

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/pythonjs/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/pythonjs/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Python vs JavaScript Modes

PythonJS has two primary modes you can write code in: python and javascript. The default mode is python, you can mark sections of your code to use either mode with pythonjs.configure(javascript=True/False) or nesting blocks inside with python: or with javascript:. The javascript mode can be used for sections of code where performance is a major concern. When in javascript mode Python dictionaries become JavaScript Objects. In both modes you can directly call external JavaScript functions, its only faster in javascript mode because function calls are direct without any wrapping.

Function Types

PythonJS has three main types of functions: normal, fastdef, and javascript.

By default a function is “normal” and fully emulates the Python standard, it allows for: arguments, keyword args with defaults, variable length arguments (args) and variable length keyword args (*kwargs). Functions that are “normal” also have special logic that allows them to be called from external JavaScript like normal JavaScript functions (keyword args become normal positional arguments when called from JavaScript). Calling “normal” functions is slow because of this overhead, when you need faster function calls you can use “fastdef” or “javascript”.

Functions decorated with @fastdef, or inside a with fastdef: block become “fastdef” type functions. This makes calling them faster, but they do not support variable length arguments (args) or variable length keyword args (*kwargs).
Another limitation is that when called from external JavaScript you must pack args into an Array as the first argument, and pack keyword arguments into an Object as the second argument.

Functions decorated with @javascript, or inside a with javascript: block, or following the call: pythonjs.configure(javascript=True) become javascript type functions, these offer the highest calling speed. They do not support *args or **kwargs. When called from external JavaScript, keyword arguments are not given by name, they become positional arguments that default to the default value if undefined. When called from within PythonJS code, they need to be called from inside a with javascript: block, or following the call pythonjs.configure(javascript=True) that sets all following code to be in javascript mode.

####Example

pythonjs.configure(javascript=True)

def myfunc(x,y,z, a=1,b=2,c=3):
 print x,y,z,a,b,c

####Example JavaScript Translation

myfunc = function(x, y, z, a, b, c) {
 if (a === undefined) a = 1;
 if (b === undefined) b = 2;
 if (c === undefined) c = 3;
 console.log(x, y, z, a, b, c);
}

Class Types

PythonJS has two types of classes: normal and javascript. By default classes are normal and support operator overloading and properties. Calling methods on a javascript class is much faster than method calls on a normal class, but follow the same rules as described above for javascript type functions. Both class types can be used from external JavaScript, the only difference is that instances of a “normal” class can pass their methods directly as arguments to a function that will use the method as a callback - even if that external function depends on the context of this. Whereas instances of a javascript class can not directly pass their methods as arguments, because they depend on the calling context of this - if you are familiar with JavaScript this comes as no surprise.

Example::

pythonjs.configure(javascript=True)
class A:
 def __init__(self, x,y,z):
 self.x = x
 self.y = y
 self.z = z

 def foo(self, w):
 return self.x + w

Example JavaScript Translation::

A = function(x, y, z) {
 A.__init__(this, x,y,z);
}

A.prototype.__init__ = function(x, y, z) {
 this.x=x;
 this.y=y;
 this.z=z;
}
A.__init__ = function () { return A.prototype.__init__.apply(arguments[0], Array.prototype.slice.call(arguments,1)) };

A.prototype.foo = function(w) {
 return (this.x + w);
}
A.foo = function () { return A.prototype.foo.apply(arguments[0], Array.prototype.slice.call(arguments,1)) };

Method Overrides

In the example above, you might be wondering why in the JavaScript translation, is the class A constructor calling A.__init__(this, x,y,z), and why is the __init__ method assigned A.prototype and then wrapped and assigned to A.__init__. This is done so that subclasses are able to override their parent’s methods, but still have a way of calling them, an example that subclasses A will make this more clear.

####Example

class B(A):
 def __init__(self, w):
 A.__init__(self, 10, 20, 30)
 self.w = w

####Example JavaScript Translation

B = function(w) {
 B.__init__(this, w);
}

B.prototype.__init__ = function(w) {
 A.__init__(this,10,20,30);
 this.w=w;
}
B.__init__ = function () { return B.prototype.__init__.apply(arguments[0], Array.prototype.slice.call(arguments,1)) };

for (var n in A.prototype) { if (!(n in B.prototype)) { B.prototype[n] = A.prototype[n] }};

The above output Javascript shows how the constructor for B calls B.__init__ which then calls B.prototype.__init__.
B.prototype.__init__ calls A.__init__ passing this as the first argument. This emulates in JavaScript how unbound methods work in Python. When using the Dart backend, the output is different but the concept is the same - static “class methods” are created that implement the method body, the instance methods are just short stubs that call the static “class methods”.

####Example Dart Translation

class B implements A {
 var y;
 var x;
 var z;
 var w;
 B(w) {B.__init__(this,w);}
 static void __init__(self, w) {
 A.__init__(self,10,20,30);
 self.w=w;
 }

 foo(w) { return A.__foo(this,w); }
}

Above the method foo calls the static class method A.__foo. Note that the static class methods are automatically prefixed with __.

Multiple Inheritance

Multiple inheritance is fully supported for both JavaScript and Dart backends. When using the Dart backend it will generate stub-methods that call static class methods that are prefixed with __.
Methods that the subclass extends can call: ParentClassName.some_method(self) and this will be translated into: ParentClassName.__some_method(this)

Example

class A:
 def foo(self):
 print 'foo'

class B:
 def bar(self):
 print 'bar'

class C(A, B):
 def call_foo_bar(self):
 print 'call_foo_bar in subclass C'
 self.foo()
 self.bar()

 ## extend foo ##
 def foo(self):
 A.foo(self)
 print 'foo extended'

Example Dart Translation

class A {
 foo() { return A.__foo(this); }
 static __foo(self) {
 print("foo");
 }

}
class B {
 bar() { return B.__bar(this); }
 static __bar(self) {
 print("bar");
 }

}
class C implements A, B {
 call_foo_bar() { return C.__call_foo_bar(this); }
 static __call_foo_bar(self) {
 print("call_foo_bar in subclass C");
 self.foo();
 self.bar();
 }

 foo() { return C.__foo(this); }
 static __foo(self) {
 A.__foo(self);
 print("foo extended");
 }

 bar() { return B.__bar(this); }
}

Generator Functions

Functions that use the yield keyword are generator functions. They allow you to quickly write complex iterables.
PythonJS supports simple generator functions that have a single for loop, and up to three yield statements.
The first yield comes before the for loop, and the final yield comes after the for loop.
The compiler will translate your generator function into a simple class with state-machine. This implementation
bypasses using the native JavaScript yield keyword, and ensures that your generator function can work in all web browsers.

Instances of the generator function will have a next method. Using a for loop to iterate over a generator function will automatically call its next method.

####Example

def fib(n):
 yield 'hello'
 a, b = 0, 1
 for x in range(n):
 yield a
 a,b = b, a+b
 yield 'world'

def test():
 for n in fib(20):
 print n

####Example Output

fib = function(n) {
 this.n = n;
 this.__head_yield = "hello";
 this.__head_returned = 0;
 var __r_0;
 __r_0 = [0, 1];
 this.a = __r_0[0];
 this.b = __r_0[1];
 this.__iter_start = 0;
 this.__iter_index = 0;
 this.__iter_end = this.n;
 this.__done__ = 0;
}

fib.prototype.next = function() {
 if ((this.__head_returned) == 0) {
 this.__head_returned = 1;
 return this.__head_yield;
 } else {
 if ((this.__iter_index) < this.__iter_end) {
 __yield_return__ = this.a;
 var __r_1;
 __r_1 = [this.b, (this.a + this.b)];
 this.a = __r_1[0];
 this.b = __r_1[1];
 this.__iter_index += 1
 return __yield_return__;
 } else {
 this.__done__ = 1;
 __yield_return__ = "world";
 return __yield_return__;
 }
 }
}

test = function(args, kwargs) {
 var __iterator__, n;
 var n, __generator__;
 __generator__ = new fib(20);
 while((__generator__.__done__) != 1) {
 n = __generator__.next();
 console.log(n);
 }
}

Inline JavaScript

There are times that JavaScript needs to be directly inlined
into PythonJS code, this is done with the special
JS([str]) function that takes a string literal as its only
argument. The compiler will insert the string directly into
the final output JavaScript.

####JS Example

JS("var arr = new Array()")
JS("var ob = new Object()")
JS("ob['key'] = 'value'")
if JS("Object.prototype.toString.call(arr) === '[object Array]'"):
 JS("arr.push('hello world')")
 JS("arr.push(ob)")

In the example above we create a new JavaScript Array.
Notice that the if-statement above has a condition that is
inlined JavaScript. Lets take a look at two alternative
ways this can be rewritten.

	JSArray, JSObject, and instanceof::

arr = JSArray()
ob = JSObject()
if instanceof(arr, Array):
arr.push(‘hello world’)
arr.push(ob)

The special function JSArray will create a new JavaScript
Array object, and JSObject creates a new JavaScript Object.
The instanceof function will be translated into using the
‘instanceof’ JavaScript operator. At the end, arr.push is
called without wrapping it in JS(), this is allowed because
from PythonJS, we can directly call JavaScript functions by
dynamically wrapping it at runtime.

This code is more clear than before, but the downside is
that the calls to arr.push will be slower because it gets
wrapped at runtime. To have fast and clear code we need to
use the final method below, with javascript

	with javascript::

with javascript:
arr = []
ob = {}
if instanceof(arr, Array):
arr.push(‘hello world’)
arr.push(ob)

The with javascript: statement can be used to mark a block
of code as being direct JavaScript. The compiler will
basically wrap each line it can in JS() calls. The calls to
arr.push will be fast because there is no longer any runtime
wrapping. Instead of using JSArray and JSObject you just
use the literal notation to create them.

Calling PythonJS Functions from JavaScript

PythonJS functions can be used as callbacks in Javascript
code, there are no special calling conventions that you need
to worry about. Simply define a function in PythonJS and
call it from JavaScript. Note that if your PythonJS
function uses keyword arguments, you can use them as a
normal positional arguments.

####Example

PythonJS
def my_pyfunction(a,b,c, optional='some default'):
 print a,b,c, optional

// javascript
my_pyfunction(1,2,3, 'my kwarg');

Calling PythonJS Methods from JavaScript

Calling PythonJS methods is also simple, you just need to
create an instance of the class in PythonJS and then pass
the method to a JavaScript function, or assign it to a new
variable that the JavaScript code will use. PythonJS takes
care of wrapping the method for you so that self is bound
to the method, and is callable from JavaScript.

####Example

// javascript
function js_call_method(method_callback) {
 method_callback(1,2,3)
}

PythonJS
class A:
 def my_method(self, a,b,c):
 print self, a,b,c
 self.a = a
 self.b = b
 self.c = c

a = A()
js_call_method(a.my_method)

Passing PythonJS Instances to JavaScript

If you are doing something complex like deep integration
with an external JavaScript library, the above technique of
passing each method callback to JavaScript might become
inefficient. If you want to pass the PythonJS instance
itself and have its methods callable from JavaScript, you
can do this now simply by passing the instance.

####Example

// javascript
function js_function(pyob) {
 pyob.foo(1,2,3)
 pyob.bar(4,5,6)
}

PythonJS
class A:
 def foo(self, a,b,c):
 print a+b+c
 def bar(self, a,b,c):
 print a*b*c

a = A()
js_function(a)

Define JavaScript Prototypes from PythonJS

If you are going beyond simple integration with an external
JavaScript library, and perhaps want to change the way it
works on a deeper level, you can modify JavaScript
prototypes from PythonJS using some special syntax that will
set the function on the prototype as an non-enumerable property.

Example::

with javascript:

 @String.prototype.upper
 def func():
 return this.toUpperCase()

 @String.prototype.lower
 def func():
 return this.toLowerCase()

 @String.prototype.index
 def func(a):
 return this.indexOf(a)

The above example shows how we modify the String type in
JavaScript to act more like a Python string type. The
functions must be defined inside a with javascript: block,
and the decorator format is:
[class name].prototype.[function name]

Optimized Function Calls

By default PythonJS functions have runtime call checking
that ensures you have called the function with the required
number of arguments, and also checks to see if you had
called the function from JavaScript - and if so adapt the
arguments. This adds some overhead each time the function
is called, and will generally be about 15 times slower than
normal Python. When performance is a concern you can
decorate functions that need to be fast with @fastdef, or
use the with fastdef: with statement. Note that functions
that do not have arguments are always fast. Using fastdef
will make each call to your function 100 times faster, so if
you call the same function many times in a loop, it is a
good idea to decorate it with @fastdef.

Example::

@fastdef
def f1(a, b, c):
 return a+b+c

with fastdef:
 def f2(a,b,c, x=1,y=2,z=3):
 return a+b+c+x+y+z

If you need to call a fastdef function from JavaScript you
will need to call it with arguments packed into an array as
the first argument, and keyword args packed into an Object
as the second argument.

Example::

// javascript
f2([1,2,3], {x:100, y:200, z:300});

If you need fast function that is callable from javascript
without packing its arguments like above, you can use the
@javascript decorator, or nest the function inside a with javascript: statement.

Example::

@javascript
def f(a,b,c, x=1, y=2, z=3):
 return a+b+c+x+y+z

// javascript
f(1,2,3, 100, 200, 300);

PythonJS Go Syntax

PythonJS supports a fully typed subset of Python with extra syntax to support the Golang backend.

select

Below A and B are typed as chan int. Data is read from a channel with <-.

 def select_loop(A:chan int, B:chan int):
 print('starting select loop')
 y = 0
 while True:
 select:
 case x = <- A:
 y += x
 case x = <- B:
 y += x

maps

Go maps store key value pairs. The key type is given first enclosed in brackets, the value type is given after.
The example below shows a map with string keys and integer values

 a = map[string]int{
 'x': 1,
 'y': 2,
 'z': 3,
 }

map iteration

The key value pairs can be looped over with a for loop.

 def main():
 a = map[string]int{'x':100, 'y':200}
 b = ''
 c = 0
 for key,value in a:
 b += key
 c += value

arrays

Go typed arrays are defined with an optional size followed by the type, and values passed as arguments to the constructor.
Items in an array can be iterated over with a normal for x in a loop. Arrays also support index value pair loops using enumerate

 a = []int(1,2,3)
 b = [2]int(100,200)

classes

A Python class is translated into a Go struct with methods. Below a dict is used to type all the attribute variables that self will use.

 class A:
 {
 x:int,
 y:int,
 z:int,
 }
 def __init__(self, x:int, y:int, z:int=1):
 self.x = x
 self.y = y
 self.z = z

subclasses

Subclasses can mix multiple classes, and override methods from the parent class.

 class A:
 def foo(self) -> int:
 return 1

 class B:
 def bar(self) -> int:
 return 2

 class C(A, B):
 def call_foo_bar(self) -> int:
 a = self.foo()
 a += self.bar()
 return a

 ## override foo ##
 def foo(self) -> int:
 return 100

 def main():
 a = A()
 b = B()

 c = C()

 ## below is all true ##
 b.bar()==2
 c.bar()==2
 c.foo()==100
 c.call_foo_bar()==102

callbacks

Functions and methods can be passed as callbacks to other functions. The function argument type must contain the keyword func followed by the type signature of the callback (argument types) and (return type). Below the method is typed as func(int)(int)

class A:
 {
 x:int,
 y:int,
 z:int,
 }
 def __init__(self, x:int, y:int, z:int=1):
 self.x = x
 self.y = y
 self.z = z

 def mymethod(self, m:int) -> int:
 return self.x * m

 def call_method(cb:func(int)(int), mx:int) ->int:
 return cb(mx)

 def main():
 a = A(100, 200, z=9999)
 c = call_method(a.mymethod, 4)
 print(c)

goroutines

The function go can be called to spawn a new function call as a goroutine

 go(myfunc(x,y,z))

channels

To make a new Go channel call go.channel(type), this is the same as in Go calling make(chan type).

 c = go.channel(int)

list comprehensions

 a = []int(x for x in range(3))

GPU Translation

A subset of Python with extra type information can be translated into a WebGL GLSL fragment shader.The shader program takes input in two ways: as arguments to the main function, argument types can be: int, float, or 1D and 2D arrays of floats or vec4. This is the most efficient way to load large arrays into the shader. The shader can also use input by inlining objects from the current javascript scope.

micro language:

. GLSL standard types
. basic math ops and logic: if, elif, else, for i in range(n)
. list of lists iteration with dynamic size
. iterate over list of structs (dicts)
. simple classes

. define GPU `main` function with input arguments and subroutines
 . `gpu.main` can take arguments typed as: int, float, and float*
 . `gpu.main` returns a list of floats or vec4s

. stream input variables into shader from attributes or method calls:
 . attribute: `float gpu_variable = self.cpu_variable`
 . method call: `float a = self.my_method(a,b,c, x=y,z=w)`
 . slice list: `float* a = self.mylist[n:]`

gpu.main

The @gpu.main decorator marks a function as the entry point. The main function requires the @returns decorator to set the return type to array or vec4, and return length (n) or 2D dimensions ([x,y]). The example below would return 512x512 array of 1.1.

 @returns(array=[512,512])
 @typedef(x=float, y=float)
 @gpu.main
 def gpu_func():
 x = 0.5
 y = 0.6
 return x+y

output index array index

To get the index of the current fragment (index in the output array),
WebCLGL provides the function get_global_id() that returns a vec2.
The x and y attributes of the vec2 provide the 2D index.

 @returns(array=[512,512])
 @gpu.main
 def gpu_mandelbrot():
 vec2 c = get_global_id()
 float x = 0.0
 float y = 0.0
 float tempX = 0.0
 int i = 0
 int runaway = 0
 for i in range(100):
 tempX = x * x - y * y + float(c.x)
 y = 2.0 * x * y + float(c.y)
 x = tempX
 if runaway == 0 and x * x + y * y > 100.0:
 runaway = i
 return float(runaway) * 0.01

subroutines

Function subroutines are decorated with @gpu

 @returns(float)
 @typedef(x=float, y=float)
 @gpu
 def mysub(x,y):
 return x-y

 @returns(array=[64,64])
 @gpu.main
 def myfunc():
 return mysub(1.1, 2.2)

note: instead of using the @returns decorator, the return type of the mysub could also be placed at the start of the function def.

 @gpu
 float def mysub(x,y):
 float x
 float y
 return x-y

using arrays as arguments to gpu.main

You can pass a list of floats as arguments to your gpu entry point function, these will be translated into WebCLGL buffers and uploaded to the GPU. By default the input arrays are expected to have a range of 0.0-1.0. If you are using arrays with values outside of the default range, it can be changed by setting the scale variable on the list before passing it to the gpu entry point function, the scale integer sets the range from -scale to +scale.
In the example below the scale of A is increased, and B is changed to a 2D array by setting its dims attribute to [x,y] dimensions.

@gpu.main
def gpufunc(a,b):
 float* a
 float* b

A = [2.0 for i in range(64)]
A.scale=2

B = [[0.5 for j in range(8)] for i in range(16)]
B.dims = [8,16]

gpufunc(A, B)

dynamic input variables

Attributes on variables from the current javascript scope can be dynamically inlined into the shader.
In the example below, within the shader code, the variables self.width, self.height and self.step exist in the javascript scope, each call to run recompiles the shader and copies the variable attributes into the shader.

class myclass:
 def __init__(self):
 self.width = 100
 self.height = 64
 self.step = 0.01

 def run(self, w, h, s):
 self.width = w
 self.height = h
 self.step = s

 @returns(array=[8,8])
 @gpu.main
 def gpufunc():
 float b = 0.0
 for x in range(self.width):
 for y in range(self.height):
 b += self.step
 return b

 return gpufunc()

A = myclass()
A.run(4,4, 0.8)
A.run(16,16, 0.5)

float list

Lists are translated into float32 arrays.
Iteration over a list is allowed using this syntax: for i in range(len(A)):. The values of and length of A can vary for each call. The dynamic array is assigned to a local variable and typed as float*

A list can be sliced when it is assigned to a local variable, in the example below the first 4 items of mylist are trimed away.

class myclass:
 def __init__(self):
 self.mylist = [0.0 for i in range(64)]

 def run(self):
 @returns(array=[8,8])
 @gpu.main
 def gpufunc():
 float b = 0.0
 float* A = self.mylist[4:]
 for i in range(len(A)):
 b += A[i]
 return b

 return gpufunc()

int array

Integer arrays are defined using the JavaScript type Int16Array.
note: GLSL 1.2 limits integers to 16bit precision.
[http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf](see GLSL 1.2 spec)

 self.intarray = new(Int16Array(n))
 self.intarray[0] = 100
 @returns(array=n)
 @gpu.main
 def gpufunc():
 int* A = self.intarray
 return float(A[0])

float list of lists

Looping over an array of arrays requires an outer iterator loop for sub in arr,
and the inner loop iterate over the length of the first sub-array: for i in range(len(arr[0]))
All sub-arrays should have the same length, or at least as long as the first item arr[0].
The number of arrays inside the main array, and the values/lengths of the sub-arrays, can vary each call.
Note: looping over many large arrays of arrays could be slow or cause the GLSL compiler to fail,
this happens because WebGLSL has no builtin support for array of arrays, and the generated code is large.

class myclass:
 def __init__(self):
 pass

 def run(self, w, h, length):
 self.array = [[x*y*0.5 for y in range(h)] for x in range(w)]

 @gpu.main
 def gpufunc():
 float* A = self.array
 float b = 0.0
 for subarray in A:
 for j in range(len(self.array[0])):
 b += subarray[j]
 return b

list of dicts

Use the for-iter loop to iterate over a list of dicts for s in iter(A):
Regular JavaScript objects and Python dicts are uploaded to the shader as GLSL structs.
The struct type name and GLSL code are generated at runtime based on the contents of
each dict. A struct may contain: ints, floats and array of floats attributes.
To use an integer value wrap it in a Int16Array with a single item,
or call int16(n) which takes care of that for you.

class myclass:

 def new_struct(self, g):
 return {
 'attr1' : 0.6 + g,
 'attr2' : int16(g)
 }

 def run(self, w):
 self.array = [self.new_struct(x) for x in range(w)]

 @returns(array=64)
 @gpu.main
 def gpufunc():
 struct* A = self.array
 float b = 0.0
 for s in iter(A):
 b += s.attr1 + float(s.attr2)
 return b

 return gpufunc()

external method calls

Methods on external objects can be called within the shader function.
This is useful for getting runtime data that is loop invariant.

class myclass:
 def __init__(self, i):
 self.index = i

 def get_index(self):
 return self.index

 def run(self, n):
 self.intarray = new(Int16Array(n))
 self.intarray[self.index] = 99

 @returns(array=n)
 @gpu.main
 def gpufunc():
 int* A = self.intarray
 return float(A[self.get_index()])

 return gpufunc()

def main():
 m = myclass(10)
 r = m.run(64)

user defined classes

A class decorated with @gpu.object will have its methods marked with @gpu.method translated into shader code. GPU methods must be defined in use order, a method is defined before it is used by another method. Recursive calls are not allowed.

@gpu.object
class MyObject:
 @gpu.method
 float def subroutine(self, x,y):
 float x
 float y
 return x + y * self.attr2

 @gpu.method
 float def mymethod(self, x,y):
 float x
 float y
 if self.index == 0:
 return -20.5
 elif self.index == 0:
 return 0.6
 else:
 return self.subroutine(x,y) * self.attr1

 def __init__(self, a, b, i):
 self.attr1 = a
 self.attr2 = b
 self.index = int16(i)

class myclass:
 def run(self, w):
 self.array = [MyObject(1.1, 1.2, x) for x in range(w)]

 @returns(array=64)
 @gpu.main
 def gpufunc():
 struct* A = self.array
 float b = 0.0

 for s in iter(A):
 b += s.mymethod(1.1, 2.2)

 return b

 return gpufunc()

external type conversion

@gpu.object classes can also contain sub-structures and GLSL types: vec3.
To define a sub structure call the gpu.object(class, name) function.
The example below types THREE.js Vector3 as a GLSL vec type.

import three
gpu.object(three.Vector3, 'vec3')

Then when a three.Vector3 is assigned to an attribute in the init function of the @gpu.object
class it will be inlined into the shader as a vec3.

@gpu.object
class MyObject:
 def __init__(self, x,y,z, a,b,c):
 self.vec1 = new(three.Vector3(x,y,z))
 self.vec2 = new(three.Vector3(a,b,c))

 @gpu.method
 float def mymethod(self):
 return self.vec1.x + self.vec2.y

array of mat4 input and output

The gpu.main function may also return mat4, an array of 4x4 float32 matrices, by using a -> mat4 function return annotation. In this case the wrapper function will contain an attribute return_matrices,
appending Float32Array buffers to this list will update their values when the wrapper is called.

Within the shader you can get the current index of the matrix in return_matrices with ellipsis on an iterable.
Below A[...] gets the current index in gpufunc.return_matrices.

class myclass:
 def run(self, w):
 self.array = [MyObject(x+1.0) for x in range(w)]

 @typedef(o=MyObject)
 @gpu.main
 def gpufunc() -> mat4:
 struct* A = self.array
 o = A[...]
 return o.mat

 for ob in self.array:
 gpufunc.return_matrices.append(ob.mat.elements)

 return gpufunc()

PythonJS Syntax

PythonJS extends the Python language with new keywords, syntax,
and optional static typing.

switch

switch a == b:
 case True:
 x = z
 case False:
 y = z
 default:
 break

exception expressions (PEP 463)

this is a shortcut for writting simple try/except blocks that assign a value to a variable

a = {}
b = a['somekey'] except KeyError: 'my-default'

inline def

in a function call, inline functions can be given as keyword arguments.

a.func(
 callback1=def (x,y,z):
 x += y
 return x - z,
 callback2= def (x, y):
 return x * y
)

inline functions can also be used inside a dict literal

a = {
 'cb1' : def (x):
 return x,
 'cb2' : def (y):
 return y
}

<- send data

note: only works with Go backend

a <- b

typed arrays and maps

note: only works with Go backend

a = []int(1,2,3)
b = map[string]int{'a':1, 'b':2}

channel select

switches to a given case when the channel data is ready.
note: only works with Go backend

select:
 case x = <- a:
 y += x
 case x = <- b:
 y += x

var

. it is ok to have var before a variable name in an assignment.

 var x = 1

new

. ‘new’ can be used to create a new JavaScript object

 a = new SomeObject()

$

. $ can be used to call a function like jquery

 $(selector).something({'param1':1, 'param2':2})

. External Javascript functions that use an object as the last argument for optional named arguments, can be called with Python style keyword names instead.

 $(selector).something(param1=1, param2=2)

. $ can be used as a funtion parameter, and attributes can be get/set on $.

def setup_my_jquery_class($):
 $.fn.someclass = myclass_init

->

. -> can be used to as a special attribute operator for passing methods that will automatically bind
the method’s this calling context. This enables you to pass methods as callbacks to other objects,
and not have to write a.some_method.bind(a)

 b.set_callback(a->some_method)

function expressions

F = function(x):
 return x

Invalid PythonJS Syntax

PythonJS deprecates two types of syntax from the Python language. The use of the with statement is reserved for special purposes. And the syntax for/else and while/else are deprecated.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

