

PyVISA-sim: Simulator backend for PyVISA

[image: PyVISA]
PyVISA-sim is a backend for PyVISA [http://pyvisa.readthedocs.org/]. It allows you to simulate devices
and therefore test your applications without having real instruments connected.

You can select the PyVISA-sim backend using @sim when instantiating the
visa Resource Manager:

>>> import pyvisa
>>> rm = pyvisa.ResourceManager('@sim')
>>> rm.list_resources()
('ASRL1::INSTR')
>>> inst = rm.open_resource('ASRL1::INSTR', read_termination='\n')
>>> print(inst.query("?IDN"))

That’s all! Except for @sim, the code is exactly what you would write in
order to use the NI-VISA backend for PyVISA.

If you want to load your own file instead of the default, specify the path
prepended to the @sim string:

>>> rm = pyvisa.ResourceManager('your_mock_here.yaml@sim')

You can write your own simulators. See Building your own simulated instruments to find out how.

Installation

Using pip:

pip install -U pyvisa-sim

You can report a problem or ask for features in the issue tracker [https://github.com/pyvisa/pyvisa-sim/issues].

User Guide

	Building your own simulated instruments

Building your own simulated instruments

PyVISA-sim provides some simulated instruments but the real cool thing is that
it allows you to write your own in simple YAML [http://en.wikipedia.org/wiki/YAML] files.

Here we will go through the structure of such a file, using the one provided
with pyvisa-sim [https://github.com/pyvisa/pyvisa-sim/blob/main/pyvisa_sim/default.yaml] as an example. The first line you will find is the
specification version:

spec: "1.1"

This allow us to introduce changes to the specification without breaking user’s
code and definition files. Hopefully we will not need to do that, but we like
to be prepared. So, do not worry about this but make sure you include it.

The rest of the file can be divided in two sections: devices and resources. We
will guide you through describing the Lantz Example Driver [https://lantz.readthedocs.org/en/0.3/tutorial/building.html]

devices

It is a dictionary that defines each device, its dialogues and properties. The
keys of this dictionary are the device names which must be unique within this
file. For example:

devices:
 HP33120A:
 <here goes the device definition>
 SR830:
 <here goes the device definition>

The device definition is a dictionary with the following keys:

eom

Specifies the end-of-message for each instrument type and resource class pair.
For example:

eom:
 ASRL INSTR:
 q: "\r\n"
 r: "\n"

means that ASRL INSTR resource queries are expected to end in rn and
responses end in n. The q, r pair is a common structure that will
repeat in dialogues, getters and setters.

You can specify the eom for as many types as you like. The correct one will be
selected when a device is assigned to a resource, as we will see later.

error

The error key specifies the default message to be given when a message is not
understood or the user tries to set a property outside the right range.
For example:

error: ERROR

This means that the word ERROR is returned.

If you want to further customize how your device handles errors, you can split
the error types in two: command_error which is returned when fed an invalid
command or an out of range command, or query_error which is returned when
trying to read an empty buffer.

error:
 response:
 command_error: null_response
 status_register:
 - q: "*ESR?"
 command_error: 32
 query_error: 4

In addition to customizing how responses are generated you can specify a status
register in which errors are tracked. Each element in the list specifies a
single register so in the example above, if both a command_error and
query_error are raised, then querying ‘*ESR?’ will return ‘36’.

dialogues

This is one of the main concepts of PyVISA-sim. A dialogue is a query which may
be followed by a response. The dialogues item is a list of elements, normally
q, r pairs. Fore example:

.. code-block:: yaml

	dialogues:
	
	q: “?IDN”
r: “LSG Serial #1234”

If the response (r) is not provided, no response will be given by the device.
Conversely, if null_response is provided for response (r), then no
response will be given by the device as well.

You can have as many items as you want.

properties

This is the other important part of the device. Consider it as a dialogue with
some memory. It is a dictionary. The key is the name of the property and the
value is the property definition.
For example:

properties:
 frequency:
 default: 100.0
 getter:
 q: "?FREQ"
 r: "{:.2f}"
 setter:
 q: "!FREQ {:.2f}"
 r: OK
 specs:
 min: 1
 max: 100000
 type: float

This says that there is a property called frequency with a default value of
100.0.

To get the current frequency value you need to send ?FREQ and the response
will be formatted as {:.2f}. This is the PEP3101 [https://www.python.org/dev/peps/pep-3101/] formatting specification.

To set the frequency value you need to send !FREQ followed by a number
formatted as {:.2f}. Again this is the PEP3101 [https://www.python.org/dev/peps/pep-3101/] formatting specification
but used for parsing.

If you want know more about it, take a look at the stringparser [https://github.com/hgrecco/stringparser] library.

If setting the property was successful, the response will be OK.
If there was an error, the response will be ERROR (the default). You can
specify an error-specific error message for this setter as:

e: Some other error message.

Finally you can specify the specs of the property:

specs:
 min: 1
 max: 100000
 type: float

You can define the minimum (min) and maximum (max) values, and the type of the
value (float, int, str).
You can also specify the valid values, for example:

specs:
 valid: [1, 3, 5]

Notice that even if the type is a float, the communication is done with strings.

resources

It is a dictionary that binds resource names to device types. The keys of this
dictionary are the resource names which must be unique within this file.
For example:

resources:
 ASRL1::INSTR:
 device: device 1
 USB::0x1111::0x2222::0x1234::INSTR:
 device: device 1

Within each resource, the type is specified under the device key. The
associated value (e.g device 1) must corresponds to one of the keys in the
devices dictionary that is explained above. Notice that the same device type
can be bound to different resource names, creating two different objects of the
same type.

You can also bind a resource name to device defined in another file. Simply do:

ASRL3::INSTR:
 device: device 1
 filename: myfile.yaml

The path can specified in relation with the current file or in an absolute way.

If you want to use a file which is bundled with PyVISA-sim, just write:

ASRL3::INSTR:
 device: device 1
 filename: default.yaml
 bundled: true

Index

 nav.xhtml

 Table of Contents

 		
 PyVISA-sim: Simulator backend for PyVISA

 		
 Building your own simulated instruments

 		
 devices

 		
 eom

 		
 error

 		
 dialogues

 		
 properties

 		
 resources

_images/logo-full.jpg
PyVISA

_static/logo-full.jpg
PyVISA

_static/minus.png

_static/file.png

_static/plus.png

