

 Navigation

 	
 index

 	
 next |

 	PyVHDL 0.0.1 documentation

PyVHDL: A Hardware Simulation environment integrating Python and VHDL

Introduction:

PyVHDL is an open source project for simulating VHDL hardware designs. It cleanly integrates the general purpose Python [https://www.python.org/] programming language with the specialized VHDL [https://en.wikipedia.org/wiki/VHDL] hardware description language. You can write the testbench for your VHDL design in Python. You can use all the great features of Python to quickly create your testbench. Some advantages of using Python include:

	It’s an easy to learn, modern mainstream language.

	Object oriented for better organization of code.

	Simple and powerful formatting of of text output.

	Easy file read and write of formatted data.

	Quality modules available for just about any programming task.

Python can be used for more than just testbenches. You can also create architectures in your VHDL design that are written in Python. Standard VHDL syntax is used to link the architecture to a Python file. Concurrent Python processes can wait for signal transitions, wait for a specified period of time, read values of signals in the design, or update the values of signals with an optional delay. This capability is useful for quickly prototyping the behavior of an entity, or emulating complex behavior like a memory device or UART.

PyVHDL features a unified execution environment. VHDL is translated to Python bytecode, and runs on the same interpreter as the Python code. There is no overhead wasted on passing data and maintaining synchronization between separate Python and VHDL environments. An advantage of using Python is that PyVHDL can utilize the work of other projects in the very active Python community. For example, using the Cython optimising compiler [http://cython.org/], the speed of the simulator event queue can be improved by more than a factor of seven.

An important goal of PyVHDL is to create a VHDL simulator that the open source community can easily make contributions to. The simulator is written in Python, a language familiar to many programmers. Python is much easier to read and modify compared to most languages. Also, the hurdle of setting up an obscure tool chain environment is not an issue. The PyVHDL project is maintained on GitHub [https://github.com/GeezerGeek/PyVHDL].

The excellent zamiaCAD [http://zamiacad.sourceforge.net/web/] Eclipse based IDE is packaged with PyVHDL. The zamiaCAD IDE is an open source Eclipse based platform for advanced VHDL hardware design. PyVHDL is tightly integrated with the zamiaCAD IDE. Features provided by zamiaCAD include:

	An environment for creating and managing PyVHDL projects.

	VHDL editing with syntax highlighting and checking.

	Graphical tools for visualizing and navigating the VHDL hierarchy.

	Configuration and running of simulations.

	A waveform viewer for displaying the results of a simulation.

	A VHDL parser used by PyVHDL for analysis and elaboration.

[image: _images/Zamia_IDE.jpg]
The zamiaCAD+PyVHDL IDE

Caution

PyVHDL 0.0.1 is an alpha release! Not all VHDL syntax is supported. Un-supported VHDL syntax includes:

	Functions and Procedures.

	Type statements.

	Arrays and structures.

	Libraries written in VHDL (std_logic and std_logic_vectors are supported natively in Python).

Despite these limitations, PyVHDL can simulate the 32-bit, MIPs compatible, plasma CPU design, and pass plasma’s instruction set test suite!

Documentation Contents:

	Quickstart
	Requirements

	Install PyVHDL

	zamiaCAD

	Run the plasma demo

	Write a Python testbench

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyVHDL 0.0.1 documentation

Quickstart

Quickstart table of contents:

	Quickstart
	Requirements

	Install PyVHDL

	zamiaCAD
	Initial zamiaCAD setup

	Run the plasma demo
	Setup a new project

	Import the archived project

	Configure a simulation

	Run the simulation

Requirements

Note

At this time, zamiaCAD+PyVHDL has been tested on Windows 7 only.

	Java Runtime Environment version 1.8. Install the 64 bit version of the JRE.

	Stackless Python 2.7 [https://bitbucket.org/stackless-dev/stackless/wiki/Download] choose the amd64 version.

Install PyVHDL

Download PyVHDL-0.0.1.zip from GitHub here [https://github.com/GeezerGeek/PyVHDL/releases/tag/v0.0.1-alpha].
Extract the contents of the zip file to a location of your choice. I use C:/Projects/PyVHDL

zamiaCAD

As noted above, PyVHDL runs alongside the zamiaCAD Eclipse IDE. zamiaCAD provides an environment for creating VHDL design projects, editing VHDL files, Analyzing and elaborating a VHDL design, controlling a simulation, and displaying waveform files generated by a simulation. If you have used the Eclipse framework before, you will feel fairly at home using zamiaCAD. zamiaCAD has many features that facilitate working with VHDL designs. Read this zamiaCAD tutorial [http://zamiacad.sourceforge.net/web/sites/default/files/zamiaCAD_0.10_tutorial.pdf] to learn more about zamiaCAD`s features.

Zamiacad is split into an IDE component, and a VHDL processing component. It is possible to run simulations without the IDE in command line mode using just the VHDL processing component.

Initial zamiaCAD setup

Navigate to the PyVHDL-0.0.1 directory. Double click on run_giu.bat. The zamiaCAD+PyVHDL splash screen should appear:

[image: _images/splash.jpg]
zamiaCAD+PyVHDL Splash Screen

Next a Workspace Launcher dialog should appear. Accept the default workspace that appears in the Workspace textbox. It should be a folder named workspace in the PyVHDL installation folder:

[image: _images/Workspace_Launcher.jpg]
Workspace Launcher Dialog

Click on the Use this as the default and do not ask again checkbox, then click on OK. The initial zamiaCAD+PyVHDL IDE should appear.

[image: _images/zamia0.jpg]
Initial zamiaCAD+PyVHDL IDE

Run the plasma demo

The plasma demo is a zamiaCAD+PyVHDL project for simulating the plasma CPU design. Plasma is a 32-bit MIPs compatible processor. The design is a set of RTL style VHDL files.

Setup a new project

Before the plasma project can be simulated, a new project must be setup in the zamiaCAD Navigator view. Make sure the zamiaCAD perspective is active. It should appear highlighted in the upper right corner of the IDE window. On the top menu select File > New > zamiacad Project. The Create New zamiaCAD Project dialog will appear.

[image: _images/new_proj.jpg]
Create New zamiaCAD Project Dialog

In the Project name textbox enter plasma. Click Finish. A Do Full Build? dialog will appear. Click No. A project folder labled plasma will now appear in the IDE zamiaCAD Navigator view.

Import the archived project

The zamiaCAD+PyVHDL IDE allows projects to be archived, and later imported back into the IDE workspace. The folder at PyVHDL-0.0.1/share/saved-projects contains the plasma project archived as plasma-PyVHDL.zip.

Make sure the plasma project is highlighted in the IDE zamiaCAD Navigator view. Right click on the plasma project folder. In the context menu that appears select Import.... The Import dialog will appear. Double click on the General folder, and select Archive File, then click the Next > button.

[image: _images/import_dialog.jpg]
Import Dialog

Next a dialog appears where the import is setup. Click on the Browse... button to the right of the From archive file: text box. Navigate to PyVHDL-0.0.1/share/saved-projects . Select the plasma-PyVHDL.zip file. Click the Open button. Now the completed Import dialog should look like this:

[image: _images/import_dialog2B.jpg]
Completed Import Dialog

Click on the Finish button. In the Question dialogs that appears, click the Yes button. In the Do Full Build? dialog, click Yes. zamiaCAD will analyze and elaborate the plasma design. A log of that process will be in the Zamia Console window. Click on the plasma project folder. The project navigation information will appear below the folder. The red and blue rectangular icons can be opened to view the project design hierarchy. The files that make up the project are listed below the icons. You are now ready to setup and run a PyVHDL simulation.

[image: _images/ide2.jpg]
The IDE After Plasma Project is Built

Configure a simulation

Make sure the plasma project is highlighted. On the IDE menu click Run > Run Configurations.... The Run Configurations dialog appears. Right click on zamiaCAD Simulation, and select New.

The right side of the dialog now displays the settings for the new configuration.

	In the Name: text box type plasma PyVHDL.

	Click the Browse... button next to the Project text box. Select the plasma project folder, and click OK.

	Click on the Simulator: dropdown, and select Python Simulator.

	Click on the Browse... button next to the Toplevel: textbox. TOPLEVEL WORK.TESTBENCH should be highlighted. Click OK.

	Click the Browse... button next to the Flle: textbox. Navigate to the PyVHDL-0.0.1\workspace\plasma folder. Select the test.vcd file. Click the Open button.

	The Signal path prefix: textbox should be empty.

Check that the fields in the Run Configurations dialog match the figure below:

[image: _images/RunConfig.jpg]
Completed Run Configurations Dialog

Run the simulation

Click the Run button. If a Do Full Build ? dialog appears, click Yes. Open the Zamia Console window if it is not open. The text at the bottom of the console window will look similar to this, without the coloring:

Jun 03 18:00:47 >>> RD_DATA1 00000000 fr zero @ 33325.00
Jun 03 18:00:47 **** MEMORY READ: value 0x00000000, address 0x000003A8 @ 33325.00
Jun 03 18:00:47 **** MEMORY READ: value 0x080000E9, address 0x000003A4 @ 33375.00
Jun 03 18:00:47 **** MEMORY READ: value 0x00000000, address 0x000003A8 @ 33425.00
Jun 03 18:00:47 **** MEMORY READ: value 0x080000E9, address 0x000003A4 @ 33475.00
Jun 03 18:00:47
Jun 03 18:00:47 Simulation done (StopEvent)
Jun 03 18:00:47
Jun 03 18:00:47 Elapsed time = 2.8060
Jun 03 18:00:47 Simulation time = 33500.00 ns
Jun 03 18:00:47
Jun 03 18:00:47
Jun 03 18:00:47 Zamia Profiler Results
Jun 03 18:00:47 ======================
Jun 03 18:00:47
Jun 03 18:00:47 2.71s ZDB commit
Jun 03 18:00:47 0.00s Synth
Jun 03 18:00:47 0.03s Indexing
Jun 03 18:00:47 2.24s Parsing
Jun 03 18:00:47 3.42s IG

Make sure the Simulator window is visible. The IDE will look similar to this:

[image: _images/post_sim_run.jpg]
IDE After Simulation Run

To select the signal waveforms to be displayed in the Simulator window, click on the Eye icon on the Simulator menu. The Select signals to trace dialog appears. In the Select signals to be traced textbox enter *. A list of signals will appear. Select all the signals. Click OK. The names and waveforms of the signals will now appear:

[image: _images/ide3.jpg]
IDE Displaying Waveforms

The IDE windows can be resized to show more of the waveforms. You can click on the Simulator window magnifying glass menu icons to zoom in, zoom out, or zoom full.

This completes the zamiaCAD+PyVHDL Quickstart tutorial. Read this zamiaCAD tutorial [http://zamiacad.sourceforge.net/web/sites/default/files/zamiaCAD_0.10_tutorial.pdf] to learn more about the very useful features of the IDE.

 Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyVHDL 0.0.1 documentation

Write a Python testbench

This part of the documentation needs more work! For now, look at the Python files in the plasma project. Briefly:

	Setup for the simulation is in the file: PyVHDL-0.0.1\workspace\plasma\peripheral.py

	The plasma registers are implemented in the file: PyVHDL-0.0.1\workspace\plasma\reg_block.py. Note the print statements which print register activity messages to the zamiaCAD console.

	8K of memory for the plasma CPU, and a UART data register are implemented in the file: PyVHDL-0.0.1\workspace\plasma\plasma_ram.py. Note how the initialize(self) method is used to set up the contents of the memory from a file.

The Process class implements a concurrent process. The class has 2 important methods:

	initialize(self) is called before the simulation starts to do any setup that is needed.

	run(self, P, S) is called to start the process running. The while true: loop causes the process to continuously run through its code, yielding to other processes when a wait is encountered. The P argument is a class whose attributes are the ports defined in the VHDL entity declaration. Signals are accessed as P.signal_name. The signal_name must be in UPPER CASE. the S argument is a list containing references to all the signals in the design (avoid using this for now).

Each Python file that implements a VHDL architecture has a setup(tb, P) function that adds the processes defined in the file to the simulation execution environment. The tb argument is a reference to the simulation execution environment. The P argument is a string identifying the process.

 Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	PyVHDL 0.0.1 documentation

License

PyVHDL is an open source project. This means that it is not only available for download free of charge, but users have access to the source code and may contribute to the project.

PyVHDL is copyright 2016 by Vern Muhr and is covered by the GNU General Public License Version 3 [http://www.gnu.org/licenses/gpl-3.0-standalone.html].

Here is the ZamiaCAD project license [http://zamiacad.sourceforge.net/web/?q=license].

 Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PyVHDL 0.0.1 documentation

Index

 Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/up.png

_images/Zamia_IDE.jpg
@ 22mizCAD - plasma-PyVHDL/py_peripheral.vhd - zamiaCAD - CAProjects\Zamiacad-0-11-3\Workspace ol

Fie Edit Navigate Search Project Run Window Help

o 52 B-0-F b T 5 | [zamiaCAD
@ 2amiaCAD Navigator 52 S ¥ = 8 || @ peripheralpy [reg_bank.vhd [py_periphera... 52 | [plasma_ram.vhd * = 8 || B Console 2 bl tB-5-= 0
4 & plasma-PyVHDL R Zamia Console
ath: WORK TBENCHT3_PERIPHE notate
4 T8 WORKTBENCH(LOGIO) Fatre s = Sl May 20 1. 3 >>> RD_DATA2 0000000A fr 55 @ 32975.00 =
Lo sot- Author Iiable for nothing. . ||May 20 1 3 ®ews WEM_BYTE_SEL: 1000
s] May 20 1 3 wxex UART write: OA
Globals L ort, clk & reset May 20 1 3 =#%s WEMORY READ: value 0x3402001C, address O0xO
£ T1CPU: WORKMLITE_CPULOGIC) 1 uay 20 1 3 73 RoDATAL 00000000 fr zerg @ 3312500
25 ¥ 1 vay >>> RD_DATA2 0000000A fr v0 @ 33125.00
B T2 MEMORY: WORKPLASMA RAM(EMULATION) 3 ieee; may 20 1: 3 *#%% MEMORY READ: value 0xA2820000, address 0x0
£ T3 PERIPHERAL: WORK.PY_PERIPHERAL(FL) 3 ieee.std logic_1164.al1; May 20 1 3 >>> RD_DATAL 20000000 fr s4 @ 33175.00
+ 1B WORKTEENCHLOGIO : py_peripheral %y 30 1166133 wmire' Soops0tc vo " vb e 33555 00 e < O
x w to voe .00 hs
4+ T WORKMLITE CPU(LOGIC) 7 ¢ M st A
X y 20 1 3 MEM_EYTE_SEL: 1000
£ WORKALULOGIC) k. 0 std-logics May 20 1 3 =#% MEMORY READ: value 0X080000E9, address O0xO
‘, 19 rese i std_Togic May 20 1 3 >>> RD_DATAL 00000000 fr zero G 33325.00
f\y/ORKBUSrMUX(VLOG‘Q May 20 1 3 >>> RD_DATA2 00000000 fr zero @ 33325.00
§womowomocm 1 S uay 20 1 3 2o MENORY READ: value 0x00000000, address 0x0
WORKMEM_CTRL(LOGIC) 2 end; —-entit = | vay #xs% MEMORY READ: value OXOS0000EQ, address 0x0
o May 20 1 3 wx*% MEMORY READ: value 000000000, address Ox0
py_per-ipheral May 20 1 3 wsws MEMORY READ: value OXOB0000E9, address OxO
1 WORKPC_NEXT(LOGIC) : May 20 1 3
i oreign : string; May 20 1 3 sinulation done (stopEvent)
;‘ig:i;g‘ézzﬂi‘él foreign of f1i: “peripheral.py"; May 20 1 3 t
w BANK(May 20 1 3 Elapsed time = 2.6507
 WORKSHIFTER(LOGIC) 2 1 way 20 1 3 sinulation time = 33500.00 ns
1B WORKPLASMA RAM(EMULATION) 3 : k= E
. < |lway 20 1 3 -
£ WORKPY_PERIPHERAL(FL - ‘ a s - »
o Simulator 53 5
testved Run 100 ‘ns ~ @ @m 4 Ay AR

Signal

'WRITE_ENABLE 0

_images/import_dialog.jpg
o« mport
Select

Import resources from an archive e nto an eisting [£ §
project.

Select an import source:

[type filter text:

4 (= General
G, Avchive File|
& bisting Projects nto Workspsce
File System
£ Preferences
» & Run/Debug
b @ Team
b & Other

@ <Back |[LoNet> J[Enish

_images/zamia0.jpg
#7" zamiaCAD - zamiaCAD - GATestPYVHDL-00 1workspace N . W

Fie Eat Navigste Seach Project Run Window Felp
. $-0- FoEF e - Quick Access | & | P
A zamiaCAD Navigator 53| = O = 5 |52 outine 2 | = =
2% ~ An outines not avaabe.
[21 Problems 22 | RTL Graph Viewer| " Simulator| 5] Console| 47 Search| =5 Progress| S
oitems
' Description - Resource Path Location Type

_static/up-pressed.png

_images/ide2.jpg
47" zamiaCAD - plasma/tbenchuhd - zamiaCAD - GiTest\PyVHDL-00.\workspace e - e]

Fie Edit Navigate Search Project Run Window Help

o $0- FoE e . Quick Access | & | F g e
A zamiaCAD Navigator 53| = O “mmwma | =
B % 7 ||path WORKTBENCH: [E] T Amotste [Updete
4 plsma) e -
[WORKTBENCH(LOGIC)
» 3§ WORK.TBENCH(LOGIC) architecture logic of tbench is
4 BuildPthixt 3 .
o it - signals genersted by py_periphersl
signal clk + std logic;
> B sluvhd Signal reset stdlogic;
b & auilary
» B busmuxvhd -~ signals for internal RAH
> B controluhd Signal mem_byte sel : std_logic_vector(3 downto 0); -
design.ser L ’
) design.ot ~=o

> [mem_ctrlvhd
> [l miite_cpuvhd

s

building WORK.TBENCH:TL_CPU.U4_REG_BANK.REGISTERS

> B miite_packvhd =l 3un 01 IGManager: 11 modules done (4 todo ATM)
& B Jun @1 IGManager: 12 modules done (3 todo ATM): building WORK.TBENCH:T1_CPU.U3_CONTROL
2un 01 IGManager: 13 modules done (2 todo ATH): building WORK. TBENCH:T1_CPU.U2 MEM_CTRL
> B penetuhd | 3un 1 IGManager: 14 modules done (1 todo ATH): building WORK. TBENCH:T1_CPU.UL_PC_NEXT
& peipheralpy | 3un e Zamiaprojectsuilder: Finished building instantistion graph(s). Tine elapsed: 3.3660005
peripheral pyc |3un e Zamiaprojectsuilder: Synthesizing:
» B pipsimevhd Jun 01 Zamiaprojectsuilder
& i |3un 01 ZamiaProjectBuilder: Finished synthesizing. Time elapsed: 0.000000s
@ plasma_ram.py
S | 3un @1 flush(): evicting memory cache
&) plasma ram.pyc Iun 01 lush(): writing EHY pages...
> B plasma_ramuhd Jun 61 Evpagetianager: Flush(): evicting memory cache.
| getianag g menory
» B py_peripheralhd | 3un o1 Epagetianager: flush(): done.
> B e bonkeied Iun 01 FLush(): writing EHI nodes...
i e o T1en)! atiag totscos e pevshmpaesbfpcrss:
e oun 01 : Flush(): done. Current DB size: 15 B
@ reg_blockpyc it
> B shiftervhd Jun o1 Zamia Profiler Results
[sim_logxt Iun 01
> [thenchvhd Jun o1
| 3un e ©.005 Synth
B 1=t heiet | 3un o1 ©.005 Indexing
B test2_hexet Jun 01 2.235 Parsing.
tests hextxt = ||3un o1 3.375 16 -
T . |l i B

I 1item selected

_images/ide3.jpg
X

47 zamiaCAD - plasmaltbenchyhd - zamiaCAD - GiTest\PYVHDL-00\workspace n|pl=)

Fie Edit Navigate Search Project Run Window Help

Jee 52 -0~ Pzl e Quick Acce: B | (@ zamiaCAD | & Java
7 zamiaCAD Navigator 0 5% © - O [thenchvhd T = 0 |[& Console 3 2B -5-- 0=
4+ T WORKTBENCH(LOGIC) || paths WoRKTBENCE: s Zamia Console B
Locals 3un 67 12:40:35 >>> RO_DATAL 00000000 fr zero @ 33 g~
Globals = -~ PROJECT: Plasma CPU core ~ || 3un 67 12:40:35 **+* MEMORY READ: value 0x@50000ES
COPYRIGHT: Software placed into the public domain by the author Jun 67 12:40:35 >>> RD_DATAL 20000000 fr s4 @ 3317: |9

£ T1_CPU: WORKMLITE_CPU(LOGIC)
48 T2 MEMORY: WORK PLASMA RAM(EMI

Software 'as is’ without warranty. Author liable for n 21 || Jun 07 12:40:35 WRITE GeRRRRIC to ve @ 33225.00 ¢
DESCRIPTION Jun 07 12:40:35 **** MEN_BYTE_SEL: 1000

4 T T3_PERIPHERAL WORK.PY_PERIPHERAL This entity provides a test bench for testing the mlite_cpu Jun 07 12:40:35 **** HEMORY READ: value OXCB0000ED
e 3un 07 12:40:35 >>> RD_DATA2 00000000 r Zero @ 33
brary ieee; Jun 07 12:40:35 “*=* NEMORY READ: value Gx00000000

R e iCRID 06l use ieee.std_logic_1164.a11; Jun 07 12:40:35 >>> RD_DATAL 00000000 fr zero @ 33

RESET: STD_LOGIC use work.mlite_pack.all; Iun 07 12:40:35
Globals Jun @7 12:40:35

D: value @x@000E9
D: value 0000000,

£ WORKTBENCH(LOGIC) thench is Jun 07 12:40:35 D: value @x030000ES
¥ BuildPath bt u -entity tbench < || 3un 07 12:40:35 I
o Simulator 52 =
testucd Run o@= 8 ENY BAYR

Signal

“O0000000FFFFFFBD) 0 GO0000" X 00000001 70000000" X 0300000

_images/splash.jpg
* Cond =

%) zamia

\D
DL

_images/RunConfig.jpg
Run Configurations

Create, manage, and run configurations

" Refresh| 7§ Environment| = Common|

Python Simulator

WORK TBENCH

i e

“GA\Test\PyVHDL-0.0 1\workspace\ples

GBX[E®" | ome posmaryvrr
pefitertet 1
R e
somAppleanon i
4 f" 2amiaCAD Simulation lasma
New_configuration ot
St
Topse
e
Sttt e |
e e ot e

o

@

Ce e

_images/post_sim_run.jpg
47 zamiaCAD - amiaCAD - GATest\PYVHDL-0.0 Lworkspace (L

ol

[[| (@ zamiacAD) & Java

T TP
n- $-0- Foiil-
@ zamiaCADN... &2 | = O || [tbenchwvhd 52
=S| || Path: WORK.TBENCH:
dwignser (3 &

end;
designot

mem_ctrlvhd

E

[£) miite_cpuvhd
) miite_pack G gene:

| i sigial'cik stlogics
B mizcvnd signal reset std_logic;
[pe_nestuhd

& peripheralpy —- signals for internal R

3 peripheralpyc signal men_byte_sel

[pipelinexhd

@ plasmatampy | | |[[E] problems [#” RTL Graph Viewer " Simulator 53
3 plasme_ram.pyc

testved Run 100 [ns

plasms_ram.uhd
py_perpheralhd
reg_bankuhd
reg_blockpy
reg_blockpyc
shifterahd
[simlogaxt
[thenchahd
) testoed
) test_hextxt
testhextxt
testhhextxt
test_hextxt
tests_hextxt
testt_hextxt
[tesl_hect
tesh_hextxt
tes98_hect
[tess_hect
O varted

Value

B

Signal

SEYE

0 items selected

architecture logic of thench is

std_logic_vector(3 downto @);

7 Search

@ @ {5 &)

i Progress

10

= & |[E console 3
Zamia Console

Annotate

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

3
3
3
3
3
o3
3
3
3
o3
3
o3
3
o3
3
3
3
3
3
3
3
o3
3
3
3
o3
3
o3
3
o3
3
3
3
3
3
3
3
3

18
18
18
18
18
18
18
18
18
15
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
15
18
18
18
18
18
18
18
18
18
18
18
15

o0
o0!
o0!
o0!
e0!
o0!
o0
o0
o0
o0!
o0!
o0
o0
o0!
o0
o0
o0
o0!
o0!
o0!
e0!
o0!
o0
o0
o0
o0!
o0!
o0
o0
o0!
o0
o0
o0
o0!
o0!
o0!
e0!
e0!

47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47

47
47
47
47
47

% ~ri-=0

55> KU_UATAZ GO0G0000 Tr 57 @ T
e NEMORY READ: value @xA295¢
e NEM_BYTE_SEL: 1000

=== UART write: @D

e NEMORY READ: value @xA295¢
>>> RD_DATA2 00000004 Fr 55 @
e NENORY READ: value 0x3402¢
e MEM_BYTE_SEL: 1000

=ee* UART write: @A

e NEMORY READ: value 0x3402¢
>>> RD_DATAL 00000000 Fr zero
>>> RD_DATA2 00000004 Fr v0 @
e NEMORY READ: value @xA282¢
>>> RD_DATAL 20000000 Fr s4 @
== NENORY READ: value 0x@800¢
WRITE 0000001C to v @ 33225
e MEM_BYTE_SEL: 1000

e NENORY READ: value 0x@800¢
>>> RD_DATA2 00000000 Fr zero
>>> RD_DATAL 00000000 Fr zero
e NEMORY READ: value @x0000¢
e NENORY READ: value @x@800¢
= NENORY READ: value 0x0000¢
e NEMORY READ: value @x@80e¢

Sinulation done (StopEvent)

3.6076
33500.00 ns

Elapsed time
Simulation time

Zamia Profiler Results

2.715 0B commit
0.005 Synth
0.035 Indexing
2.245 Parsing
.42 I6

_images/new_proj.jpg
,

Create New zamiaCAD Project
Select the project name, saving directory and its toplevel entity

Broject name: | plasma

Use default location

Location; [GATest\PyVHDL-0.01\workspacelplasma Browse.

® T

tb_vhdl_part.html

 Navigation

 		
 index

 		PyVHDL 0.0.1 documentation »

The VHDL part

 © Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

_images/import_dialog2B.jpg
o« mport

Archive file

Import the contents of an archive file in zip or tar format from the local fle system,

From archivefile: G:\PyVHDL-0.0.1\share\saved_projects\plasma-PyVHDLzip

[project

@] [l aluvhd

[V] 9 BuildPath.bt
[¥] [bus_muxvhd
[¥] [control.vhd
designser
[desianaxt

Filter Types. Select All Deselect All

Into folder: plasma

) Querwrite existing resources without warning

@

tb_python_part.html

 Navigation

 		
 index

 		PyVHDL 0.0.1 documentation »

The Python part

 © Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

_images/Workspace_Launcher.jpg
Workspace Launcher

Select a workspace

2amiaCAD stores your projects in a folder called 2 workspace,
Choose a workspace folder to use for this session,

Workspace:

7] s ths 35 the default and do not sk sgain

_static/comment-close.png

search.html

 Navigation

 		
 index

 		PyVHDL 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Vern Muhr.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

