

 Navigation

 	
 index

 	
 next |

 	Python Testing Infrastructure 0.1 documentation

The python testing infrastructure

The python testing infrastructure is a Continuous Integration tool able to test
python distributions availabe at PyPI [http://pypi.python.org] against a set
of tests, providing a set of metrics.

Why ? The python package index doesn’t currently checks the uploaded
distributions against anything and thus anyone can upload what he wants,
without having any kind of control.

PyTI does’nt try to enforce quality on PyPI, but aims to provide a global
overview of the health of python distributions available there.

The tests range from installation (is everything installable smoothly? does it
install files in weird looking places?) to the detection of harmful/malicious
behaviours. It is also possible to run test suites and run quality checking
tools such as PEP8 or PyLint.

Actually, the possibilities are not limited and we tried to make something easy
to extend and to use.

PyTI is split into different sub-project: goatlib [http://goatlib.rtfd.org],
the task manager, which handles task scheduling, goatlog [http://goatlog.rtfd.org] which handle execution reporting, and pythia [http://pythia.rtfd.org] which handles the virtual machines management.

Documentation

	Overall design of the slave

	Installing Dependencies in slave
	VirtualBox

	Libvirt

	VDFuse

	Fuse-ext2

	Handling Virtual Machines (VMs)
	Terminology

	VirtualMachine class

	Handling Virtual Hard Disk for Host (diskhandler)
	DiskOperations class

	Master Slave Communication
	Queue

	Master

	Slave

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Testing Infrastructure 0.1 documentation

Overall design of the slave

This part of the Python testing infrastructure is able to:

prepare distributions and send them to virtual machine for execution
launch a series of tasks on the virtual machine
get back information about those tasks (output of those)

In other words, it is the implementation of one slave in a master/slave
architecture. It is able to manage a set of different machines, get back
results and rollback the VM in a known state.

Pretty much, the purpose of the slave boils down to testing the projects
(as requested by master) in an isolated environment(VM).

A simple schema for the slave is given here :

[image: _images/pyti-slave.png]
All VM operations like starting/stopping rollback and snapshot is discussed in
vms and all disk operations like copying into disk and viceversa is
discussed in diskhandler

Launching the slave:

$ pyti-slave --config pyti_config

This launches a deamon for the slave to receive requests from the master and
run the tests as per the requests. The pyti_config file is an optional
configuration file which contains basic information like:

[config]
pyti_slave_root = /home/yeswanth/pyti
total_vms = 3

The above config file refers to the environment variable PYTI_SLAVE_ROOT and
the total VMs supported by the VMs

The slave then listens to orders on it’s queue ‘pyti_requests’ as
described in master

You also can run specific tasks on specific distributions by asking so:

Inorder to get the last version of the “foobar” project and run all tests
on it,we need to provide a json file which contains project details. Here
again the config file is optional:

$ pyti-vm-run --target json_file --config config_file

A sample json can for “foobar” project that represents which platforms
it needs to run on:

{
 "project_name": "rarfile",
 "project_version": "1.0",
 "recipe_identifier": "recipe",
 "platform_identifier": "linux-debian",
 "platform_variants": Null
}

Internally, this means that the following things are done:

	load all the connectionz to the VMs, know what is the state
for each of them (stopped, processing, …) For this number of VMs available
at any given time is stored . This is handled by pyti.slave.stateofvm

	get a spare VM

	download the wanted distribution, get its dependencies, save all of that on
a IO disk. This is handled by pyti.slave.pypidownload

	start the VM, wait until the tasks are all run.

	read the content of the IO disk in a particular folder

	put those results in a python dict

	stop the vm + rollback it

	return the results

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Testing Infrastructure 0.1 documentation

Installing Dependencies in slave

Please install in the following order.

VirtualBox

Virtualbox can either be downloaded directly at virtualbox [http://www.virtualbox.org/wiki/Downloads] . It is also
packaged in Ubuntu/Debian in the name of virtualbox-ose. A simple apt-get
command will be able to fetch the packages and install them.

Libvirt

Before installing libvirt make sure you have already installed python-dev. It
is packaged under the same name in Ubuntu

From Source

Libvirt source packages are available at source [http://libvirt.org/downloads.html#releases] . Download the package
and extract it . Run the following commands after that

$./configure --with-vbox --with-python

This should not print any error. Also check that the bindings for vbox and
python are added (It prints the report at the end, A simple “Yes” for python
and vbox is sufficient to know that it is added)

$ sudo make
$ sudo make install
$ sudo ldconfig -v

The above two commands installs libvirt . After this a run of ldconfig or a
similar utility is sufficient.

From Binaries

Libvirt in Ubuntu does not have Virtualbox support by default. So we will have
to compile it from source to include Virtualbox driver and create the binaries
as discussed in this forum [http://stackoverflow.com/questions/2778638/libvirt-and-virtualbox-getting-started/4631093]. It is recommended to install libvirt from
source (the above method)

VDFuse

VDfuse is required to mount the virtual hard disk on to the host machine.
VDfuse is packaged in Ubuntu and Debian with the package name
virtualbox-ose-fuse. A simple apt-get command will be able to fetch the
package and install it. Inorder to make vdfuse work for every user

/etc/fuse.conf file has to be edited to add ‘user_allow_other’:

$ sudo echo 'user_allow_other'>>/etc/fuse.conf

Fuse-ext2

Fuse-ext2 is required to mount a partition on user space. It is packaged in
Debian and Ubuntu with the name fuseext2.

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Testing Infrastructure 0.1 documentation

Handling Virtual Machines (VMs)

The pyti.vms modules handles all the VM features, such as start, stop,
rollback etc. It is the central and prefered way to control the different
virtual machines on the Python Testing Infrastructure.

Its original goal is to be used on the slaves of the master/slave architecture.
It is able to: mount different disks to a VM, start it, wait until it stops and
return information about the changes that have been made on the filesystem.

Terminology

The terminology used here is mainly coming from libvirt. Here are some
definitions, you can refer yourself to the libvirt documentation [http://libvirt.org/goals.html] for more information.

VirtualMachine class

To deal with virtual machines, you will use the VirtualMachine class.

To initialize a VirtualMachine object include VM name, Connection object(which
represents the hypervisor VirtualBox), configuration by either an XML file or
by a python dictionary:

>>> VirtualMachine('arch linux #1', "vbox:///session", config=config)

	For XML file , libvirt defined XML has to be used
http://libvirt.org/formatdomain.html

You can specify it using the xmlfile argument:

>>> VirtualMachine('arch linux #1', "vbox:///session",
 xmlfile="yourfile.xml")

For config as a dictionary, you should specify:

	a name

	the memory

	the disk location (of the iso file) (optional parameter for live boot)

	the hard disk location(of the virtual hard disk file)

For instance:

config = {
 'name': 'virtual machine A',
 'memory': '128',
 'disk_location': 'dsl.iso',
 'hd_location':'disk.vdi'
}

Example

The following example starts a Virtual Machine, creates a snapshot
and rollbacks:

>>> from vms import *
>>> config = {'name': 'test123', 'memory':'123', \
 'disk_location': 'dsl-4.4.10.iso', \
 'hd_location': 'disk.vdi'}
>>> a = VirtualMachine('hey', "vbox:///session", config=config)
>>> a.start()
>>> a.createSnapshot('hello', 'blah')
>>> a.rollback('hello')

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Testing Infrastructure 0.1 documentation

Handling Virtual Hard Disk for Host (diskhandler)

The pyti.diskhandler modules helps in transferring data from the host
machine to the guest and viceversa. Its main objective is to upload the
distributions to the guest for testing and download the raw data on the host
(after the tests are conducted in the guest i.e the VM).

DiskOperations class

To initialize DiskOperations object we need to include the disk_path of
the virtual hard disk which we want to access along with the two mount points
(one for fusing the virtual hard disk onto the host to a recognizable format
and another for actually mounting the virtual hard disk)

Example

The following example mounts a partition from the disk , uploads a file
to the disk , also downloads a file from the disk:

>>> from diskhandler import *
>>> d = DiskOperations('/home/yeswanth/a.vdi', '/mnt/fuse', '/mnt/guest')
>>> d.upload("/home/yeswanth/a.txt", "/home/pyti/a.txt")
>>> d.download("/home/pyti/b.txt", "/home/yeswanth/b.txt")
>>> d.close_connection()

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Python Testing Infrastructure 0.1 documentation

Master Slave Communication

This part of Python Testing Infrastructure talks about how master sends
job requests to the slave and how slave picks up job request

Queue

The communication between master and slave is done using AMQP protocol
implemented by RabbitMQ server. The Queue is asynchronous and persistent(i.e
job requests will still remain in the queue even if Master shutdowns)

Master

Master processes the PyPI request into meaningful job requests so that slave
can be able to read it and execute it easily. So master looks up at setup.cfg
file of the PyPI project and writes a config which consists of the
project name, project version, platform to be run on, platform variants (which
means what does the VM require for the project to run , for eg some projects
may need MySQL server) and recipe identifier(which defines what tests have to
be conducted on the project)

	Master then converts this config into JSON format and puts it in the Queue::

	>>> from pyti.dispatcher.dispatcher import Queue, Serializer
>>> s = Serializer('demo_project', '1.0', 'debian', None, 'recipe')
>>> data = s.serialize_data()
>>> q = Queue('demo')
>>> q.send(data)

Slave

The slave side is more sophisticated than the master. A slave can have multiple
VMs of multiple platforms. So each time it looks up in the Queue for wanting a
job, it has to take care of VMs of different platforms running in the slave.
So when slave requires jobs, it looks up in the Queue if there are available
jobs and once it gets the job request , it has to check if VMs for the platform to be tested on are busy or not. If they are busy, slave releases the job
request back to the Queue:

>>> from pyti.slave.manager import Queue
>>> q = Queue('demo')
>>> q.listen()

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Python Testing Infrastructure 0.1 documentation

Index

 Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

search.html

 Navigation

 		
 index

 		Python Testing Infrastructure 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, The PyTI team.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_images/pyti-slave.png
2) Downloads
distributions +
dependencies

s.uploads | puse | 5.ownloads
aistribution | faotne resultfrom disk
-contg nto disk

4.runs

AMQP tasks in

Queue e M

1 gets Slave

request
from queue

result
handler (—ls cends

raw data from

execution of tasks

_static/up.png

