pyzigbee Documentation
Release 0.1.2

Pierre ROTH

June 15, 2015

Contents

1 Introduction

2 Installation

3 Specific setup instructions
3.1 088328 USB/Zigbee dongle o o e e e e e e e

4 Code example

5 Shell

5.1 Configuration . . .

6 Architecture

6.1 The big picture . .

6.2 Some more details
7 Indices and tables

Python Module Index

11
11

13
13
13

15

17

pyzigbee Documentation, Release 0.1.2

Version: 0.1.2

Contents 1

pyzigbee Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Introduction

pyzigbee is a python library that enables to talk to Legrand zigbee devices through gateways.
Supported gateways are:

* 0883 28: USB dongle
This library works has been tested on Windows and Linux with Python 2.7, 3.3 and 3.4.

http://www.legrand.com/

pyzigbee Documentation, Release 0.1.2

4 Chapter 1. Introduction

CHAPTER 2

Installation

If you only want to install the library:

’python setup.py install

or with python installer:

’pip install .

Use the python installer to install other dependencies that may be needed to run tests or build documentation:

’pip install -r requirements.txt

pyzigbee Documentation, Release 0.1.2

6 Chapter 2. Installation

CHAPTER 3

Specific setup instructions

Before playing with real hardware, you may need to run some manual setup. Depending on your hardware the steps
may be different. This section maintains instructions for the supported gateways

3.1 088328 USB/Zigbee dongle

3.1.1 driver
This dongle embeds a CP2102 USB to UART transceiver. This driver is included in latest Linux kernels. For Windows
users, install the driver first:

¢ for Windows 32 bits

¢ for Windows 64 bits

3.1.2 configuration

* Open or create a Zigbee network on a device (NETW led blinking)
* Press the button on the 088328 USB key (NETW led should start blinking slowly)

 Press the NETW button on the device which has open the network

All the NETW leds should turn off excepted the one of the device which created the network

Note: For gateways relying on a serial line drive (such as 088328), you can list the available ports of your system by
running: python -m serial.tools.list_ports

pyzigbee Documentation, Release 0.1.2

8 Chapter 3. Specific setup instructions

CHAPTER 4

Code example

Here is a simple example of pyzigbee library usage (see: pyzigbee/examples/088328/scan.py)

#!/usr/bin/env python
—*— coding: utf-8 —#-—

from _ future import print_function
from contextlib import closing
from pyzigbee.gateways.factory import GatewayFactory

def scan():

mmn

Scan the network looking for zigbee devices and print the found IDs
mmwn

Note that you may need to pass a configuration file to

the GatewayFactory since your low level device may be different

from the default one. Please read the 'Configuration' section

of the documentation

gateway = GatewayFactory () .create_gateway (ref="088328")

with closing(gateway.open()) as gateway:
ids = gateway.scan()

print ("Zigbee devices on the network:", ids)

if name == '__main_ ':
scan ()

You may need to pass a configuration file (see: Configuration) to the factory to be override some driver arguments.
Change gateway creation as following:

gateway = GatewayFactory(conf_filename="my_conf.json").create_gateway (ref="088328")

The gateway is the abstraction you will deal with to talk to zigbee devices.

pyzigbee Documentation, Release 0.1.2

10 Chapter 4. Code example

CHAPTER 5

Shell

When installing the pyzgbee library, a shell script called pyzigbeesh is also installed.

You can call it from command line:

‘pyzigbeesh

To display currenly supported arguments:

‘pyzigbeesh --help

For example, to activate logs:

‘pyzigbeesh -d 10

Warning: You may need to gain priviledges on your machine to access the underlying hardware (such as the
serial com port). A sudo pyzigbeesh should do the trick.

5.1 Configuration

The pyzigbee library has a default configuration for each supported gateway. This configuration (mainly driver set-
tings) may be overriden by a JSON config file that can be passed to the shell using the —conf option.

Here is an example of such a conf.json configuration file:

{

"088328": {
"driver": {
"args": {
"port": "/dev/ttyUSBO",
"baudrate": "19200"

}

This configuration file could be changed to the following to work on Windows machines:

{

"088328": {
"driver": {
"args": {

11

pyzigbee Documentation, Release 0.1.2

"port": "COM1",
"baudrate": "19200"

12 Chapter 5. Shell

CHAPTER 6

Architecture
6.1 The big picture
| Your host running | || Zigbee Gateway 11))) (((|| zigbee device 1
| pyzigbee | ——— HW bus -—— || e e |

The HW (hardware) bus can be a serial line, a SPI line,... or whatever depending on the zigbee gateway. The same
way, the protocol used to talk with this gateway over the HW bus can vary.

6.2 Some more details

To reflect reality, the library has the following classes:
* Drivers: deal with low level communication with the underlying hardware
* Protocols: deal with encoding and decoding frames for given protocols

* Gateways: relying on Drivers and Protocols, they provide an API to talk to Zigbee devices

6.2.1 UML diagram

The UML diagram should look like:

[———— >	<<interface>>	
Gateway		Protocol
[=== >	<<interface>>	\
Driver	NoAA	
\	I	
~or [
[
[\ (R		
[OpenWebNet	
[\ (I	

13

..etc

pyzigbee Documentation, Release 0.1.2

| Serial Driver | | Dummy driver | ...etc

Note: The dummy classes are used for testing

The client code (application side) only relies on Gateway objects which are created by the GatewayFactory.

6.2.2 Interfaces
A Gateway is composed of two objects: a Driver and a Protocol which are interfaces. Real drivers and protocols must
implement those interfaces.

class pyzigbee.drivers.basedriver.BaseDriver (**kwargs)
Base driver inherited by all the drivers

class pyzigbee.protocols.baseprotocol.BaseProtocol
Base protocol inherited by all the protocols

The Gateway is the abstraction on which rely client code. You may need to inherit from and overload some methods
to implement your own gateway.

class pyzigbee.gateways.gateway.Gateway (driver, protocol, description="")
Gateways abstracts access to real devices

6.2.3 Some implementations
class pyzigbee.drivers.serialdriver.SerialDriver (**kwargs)
Serial driver to communicate with underlying hardware

keyword args are: - port: the serial port such as /dev/tty3 or COM3 - baudrate: the serial line speed - parity: the
serial line parity

class pyzigbee.protocols.openwebnet . OWNProtocol
OWN protocol is in charge of decoding/encoding OpenWebNet frames

14 Chapter 6. Architecture

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

15

pyzigbee Documentation, Release 0.1.2

16 Chapter 7. Indices and tables

Python Module Index

P

pyzigbee.
pyzigbee.
pyzigbee.
pyzigbee.
pyzigbee.

drivers.basedriver, 14
drivers.serialdriver, 14
gateways.gateway, 14
protocols.baseprotocol, 14
protocols.openwebnet, 14

17

pyzigbee Documentation, Release 0.1.2

18 Python Module Index

Index

B

BaseDriver (class in pyzigbee.drivers.basedriver), 14
BaseProtocol (class in pyzigbee.protocols.baseprotocol),
14

G

Gateway (class in pyzigbee.gateways.gateway), 14

O

OWNProtocol (class in pyzigbee.protocols.openwebnet),
14

P

pyzigbee.drivers.basedriver (module), 14
pyzigbee.drivers.serialdriver (module), 14
pyzigbee.gateways.gateway (module), 14
pyzigbee.protocols.baseprotocol (module), 14
pyzigbee.protocols.openwebnet (module), 14

S

SerialDriver (class in pyzigbee.drivers.serialdriver), 14

19

	Introduction
	Installation
	Specific setup instructions
	088328 USB/Zigbee dongle

	Code example
	Shell
	Configuration

	Architecture
	The big picture
	Some more details

	Indices and tables
	Python Module Index

