
PyVHDL Documentation
Release 0.0.1

Vern Muhr

October 26, 2016

Contents

1 Introduction: 1

2 Documentation Contents: 3
2.1 Quickstart . 3
2.2 Write a Python testbench . 11
2.3 License . 12

3 Indices and tables 13

i

ii

CHAPTER 1

Introduction:

PyVHDL is an open source project for simulating VHDL hardware designs. It cleanly integrates the general purpose
Python programming language with the specialized VHDL hardware description language. You can write the testbench
for your VHDL design in Python. You can use all the great features of Python to quickly create your testbench. Some
advantages of using Python include:

• It’s an easy to learn, modern mainstream language.

• Object oriented for better organization of code.

• Simple and powerful formatting of of text output.

• Easy file read and write of formatted data.

• Quality modules available for just about any programming task.

Python can be used for more than just testbenches. You can also create architectures in your VHDL design that are
written in Python. Standard VHDL syntax is used to link the architecture to a Python file. Concurrent Python processes
can wait for signal transitions, wait for a specified period of time, read values of signals in the design, or update the
values of signals with an optional delay. This capability is useful for quickly prototyping the behavior of an entity, or
emulating complex behavior like a memory device or UART.

PyVHDL features a unified execution environment. VHDL is translated to Python bytecode, and runs on the same
interpreter as the Python code. There is no overhead wasted on passing data and maintaining synchronization between
separate Python and VHDL environments. An advantage of using Python is that PyVHDL can utilize the work of
other projects in the very active Python community. For example, using the Cython optimising compiler, the speed of
the simulator event queue can be improved by more than a factor of seven.

An important goal of PyVHDL is to create a VHDL simulator that the open source community can easily make
contributions to. The simulator is written in Python, a language familiar to many programmers. Python is much easier
to read and modify compared to most languages. Also, the hurdle of setting up an obscure tool chain environment is
not an issue. The PyVHDL project is maintained on GitHub.

The excellent zamiaCAD Eclipse based IDE is packaged with PyVHDL. The zamiaCAD IDE is an open source
Eclipse based platform for advanced VHDL hardware design. PyVHDL is tightly integrated with the zamiaCAD IDE.
Features provided by zamiaCAD include:

• An environment for creating and managing PyVHDL projects.

• VHDL editing with syntax highlighting and checking.

• Graphical tools for visualizing and navigating the VHDL hierarchy.

• Configuration and running of simulations.

• A waveform viewer for displaying the results of a simulation.

• A VHDL parser used by PyVHDL for analysis and elaboration.

1

https://www.python.org/
https://en.wikipedia.org/wiki/VHDL
http://cython.org/
https://github.com/GeezerGeek/PyVHDL
http://zamiacad.sourceforge.net/web/

PyVHDL Documentation, Release 0.0.1

Fig. 1.1: The zamiaCAD+PyVHDL IDE

Caution: PyVHDL 0.0.1 is an alpha release! Not all VHDL syntax is supported. Un-supported VHDL syntax
includes:

• Functions and Procedures.
• Type statements.
• Arrays and structures.
• Libraries written in VHDL (std_logic and std_logic_vectors are supported natively in Python).

Despite these limitations, PyVHDL can simulate the 32-bit, MIPs compatible, plasma CPU design, and pass
plasma’s instruction set test suite!

2 Chapter 1. Introduction:

CHAPTER 2

Documentation Contents:

2.1 Quickstart

Quickstart table of contents:

• Quickstart
– Requirements
– Install PyVHDL
– zamiaCAD

* Initial zamiaCAD setup
– Run the plasma demo

* Setup a new project
* Import the archived project
* Configure a simulation
* Run the simulation

2.1.1 Requirements

Note: At this time, zamiaCAD+PyVHDL has been tested on Windows 7 and Windows 10.

• Java Runtime Environment version 1.8. Install the 64 bit version of the JRE.

• Stackless Python 2.7 choose the amd64 version.

Note: Be sure python.exe in on your path.

2.1.2 Install PyVHDL

Download PyVHDL-0.0.1.zip from GitHub here. Extract the contents of the zip file to a location of your
choice. I use C:/Projects/PyVHDL

3

https://bitbucket.org/stackless-dev/stackless/wiki/Download
https://github.com/GeezerGeek/PyVHDL/releases/tag/v0.0.1-alpha

PyVHDL Documentation, Release 0.0.1

2.1.3 zamiaCAD

As noted above, PyVHDL runs alongside the zamiaCAD Eclipse IDE. zamiaCAD provides an environ-
ment for creating VHDL design projects, editing VHDL files, analyzing and elaborating a VHDL design,
controlling a simulation, and displaying waveform files generated by a simulation. If you have used the
Eclipse framework before, you will feel fairly at home using zamiaCAD. zamiaCAD has many features
that facilitate working with VHDL designs. Read this zamiaCAD tutorial to learn more about zamia-
CAD‘s features.

Zamiacad is split into an IDE component, and a VHDL processing component. It is possible to run
simulations without the IDE in command line mode using just the VHDL processing component.

Initial zamiaCAD setup

Navigate to the PyVHDL-0.0.1 directory. Double click on run_giu.bat. The zamiaCAD+PyVHDL splash screen
should appear:

Fig. 2.1: zamiaCAD+PyVHDL Splash Screen

Next a Workspace Launcher dialog should appear. Accept the default workspace that appears in the Workspace
textbox. It should be a folder named workspace in the PyVHDL installation folder:

Click on the Use this as the default and do not ask again checkbox, then click on OK. The initial zamia-
CAD+PyVHDL IDE should appear.

4 Chapter 2. Documentation Contents:

http://zamiacad.sourceforge.net/web/sites/default/files/zamiaCAD_0.10_tutorial.pdf

PyVHDL Documentation, Release 0.0.1

Fig. 2.2: Workspace Launcher Dialog

Fig. 2.3: Initial zamiaCAD+PyVHDL IDE

2.1. Quickstart 5

PyVHDL Documentation, Release 0.0.1

2.1.4 Run the plasma demo

The plasma demo is a zamiaCAD+PyVHDL project for simulating the plasma CPU design. Plasma is a 32-bit MIPs
compatible processor. The design is a set of RTL style VHDL files.

Setup a new project

Before the plasma project can be simulated, a new project must be setup in the zamiaCAD Navigator view. Make sure
the zamiaCAD perspective is active. It should appear highlighted in the upper right corner of the IDE window. On the
top menu select File > New > zamiacad Project. The Create New zamiaCAD Project dialog will appear.

Fig. 2.4: Create New zamiaCAD Project Dialog

In the Project name textbox enter plasma. Click Finish. A Do Full Build? dialog will appear. Click No. A project
folder labled plasma will now appear in the IDE zamiaCAD Navigator view.

6 Chapter 2. Documentation Contents:

PyVHDL Documentation, Release 0.0.1

Import the archived project

The zamiaCAD+PyVHDL IDE allows projects to be archived, and later imported back into the IDE workspace. The
folder at PyVHDL-0.0.1/share/saved-projects contains the plasma project archived as plasma-PyVHDL.zip.

Make sure the plasma project is highlighted in the IDE zamiaCAD Navigator view. Right click on the plasma project
folder. In the context menu that appears select Import.... The Import dialog will appear. Double click on the General
folder, and select Archive File, then click the Next > button.

Fig. 2.5: Import Dialog

Next a dialog appears where the import is setup. Click on the Browse... button to the right of the From archive file:
text box. Navigate to PyVHDL-0.0.1/share/saved-projects . Select the plasma-PyVHDL.zip file. Click the Open
button. Now the completed Import dialog should look like this:

2.1. Quickstart 7

PyVHDL Documentation, Release 0.0.1

Fig. 2.6: Completed Import Dialog

8 Chapter 2. Documentation Contents:

PyVHDL Documentation, Release 0.0.1

Click on the Finish button. In the Question dialogs that appears, click the Yes button. In the Do Full Build? dialog,
click Yes. zamiaCAD will analyze and elaborate the plasma design. A log of that process will be in the Zamia
Console window. Click on the plasma project folder. The project navigation information will appear below the folder.
The red and blue rectangular icons can be opened to view the project design hierarchy. The files that make up the
project are listed below the icons. You are now ready to setup and run a PyVHDL simulation.

Fig. 2.7: The IDE After Plasma Project is Built

Configure a simulation

Make sure the plasma project is highlighted. On the IDE menu click Run > Run Configurations.... The Run
Configurations dialog appears. Right click on zamiaCAD Simulation, and select New.

The right side of the dialog now displays the settings for the new configuration.

• In the Name: text box type plasma PyVHDL.

• Click the Browse... button next to the Project text box. Select the plasma project folder, and click OK.

• Click on the Simulator: dropdown, and select Python Simulator.

• Click on the Browse... button next to the Toplevel: textbox. TOPLEVEL WORK.TESTBENCH should be
highlighted. Click OK.

2.1. Quickstart 9

PyVHDL Documentation, Release 0.0.1

• Click the Browse... button next to the Flle: textbox. Navigate to the PyVHDL-0.0.1\workspace\plasma folder.
Select the test.vcd file. Click the Open button.

• The Signal path prefix: textbox should be empty.

Check that the fields in the Run Configurations dialog match the figure below:

Fig. 2.8: Completed Run Configurations Dialog

Run the simulation

Click the Run button. If a Do Full Build ? dialog appears, click Yes. Open the Zamia Console window if it is not
open. The text at the bottom of the console window will look similar to this, without the coloring:

Jun 03 18:00:47 >>> RD_DATA1 00000000 fr zero @ 33325.00
Jun 03 18:00:47 **** MEMORY READ: value 0x00000000, address 0x000003A8 @ 33325.00
Jun 03 18:00:47 **** MEMORY READ: value 0x080000E9, address 0x000003A4 @ 33375.00
Jun 03 18:00:47 **** MEMORY READ: value 0x00000000, address 0x000003A8 @ 33425.00
Jun 03 18:00:47 **** MEMORY READ: value 0x080000E9, address 0x000003A4 @ 33475.00
Jun 03 18:00:47
Jun 03 18:00:47 Simulation done (StopEvent)
Jun 03 18:00:47
Jun 03 18:00:47 Elapsed time = 2.8060
Jun 03 18:00:47 Simulation time = 33500.00 ns

10 Chapter 2. Documentation Contents:

PyVHDL Documentation, Release 0.0.1

Jun 03 18:00:47
Jun 03 18:00:47
Jun 03 18:00:47 Zamia Profiler Results
Jun 03 18:00:47 ======================
Jun 03 18:00:47
Jun 03 18:00:47 2.71s ZDB commit
Jun 03 18:00:47 0.00s Synth
Jun 03 18:00:47 0.03s Indexing
Jun 03 18:00:47 2.24s Parsing
Jun 03 18:00:47 3.42s IG

Make sure the Simulator window is visible. The IDE will look similar to this:

Fig. 2.9: IDE After Simulation Run

To select the signal waveforms to be displayed in the Simulator window, click on the Eye icon on the Simulator
menu. The Select signals to trace dialog appears. In the Select signals to be traced textbox enter *. A list of signals
will appear. Select all the signals. Click OK. The names and waveforms of the signals will now appear:

The IDE windows can be resized to show more of the waveforms. You can click on the Simulator window magnifying
glass menu icons to zoom in, zoom out, or zoom full.

This completes the zamiaCAD+PyVHDL Quickstart tutorial. Read this zamiaCAD tutorial to learn more about the
very useful features of the IDE.

2.2 Write a Python testbench

This part of the documentation needs more work! For now, look at the Python files in the plasma project. Briefly:

• Setup for the simulation is in the file: PyVHDL-0.0.1\workspace\plasma\peripheral.py

2.2. Write a Python testbench 11

http://zamiacad.sourceforge.net/web/sites/default/files/zamiaCAD_0.10_tutorial.pdf

PyVHDL Documentation, Release 0.0.1

Fig. 2.10: IDE Displaying Waveforms

• The plasma registers are implemented in the file: PyVHDL-0.0.1\workspace\plasma\reg_block.py.
Note the print statements which print register activity messages to the zamiaCAD console.

• 8K of memory for the plasma CPU, and a UART data register are implemented in the file:
PyVHDL-0.0.1\workspace\plasma\plasma_ram.py. Note how the initialize(self)
method is used to set up the contents of the memory from a file.

The Process class implements a concurrent process. The class has 2 important methods:

• initialize(self) is called before the simulation starts to do any setup that is needed.

• run(self, P, S) is called to start the process running. The while true: loop causes the process to continu-
ously run through its code, yielding to other processes when a wait is encountered. The P argument is a class
whose attributes are the ports defined in the VHDL entity declaration. Signals are accessed as P.signal_name.
The signal_name must be in UPPER CASE. the S argument is a list containing references to all the signals in
the design (avoid using this for now).

Each Python file that implements a VHDL architecture has a setup(tb, P) function that adds the processes defined in the
file to the simulation execution environment. The tb argument is a reference to the simulation execution environment.
The P argument is a string identifying the process.

2.3 License

PyVHDL is an open source project. This means that it is not only available for download free of charge, but users have
access to the source code and may contribute to the project.

PyVHDL is copyright 2016 by Vern Muhr and is covered by the GNU General Public License Version 3.

Here is the ZamiaCAD project license.

12 Chapter 2. Documentation Contents:

http://www.gnu.org/licenses/gpl-3.0-standalone.html
http://zamiacad.sourceforge.net/web/?q=license

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

	Introduction:
	Documentation Contents:
	Quickstart
	Write a Python testbench
	License

	Indices and tables

