have to be prefixed by ‘-e’ or ‘-E’ (a blank or _
may follow).

• Highest precedence is for options on the command-line.

• If path has no leading ‘/’, then the search is relative to the path specified by option PROJECT_DATA.

• Special for options -S arg or an appended path/filename on the command-line: cancellation of previous
SELECTions.

• If SELECTions are specified on the command-line (options -S) with an absolute path, i.e. beginning with ‘/’,
then PROJECT_DATA specified in any config-file is cancelled.

• All SELECTions refer to atomic variables, i.e. all sub-temporal files.

• LOCKing gets the higher precedence over SELECTion.

• SELECT: Path and variable items are separated by the ‘=’ character, which may be omitted when there is no
variable (except the case that the path item contains no ‘/’ character).

• Regular expressions may be applied to both path(s) and variable(s).

• A particular variable is selected if the beginning of the name is unambiguous, e.g. specifying ‘tas’ would select
all tas, tasmax, and tasmin files. Note that every file name begins with variable_... for CMIP5/CORDEX,
thus, use tas_ for this alone.

• Former option names are valid, if they have changed in the meantime.

Configuration Files

A description of the configuration options is given in the QA_DKRZ root path.

package-path/tables/projects/"project-name"/"project-name"_qa.conf

5.1. User Guide 17

QA-DKRZ Documentation, Release 0.5

Multiple configuration files and options may be specified following a given precedence. This facilitates having a
file with short-term options (in a file provided by the -f option on the command-line), another one with settings to
site-specific demands, which are robust against changes in the repository, and long-term default settings from the
repository. A sequence of configuration files is defined by QA_CONF=conf-file assignments embedded in the
configuration files. The precedence of configuration files/options is given below from highest to lowest:

• directly on the command-line

• in the task-file (-f file) specified on the command-line.

• QA_CONF assignments embedded (descending starts from the -f file).

• site-specific files provided by files located straight in /package-path/tables.

• defaults for the entire project:

All options may also be provided on the command-line plus some more for testing, see /package-path/
QA-DKRZ/scripts/qa_DKRZ --help.

Experiment Names

QA-DKRZ checks files individually. The results are contained in files unique for a specific scope. Albeit most projects
have defined a term ‘experiment’, this is not suitable to provide a realm common to a sub-set of data files.

For CMIP5/6 and CORDEX, an unambiguous scope is defined by the properties of the so-called Data Reference Sys-
tem (DRS), i.e. the components of the path to the variables. The options LOG_PATH_INDEX and DRS_PATH_BASE
define a unique experiment-name, where the former contains a comma-separated list of indices of the path components
and the latter the starting point with index=0, e.g. DRS_PATH_BASE=output and LOG_PATH_INDEX=1,2,3,
4,6. An example is given in Results.

Similar is for building the name of a consistency table, which is used to check consistency between a parent and its
child experiment as well as between the temporal sequence within an atomic variable.

Note: If CT_PATH_INDEX is not set, then consistency checks are disabled.

5.1.7 Results

Running qa-dkrz generates QA results with a few directories.

check_logs All results are gathered in this directory.

Besides the log-files containing the check results for all files, summarised results are given in two modes:

• JSON formatted files and information about atomic time ranges of variables (used by default since 2017).

• Before then, a less machine readable format, which is still used when new results are written to a directory
where files of this format are already present. Also, when option TRADITIONAL_SUMMARY is applied.

Log-files (files: experiment-name.log, YAML format) Files with applied QA-DKRZ options as preamble fol-
lowed by entries for every checked file; possibly with annotations. The file name is composed correspond-
ing to options DRS_PATH_BASE and LOG_PATH_INDEX, respectively LOG_FILE_INDEX; see see
Configuration.

Annotations (files: experiment-name.json) Experiment-wide information about check conclusion, DRS
structure and annotations if any. Each annotation refers DRS path components, and severeness levels
(if any).

18 Chapter 5. User-guide

QA-DKRZ Documentation, Release 0.5

Period (files: experiment-name.period in YAML format, time_range.txt) The time range for each variable.
Shorter ranges are marked.

Summary (at present only for qa-dkrz.sh)

experiment-names Directories: experiment-name, contained files are human readable)

annotations.txt

• inform about missing variables, if a project defines a set of required ones.

• file names with a time-range stamp that violates project rules, e.g. overlapping with other
files, syntax failure, etc..

• In fact copies of the tag-files describe below.

tag-files a file for each annotation flag found in the corresponding log-file. Annotations include
path, file name and variable or experiment scope, respectively, caption, impact level, and the
tag from one of the check-list tables.

cs_table (only when option CHECKSUM is enabled) Check sums of files; for the verification that no old file is
sold as new.

data internal usage

session_logs internal usage

tables The tables actually used for the run and if option PT_PATH_INDEX is set, then also for the consistency table
generated during a check.

5.1.8 CF Conventions Checker

The CF Conformance checker applies to conventions 1.4 -1.7 (cfconventions.org).

The checker is a bash script and resides in

conda-built path=‘‘miniconda/env/qa-dkrz/opt/qa-dkrz/scripts‘‘

GitHub path=‘‘QA-DKRZ/scripts‘‘

dkrz-cf-checker [opts] files(s)

Purpose: Check for CF Conventions Compliance (http://cfconventions.org).
The checker is part of the QA-DKRZ package (https://github.com/IS-ENES-DATA)
Compilation: '/your-path-to-QA-DKRZ/install CF' unless
the package was downloaded via 'conda create -n qa-dkrz -c conda-forge -c h-dh qa-
→˓dkrz'.
-C str CF Convention string; taken from global attributes by default.
-F path Find recursively all nc-files from starting point 'path'.
-p str Path to one or more NetCDF files.
-R Apply also recommendations given by the CF conventions.
--debug Show execution commands.
--help
--param Only for program development.
--ts[=arg] Run the files provided in the Test-Suite for CF Conventions

rules in QA-DKRZ/CF_TestSuite. If particular NetCDF files are
provided additionally, then only these are used. If a filename
cannot be resolved unambiguously, then use optional arg F[ail] or P[ass}.

5.1. User Guide 19

QA-DKRZ Documentation, Release 0.5

CF Test Suite

A collection of NetCDF files designed to cover all rules of the CF Conventions derived from the examples of the
cf-conventions-1.6.pdf documents. There are two branches.

PASS Proper meta-data and data sets, which should never output a failure. Number of files: 81

FAIL Each file contains a (mostly) single break of a rule and should never pass the test. Number of files:
187

The suite is checked entirely by applying option --ts. When filenames are additionally passed to the checker, then
only these are checked. If such filenames are without a leading path, the checker tries to find out the location in the
two branches. If it should be available in both, then provide P or F as argument to --ts.

Please, note that running some files from the suite by a different checker may raise additional annotations, because the
files are in fact only snippets with a partly missing data segment.

20 Chapter 5. User-guide

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

QA-DKRZ Documentation, Release 0.5

22 Chapter 6. Indices and tables

Index

Q
Quality Assurance, 7

23

	QA-DKRZ - Quality Assurance Tool for Climate Data
	Getting Started
	Documentation
	Getting Help
	Mailing list

	Bug tracker
	Contributing
	License

	Frequently Asked Questions
	Questions
	Q: Why does ...?

	Glossary
	Change History
	0.6
	0.5
	0.4
	0.3
	0.2
	0.1

	User-guide
	User Guide
	Overview
	Best Practices
	Installation
	Update
	Work-flow
	Configuration
	Results
	CF Conventions Checker

	Indices and tables

