

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Zeroless documentation

Zeroless

[image: Build Status] [https://travis-ci.org/zmqless/zeroless] [image: Coverage Status] [https://coveralls.io/r/zmqless/zeroless?branch=master] [image: Codacy] [https://www.codacy.com/p/4364] [image: PyPi] [https://pypi.python.org/pypi/zeroless] [image: Docs] [https://readthedocs.org/projects/zeroless/?badge=latest] [image: License] [https://www.gnu.org/licenses/lgpl-2.1.html]

This documentation contains notes on some important aspects of developing Zeroless
and an overview of Zeroless’ API. For information on how to use ØMQ [http://www.zeromq.org] in general,
see the many examples in the excellent ØMQGuide [http://zguide.zeromq.org]. It can give a better understanding
of when to use each messaging passing pattern available (i.e. request/reply,
publisher/subscriber, push/pull and pair). Also, more complex use cases, that require
the composition of these patterns, are explained in further details.

Zeroless works with Python 3 (≥ 3.0), and Python 2 (≥ 2.7), with no transformations
or 2to3. Finally, please don’t hesitate to report zeroless-specific issues to our
Tracker [https://github.com/zmqless/zeroless/issues] on GitHub.

Zeroless x PyZMQ

Differing from PyZMQ [https://www.github.com/zeromq/pyzmq], which tries to stay very close to the C++ implementation,
this project aims to make distributed systems employing ØMQ [http://www.zeromq.org] as pythonic as
possible.

Being simpler to use, Zeroless doesn’t supports all of the fine aspects and features
of PyZMQ [https://www.github.com/zeromq/pyzmq]. However, you can expect to find all the message passing patterns you were
accustomed to (i.e. pair, request/reply, publisher/subscriber, push/pull). Despite
that, the only transport available is TCP, as threads are not as efficient in Python
due to the GIL and IPC is unix-only.

Installing

Install stable releases of Zeroless with pip.

$ pip install zeroless

See the Install Guide for more detail.

Documentation

Contents:

	Install Guide
	Dependencies

	Installing from Github

	Quickstart

	Message Passing Patterns
	Push-Pull

	Publisher-Subscriber

	Request-Reply

	Pair

	Additional Features
	Logging

	Multipart Messages

	Development
	Contributing
	General Contribution Guidelines

	Code Style Guide

	Testing

Zeroless API

Contents:

	zeroless package
	Submodules

	zeroless.zeroless module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Development

We welcome contributions of any kind (ideas, code, tests, documentation, examples, ...).
See the Development section for further details.

Links

	ØMQ [http://www.zeromq.org] Home

	The ØMQGuide [http://zguide.zeromq.org]

	Zeroless on GitHub [https://github.com/zmqless/zeroless]

	Zeroless on PyPy [https://pypi.python.org/pypi/zeroless]

	Issue Tracker [https://github.com/zmqless/zeroless/issues]

License

Copyright 2014 Lucas Lira Gomes x8lucas8x@gmail.com

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library. If not, see http://www.gnu.org/licenses/.

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Zeroless documentation

Install Guide

Install stable releases of Zeroless with pip.

$ pip install zeroless

Dependencies

Zeroless only dependency is PyZMQ [https://www.github.com/zeromq/pyzmq].

Installing from Github

The canonical repository for Zeroless is on GitHub [https://github.com/zmqless/zeroless].

$ git clone git@github.com:zmqless/zeroless.git
$ cd zeroless
$ python setup.py develop

The best reason to install from source is to help us develop Zeroless. See the
Development section for more on that.

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Zeroless documentation

Quickstart

In the zeroless module, two classes can be used to define how distributed
entities are related (i.e. Server and Client). To put it bluntly, with
the exception of the pair pattern, a client may be connected to multiple
servers, while a server may accept incoming connections from multiple clients.

Both servers and clients are able to create a callable and/or iterable,
depending on the message passing pattern. So that you can iterate over incoming
messages and/or call to transmit a message.

Message Passing Patterns

Zeroless supports the following message passing patterns:

Push-Pull

Useful for distributing the workload among a set of workers. A common
pattern in the Stream Processing field, being the cornestone of
applications like Apache Storm for instance. Also, it can be seen as a
generalisation of the Map-Reduce pattern.

import logging

from zeroless import (Server, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Binds the pull server to port 12345
And assigns an iterable to wait for incoming messages
listen_for_push = Server(port=12345).pull()

for msg in listen_for_push:
 print(msg)

import logging

from zeroless import (Client, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Connects the client to as many servers as desired
client = Client()
client.connect_local(port=12345)

Initiate a push client
And assigns a callable to push messages
push = client.push()

for msg in [b"Msg1", b"Msg2", b"Msg3"]:
 push(msg)

Publisher-Subscriber

Useful for broadcasting messages to a set of peers. A common pattern for
allowing real-time notifications at the client side, without having to
resort to inneficient approaches like pooling. Online services like
PubNub or IoT protocols like MQTT are examples of this pattern usage.

import logging

from zeroless import (Client, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Connects the client to as many servers as desired
client = Client()
client.connect_local(port=12345)

Initiate a subscriber client
Assigns an iterable to wait for incoming messages with the topic 'sh'
listen_for_pub = client.sub(topics=[b'sh'])

for topic, msg in listen_for_pub:
 print(topic, ' - ', msg)

import logging

from time import sleep

from zeroless import (Server, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Binds the publisher server to port 12345
And assigns a callable to publish messages with the topic 'sh'
pub = Server(port=12345).pub(topic=b'sh', embed_topic=True)

Gives publisher some time to get initial subscriptions
sleep(1)

for msg in [b"Msg1", b"Msg2", b"Msg3"]:
 pub(msg)

Note: ZMQ’s topic filtering capabilities are publisher side since ZMQ 3.0.

Last but not least, SUB sockets that bind will not get any message before they
first ask for via the provided generator, so prefer to bind PUB sockets if
missing some messages is not an option.

Request-Reply

Useful for RPC style calls. A common pattern for clients to request data
and receive a response associated with the request. The HTTP protocol is
well-known for adopting this pattern, being it essential for Restful
services.

import logging

from zeroless import (Server, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Binds the reply server to port 12345
And assigns a callable and an iterable
To both transmit and wait for incoming messages
reply, listen_for_request = Server(port=12345).reply()

for msg in listen_for_request:
 print(msg)
 reply(msg)

import logging

from zeroless import (Client, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Connects the client to as many servers as desired
client = Client()
client.connect_local(port=12345)

Initiate a request client
And assigns a callable and an iterable
To both transmit and wait for incoming messages
request, listen_for_reply = client.request()

for msg in [b"Msg1", b"Msg2", b"Msg3"]:
 request(msg)
 response = next(listen_for_reply)
 print(response)

Pair

More often than not, this pattern will be unnecessary, as the above ones
or the mix of them suffices most use cases in distributed computing.
Regarding its capabilities, this pattern is the most similar alternative
to usual posix sockets among the aforementioned patterns. Therefore,
expect one-to-one and bidirectional communication.

import logging

from zeroless import (Server, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Binds the pair server to port 12345
And assigns a callable and an iterable
To both transmit and wait for incoming messages
pair, listen_for_pair = Server(port=12345).pair()

for msg in listen_for_pair:
 print(msg)
 pair(msg)

import logging

from zeroless import (Client, log)

Setup console logging
consoleHandler = logging.StreamHandler()
log.setLevel(logging.DEBUG)
log.addHandler(consoleHandler)

Connects the client to a single server
client = Client()
client.connect_local(port=12345)

Initiate a pair client
And assigns a callable and an iterable
To both transmit and wait for incoming messages
pair, listen_for_pair = client.pair()

for msg in [b"Msg1", b"Msg2", b"Msg3"]:
 pair(msg)
 response = next(listen_for_pair)
 print(response)

Additional Features

Logging

Python provides a wonderfull logging module. It can be used to track
Zeroless’ internal workflow in a modular way, therefore being very useful
for debugging purposes.

The zeroless module allows logging via a global Logger object [https://docs.python.org/3/library/logging.html#logger-objects].

from zeroless import log

To enable it, just add an Handler object [https://docs.python.org/3/library/logging.html#handler-objects] and set an appropriate logging level [https://docs.python.org/3/library/logging.html#logging-levels].

Multipart Messages

In the Zeroless API, all callables have a print like signature, therefore
being able to have an infinite number of arguments. Each of these arguments are
part of the whole message, that could be divided in multiple pieces. Being that
useful when you have a simple message structure, with just a few fields, and
don’t want to rely on a data formatting standard (e.g. JSoN, XML) to maintain
the message semantics. Also, given the need to parse those different parts that
a single message may have, the receiver’s iterable will return them all, at
once, in transparent fashion.

For more on this, see the examples/multipart folder or check the following
example:

from zeroless import Server

Binds the pull server to port 12345
And assigns an iterable to wait for incoming messages
listen_for_push = Server(port=12345).pull()

for id, msg in listen_for_push:
 print(id, ' - ', msg)

from zeroless import Client

Connects the client to as many servers as desired
client = Client()
client.connect_local(port=12345)

Initiate a push client
And assigns a callable to push messages
push = client.push()

for id, msg in [(b"1", b"Msg1"), (b"2", b"Msg2"), (b"3", b"Msg3")]:
 push(id, msg)

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Zeroless documentation

Development

This page describes Zeroless development process and contains general
guidelines and information on how to contribute to the project.

Contributing

We welcome contributions of any kind (ideas, code, tests, documentation,
examples, ...).

General Contribution Guidelines

	Any non-trivial change must contain tests.

	All the functions and methods must contain Sphinx docstrings which are
used to generate the API documentation.

	If you are adding a new feature, make sure to add a corresponding
documentation.

Code Style Guide

	We follow PEP8 Python Style Guide [http://www.python.org/dev/peps/pep-0008/].

	Use 4 spaces for a tab.

	Use 79 characters in a line.

	Make sure edited file doesn’t contain any trailing whitespace.

Testing

Tests make use of the py.test framework and are located in the tests/
folder. However, we recommend the usage of tox as it will test our
codebase against both Python 2.7 and 3.0.

To run individual tests:

$ py.test tests/test_desired_module.py

To run all the tests:

$ python setup.py test

Alternatively, you can use tox:

$ tox

All functionality (including new features and bug fixes) must include a
test case to check that it works as expected, so please include tests
for your patches if you want them to get accepted sooner.

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Zeroless documentation

zeroless package

Submodules

zeroless.zeroless module

The Zeroless module API.

	
zeroless.zeroless.log[source]

	

A global Logger object. To use it, just add an Handler object
and set an appropriate logging level.

	
class zeroless.zeroless.Client[source]

	Bases: zeroless.zeroless.Sock

A client that can connect to a set of servers.

	
addresses

	Returns a tuple containing all the connected addresses. Each address
is a tuple with an ip address and a port.

	Return type:	(addresses)

	
connect(ip, port)[source]

	Connects to a server at the specified ip and port.

	Parameters:	
	ip (str or unicode) – an IP address

	port (int) – port number from 1024 up to 65535

	
connect_local(port)[source]

	Connects to a server in localhost at the specified port.

	Parameters:	port (int) – port number from 1024 up to 65535

	
disconnect(ip, port)[source]

	Disconnects from a server at the specified ip and port.

	Parameters:	
	ip (str or unicode) – an IP address

	port (int) – port number from 1024 up to 65535

	
disconnect_all()[source]

	Disconnects from all connected servers.

	
disconnect_local(port)[source]

	Disconnects from a server in localhost at the specified port.

	Parameters:	port (int) – port number from 1024 up to 65535

	
class zeroless.zeroless.Server(port)[source]

	Bases: zeroless.zeroless.Sock

A server that clients can connect to.

	
port

	Returns the port.

	Return type:	int

	
class zeroless.zeroless.Sock[source]

	
	
pair()[source]

	Returns a callable and an iterable respectively. Those can be used to
both transmit a message and/or iterate over incoming messages, that were
sent by a pair socket. Note that the iterable returns as many parts as
sent by a pair. Also, the sender function has a print like signature,
with an infinite number of arguments. Each one being a part of the
complete message.

	Return type:	(function, generator)

	
pub(topic='', embed_topic=False)[source]

	Returns a callable that can be used to transmit a message, with a given
topic, in a publisher-subscriber fashion. Note that the sender
function has a print like signature, with an infinite number of
arguments. Each one being a part of the complete message.

	Parameters:	
	topic (bytes) – the topic that will be published to (default=b’‘)

	embed_topic – set to embed the topic into published messages
(default=False)

:type embed_topic bool
:rtype: function

	
pull()[source]

	Returns an iterable that can be used to iterate over incoming messages,
that were pushed by a push socket. Note that the iterable returns as
many parts as sent by pushers.

	Return type:	generator

	
push()[source]

	Returns a callable that can be used to transmit a message in a push-pull
fashion. Note that the sender function has a print like signature,
with an infinite number of arguments. Each one being a part of the
complete message.

	Return type:	function

	
reply()[source]

	Returns a callable and an iterable respectively. Those can be used to
both transmit a message and/or iterate over incoming messages,
that were requested by a request socket. Note that the iterable returns
as many parts as sent by requesters. Also, the sender function has a
print like signature, with an infinite number of arguments. Each one
being a part of the complete message.

	Return type:	(function, generator)

	
request()[source]

	Returns a callable and an iterable respectively. Those can be used to
both transmit a message and/or iterate over incoming messages,
that were replied by a reply socket. Note that the iterable returns
as many parts as sent by repliers. Also, the sender function has a
print like signature, with an infinite number of arguments. Each one
being a part of the complete message.

	Return type:	(function, generator)

	
sub(topics=('',))[source]

	Returns an iterable that can be used to iterate over incoming messages,
that were published with one of the topics specified in topics. Note
that the iterable returns as many parts as sent by subscribed publishers.

	Parameters:	topics (list of bytes) – a list of topics to subscribe to (default=b’‘)

	Return type:	generator

Module contents

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Zeroless documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 zeroless	

 	
 	
 zeroless.zeroless	

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Zeroless documentation

Index

 A
 | C
 | D
 | L
 | P
 | R
 | S
 | Z

A

 	

 	addresses (zeroless.zeroless.Client attribute)

C

 	

 	Client (class in zeroless.zeroless)

 	connect() (zeroless.zeroless.Client method)

 	

 	connect_local() (zeroless.zeroless.Client method)

D

 	

 	disconnect() (zeroless.zeroless.Client method)

 	disconnect_all() (zeroless.zeroless.Client method)

 	

 	disconnect_local() (zeroless.zeroless.Client method)

L

 	

 	log (in module zeroless.zeroless)

P

 	

 	pair() (zeroless.zeroless.Sock method)

 	port (zeroless.zeroless.Server attribute)

 	pub() (zeroless.zeroless.Sock method)

 	

 	pull() (zeroless.zeroless.Sock method)

 	push() (zeroless.zeroless.Sock method)

R

 	

 	reply() (zeroless.zeroless.Sock method)

 	

 	request() (zeroless.zeroless.Sock method)

S

 	

 	Server (class in zeroless.zeroless)

 	Sock (class in zeroless.zeroless)

 	

 	sub() (zeroless.zeroless.Sock method)

Z

 	

 	zeroless (module)

 	

 	zeroless.zeroless (module)

 Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Zeroless documentation »

 All modules for which code is available

		logging

		zeroless.zeroless

 © Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

_modules/logging.html

 Navigation

 		
 index

 		
 modules |

 		Zeroless documentation »

 		Module code »

 Source code for logging

Copyright 2001-2012 by Vinay Sajip. All Rights Reserved.
#
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Vinay Sajip
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2012 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, cStringIO, traceback, warnings, weakref

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
 'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
 'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
 'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
 'captureWarnings', 'critical', 'debug', 'disable', 'error',
 'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
 'info', 'log', 'makeLogRecord', 'setLoggerClass', 'warn', 'warning']

try:
 import codecs
except ImportError:
 codecs = None

try:
 import thread
 import threading
except ImportError:
 thread = None

__author__ = "Vinay Sajip <vinay_sajip@red-dove.com>"
__status__ = "production"
__version__ = "0.5.1.2"
__date__ = "07 February 2010"

#---
Miscellaneous module data
#---
try:
 unicode
 _unicode = True
except NameError:
 _unicode = False

#
_srcfile is used when walking the stack to check when we've got the first
caller stack frame.
#
if hasattr(sys, 'frozen'): #support for py2exe
 _srcfile = "logging%s__init__%s" % (os.sep, __file__[-4:])
elif __file__[-4:].lower() in ['.pyc', '.pyo']:
 _srcfile = __file__[:-4] + '.py'
else:
 _srcfile = __file__
_srcfile = os.path.normcase(_srcfile)

next bit filched from 1.5.2's inspect.py
def currentframe():
 """Return the frame object for the caller's stack frame."""
 try:
 raise Exception
 except:
 return sys.exc_info()[2].tb_frame.f_back

if hasattr(sys, '_getframe'): currentframe = lambda: sys._getframe(3)
done filching

_srcfile is only used in conjunction with sys._getframe().
To provide compatibility with older versions of Python, set _srcfile
to None if _getframe() is not available; this value will prevent
findCaller() from being called.
#if not hasattr(sys, "_getframe"):
_srcfile = None

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = 1

#
If you don't want threading information in the log, set this to zero
#
logThreads = 1

#
If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = 1

#
If you don't want process information in the log, set this to zero
#
logProcesses = 1

#---
Level related stuff
#---
#
Default levels and level names, these can be replaced with any positive set
of values having corresponding names. There is a pseudo-level, NOTSET, which
is only really there as a lower limit for user-defined levels. Handlers and
loggers are initialized with NOTSET so that they will log all messages, even
at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelNames = {
 CRITICAL : 'CRITICAL',
 ERROR : 'ERROR',
 WARNING : 'WARNING',
 INFO : 'INFO',
 DEBUG : 'DEBUG',
 NOTSET : 'NOTSET',
 'CRITICAL' : CRITICAL,
 'ERROR' : ERROR,
 'WARN' : WARNING,
 'WARNING' : WARNING,
 'INFO' : INFO,
 'DEBUG' : DEBUG,
 'NOTSET' : NOTSET,
}

def getLevelName(level):
 """
 Return the textual representation of logging level 'level'.

 If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
 INFO, DEBUG) then you get the corresponding string. If you have
 associated levels with names using addLevelName then the name you have
 associated with 'level' is returned.

 If a numeric value corresponding to one of the defined levels is passed
 in, the corresponding string representation is returned.

 Otherwise, the string "Level %s" % level is returned.
 """
 return _levelNames.get(level, ("Level %s" % level))

def addLevelName(level, levelName):
 """
 Associate 'levelName' with 'level'.

 This is used when converting levels to text during message formatting.
 """
 _acquireLock()
 try: #unlikely to cause an exception, but you never know...
 _levelNames[level] = levelName
 _levelNames[levelName] = level
 finally:
 _releaseLock()

def _checkLevel(level):
 if isinstance(level, (int, long)):
 rv = level
 elif str(level) == level:
 if level not in _levelNames:
 raise ValueError("Unknown level: %r" % level)
 rv = _levelNames[level]
 else:
 raise TypeError("Level not an integer or a valid string: %r" % level)
 return rv

#---
Thread-related stuff
#---

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if thread:
 _lock = threading.RLock()
else:
 _lock = None

def _acquireLock():
 """
 Acquire the module-level lock for serializing access to shared data.

 This should be released with _releaseLock().
 """
 if _lock:
 _lock.acquire()

def _releaseLock():
 """
 Release the module-level lock acquired by calling _acquireLock().
 """
 if _lock:
 _lock.release()

#---
The logging record
#---

class LogRecord(object):
 """
 A LogRecord instance represents an event being logged.

 LogRecord instances are created every time something is logged. They
 contain all the information pertinent to the event being logged. The
 main information passed in is in msg and args, which are combined
 using str(msg) % args to create the message field of the record. The
 record also includes information such as when the record was created,
 the source line where the logging call was made, and any exception
 information to be logged.
 """
 def __init__(self, name, level, pathname, lineno,
 msg, args, exc_info, func=None):
 """
 Initialize a logging record with interesting information.
 """
 ct = time.time()
 self.name = name
 self.msg = msg
 #
 # The following statement allows passing of a dictionary as a sole
 # argument, so that you can do something like
 # logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
 # Suggested by Stefan Behnel.
 # Note that without the test for args[0], we get a problem because
 # during formatting, we test to see if the arg is present using
 # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
 # and if the passed arg fails 'if self.args:' then no formatting
 # is done. For example, logger.warn('Value is %d', 0) would log
 # 'Value is %d' instead of 'Value is 0'.
 # For the use case of passing a dictionary, this should not be a
 # problem.
 if args and len(args) == 1 and isinstance(args[0], dict) and args[0]:
 args = args[0]
 self.args = args
 self.levelname = getLevelName(level)
 self.levelno = level
 self.pathname = pathname
 try:
 self.filename = os.path.basename(pathname)
 self.module = os.path.splitext(self.filename)[0]
 except (TypeError, ValueError, AttributeError):
 self.filename = pathname
 self.module = "Unknown module"
 self.exc_info = exc_info
 self.exc_text = None # used to cache the traceback text
 self.lineno = lineno
 self.funcName = func
 self.created = ct
 self.msecs = (ct - long(ct)) * 1000
 self.relativeCreated = (self.created - _startTime) * 1000
 if logThreads and thread:
 self.thread = thread.get_ident()
 self.threadName = threading.current_thread().name
 else:
 self.thread = None
 self.threadName = None
 if not logMultiprocessing:
 self.processName = None
 else:
 self.processName = 'MainProcess'
 mp = sys.modules.get('multiprocessing')
 if mp is not None:
 # Errors may occur if multiprocessing has not finished loading
 # yet - e.g. if a custom import hook causes third-party code
 # to run when multiprocessing calls import. See issue 8200
 # for an example
 try:
 self.processName = mp.current_process().name
 except StandardError:
 pass
 if logProcesses and hasattr(os, 'getpid'):
 self.process = os.getpid()
 else:
 self.process = None

 def __str__(self):
 return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
 self.pathname, self.lineno, self.msg)

 def getMessage(self):
 """
 Return the message for this LogRecord.

 Return the message for this LogRecord after merging any user-supplied
 arguments with the message.
 """
 if not _unicode: #if no unicode support...
 msg = str(self.msg)
 else:
 msg = self.msg
 if not isinstance(msg, basestring):
 try:
 msg = str(self.msg)
 except UnicodeError:
 msg = self.msg #Defer encoding till later
 if self.args:
 msg = msg % self.args
 return msg

def makeLogRecord(dict):
 """
 Make a LogRecord whose attributes are defined by the specified dictionary,
 This function is useful for converting a logging event received over
 a socket connection (which is sent as a dictionary) into a LogRecord
 instance.
 """
 rv = LogRecord(None, None, "", 0, "", (), None, None)
 rv.__dict__.update(dict)
 return rv

#---
Formatter classes and functions
#---

class Formatter(object):
 """
 Formatter instances are used to convert a LogRecord to text.

 Formatters need to know how a LogRecord is constructed. They are
 responsible for converting a LogRecord to (usually) a string which can
 be interpreted by either a human or an external system. The base Formatter
 allows a formatting string to be specified. If none is supplied, the
 default value of "%s(message)\\n" is used.

 The Formatter can be initialized with a format string which makes use of
 knowledge of the LogRecord attributes - e.g. the default value mentioned
 above makes use of the fact that the user's message and arguments are pre-
 formatted into a LogRecord's message attribute. Currently, the useful
 attributes in a LogRecord are described by:

 %(name)s Name of the logger (logging channel)
 %(levelno)s Numeric logging level for the message (DEBUG, INFO,
 WARNING, ERROR, CRITICAL)
 %(levelname)s Text logging level for the message ("DEBUG", "INFO",
 "WARNING", "ERROR", "CRITICAL")
 %(pathname)s Full pathname of the source file where the logging
 call was issued (if available)
 %(filename)s Filename portion of pathname
 %(module)s Module (name portion of filename)
 %(lineno)d Source line number where the logging call was issued
 (if available)
 %(funcName)s Function name
 %(created)f Time when the LogRecord was created (time.time()
 return value)
 %(asctime)s Textual time when the LogRecord was created
 %(msecs)d Millisecond portion of the creation time
 %(relativeCreated)d Time in milliseconds when the LogRecord was created,
 relative to the time the logging module was loaded
 (typically at application startup time)
 %(thread)d Thread ID (if available)
 %(threadName)s Thread name (if available)
 %(process)d Process ID (if available)
 %(message)s The result of record.getMessage(), computed just as
 the record is emitted
 """

 converter = time.localtime

 def __init__(self, fmt=None, datefmt=None):
 """
 Initialize the formatter with specified format strings.

 Initialize the formatter either with the specified format string, or a
 default as described above. Allow for specialized date formatting with
 the optional datefmt argument (if omitted, you get the ISO8601 format).
 """
 if fmt:
 self._fmt = fmt
 else:
 self._fmt = "%(message)s"
 self.datefmt = datefmt

 def formatTime(self, record, datefmt=None):
 """
 Return the creation time of the specified LogRecord as formatted text.

 This method should be called from format() by a formatter which
 wants to make use of a formatted time. This method can be overridden
 in formatters to provide for any specific requirement, but the
 basic behaviour is as follows: if datefmt (a string) is specified,
 it is used with time.strftime() to format the creation time of the
 record. Otherwise, the ISO8601 format is used. The resulting
 string is returned. This function uses a user-configurable function
 to convert the creation time to a tuple. By default, time.localtime()
 is used; to change this for a particular formatter instance, set the
 'converter' attribute to a function with the same signature as
 time.localtime() or time.gmtime(). To change it for all formatters,
 for example if you want all logging times to be shown in GMT,
 set the 'converter' attribute in the Formatter class.
 """
 ct = self.converter(record.created)
 if datefmt:
 s = time.strftime(datefmt, ct)
 else:
 t = time.strftime("%Y-%m-%d %H:%M:%S", ct)
 s = "%s,%03d" % (t, record.msecs)
 return s

 def formatException(self, ei):
 """
 Format and return the specified exception information as a string.

 This default implementation just uses
 traceback.print_exception()
 """
 sio = cStringIO.StringIO()
 traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
 s = sio.getvalue()
 sio.close()
 if s[-1:] == "\n":
 s = s[:-1]
 return s

 def usesTime(self):
 """
 Check if the format uses the creation time of the record.
 """
 return self._fmt.find("%(asctime)") >= 0

 def format(self, record):
 """
 Format the specified record as text.

 The record's attribute dictionary is used as the operand to a
 string formatting operation which yields the returned string.
 Before formatting the dictionary, a couple of preparatory steps
 are carried out. The message attribute of the record is computed
 using LogRecord.getMessage(). If the formatting string uses the
 time (as determined by a call to usesTime(), formatTime() is
 called to format the event time. If there is exception information,
 it is formatted using formatException() and appended to the message.
 """
 record.message = record.getMessage()
 if self.usesTime():
 record.asctime = self.formatTime(record, self.datefmt)
 s = self._fmt % record.__dict__
 if record.exc_info:
 # Cache the traceback text to avoid converting it multiple times
 # (it's constant anyway)
 if not record.exc_text:
 record.exc_text = self.formatException(record.exc_info)
 if record.exc_text:
 if s[-1:] != "\n":
 s = s + "\n"
 try:
 s = s + record.exc_text
 except UnicodeError:
 # Sometimes filenames have non-ASCII chars, which can lead
 # to errors when s is Unicode and record.exc_text is str
 # See issue 8924.
 # We also use replace for when there are multiple
 # encodings, e.g. UTF-8 for the filesystem and latin-1
 # for a script. See issue 13232.
 s = s + record.exc_text.decode(sys.getfilesystemencoding(),
 'replace')
 return s

#
The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
 """
 A formatter suitable for formatting a number of records.
 """
 def __init__(self, linefmt=None):
 """
 Optionally specify a formatter which will be used to format each
 individual record.
 """
 if linefmt:
 self.linefmt = linefmt
 else:
 self.linefmt = _defaultFormatter

 def formatHeader(self, records):
 """
 Return the header string for the specified records.
 """
 return ""

 def formatFooter(self, records):
 """
 Return the footer string for the specified records.
 """
 return ""

 def format(self, records):
 """
 Format the specified records and return the result as a string.
 """
 rv = ""
 if len(records) > 0:
 rv = rv + self.formatHeader(records)
 for record in records:
 rv = rv + self.linefmt.format(record)
 rv = rv + self.formatFooter(records)
 return rv

#---
Filter classes and functions
#---

class Filter(object):
 """
 Filter instances are used to perform arbitrary filtering of LogRecords.

 Loggers and Handlers can optionally use Filter instances to filter
 records as desired. The base filter class only allows events which are
 below a certain point in the logger hierarchy. For example, a filter
 initialized with "A.B" will allow events logged by loggers "A.B",
 "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
 initialized with the empty string, all events are passed.
 """
 def __init__(self, name=''):
 """
 Initialize a filter.

 Initialize with the name of the logger which, together with its
 children, will have its events allowed through the filter. If no
 name is specified, allow every event.
 """
 self.name = name
 self.nlen = len(name)

 def filter(self, record):
 """
 Determine if the specified record is to be logged.

 Is the specified record to be logged? Returns 0 for no, nonzero for
 yes. If deemed appropriate, the record may be modified in-place.
 """
 if self.nlen == 0:
 return 1
 elif self.name == record.name:
 return 1
 elif record.name.find(self.name, 0, self.nlen) != 0:
 return 0
 return (record.name[self.nlen] == ".")

class Filterer(object):
 """
 A base class for loggers and handlers which allows them to share
 common code.
 """
 def __init__(self):
 """
 Initialize the list of filters to be an empty list.
 """
 self.filters = []

 def addFilter(self, filter):
 """
 Add the specified filter to this handler.
 """
 if not (filter in self.filters):
 self.filters.append(filter)

 def removeFilter(self, filter):
 """
 Remove the specified filter from this handler.
 """
 if filter in self.filters:
 self.filters.remove(filter)

 def filter(self, record):
 """
 Determine if a record is loggable by consulting all the filters.

 The default is to allow the record to be logged; any filter can veto
 this and the record is then dropped. Returns a zero value if a record
 is to be dropped, else non-zero.
 """
 rv = 1
 for f in self.filters:
 if not f.filter(record):
 rv = 0
 break
 return rv

#---
Handler classes and functions
#---

_handlers = weakref.WeakValueDictionary() #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
 """
 Remove a handler reference from the internal cleanup list.
 """
 # This function can be called during module teardown, when globals are
 # set to None. If _acquireLock is None, assume this is the case and do
 # nothing.
 if (_acquireLock is not None and _handlerList is not None and
 _releaseLock is not None):
 _acquireLock()
 try:
 if wr in _handlerList:
 _handlerList.remove(wr)
 finally:
 _releaseLock()

def _addHandlerRef(handler):
 """
 Add a handler to the internal cleanup list using a weak reference.
 """
 _acquireLock()
 try:
 _handlerList.append(weakref.ref(handler, _removeHandlerRef))
 finally:
 _releaseLock()

class Handler(Filterer):
 """
 Handler instances dispatch logging events to specific destinations.

 The base handler class. Acts as a placeholder which defines the Handler
 interface. Handlers can optionally use Formatter instances to format
 records as desired. By default, no formatter is specified; in this case,
 the 'raw' message as determined by record.message is logged.
 """
 def __init__(self, level=NOTSET):
 """
 Initializes the instance - basically setting the formatter to None
 and the filter list to empty.
 """
 Filterer.__init__(self)
 self._name = None
 self.level = _checkLevel(level)
 self.formatter = None
 # Add the handler to the global _handlerList (for cleanup on shutdown)
 _addHandlerRef(self)
 self.createLock()

 def get_name(self):
 return self._name

 def set_name(self, name):
 _acquireLock()
 try:
 if self._name in _handlers:
 del _handlers[self._name]
 self._name = name
 if name:
 _handlers[name] = self
 finally:
 _releaseLock()

 name = property(get_name, set_name)

 def createLock(self):
 """
 Acquire a thread lock for serializing access to the underlying I/O.
 """
 if thread:
 self.lock = threading.RLock()
 else:
 self.lock = None

 def acquire(self):
 """
 Acquire the I/O thread lock.
 """
 if self.lock:
 self.lock.acquire()

 def release(self):
 """
 Release the I/O thread lock.
 """
 if self.lock:
 self.lock.release()

 def setLevel(self, level):
 """
 Set the logging level of this handler.
 """
 self.level = _checkLevel(level)

 def format(self, record):
 """
 Format the specified record.

 If a formatter is set, use it. Otherwise, use the default formatter
 for the module.
 """
 if self.formatter:
 fmt = self.formatter
 else:
 fmt = _defaultFormatter
 return fmt.format(record)

 def emit(self, record):
 """
 Do whatever it takes to actually log the specified logging record.

 This version is intended to be implemented by subclasses and so
 raises a NotImplementedError.
 """
 raise NotImplementedError('emit must be implemented '
 'by Handler subclasses')

 def handle(self, record):
 """
 Conditionally emit the specified logging record.

 Emission depends on filters which may have been added to the handler.
 Wrap the actual emission of the record with acquisition/release of
 the I/O thread lock. Returns whether the filter passed the record for
 emission.
 """
 rv = self.filter(record)
 if rv:
 self.acquire()
 try:
 self.emit(record)
 finally:
 self.release()
 return rv

 def setFormatter(self, fmt):
 """
 Set the formatter for this handler.
 """
 self.formatter = fmt

 def flush(self):
 """
 Ensure all logging output has been flushed.

 This version does nothing and is intended to be implemented by
 subclasses.
 """
 pass

 def close(self):
 """
 Tidy up any resources used by the handler.

 This version removes the handler from an internal map of handlers,
 _handlers, which is used for handler lookup by name. Subclasses
 should ensure that this gets called from overridden close()
 methods.
 """
 #get the module data lock, as we're updating a shared structure.
 _acquireLock()
 try: #unlikely to raise an exception, but you never know...
 if self._name and self._name in _handlers:
 del _handlers[self._name]
 finally:
 _releaseLock()

 def handleError(self, record):
 """
 Handle errors which occur during an emit() call.

 This method should be called from handlers when an exception is
 encountered during an emit() call. If raiseExceptions is false,
 exceptions get silently ignored. This is what is mostly wanted
 for a logging system - most users will not care about errors in
 the logging system, they are more interested in application errors.
 You could, however, replace this with a custom handler if you wish.
 The record which was being processed is passed in to this method.
 """
 if raiseExceptions and sys.stderr: # see issue 13807
 ei = sys.exc_info()
 try:
 traceback.print_exception(ei[0], ei[1], ei[2],
 None, sys.stderr)
 sys.stderr.write('Logged from file %s, line %s\n' % (
 record.filename, record.lineno))
 except IOError:
 pass # see issue 5971
 finally:
 del ei

class StreamHandler(Handler):
 """
 A handler class which writes logging records, appropriately formatted,
 to a stream. Note that this class does not close the stream, as
 sys.stdout or sys.stderr may be used.
 """

 def __init__(self, stream=None):
 """
 Initialize the handler.

 If stream is not specified, sys.stderr is used.
 """
 Handler.__init__(self)
 if stream is None:
 stream = sys.stderr
 self.stream = stream

 def flush(self):
 """
 Flushes the stream.
 """
 self.acquire()
 try:
 if self.stream and hasattr(self.stream, "flush"):
 self.stream.flush()
 finally:
 self.release()

 def emit(self, record):
 """
 Emit a record.

 If a formatter is specified, it is used to format the record.
 The record is then written to the stream with a trailing newline. If
 exception information is present, it is formatted using
 traceback.print_exception and appended to the stream. If the stream
 has an 'encoding' attribute, it is used to determine how to do the
 output to the stream.
 """
 try:
 msg = self.format(record)
 stream = self.stream
 fs = "%s\n"
 if not _unicode: #if no unicode support...
 stream.write(fs % msg)
 else:
 try:
 if (isinstance(msg, unicode) and
 getattr(stream, 'encoding', None)):
 ufs = u'%s\n'
 try:
 stream.write(ufs % msg)
 except UnicodeEncodeError:
 #Printing to terminals sometimes fails. For example,
 #with an encoding of 'cp1251', the above write will
 #work if written to a stream opened or wrapped by
 #the codecs module, but fail when writing to a
 #terminal even when the codepage is set to cp1251.
 #An extra encoding step seems to be needed.
 stream.write((ufs % msg).encode(stream.encoding))
 else:
 stream.write(fs % msg)
 except UnicodeError:
 stream.write(fs % msg.encode("UTF-8"))
 self.flush()
 except (KeyboardInterrupt, SystemExit):
 raise
 except:
 self.handleError(record)

class FileHandler(StreamHandler):
 """
 A handler class which writes formatted logging records to disk files.
 """
 def __init__(self, filename, mode='a', encoding=None, delay=0):
 """
 Open the specified file and use it as the stream for logging.
 """
 #keep the absolute path, otherwise derived classes which use this
 #may come a cropper when the current directory changes
 if codecs is None:
 encoding = None
 self.baseFilename = os.path.abspath(filename)
 self.mode = mode
 self.encoding = encoding
 self.delay = delay
 if delay:
 #We don't open the stream, but we still need to call the
 #Handler constructor to set level, formatter, lock etc.
 Handler.__init__(self)
 self.stream = None
 else:
 StreamHandler.__init__(self, self._open())

 def close(self):
 """
 Closes the stream.
 """
 self.acquire()
 try:
 if self.stream:
 self.flush()
 if hasattr(self.stream, "close"):
 self.stream.close()
 self.stream = None
 # Issue #19523: call unconditionally to
 # prevent a handler leak when delay is set
 StreamHandler.close(self)
 finally:
 self.release()

 def _open(self):
 """
 Open the current base file with the (original) mode and encoding.
 Return the resulting stream.
 """
 if self.encoding is None:
 stream = open(self.baseFilename, self.mode)
 else:
 stream = codecs.open(self.baseFilename, self.mode, self.encoding)
 return stream

 def emit(self, record):
 """
 Emit a record.

 If the stream was not opened because 'delay' was specified in the
 constructor, open it before calling the superclass's emit.
 """
 if self.stream is None:
 self.stream = self._open()
 StreamHandler.emit(self, record)

#---
Manager classes and functions
#---

class PlaceHolder(object):
 """
 PlaceHolder instances are used in the Manager logger hierarchy to take
 the place of nodes for which no loggers have been defined. This class is
 intended for internal use only and not as part of the public API.
 """
 def __init__(self, alogger):
 """
 Initialize with the specified logger being a child of this placeholder.
 """
 #self.loggers = [alogger]
 self.loggerMap = { alogger : None }

 def append(self, alogger):
 """
 Add the specified logger as a child of this placeholder.
 """
 #if alogger not in self.loggers:
 if alogger not in self.loggerMap:
 #self.loggers.append(alogger)
 self.loggerMap[alogger] = None

#
Determine which class to use when instantiating loggers.
#
_loggerClass = None

def setLoggerClass(klass):
 """
 Set the class to be used when instantiating a logger. The class should
 define __init__() such that only a name argument is required, and the
 __init__() should call Logger.__init__()
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 global _loggerClass
 _loggerClass = klass

def getLoggerClass():
 """
 Return the class to be used when instantiating a logger.
 """

 return _loggerClass

class Manager(object):
 """
 There is [under normal circumstances] just one Manager instance, which
 holds the hierarchy of loggers.
 """
 def __init__(self, rootnode):
 """
 Initialize the manager with the root node of the logger hierarchy.
 """
 self.root = rootnode
 self.disable = 0
 self.emittedNoHandlerWarning = 0
 self.loggerDict = {}
 self.loggerClass = None

 def getLogger(self, name):
 """
 Get a logger with the specified name (channel name), creating it
 if it doesn't yet exist. This name is a dot-separated hierarchical
 name, such as "a", "a.b", "a.b.c" or similar.

 If a PlaceHolder existed for the specified name [i.e. the logger
 didn't exist but a child of it did], replace it with the created
 logger and fix up the parent/child references which pointed to the
 placeholder to now point to the logger.
 """
 rv = None
 if not isinstance(name, basestring):
 raise TypeError('A logger name must be string or Unicode')
 if isinstance(name, unicode):
 name = name.encode('utf-8')
 _acquireLock()
 try:
 if name in self.loggerDict:
 rv = self.loggerDict[name]
 if isinstance(rv, PlaceHolder):
 ph = rv
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupChildren(ph, rv)
 self._fixupParents(rv)
 else:
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupParents(rv)
 finally:
 _releaseLock()
 return rv

 def setLoggerClass(self, klass):
 """
 Set the class to be used when instantiating a logger with this Manager.
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 self.loggerClass = klass

 def _fixupParents(self, alogger):
 """
 Ensure that there are either loggers or placeholders all the way
 from the specified logger to the root of the logger hierarchy.
 """
 name = alogger.name
 i = name.rfind(".")
 rv = None
 while (i > 0) and not rv:
 substr = name[:i]
 if substr not in self.loggerDict:
 self.loggerDict[substr] = PlaceHolder(alogger)
 else:
 obj = self.loggerDict[substr]
 if isinstance(obj, Logger):
 rv = obj
 else:
 assert isinstance(obj, PlaceHolder)
 obj.append(alogger)
 i = name.rfind(".", 0, i - 1)
 if not rv:
 rv = self.root
 alogger.parent = rv

 def _fixupChildren(self, ph, alogger):
 """
 Ensure that children of the placeholder ph are connected to the
 specified logger.
 """
 name = alogger.name
 namelen = len(name)
 for c in ph.loggerMap.keys():
 #The if means ... if not c.parent.name.startswith(nm)
 if c.parent.name[:namelen] != name:
 alogger.parent = c.parent
 c.parent = alogger

#---
Logger classes and functions
#---

class Logger(Filterer):
 """
 Instances of the Logger class represent a single logging channel. A
 "logging channel" indicates an area of an application. Exactly how an
 "area" is defined is up to the application developer. Since an
 application can have any number of areas, logging channels are identified
 by a unique string. Application areas can be nested (e.g. an area
 of "input processing" might include sub-areas "read CSV files", "read
 XLS files" and "read Gnumeric files"). To cater for this natural nesting,
 channel names are organized into a namespace hierarchy where levels are
 separated by periods, much like the Java or Python package namespace. So
 in the instance given above, channel names might be "input" for the upper
 level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
 There is no arbitrary limit to the depth of nesting.
 """
 def __init__(self, name, level=NOTSET):
 """
 Initialize the logger with a name and an optional level.
 """
 Filterer.__init__(self)
 self.name = name
 self.level = _checkLevel(level)
 self.parent = None
 self.propagate = 1
 self.handlers = []
 self.disabled = 0

 def setLevel(self, level):
 """
 Set the logging level of this logger.
 """
 self.level = _checkLevel(level)

 def debug(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'DEBUG'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
 """
 if self.isEnabledFor(DEBUG):
 self._log(DEBUG, msg, args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'INFO'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
 """
 if self.isEnabledFor(INFO):
 self._log(INFO, msg, args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'WARNING'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
 """
 if self.isEnabledFor(WARNING):
 self._log(WARNING, msg, args, **kwargs)

 warn = warning

 def error(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'ERROR'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.error("Houston, we have a %s", "major problem", exc_info=1)
 """
 if self.isEnabledFor(ERROR):
 self._log(ERROR, msg, args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Convenience method for logging an ERROR with exception information.
 """
 kwargs['exc_info'] = 1
 self.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'CRITICAL'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
 """
 if self.isEnabledFor(CRITICAL):
 self._log(CRITICAL, msg, args, **kwargs)

 fatal = critical

 def log(self, level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
 """
 if not isinstance(level, int):
 if raiseExceptions:
 raise TypeError("level must be an integer")
 else:
 return
 if self.isEnabledFor(level):
 self._log(level, msg, args, **kwargs)

 def findCaller(self):
 """
 Find the stack frame of the caller so that we can note the source
 file name, line number and function name.
 """
 f = currentframe()
 #On some versions of IronPython, currentframe() returns None if
 #IronPython isn't run with -X:Frames.
 if f is not None:
 f = f.f_back
 rv = "(unknown file)", 0, "(unknown function)"
 while hasattr(f, "f_code"):
 co = f.f_code
 filename = os.path.normcase(co.co_filename)
 if filename == _srcfile:
 f = f.f_back
 continue
 rv = (co.co_filename, f.f_lineno, co.co_name)
 break
 return rv

 def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None):
 """
 A factory method which can be overridden in subclasses to create
 specialized LogRecords.
 """
 rv = LogRecord(name, level, fn, lno, msg, args, exc_info, func)
 if extra is not None:
 for key in extra:
 if (key in ["message", "asctime"]) or (key in rv.__dict__):
 raise KeyError("Attempt to overwrite %r in LogRecord" % key)
 rv.__dict__[key] = extra[key]
 return rv

 def _log(self, level, msg, args, exc_info=None, extra=None):
 """
 Low-level logging routine which creates a LogRecord and then calls
 all the handlers of this logger to handle the record.
 """
 if _srcfile:
 #IronPython doesn't track Python frames, so findCaller raises an
 #exception on some versions of IronPython. We trap it here so that
 #IronPython can use logging.
 try:
 fn, lno, func = self.findCaller()
 except ValueError:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 else:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 if exc_info:
 if not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
 self.handle(record)

 def handle(self, record):
 """
 Call the handlers for the specified record.

 This method is used for unpickled records received from a socket, as
 well as those created locally. Logger-level filtering is applied.
 """
 if (not self.disabled) and self.filter(record):
 self.callHandlers(record)

 def addHandler(self, hdlr):
 """
 Add the specified handler to this logger.
 """
 _acquireLock()
 try:
 if not (hdlr in self.handlers):
 self.handlers.append(hdlr)
 finally:
 _releaseLock()

 def removeHandler(self, hdlr):
 """
 Remove the specified handler from this logger.
 """
 _acquireLock()
 try:
 if hdlr in self.handlers:
 self.handlers.remove(hdlr)
 finally:
 _releaseLock()

 def callHandlers(self, record):
 """
 Pass a record to all relevant handlers.

 Loop through all handlers for this logger and its parents in the
 logger hierarchy. If no handler was found, output a one-off error
 message to sys.stderr. Stop searching up the hierarchy whenever a
 logger with the "propagate" attribute set to zero is found - that
 will be the last logger whose handlers are called.
 """
 c = self
 found = 0
 while c:
 for hdlr in c.handlers:
 found = found + 1
 if record.levelno >= hdlr.level:
 hdlr.handle(record)
 if not c.propagate:
 c = None #break out
 else:
 c = c.parent
 if (found == 0) and raiseExceptions and not self.manager.emittedNoHandlerWarning:
 sys.stderr.write("No handlers could be found for logger"
 " \"%s\"\n" % self.name)
 self.manager.emittedNoHandlerWarning = 1

 def getEffectiveLevel(self):
 """
 Get the effective level for this logger.

 Loop through this logger and its parents in the logger hierarchy,
 looking for a non-zero logging level. Return the first one found.
 """
 logger = self
 while logger:
 if logger.level:
 return logger.level
 logger = logger.parent
 return NOTSET

 def isEnabledFor(self, level):
 """
 Is this logger enabled for level 'level'?
 """
 if self.manager.disable >= level:
 return 0
 return level >= self.getEffectiveLevel()

 def getChild(self, suffix):
 """
 Get a logger which is a descendant to this one.

 This is a convenience method, such that

 logging.getLogger('abc').getChild('def.ghi')

 is the same as

 logging.getLogger('abc.def.ghi')

 It's useful, for example, when the parent logger is named using
 __name__ rather than a literal string.
 """
 if self.root is not self:
 suffix = '.'.join((self.name, suffix))
 return self.manager.getLogger(suffix)

class RootLogger(Logger):
 """
 A root logger is not that different to any other logger, except that
 it must have a logging level and there is only one instance of it in
 the hierarchy.
 """
 def __init__(self, level):
 """
 Initialize the logger with the name "root".
 """
 Logger.__init__(self, "root", level)

_loggerClass = Logger

class LoggerAdapter(object):
 """
 An adapter for loggers which makes it easier to specify contextual
 information in logging output.
 """

 def __init__(self, logger, extra):
 """
 Initialize the adapter with a logger and a dict-like object which
 provides contextual information. This constructor signature allows
 easy stacking of LoggerAdapters, if so desired.

 You can effectively pass keyword arguments as shown in the
 following example:

 adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
 """
 self.logger = logger
 self.extra = extra

 def process(self, msg, kwargs):
 """
 Process the logging message and keyword arguments passed in to
 a logging call to insert contextual information. You can either
 manipulate the message itself, the keyword args or both. Return
 the message and kwargs modified (or not) to suit your needs.

 Normally, you'll only need to override this one method in a
 LoggerAdapter subclass for your specific needs.
 """
 kwargs["extra"] = self.extra
 return msg, kwargs

 def debug(self, msg, *args, **kwargs):
 """
 Delegate a debug call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.debug(msg, *args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Delegate an info call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.info(msg, *args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Delegate a warning call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.warning(msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 """
 Delegate an error call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.error(msg, *args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Delegate an exception call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 kwargs["exc_info"] = 1
 self.logger.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Delegate a critical call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.critical(msg, *args, **kwargs)

 def log(self, level, msg, *args, **kwargs):
 """
 Delegate a log call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.log(level, msg, *args, **kwargs)

 def isEnabledFor(self, level):
 """
 See if the underlying logger is enabled for the specified level.
 """
 return self.logger.isEnabledFor(level)

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---
Configuration classes and functions
#---

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

def basicConfig(**kwargs):
 """
 Do basic configuration for the logging system.

 This function does nothing if the root logger already has handlers
 configured. It is a convenience method intended for use by simple scripts
 to do one-shot configuration of the logging package.

 The default behaviour is to create a StreamHandler which writes to
 sys.stderr, set a formatter using the BASIC_FORMAT format string, and
 add the handler to the root logger.

 A number of optional keyword arguments may be specified, which can alter
 the default behaviour.

 filename Specifies that a FileHandler be created, using the specified
 filename, rather than a StreamHandler.
 filemode Specifies the mode to open the file, if filename is specified
 (if filemode is unspecified, it defaults to 'a').
 format Use the specified format string for the handler.
 datefmt Use the specified date/time format.
 level Set the root logger level to the specified level.
 stream Use the specified stream to initialize the StreamHandler. Note
 that this argument is incompatible with 'filename' - if both
 are present, 'stream' is ignored.

 Note that you could specify a stream created using open(filename, mode)
 rather than passing the filename and mode in. However, it should be
 remembered that StreamHandler does not close its stream (since it may be
 using sys.stdout or sys.stderr), whereas FileHandler closes its stream
 when the handler is closed.
 """
 # Add thread safety in case someone mistakenly calls
 # basicConfig() from multiple threads
 _acquireLock()
 try:
 if len(root.handlers) == 0:
 filename = kwargs.get("filename")
 if filename:
 mode = kwargs.get("filemode", 'a')
 hdlr = FileHandler(filename, mode)
 else:
 stream = kwargs.get("stream")
 hdlr = StreamHandler(stream)
 fs = kwargs.get("format", BASIC_FORMAT)
 dfs = kwargs.get("datefmt", None)
 fmt = Formatter(fs, dfs)
 hdlr.setFormatter(fmt)
 root.addHandler(hdlr)
 level = kwargs.get("level")
 if level is not None:
 root.setLevel(level)
 finally:
 _releaseLock()

#---
Utility functions at module level.
Basically delegate everything to the root logger.
#---

def getLogger(name=None):
 """
 Return a logger with the specified name, creating it if necessary.

 If no name is specified, return the root logger.
 """
 if name:
 return Logger.manager.getLogger(name)
 else:
 return root

#def getRootLogger():
"""
Return the root logger.
#
Note that getLogger('') now does the same thing, so this function is
deprecated and may disappear in the future.
"""
return root

def critical(msg, *args, **kwargs):
 """
 Log a message with severity 'CRITICAL' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.error(msg, *args, **kwargs)

def exception(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger,
 with exception information.
 """
 kwargs['exc_info'] = 1
 error(msg, *args, **kwargs)

def warning(msg, *args, **kwargs):
 """
 Log a message with severity 'WARNING' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.warning(msg, *args, **kwargs)

warn = warning

def info(msg, *args, **kwargs):
 """
 Log a message with severity 'INFO' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
 """
 Log a message with severity 'DEBUG' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.debug(msg, *args, **kwargs)

[docs]def log(level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.log(level, msg, *args, **kwargs)

def disable(level):
 """
 Disable all logging calls of severity 'level' and below.
 """
 root.manager.disable = level

def shutdown(handlerList=_handlerList):
 """
 Perform any cleanup actions in the logging system (e.g. flushing
 buffers).

 Should be called at application exit.
 """
 for wr in reversed(handlerList[:]):
 #errors might occur, for example, if files are locked
 #we just ignore them if raiseExceptions is not set
 try:
 h = wr()
 if h:
 try:
 h.acquire()
 h.flush()
 h.close()
 except (IOError, ValueError):
 # Ignore errors which might be caused
 # because handlers have been closed but
 # references to them are still around at
 # application exit.
 pass
 finally:
 h.release()
 except:
 if raiseExceptions:
 raise
 #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

Null handler

class NullHandler(Handler):
 """
 This handler does nothing. It's intended to be used to avoid the
 "No handlers could be found for logger XXX" one-off warning. This is
 important for library code, which may contain code to log events. If a user
 of the library does not configure logging, the one-off warning might be
 produced; to avoid this, the library developer simply needs to instantiate
 a NullHandler and add it to the top-level logger of the library module or
 package.
 """
 def handle(self, record):
 pass

 def emit(self, record):
 pass

 def createLock(self):
 self.lock = None

Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
 """
 Implementation of showwarnings which redirects to logging, which will first
 check to see if the file parameter is None. If a file is specified, it will
 delegate to the original warnings implementation of showwarning. Otherwise,
 it will call warnings.formatwarning and will log the resulting string to a
 warnings logger named "py.warnings" with level logging.WARNING.
 """
 if file is not None:
 if _warnings_showwarning is not None:
 _warnings_showwarning(message, category, filename, lineno, file, line)
 else:
 s = warnings.formatwarning(message, category, filename, lineno, line)
 logger = getLogger("py.warnings")
 if not logger.handlers:
 logger.addHandler(NullHandler())
 logger.warning("%s", s)

def captureWarnings(capture):
 """
 If capture is true, redirect all warnings to the logging package.
 If capture is False, ensure that warnings are not redirected to logging
 but to their original destinations.
 """
 global _warnings_showwarning
 if capture:
 if _warnings_showwarning is None:
 _warnings_showwarning = warnings.showwarning
 warnings.showwarning = _showwarning
 else:
 if _warnings_showwarning is not None:
 warnings.showwarning = _warnings_showwarning
 _warnings_showwarning = None

 © Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

_modules/zeroless/zeroless.html

 Navigation

 		
 index

 		
 modules |

 		Zeroless documentation »

 		Module code »

 Source code for zeroless.zeroless

"""
The Zeroless module API.

.. data:: log

A global Logger object. To use it, just add an Handler object
and set an appropriate logging level.
"""

import zmq
import logging

from time import sleep
from copy import deepcopy
from warnings import warn
from functools import partial

log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

def _check_valid_port_range(port):
 if port < 1024 or port > 65535:
 error = 'Port {0} is invalid, choose one between 1024 and 65535'
 error = error.format(port)
 log.error(error)
 raise ValueError(error)

def _check_valid_num_connections(socket_type, num_connections):
 if socket_type == zmq.PAIR and num_connections > 1:
 error = 'A client cannot connect more than once in the PAIR pattern'
 log.error(error)
 raise RuntimeError(error)

def _connect_zmq_sock(sock, ip, port):
 log.info('Connecting to {0} on port {1}'.format(ip, port))
 sock.connect('tcp://' + ip + ':' + str(port))

def _disconnect_zmq_sock(sock, ip, port):
 log.info('Disconnecting from {0} on port {1}'.format(ip, port))

 try:
 sock.disconnect('tcp://' + ip + ':' + str(port))
 except zmq.ZMQError:
 error = 'There was no connection to {0} on port {1}'.format(ip, port)
 log.exception(error)
 raise ValueError(error)

def _bind_zmq_sock(sock, port):
 log.info('Binding on port {0}'.format(port))

 try:
 sock.bind('tcp://*:' + str(port))
 except zmq.ZMQError:
 error = 'Port {0} is already in use'.format(port)
 log.exception(error)
 raise ValueError(error)

def _recv(sock):
 while True:
 frames = sock.recv_multipart()
 log.debug('Receiving: {0}'.format(frames))
 yield frames if len(frames) > 1 else frames[0]

[docs]class Sock:
 def __init__(self):
 pass

 def __sock(self, pattern):
 sock = zmq.Context().instance().socket(pattern)
 self._setup(sock)

 log.info('Ready...')

 return sock

 def __send_function(self, sock, topic=None, embed_topic=False):
 def _send(*data):
 log.debug('Sending: {0}'.format(data))

 try:
 sock.send_multipart(data)
 except TypeError:
 error = 'Data must be bytes, so try again'
 log.exception(error)
 raise TypeError(error)

 if sock.socket_type == zmq.PUB and embed_topic:
 if topic:
 return partial(_send, topic)
 else:
 return partial(_send, b'')

 return _send

 def __recv_generator(self, sock):
 return _recv(sock)

 # PubSub pattern
[docs] def pub(self, topic=b'', embed_topic=False):
 """
 Returns a callable that can be used to transmit a message, with a given
 ``topic``, in a publisher-subscriber fashion. Note that the sender
 function has a ``print`` like signature, with an infinite number of
 arguments. Each one being a part of the complete message.

 :param topic: the topic that will be published to (default=b'')
 :type topic: bytes
 :param embed_topic: set to embed the topic into published messages
 (default=False)
 :type embed_topic bool
 :rtype: function
 """
 if not isinstance(topic, bytes):
 error = 'Topic must be bytes'
 log.error(error)
 raise TypeError(error)

 sock = self.__sock(zmq.PUB)
 return self.__send_function(sock, topic, embed_topic)

[docs] def sub(self, topics=(b'',)):
 """
 Returns an iterable that can be used to iterate over incoming messages,
 that were published with one of the topics specified in ``topics``. Note
 that the iterable returns as many parts as sent by subscribed publishers.

 :param topics: a list of topics to subscribe to (default=b'')
 :type topics: list of bytes
 :rtype: generator
 """
 sock = self.__sock(zmq.SUB)

 for topic in topics:
 if not isinstance(topic, bytes):
 error = 'Topics must be a list of bytes'
 log.error(error)
 raise TypeError(error)
 sock.setsockopt(zmq.SUBSCRIBE, topic)

 return self.__recv_generator(sock)

 # PushPull pattern

[docs] def push(self):
 """
 Returns a callable that can be used to transmit a message in a push-pull
 fashion. Note that the sender function has a ``print`` like signature,
 with an infinite number of arguments. Each one being a part of the
 complete message.

 :rtype: function
 """
 sock = self.__sock(zmq.PUSH)
 return self.__send_function(sock)

[docs] def pull(self):
 """
 Returns an iterable that can be used to iterate over incoming messages,
 that were pushed by a push socket. Note that the iterable returns as
 many parts as sent by pushers.

 :rtype: generator
 """
 sock = self.__sock(zmq.PULL)
 return self.__recv_generator(sock)

 # ReqRep pattern

[docs] def request(self):
 """
 Returns a callable and an iterable respectively. Those can be used to
 both transmit a message and/or iterate over incoming messages,
 that were replied by a reply socket. Note that the iterable returns
 as many parts as sent by repliers. Also, the sender function has a
 ``print`` like signature, with an infinite number of arguments. Each one
 being a part of the complete message.

 :rtype: (function, generator)
 """
 sock = self.__sock(zmq.REQ)
 return self.__send_function(sock), self.__recv_generator(sock)

[docs] def reply(self):
 """
 Returns a callable and an iterable respectively. Those can be used to
 both transmit a message and/or iterate over incoming messages,
 that were requested by a request socket. Note that the iterable returns
 as many parts as sent by requesters. Also, the sender function has a
 ``print`` like signature, with an infinite number of arguments. Each one
 being a part of the complete message.

 :rtype: (function, generator)
 """
 sock = self.__sock(zmq.REP)
 return self.__send_function(sock), self.__recv_generator(sock)

 # Pair pattern

[docs] def pair(self):
 """
 Returns a callable and an iterable respectively. Those can be used to
 both transmit a message and/or iterate over incoming messages, that were
 sent by a pair socket. Note that the iterable returns as many parts as
 sent by a pair. Also, the sender function has a ``print`` like signature,
 with an infinite number of arguments. Each one being a part of the
 complete message.

 :rtype: (function, generator)
 """
 sock = self.__sock(zmq.PAIR)
 return self.__send_function(sock), self.__recv_generator(sock)

 def _setup(self, sock):
 raise NotImplementedError()

[docs]class Client(Sock):
 """
 A client that can connect to a set of servers.
 """
 def __init__(self):
 """
 Constructor of the Client.
 """
 self._sock = None
 self._is_ready = False
 self._addresses = []

 Sock.__init__(self)

 def _setup(self, sock):
 self._sock = sock
 self._is_ready = True

 _check_valid_num_connections(self._sock.socket_type,
 len(self._addresses))

 for ip, port in self._addresses:
 _connect_zmq_sock(self._sock, ip, port)

 @property
 def addresses(self):
 """
 Returns a tuple containing all the connected addresses. Each address
 is a tuple with an ip address and a port.

 :rtype: (addresses)
 """
 return tuple(self._addresses)

[docs] def connect(self, ip, port):
 """
 Connects to a server at the specified ip and port.

 :param ip: an IP address
 :type ip: str or unicode
 :param port: port number from 1024 up to 65535
 :type port: int
 """
 _check_valid_port_range(port)

 address = (ip, port)

 if address in self._addresses:
 error = 'Already connected to {0} on port {1}'.format(ip, port)
 log.exception(error)
 raise ValueError(error)

 self._addresses.append(address)

 if self._is_ready:
 _check_valid_num_connections(self._sock.socket_type,
 len(self._addresses))

 _connect_zmq_sock(self._sock, ip, port)

[docs] def connect_local(self, port):
 """
 Connects to a server in localhost at the specified port.

 :param port: port number from 1024 up to 65535
 :type port: int
 """
 self.connect('127.0.0.1', port)

[docs] def disconnect(self, ip, port):
 """
 Disconnects from a server at the specified ip and port.

 :param ip: an IP address
 :type ip: str or unicode
 :param port: port number from 1024 up to 65535
 :type port: int
 """
 _check_valid_port_range(port)
 address = (ip, port)

 try:
 self._addresses.remove(address)
 except ValueError:
 error = 'There was no connection to {0} on port {1}'.format(ip, port)
 log.exception(error)
 raise ValueError(error)

 if self._is_ready:
 _disconnect_zmq_sock(self._sock, ip, port)

[docs] def disconnect_local(self, port):
 """
 Disconnects from a server in localhost at the specified port.

 :param port: port number from 1024 up to 65535
 :type port: int
 """
 self.disconnect('127.0.0.1', port)

[docs] def disconnect_all(self):
 """
 Disconnects from all connected servers.
 """
 addresses = deepcopy(self._addresses)

 for ip, port in addresses:
 self.disconnect(ip, port)

[docs]class Server(Sock):
 """
 A server that clients can connect to.
 """
 def __init__(self, port):
 """
 Constructor of the Server.

 :param port: port number from 1024 up to 65535
 :type port: int
 """
 _check_valid_port_range(port)
 self._port = port

 Sock.__init__(self)

 def _setup(self, sock):
 if sock.socket_type == zmq.SUB:
 warning = 'SUB sockets that bind will not get any message before '
 warning += 'they first ask for via the provided generator, so '
 warning += 'prefer to bind PUB sockets if missing some messages '
 warning += 'is not an option'
 warn(warning)

 _bind_zmq_sock(sock, self._port)

 @property
 def port(self):
 """
 Returns the port.

 :rtype: int
 """
 return self._port

 © Copyright 2014, Lucas Lira Gomes x8lucas8x@gmail.com.
 Created using Sphinx 1.3.1.

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

