

    
      
          
            

  
Welcome to Pythonect

Welcome to Pythonect’s documentation. This documentation is divided into
different parts. I recommend that you get started with Installation and
then head over to the Tutorial. If you’d rather dive into the internals
of Pythonect, check out the API Reference documentation.


Note

This is the main documentation for the Pythonect project. The contents of
this site are automatically generated via Sphinx [http://sphinx-doc.org/] based on the Python docstrings throughout the code and the
reStructuredText documents in the doc/ directory [https://github.com/ikotler/pythonect/tree/master/doc] of the git
repository. If you find an error in the documentation, please report it in
the bug tracker here [https://www.github.com/ikotler/pythonect/issues],
or even better, submit a pull request!




User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Pythonect, then focuses on step-by-step
instructions for building applications with Pythonect.



	Introduction
	What is Pythonect?

	Why Pythonect?





	Installation
	Installing Pythonect

	Download the Source





	Tutorial
	1. Using the Pythonect Interpreter

	2. Hello World Program

	3. Data Flow

	4. Variables

	5. Control Flow Tools

	6. Power Features





	Development
	Source Control

	Testing Pythonect

	Continuous Integration

	Building the Docs












API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.



	pythonect — Parse and execute Pythonect code








Additional Notes

Design notes, legal information and changelog are here for the interested.



	Pythonect Changelog
	What’s New In Pythonect 0.6?

	What’s New In Pythonect 0.5?

	What’s New In Pythonect 0.4.2?

	What’s New In Pythonect 0.4.1?

	What’s New In Pythonect 0.4?

	What’s New In Pythonect 0.3.1?

	What’s New in Pythonect 0.3?

	What’s New in Pythonect 0.2.1?

	What’s New in Pythonect 0.2?

	What’s New in Pythonect 0.1.1?

	What’s New in Pythonect 0.1?





	License
	Authors

	General License Definitions

	Pythonect License















Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
Introduction

Read this before you get started with Pythonect. This hopefully answers some
questions about the purpose and goals of the project, and when you should or
should not be using it.


What is Pythonect?

Pythonect is a new, experimental, general-purpose dataflow programming
language based on Python. It provides both a visual programming language and a
text-based scripting language. The text-based scripting language aims to
combine the quick and intuitive feel of shell scripting, with the power of
Python. The visual programming language is based on the idea of a diagram with
“boxes and arrows”.

The Pythonect interpreter (and reference implementation) is a free and open
source software written completely in Python, and is available under the BSD
3-Clause license.




Why Pythonect?

Pythonect, being a dataflow programming language, treats data as something
that originates from a source, flows through a number of processing
components, and arrives at some final destination. As such, it is most
suitable for creating applications that are themselves focused on the “flow”
of data. Perhaps the most readily available example of a dataflow-oriented
applications comes from the realm of real-time signal processing, e.g. a video
signal processor which perhaps starts with a video input, modifies it through
a number of processing components (video filters), and finally outputs it to a
video display.

As with video, other domain problems (e.g. image processing, data analysis,
rapid prototyping, and etc.) can be expressed as a network of different
components that are connected by a number of communication channels. The
benefits, and perhaps the greatest incentives, of expressing a domain problem
this way is scalability and parallelism. The different components in the
network can be maneuvered to create entirely unique dataflows without
necessarily requiring the relationship to be hardcoded. Also, the design and
concept of components make it easier to run on distributed systems and
parallel processors.

Continue to Installation or Tutorial







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
Installation

This part of the documentation covers the installation of Pythonect. The first
step to using any software package is getting it properly installed.


Installing Pythonect

Pythonect works with Python version 2.6 and greater, but it will not work
(yet) with Python 3. Dependencies are listed in setup.py and will be
installed automatically as part of any of the techniques listed below.


Distribute & Pip

Installing Pythonect is simple with pip [http://www.pip-installer.org/]:

$ pip install pythonect





or, with easy_install [http://pypi.python.org/pypi/setuptools]:

$ easy_install pythonect






Note

Using easy_install is discouraged. Why? Read here [http://www.pip-installer.org/en/latest/other-tools.html#pip-compared-to-easy-install].








Download the Source

You can also install pythonect from source. The latest release (0.7) is available from GitHub.


	tarball [http://github.com/ikotler/pythonect/tarball/master]

	zipball [http://github.com/ikotler/pythonect/zipball/master]



Once you have a copy of the source, unzip or untar the package, change
directory into the extracted distribution and type:

$ python setup.py install





To download the full source history from Git, see Source Control.


Staying Updated

The latest version of Pythonect will always be available here:


	PyPi: http://pypi.python.org/pypi/pythonect/

	GitHub: http://github.com/ikotler/pythonect/



When a new version is available, upgrading is simple:

$ pip install pythonect --upgrade













Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
Tutorial

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many of
Pythonect’s most noteworthy features, and will give you a good idea of the
language’s flavor and style.

Pythonect is based on Python and uses many of its features. If you are
unfamiliar with Python, start with this Python Tutorial [http://docs.python.org/2/tutorial/index.html].



	1. Using the Pythonect Interpreter
	1.1. Invoking the Interpreter

	1.2. The Interpreter and Its Environment
	1.2.1. Executable Pythonect Scripts

	1.2.2. The .pythonect_history File









	2. Hello World Program
	2.1. Visual Programming Version

	2.2. Text-based Programming Version





	3. Data Flow
	3.1. Text-based Symbols
	3.1.1. | as Synchronous Forward

	3.1.2. -> as Asynchronous Forward





	3.2. “Boxes and Arrows”





	4. Variables
	4.1. Assignment Statement
	4.1.1. Variable <slug> in Single Thread

	4.1.2. Variable <slug> in Multithreading





	4.2. Predefined Variables
	4.2.1. _ as Current Value

	4.2.2. _! as All Current Values









	5. Control Flow Tools
	5.1. Using Boolean Values as if Statement
	5.1.1. True as Pass-through

	5.1.2. False as Terminator

	5.1.3. Using Multithreading as elif and else





	5.2. Using Iterable Object as for Statement

	5.3. Using Dictionary as switch Statement





	6. Power Features
	6.1. Autoloader

	6.2. Using & to Spawn a New Process

	6.3. Using @ to Remote Call













Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
1. Using the Pythonect Interpreter

Pythonect provides an interpreter named pythonect for evaluating Pythonect programs and expressions interactively.


1.1. Invoking the Interpreter

Using the Pythonect interpreter is quite easy. Once the interpreter is installed, you’re ready to go. You can invoke the interpreter from the command line as follows:

$ pythonect





The interpreter prints its sign-on message and leaves you at its >>> prompt:

Python 2.7.2 (default, Oct 11 2012, 20:14:37)
[Pythonect 0.5.0.dev12] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>





In this interactive mode, you can evaluate arbitrary Pythonect expressions:

>>> 1+1
2
>>> "Hello, world" -> print
<MainProcess:MainThread> : Hello, world





To exit the interpreter, just type the quit command at the beginning of a line (on Unix systems, typing the end-of-file character Control-D will do the same).

Of course you can also run your scripts directly from the command line, as follows:

$ pythonect myscript.p2y





This executes the script in batch mode. Add the -i option if you prefer to run the script in interactive mode:

$ pythonect -i myscript.p2y





A number of other command line options are available; try pythonect -h for a list of those.




1.2. The Interpreter and Its Environment


1.2.1. Executable Pythonect Scripts

On BSD’ish Unix systems, Pythonect scripts can be made directly executable, like
shell scripts, by putting the line:

#! /usr/bin/env pythonect





(assuming that the interpreter is on the user’s PATH) at the
beginning of the script and giving the file an executable mode.  The #!
must be the first two characters of the file.

The script can be given an executable mode, or permission, using the
chmod command:

$ chmod +x myscript.p2y





It can also accept arguments from the command line (these are available in Pythonect by accessing sys.argv), as follows:

$ cat calc.p2y
#! /usr/bin/env pythonect
int(sys.argv[1]) + int(sys.argv[2]) -> print

$ pythonect calc.p2y 1 2
<MainProcess:MainThread> : 3








1.2.2. The .pythonect_history File

When running interactively, the Pythonect interpreter usually employs the GNU readline library to provide some useful command line editing facilities, as well as to save command history. The cursor up and down keys can then be used to walk through the command history, existing commands can be edited and resubmitted with the Enter key, etc. The command history is saved in the .pythonect_history file in your home directory between different invocations of the interpreter.









Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
2. Hello World Program

Pythonect provides both a visual programming language and a text-based
scripting language.

The following is an example Hello world program in both visual and text-based
languages. Both versions consist of the same flow.


2.1. Visual Programming Version

Pythonect supports multiple graph describing languages and diagram formats.
For the Hello world example I will be using Dia [https://wiki.gnome.org/Dia/].

Dia is a free and open source general-purpose diagramming software.
For instructions on how to download and install dia, please visit Dia Website [https://wiki.gnome.org/Dia/]

When you launch dia you should see an empty Diagram1.dia tab, like this:

[image: ../_images/dia_step_0.png]
Start by clicking on the box (aka. Process/Auxliary Operation) shape to select it:

[image: ../_images/dia_step_1.png]
Now, click anywhere on the grid, a box (aka. Process/Auxliary Operation) should appear. Enter the text "Hello, world" (with quotes) in it:

[image: ../_images/dia_step_2.png]
Next, click again on the grid, another box should appear. Enter the text print (without quotes) in it:

[image: ../_images/dia_step_3.png]
Let’s connect the two boxes together. Start by clicking on the Line image to select it:

[image: ../_images/dia_step_4.png]
Now, click on the "Hello, world" box (it should highlight the box in Red) and drag it to the print box:

[image: ../_images/dia_step_5.png]
Like this:

[image: ../_images/dia_step_6.png]
If successful, you should see something like this:

[image: ../_images/dia_step_7.png]
To test that it’s indeed connect, try dragging one of the boxes and see that the Line is following, like this:

[image: ../_images/dia_step_8.png]
If indeed the Line is following, then it’s time to save the diagram. Let’s save it as HelloWorld.dia and run it, as follows:

$ pythonect HelloWorld.dia





The output should be:

<MainProcess:MainThread> : Hello, world








2.2. Text-based Programming Version

Open your favorite editor and type:

"Hello, world" -> print





Save it as HelloWorld.p2y and run it as follows:

$ pythonect HelloWorld.p2y





The output should be:

<MainProcess:MainThread> : Hello, world





To break it down: "Hello, world" is a literal String, print is a Python function, and -> is a text-based data flow operator.

You can learn more about Pythonect’s Data Flow Operators at the Data Flow section.







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
3. Data Flow

Depending on the scripting interface, directing the flow can be represented by plain text or interconnected lines


3.1. Text-based Symbols

The text-based scripting language aims to combine the quick and intuitive feel of shell scripting. Adopting a Unix Pipeline-like syntax.


3.1.1. | as Synchronous Forward

This operator pushs data to next operation and do block/wait for it
finish. For example:

[1,2,3,4] | print





Will always print (each item in it’s own thread and in this order): 1, 2, 3, 4.




3.1.2. -> as Asynchronous Forward

This operator pushs data to the next operation and do not block/wait for
it to finish. For example:

[1,2,3,4] -> print





May print (each item in it’s own thread): 4, 3, 2, 1 or 2, 1, 3, 4 or even 1, 2, 3, 4.






3.2. “Boxes and Arrows”

Currently, in the Visual Programming Language, all lines are treated as asynchronous forward.







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
4. Variables


4.1. Assignment Statement

Pythonect supports standard Python types, but with a twist!


4.1.1. Variable <slug> in Single Thread

You can define a variable and set its value as follows:

[x = 0] -> x -> print





Graphically (Visual programming wise), this is represented as:

[image: ../_images/single_x_value.png]
Both versions print 0. You can also change its value during the
program runtime as follows:

[x = 0] -> x -> print -> [x = 1] -> x -> print





This will print 0 and 1, in this order, and in the same
thread. Of course you can assign and re-assign any legal Python value, for
example:

[x = 0] -> x -> print -> [x = "Hello, world"] -> x -> print





Will print 0, and "Hello, world"




4.1.2. Variable <slug> in Multithreading

You can define a variable and set it with multiple values at the same time
(each value map()‘ed to a different thread) as follows:

[x = 0, x = 1, x = 2] -> x -> print





Graphically (Visual programming wise), this is represented as:

[image: ../_images/multiple_x_values.png]
Both versions will print, each in its own thread, and not necessarily in that
order: 0, 1, 2.

Of course you can assign any combinations of Python value and types, for
example:

[x = 1, x = 1, x = 0.34, x = "Hello, world"] -> x -> print





This will print, each in its own thread, and not necessarily in that order:
1, 1, 0.34, and "Hello world".






4.2. Predefined Variables

Pythonect predefines two variables: _ and _!


4.2.1. _ as Current Value

The variable underscore (i.e. _) is predefined to be the current value on
the flow, for example:

1 -> _ + 1 -> print





Will print 2. As _ will be equal 1 after evaluating the
1 expression. Another example is:

["To be", "Not to be"] -> print "To be, or not to be? " + _





This will print, each in its own thread, and not necessarily in that order:
To be, or not to be? To be and To be, or not to be? Not to be




4.2.2. _! as All Current Values

The variable underscore question mark (i.e. _!) is predefined to be the
list of all the current values in the program (i.e. reduce()‘ed), for
example:

[1,2,3] -> sum(_!) -> print





Graphically (Visual programming wise), this is represented as:

[image: ../_images/123_sum_reduce.png]
Both versions will print 6. Notice how sum became a reduce-like
function, when it accepted a list of 1, 2, 3 and
returned 6. Another example:

"Hello, world" -> reversed -> reduce(lambda x,y: x+y, _!) -> print





This will print "dlrow ,olleH" (i.e. "Hello, world" reversed)









Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
5. Control Flow Tools

Pythonect supports standard control flow tools, but with a twist!


5.1. Using Boolean Values as if Statement

There’s no if keyword in Pythonect, instead, boolean values are used to
determine whether to terminate or continue the flow.


5.1.1. True as Pass-through

Whenever a Python expression or function returns True the current
value in the flow is pushed to the next operation. For example:

1 -> [_ < 2] -> print





Will print 1, because the expression is evaluated to True (i.e. 1 <
2). Another example:

"Hello, world" -> _.startswith('Hello') -> print





Will print "Hello, world" because startswith method returned True
(i.e. “Hello, world” string starts with “Hello” string).




5.1.2. False as Terminator

Whenever a Python expression or function returns False the current
flow terminates and returns False. For example:

"Hello, world" -> _.startswith('ello') -> print





This will not print anything and return False.




5.1.3. Using Multithreading as elif and else

Since there’s no if, there’s also no elif or else, instead all
possible flows are evaulated at once. For example:

"Hello, world" -> [[_.startswith('Hello') -> print "1"], [[_ != 'foobar'] -> print "2" ]]





Graphically (Visual programming wise), represented as:

[image: ../_images/helloworld_1_2.png]
Both versions will print (each in its own thread, and not necessarily in that
order): 1 and 2.






5.2. Using Iterable Object as for Statement

There’s no for keyword, instead, every Iterable object is treated as a
for-loop. For example:

[1,2,3] -> print





And

(1,2,3) -> print





Both, Graphically (Visual programming wise) represented as:

[image: ../_images/123_to_print.png]
Will print 1, 2, and 3 (not necessarily in that
order). The same applies to generator functions (i.e. yield) and Python
classes that implement __iter__() method.

The only exception are strings. Pythonect does not iterate Python strings by
default. To iterate a string in Pythonect, use Python’s built-in iter()
function as follows:

iter("abc") -> print





The code above will print the letters: a, b, and c (not
necessarily in that order).




5.3. Using Dictionary as switch Statement

There’s no switch keyword in Pythonect, instead, every literal dict
can be used as a switch-like mechanism (without fallthrough). For example:

1 -> {1: 'One', 2: 'Two'} -> print





Will print One. While:

3 -> {1: 'One', 2: 'Two'} -> print





Will will not print and return False







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
6. Power Features

This section groups a few of Pythonect power features that one day may get their own section


6.1. Autoloader

Pythonect includes an autoloader functionally. You can access any functions,
attributes, etc. from a Python module without having to import it
first. For example:

"Hello, world" -> string.split | print





Will print (in that order, and in different threads): Hello, and
world. Another example:

sys.path -> print





Will print (in no particular order) every directory in your PATH, as represented in your sys.path.




6.2. Using & to Spawn a New Process

Pythonect uses threads by default, but you can switch to processes by using the metacharacter &. For example:

"Hello, world" -> print &





This will print "Hello, world" from a new process. You can also mix and match:

"Hello, world" -> [print, print &]





This will print "Hello, world" twice, one from a new thread and the other from a new process.

Notice that switch between thread and process is only valid for the duration of the function call/expression evaluation.




6.3. Using @ to Remote Call

Pythonect lets you call functions remotely, by using the metacharacter @. To demonstrate this, you will need to use the following simple server (written in Python):

from SimpleXMLRPCServer import SimpleXMLRPCServer
from SimpleXMLRPCServer import SimpleXMLRPCRequestHandler


class RequestHandler(SimpleXMLRPCRequestHandler):
    rpc_paths = ('/RPC2',)


def say_hello(x):
    return "Hello " + x + " and world"

server = SimpleXMLRPCServer(("localhost", 8000), requestHandler=RequestHandler)
server.register_function(say_hello)
server.serve_forever()





Save it as xmlrpc_srv.py and run it. This code will run a Simple XML-RPC server that will export a function called say_hello.

Now, calling say_hello from Pythonect is as easy as:

"foobar" -> say_hello@xmlrpc://localhost:8000 -> print





This will print Hello foobar and world.

The destination hostname can also be the result of a function call, or an expression. For example:

"foobar" -> say_hello@"xmlrpc://" + "localhost:8000" -> print





Or:

"foobar" -> say_hello@"xmlrpc://" + get_free_host() -> print





Where get_free_host() is a fictional Python function that will return an available hostname from a list of hostnames.

As a loopback, you can use None as an hostname to make the call locally. For example:

"Hello, world" -> print@None





Is equal to:

"Hello, world" -> print





Both will print "Hello, world" locally.







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
Development

Pythonect is under active development, and contributors are welcome.

If you have a feature request, suggestion, or bug report, please open a new
issue on GitHub [http://github.com/ikotler/pythonect/]. To submit patches, please send a pull request on GitHub [http://github.com/ikotler/pythonect/].

If you’d like to contribute, there’s plenty to do. Here’s a short todo list.


	Add “Embedding Pythonect” Section to Documentation

	Add “Writing Domain-Specific Languages with Pythonect” Section to Documentation

	Add FAQ Page to Documentation

	Add Small Code Example for each New Change in the ChangeLog

	Modify Pythonect to use logging.getLogger() instead of logging.debug() and etc.

	Add REST Support for Remote Call Power Feature

	Add SOAP Support for Remote Call Power Feature

	Improve Visual Programming by Recognizing Flowchart Symbols (See Fig. 1 at http://cnx.org/content/m27193/latest/)

	Improve Visual Programming by Parsing Text on Lines as Control Flow Conditions (See Fig. 3 at http://cnx.org/content/m27193/latest/)

	Add Support for GraphML (via NetworkX [http://networkx.github.io/]) + Find Editor + Document

	Add Support for YAML (via NetworkX [http://networkx.github.io/]) + Find Editor + Document

	Add Support for JSON (via NetworkX [http://networkx.github.io/]) + Find Editor + Document

	Add Support for GEXF (via NetworkX [http://networkx.github.io/]) + Find Editor + Document

	Add Support for GML (via NetworkX [http://networkx.github.io/]) + Find Editor + Document

	Forward False if Next Operation Explicitly Reference It

	Add More Code Examples

	Add More Unit Tests

	Add Support for Python3k

	Add Support for IronPython [http://ironpython.net/]

	Add Support for Stackless Python [http://www.stackless.com/]

	Reduce Multiple locals_ and globals_ to Single Copy

	Add Support for GPU?

	Add Support for Grouping (e.g. [x -> y]@foobar will equal [x@foobar -> y@foobar])

	Python Plugin for Dia [https://wiki.gnome.org/Dia/Python] to run Diagram within Dia [https://wiki.gnome.org/Dia]

	Plugin for Eclipse to run Workflow within Eclipse [http://www.eclipse.org/jwt/]




Source Control

Pythonect source is controlled with Git [http://git-scm.org], the lean, mean, distributed source
control machine.

The repository is publicly accessible.


git clone git://github.com/ikotler/pythonect.git


The project is hosted on GitHub:


http://github.com/ikotler/pythonect



Git Branch Structure

Feature / Hotfix / Release branches follow a Successful Git Branching Model [http://nvie.com/posts/a-successful-git-branching-model/]. Git-Flow [http://github.com/nvie/gitflow] is a great tool for managing the repository. I highly recommend it.


	develop

	The “next release” branch. Likely unstable.

	master

	Current production release (0.7) on PyPi.



Each release is tagged.

When submitting patches, please place your feature/change in its own branch prior to opening a pull request on GitHub [http://github.com/ikotler/pythonect/].






Testing Pythonect

Testing is crucial to Pythonect’s stability. When developing a new feature for Pythonect, be sure to write proper tests for it as well.

The easiest way to test your changes for potential issues is to simply run the test suite directly:

$ python setup.py nosetests





Don’t have nose [http://somethingaboutorange.com/mrl/projects/nose/] installed? Installing nose is simple:

$ pip install nose








Continuous Integration

Every commit made to the develop branch is automatically tested and inspected upon receipt with Travis CI [https://travis-ci.org/]. If you have access to the main repository and broke the build, you will receive an email accordingly.

Anyone may view the build status and history at any time:


https://travis-ci.org/ikotler/pythonect





Building the Docs

Documentation is written in the powerful, flexible, and standard Python documentation format, reStructured Text [http://docutils.sourceforge.net/rst.html].
Documentation builds are powered by the powerful Pocoo project, Sphinx [http://sphinx.pocoo.org]. The API Documentation is mostly documented inline throughout the module.

The Docs live in pythonect/doc. In order to build them, you will first need to install Sphinx:

$ pip install sphinx





Then, to build an HTML version of the docs, simply run the following from the doc directory:

$ make html





Your doc/_build/html directory will then contain an HTML representation of the documentation, ready for publication on most web servers.

You can also generate the documentation in epub, latex, and json.







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
pythonect — Parse and execute Pythonect code

This Python module provides the capability to parse and evaluate a string as Pythonect code


	
pythonect.parse(source)

	Parse the source into a directed graph (i.e. networkx.DiGraph)


	Args:

	source: A string representing a Pythonect code.

	Returns:

	A directed graph (i.e. networkx.DiGraph) of Pythonect symbols.

	Raises:

	SyntaxError: An error occurred parsing the code.








	
pythonect.eval(source, globals_={}, locals_={})

	Evaluate Pythonect code in the context of globals and locals.


	Args:

	
	source: A string representing a Pythonect code or a networkx.DiGraph() as

	returned by parse()



globals: A dictionary.
locals: Any mapping.



	Returns:

	The return value is the result of the evaluated code.

	Raises:

	SyntaxError: An error occurred parsing the code.











Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
Pythonect Changelog

Here you can see the full list of changes between each Pythonect release.

Ticket numbers in this file can be looked up by visiting
http://github.com/ikotler/pythonect/issues/<number>


What’s New In Pythonect 0.6?

Release date: 22-Jul-2013


Core and builtins


	Rewrite engine to be both a visual programming language and a text-based scripting language.

	Add support for GNOME Dia (*.DIA) as an Input File Format for Visual Programming

	Add support for Microsoft Visio (*.VDX) as an Input File Format for Visual Programming

	Rewrite Pythonect’s Text-based scripting parser (*.P2Y) to use Python’s tokenize instead of PLY

	Modify Pythonect’s parse() to return a directed graph (i.e. NetworkX.DiGraph)

	Add auto-generated SphinX doc (i.e. doc/)

	Modify NEWS reStructuredText Format to better suit the auto-generated doc






Build


	Modify setup.cfg to stop running tests after the first error or failure






Miscellaneous


	Add examples/ directory with a few example programs








What’s New In Pythonect 0.5?

Release date: 24-Apr-2013


Core and builtins


	Issue #71: Unable to run Pythonect in Script Mode

	Issue #72: Can’t Load Local Modules with ‘-m’

	Issue #58: Install argparse if Python 2.6

	Feature #70: Pythonect now supports Max Threads Limit (i.e. ‘–mt’ command-line argument)

	Feature #73: ‘_’ is no longer implicit in the 1st call to eval()








What’s New In Pythonect 0.4.2?

Release date: 16-Feb-2013


Core and builtins


	Feature #61: Interpreter supports command line ‘-c’, ‘-i’ and ‘-m’

	Enhancement #68: Improved Interpreter Banner

	Enhancement #67: args globals_ and locals_ of eval() are now optional

	Feature #66: Within Pythonect Program: eval() now takes Pythonect code and __eval__() takes Python

	Refactor __run() [Guy Adini]

	Feature #65: Pythonect now supports PyPy

	Feature #55: Pythonect now supports Python 2.6

	Issue #48: ‘print “B” in “ABC”’ and ‘print 2 is 2’ throws Exception

	Issue #60: “copyright”, “license”, and “credits” are not of Pythonect

	Issue #62: Parameterless functions are now handled properly

	Issue #63: “quit” and “exit” raises ValueError: I/O operation on closed file

	Issue #64: Interpreter command line option ‘–version’/’-V’ output wrong banner

	Issue #69: print/print_ can not be overridden by locals or globals value






Build


	Switched to nosetests (+ coverage)

	Issue #49: zip_safe is not False by default








What’s New In Pythonect 0.4.1?

Release date: 03-Sep-2012


Core and builtins


	PEP8 Fixes

	PEP 3110 Fixes

	Added Travis CI Support

	Issue #38: No docstrings for eval(), parse(), and Pythonect module

	Issue #39: eval_test_gen.py fails due to incorrect import

	Issue #41: Pythonect split() renamed to parse() to better fit it’s purpose

	Issue #42: Pythonect fails on Python implementations that do not include the multiprocessing module

	Enhancement #45: Dict can now be used as a return value, only literal dict will be treated as switch

	Issue #47: Pythonect parse() is not included in the testsuite






Build


	Issue #43: Pythonect unittest runner is not cross-platform

	Issue #44: Warnings during installation due to MANIFEST.in








What’s New In Pythonect 0.4?

Release date: 09-Aug-2012


Core and builtins


	Issue #31: Synchronous/Asynchronous is not enforced when execution return value is callable and iterable

	Issue #32: Script can’t accept command line args

	Issue #34: Script file can’t contain Backslash

	Feature #34: Interpreter (in Interactive mode) now logs commands for further use

	Feature #35: Pythonect module now exports split() function to parse Pythonect code

	Feature #36: Backticks can be used to evaluate a Pythonect expression






Miscellaneous


	Removed eXecute bit from pythonect/__init__.py and pythonect/internal/__init__.py

	Reorganized Pythonect module structure (pythonect.eval.eval is now pythonect.eval)








What’s New In Pythonect 0.3.1?

Release date: 14-Jul-2012


Core and builtins


	Issue #25: Pythonect package namespsace (when importing from Python) is polluted

	Issue #26: Odd Single quote char breaks double quote String (and vice versa)

	Issue #27: Multiprocessing is not working with multi-threading

	Issue #28: Autoload always throws NameError regardless to the actual Exception type

	Issue #29: Preprocessor breaks on a List with Function Call that contains String

	Issue #30: Preprocessor incorrectly process non-String literals in List








What’s New in Pythonect 0.3?

Release date: 20-Jun-2012


Core and builtins


	Feature #13: Improved print function

	Feature #15: Implemented Stateful Interpreter

	Feature #17: Remote procedure URL can be an expression

	Feature #18: Implemented Multiprocessing

	Feature #20: Backslash can be used to join two or more physical lines into a logical line

	Feature #22: Implemented None as pseudo remote protocol / URL

	Issue #14: Print does not act as a pass-through statement

	Issue #16: TypeError Exceptions are not been displayed

	Issue #19: Autloading is not working in a statement

	Issue #21: Preprocessor breaks on a List with a String that contains comma






Build


	Issue #12: No newline at the end of _version.py (PEP8)








What’s New in Pythonect 0.2.1?

Release date: 27-May-2012


Core and builtins


	Issue #9: Autoload won’t load modules from current working directory

	Issue #11: Autoload parses name incorrectly if in a list or tuple








What’s New in Pythonect 0.2?

Release date: 30-Apr-2012


Core and builtins


	Feature #8: Implemented Autoloading.

	Feature #7: Python built-in dictionary can be used as a switch statement.

	Issue #6: Interpreter prints Strings without quotes

	Issue #5: Interpreter lags when pressing Enter key multiple times






Build


	Issue #4: Pythonect reports incorrect version if installed via pip/sdist.








What’s New in Pythonect 0.1.1?

Release date: 18-Apr-2012


Core and builtins


	Issue #3: Check that the program return value is not None before printing it






Build


	Issue #1: Removed import from __init__ to avoid PLY imports via setup.py.






Miscellaneous


	Add NEWS file








What’s New in Pythonect 0.1?

Release date: 01-Apr-2012

Everything :-)







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

  
License

Pythonect is licensed under a three clause BSD License.  It basically means:
do whatever you want with it as long as the copyright in Pythonect sticks
around, the conditions are not modified and the disclaimer is present.
Furthermore you must not use the names of the authors to promote derivatives
of the software without written consent.

The full license text can be found below (Pythonect License).  For the
documentation and artwork different licenses apply.


Authors

Pythonect is written and maintained by Itzik Kotler and various contributors:


Development Lead


	Itzik Kotler <ik@ikotler.org>






Patches and Suggestions


	Guy Adini



Portions derived from other open source works are clearly marked.






General License Definitions

The following section contains the full license texts for Pythonect and the
documentation.


	“AUTHORS” hereby refers to all the authors listed in the
Authors section.

	The “Pythonect License” applies to all the sourcecode shipped as
part of Pythonect (Pythonect itself as well as the examples and the unittests)
as well as documentation.






Pythonect License

Copyright (c) 2012-2013, Itzik Kotler and contributors. See AUTHORS for more details.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:



	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the author nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.






THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.







Questions? Comments?





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

          

      

      

    


 


  

    
      
          
            

Index



 E
 | P
 


E


  	
      	
    environment variable

      
        	PATH


      


  

  	
      	eval() (in module pythonect)


  





P


  	
      	parse() (in module pythonect)


  

  	
      	PATH


  







          

      

      

    

  _static/down.png





_images/dia_step_3.png
=l
»
*

I

| N | T T | =T

o

B
n
]

o/ [2]f]

"Hello, world"

[z 4]0~

zl/]

2

£

%)

= BT

njoj®ajo|do/O)z

M=

s/~<ojgnol g
aof-/aln/dlo]
[</efo/ofa] djo]






_images/dia_step_2.png
File Edit View Layers Objects Select Tools Input Methods Help

DEEERE Dud aaafl

lafefommmn]

CICIC): ms—

"Hello, world'|

=
o [2]r]

Edr Il Ed
k)]
2]

g
S

= BT

M=

aof-/aln/dlo]
[</efo/ofa] djo]

njDje/alo/d/oOjf
Bid<iooal

PN






_images/123_sum_reduce.png
sum(_1)

print






_images/helloworld_1_2.png
"Hello, world"

AR

_startswith('Hello') foobar'

¥ ¥

print 1+ print 2"






_images/dia_step_5.png
o]0
IR

[=]#]=]~]C

2
£

7]

Oje/do/alo|O)s
SRSl [s){a}{a]F

Lo O I = G N s AR L
H Hﬂu*m"“‘5“"“““H“wwwzn””
Al
ue
eNE
[SICINE
am
@ql |1
NN
e
QY 1






_images/dia_step_1.png
Fle Edit View Layer

HEEI«

: \'J‘-\/@B

80> 8n/ao)
<ejo08a0

LIEN1-17)
[2]5]n]+)H

2

e (E 1 E4 L

nojealo/aol
ISIEAIESIe]w]=]is]






_images/single_x_value.png
print






_images/dia_step_8.png
Eile Edit View Layers Objects Select Tools Input Methods Help

DEEE% S

& € @ fior [

5 ' "4

pri

N[ T[]« [rmiex]

;‘EHEHB u\u""\SHHDDHHDHHW‘ 125,
CINEIEY

W] | o worar |





_images/dia_step_0.png
i<

p|@

—|®

2

s

%

Diagram1.dia %

rs Objects Select Tools Input Methods Help

a @ @ & [ ) )&

HIE EIE A wie

2

o
B

k)]

LIBIE]
o [2]r]n]+]

£

njoje/glo/gjo0
IR ESTE

a/ej>eln/alo

<lelulo g/ g0l

PN

o]

s D

M=

M

O vy I 100 IS 1200

L1300

I35, 1.1

1w [40) 4






_images/dia_step_4.png
:‘}’

C1R)
[2]r]n]+






_images/dia_step_6.png
‘ “Hello, world® ‘

@0 0/jojt) g

2

o
<l
(]

P e

M <jolg/al
o>afnjal
®/olo/g)al

M=

J
|
|
|






_images/multiple_x_values.png
print






_images/dia_step_7.png
®
&

2@

[

IR Ed=

rl/]
E .|
2|sin]+

2
£

n/®/djo/djojd) e
oM< alojno)

a/e/>1a/n|dio)

400800

= BT

M=






nav.xhtml

    
      Table of Contents


      
        		Welcome to Pythonect


        		Introduction
          
          		What is Pythonect?


          		Why Pythonect?


          


        


        		Installation
          
          		Installing Pythonect
            
            		Distribute & Pip


            


          


          		Download the Source
            
            		Staying Updated


            


          


          


        


        		Tutorial
          
          		Using the Pythonect Interpreter
            
            		Invoking the Interpreter


            		The Interpreter and Its Environment


            


          


          		Hello World Program
            
            		Visual Programming Version


            		Text-based Programming Version


            


          


          		Data Flow
            
            		Text-based Symbols


            		“Boxes and Arrows”


            


          


          		Variables
            
            		Assignment Statement


            		Predefined Variables


            


          


          		Control Flow Tools
            
            		Using Boolean Values as if Statement


            		Using Iterable Object as for Statement


            		Using Dictionary as switch Statement


            


          


          		Power Features
            
            		Autoloader


            		Using & to Spawn a New Process


            		Using @ to Remote Call


            


          


          


        


        		Development
          
          		Source Control
            
            		Git Branch Structure


            


          


          		Testing Pythonect


          		Continuous Integration


          		Building the Docs


          


        


        		pythonect — Parse and execute Pythonect code


        		Pythonect Changelog
          
          		What's New In Pythonect 0.6?
            
            		Core and builtins


            		Build


            		Miscellaneous


            


          


          		What's New In Pythonect 0.5?
            
            		Core and builtins


            


          


          		What's New In Pythonect 0.4.2?
            
            		Core and builtins


            		Build


            


          


          		What's New In Pythonect 0.4.1?
            
            		Core and builtins


            		Build


            


          


          		What's New In Pythonect 0.4?
            
            		Core and builtins


            		Miscellaneous


            


          


          		What's New In Pythonect 0.3.1?
            
            		Core and builtins


            


          


          		What's New in Pythonect 0.3?
            
            		Core and builtins


            		Build


            


          


          		What's New in Pythonect 0.2.1?
            
            		Core and builtins


            


          


          		What's New in Pythonect 0.2?
            
            		Core and builtins


            		Build


            


          


          		What's New in Pythonect 0.1.1?
            
            		Core and builtins


            		Build


            		Miscellaneous


            


          


          		What's New in Pythonect 0.1?


          


        


        		License
          
          		Authors
            
            		Development Lead


            		Patches and Suggestions


            


          


          		General License Definitions


          		Pythonect License


          


        


      


    
  

_static/multiple_x_values.png
print






_static/123_sum_reduce.png
sum(_1)

print






_images/123_to_print.png
print






_static/dia_step_6.png
‘ “Hello, world® ‘

@0 0/jojt) g

2

o
<l
(]

P e

M <jolg/al
o>afnjal
®/olo/g)al

M=

J
|
|
|






_static/up.png





_static/helloworld_1_2.png
"Hello, world"

AR

_startswith('Hello') foobar'

¥ ¥

print 1+ print 2"






_static/comment-close.png





_static/minus.png





_static/dia_step_3.png
=l
»
*

I

| N | T T | =T

o

B
n
]

o/ [2]f]

"Hello, world"

[z 4]0~

zl/]

2

£

%)

= BT

njoj®ajo|do/O)z

M=

s/~<ojgnol g
aof-/aln/dlo]
[</efo/ofa] djo]






_static/single_x_value.png
print






_static/down-pressed.png





_static/dia_step_2.png
File Edit View Layers Objects Select Tools Input Methods Help

DEEERE Dud aaafl

lafefommmn]

CICIC): ms—

"Hello, world'|

=
o [2]r]

Edr Il Ed
k)]
2]

g
S

= BT

M=

aof-/aln/dlo]
[</efo/ofa] djo]

njDje/alo/d/oOjf
Bid<iooal

PN






_static/dia_step_0.jpeg
File Edit View Layers Objects Select Tools Input Methods Help

DEEE%E Q @ @ [ [¥] [+ ]@

R 1] o]
;‘EHEHEF}L"‘\5""\m""\1""\2D""\2””\3DHH\3HH\4DJA
EINEICYE

iﬁgﬁ?’

j@@@ ]

ogoa |

vloaol |4

ce@a ||

OviAD ]

8 xoe

EI=EIcYE

el | HE U
:};]S:—».p






_static/dia_step_5.png
o]0
IR

[=]#]=]~]C

2
£

7]

Oje/do/alo|O)s
SRSl [s){a}{a]F

Lo O I = G N s AR L
H Hﬂu*m"“‘5“"“““H“wwwzn””
Al
ue
eNE
[SICINE
am
@ql |1
NN
e
QY 1






_static/file.png





_static/ajax-loader.gif





_static/dia_step_8.png
Eile Edit View Layers Objects Select Tools Input Methods Help

DEEE% S

& € @ fior [

5 ' "4

pri

N[ T[]« [rmiex]

;‘EHEHB u\u""\SHHDDHHDHHW‘ 125,
CINEIEY

W] | o worar |





_static/dia_step_1.png
Fle Edit View Layer

HEEI«

: \'J‘-\/@B

80> 8n/ao)
<ejo08a0

LIEN1-17)
[2]5]n]+)H

2

e (E 1 E4 L

nojealo/aol
ISIEAIESIe]w]=]is]






_static/dia_step_0.png
i<

p|@

—|®

2

s

%

Diagram1.dia %

rs Objects Select Tools Input Methods Help

a @ @ & [ ) )&

HIE EIE A wie

2

o
B

k)]

LIBIE]
o [2]r]n]+]

£

njoje/glo/gjo0
IR ESTE

a/ej>eln/alo

<lelulo g/ g0l

PN

o]

s D

M=

M

O vy I 100 IS 1200

L1300

I35, 1.1

1w [40) 4






_static/plus.png





_static/dia_step_4.png
:‘}’

C1R)
[2]r]n]+






_static/comment-bright.png





_static/up-pressed.png





_static/123_to_print.png
print






_static/comment.png





_static/dia_step_7.png
®
&

2@

[

IR Ed=

rl/]
E .|
2|sin]+

2
£

n/®/djo/djojd) e
oM< alojno)

a/e/>1a/n|dio)

400800

= BT

M=






