python-wordpress-xmirpc

Documentation
Release 2.3

Max Cutler

December 25, 2015

Contents

1 Getting Started

1.1 OVEIVIEW . . v v v e o e e e e e e e e e e e e e

1.2 Examples o o o e e e e e e e e e e e e
2 Reference

2.1 CHENt o o e e e e e

2.2 WordPress ObJects o v v v it e e e e e e e e e e e e e e e e e e

23 Methods e e e e
3 Internals/Development

3.1 History/CHANGELOG e e e e e e s e e e e

3.2 Testing o e e e e e e e e e e e e

4 Indices and tables

Python Module Index

11
11
12
16

23
23
25

27

29

python-wordpress-xmirpc Documentation, Release 2.3

Python library to interface with a WordPress blog’s XML-RPC APIL.

An implementation of the standard WordPress API methods is provided, but the library is designed for easy integration
with custom XML-RPC API methods provided by plugins.

A set of classes are provided that wrap the standard WordPress data types (e.g., Blog, Post, User). The provided
method implementations return these objects when possible.

Note: In Wordpress 3.5+, the XML-RPC API is enabled by default and cannot be disabled. In Wordpress 0.70-3.42,
the XML-RPC API is disabled by default. To enable it, go to Settings->Writing->Remote Publishing and check the

box for XML-RPC.

Warning: python-wordpress-xmlrpc 2.0+ is not fully backwards-compatible with 1.x versions of the library.

Contents 1

http://codex.wordpress.org/XML-RPC_Support
http://codex.wordpress.org/XML-RPC_WordPress_API

python-wordpress-xmirpc Documentation, Release 2.3

2 Contents

CHAPTER 1

Getting Started

1.1 Overview

1.1.1 Installation

1. Verify you meet the following requirements:
* WordPress 3.4+ OR WordPress 3.0-3.3 with the XML-RPC Modernization Plugin.
* Python 2.6+ OR Python 3.x

2. Install from PyPI wusing easy_install python-wordpress-xmlrpc or pip install
python-wordpress—xmlrpc.

1.1.2 Quick Start

Create an instance of the Client class with the URL of the WordPress XML-RPC endpoint and user credentials.
Then pass an Xm1rpcMethod object into its call method to execute the remote call and return the result.

>>> from wordpress_xmlrpc import Client, WordPressPost
>>> from wordpress_xmlrpc.methods.posts import GetPosts, NewPost
>>> from wordpress_xmlrpc.methods.users import GetUserInfo

>>> wp = Client ('http://mysite.wordpress.com/xmlrpc.php', 'username', 'password')
>>> wp.call (GetPosts())
[<WordPressPost: hello-world (id=1l)>]

>>> wp.call (GetUserInfo())
<WordPressUser: max>

>>> post = WordPressPost ()

>>> post.title = "My new title’

>>> post.content = 'This is the body of my new post.'
>>> post.terms_names = {

>>> 'post_tag': ['test', 'firstpost'],

>>> 'category': ['Introductions', 'Tests']

>>> |}

>>> wp.call (NewPost (post))

Notice that properties of WordPress objects are accessed directly, and not through the definition attribute
defined in the source code.

http://wordpress.org/extend/plugins/xml-rpc-modernization/
http://pypi.python.org/pypi/python-wordpress-xmlrpc

python-wordpress-xmirpc Documentation, Release 2.3

When a WordPress object is used as a method parameter, its st ruct parameter is automatically extracted for con-
sumption by XML-RPC. However, if you use an object in a list or other embedded data structure used as a parameter,
be sure to use obj.struct or else WordPress will not receive data in the format it expects.

Custom XML-RPC Methods

To interface with a non-standard XML-RPC method (such as one added by a plugin), you must sim-
ply extend wordpress_xmlrpc.XmlrpcMethod or one of its subclasses (AnonymousMethod or
AuthenticatedMethod).

The XmlrpcMethod class provides a number of properties which you can override to modify the behavior of the
method call.

Sample class to call a custom method added by a ficticious plugin:

from wordpress_xmlrpc import AuthenticatedMethod

class MyCustomMethod (AuthenticatedMethod) :
method_name = 'custom.MyMethod'
method_args = ('argl', 'arg2')

See Custom XML-RPC Methods for more details.

1.2 Examples

1.2.1 Working with Posts

python-wordpress-xmlrpc supports all registered WordPress post types.

Behind the scenes in WordPress, all post types are based on a single “post” database table, and all of the functionality
is exposed through the posts methods in the XML-RPC APIL

For consistency, the same approach is adopted by python-wordpress-xmlrpc.

Note: Posts will be sent as drafts by default. If you want to publish a post, set post.post_status = ‘publish’.

Normal Posts

First, let’s see how to retrieve normal WordPress posts:

from wordpress_xmlrpc import Client
from wordpress_xmlrpc.methods import posts

client = Client(...)
posts = client.call (posts.GetPosts())
posts == [WordPressPost, WordPressPost, ...]

And here’s how to create and edit a new post:

from wordpress_xmlrpc import WordPressPost

post = WordPressPost ()
post.title = 'My post'
post.content = 'This is a wonderful blog post about XML-RPC.'

4 Chapter 1. Getting Started

http://codex.wordpress.org/Post_Types
http://codex.wordpress.org/XML-RPC_WordPress_API/Posts

python-wordpress-xmirpc Documentation, Release 2.3

post.id = client.call (posts.NewPost (post))

whoops, I forgot to publish it!
post.post_status = 'publish'
client.call (posts.EditPost (post.id, post))

Pages

Out of the box, WordPress supports a post type called “page” for static non-blog pages on a WordPress site. Let’s see
how to do the same actions for pages:

from wordpress_xmlrpc import WordPressPage

pages = client.call (posts.GetPosts ({'post_type': 'page'}, results_class=WordPressPage))
pages == [WordPressPage, WordPressPage, ...]

Note two important differences:
1. The £ilter parameter’s post_type option is used to limit the query to objects of the desired post type.

2. The constructor was passd a results_class keyword argument that told it what class to use to interpret the
response values.

And here’s how to create and edit a page:

page = WordPressPage ()

page.title = '"About Me'
page.content = 'I am an aspiring WordPress and Python developer.'
page.post_status = 'publish'

page.id = client.call (posts.NewPost (page))

no longer aspiring
page.content = 'I am a WordPress and Python developer.'
client.call (posts.EditPost (page.id, page))

Custom Post Types
While the pages example used its own results_class, that was a unique situation because pages are special in
WordPress and have fields directly in the posts table.

Most custom post types instead use post custom fields to store their additional information, and custom fields are
already exposed on WordPressPost.

For this example, let’s assume that your plugin or theme has added an acme_product custom post type to Word-
Press:

first, let's find some products
products = client.call (posts.GetPosts ({'post_type': 'acme_product', 'number': 100}))

calculate the average price of these 100 widgets
sum = 0
for product in products:
note: product is a WordPressPost object
for custom_field in product.custom_fields:

if custom_field['key'] == 'price':
sum = sum + custom_field['value']
break

1.2. Examples 5

http://codex.wordpress.org/Custom_Fields

python-wordpress-xmirpc Documentation, Release 2.3

average = sum / len (products)

now let's create a new product

widget = WordPressPost ()
widget.post_type = 'acme_product'
widget.title = 'Widget'
widget.content = 'This is the widget's description.'
widget.custom_fields = []
widget.custom_fields.append ({
'key': 'price',
'value': 2
1)
widget.id = client.call (posts.NewPost (widget))

Advanced Querying

By default, wordpress_xmlrpc.methods.posts.GetPosts returns 10 posts in reverse-chronological order
(based on their publish date). However, using the £i1ter parameter, posts can be queried in other ways.

Result Paging

If you want to iterate through all posts in a WordPress blog, a server-friendly technique is to use result paging using

the number and of fset options:

get pages in batches of 20

break
for post in posts:
do_something (post)
offset + increment

no more posts returned

offset =

offset = 0

increment = 20

while True:
posts = client.call (posts.GetPosts ({ ' 'number':
if len(posts) == 0:

increment, 'offset': offset}))

Ordering

If you don’t want posts sorted by post_date, then you can use orderby and order options to change that

behavior.

For example, in sync scenarios you might want to look for posts by modification date instead of publish date:

’recently_modified = client.call (posts.GetPosts ({'orderby': 'post_modified', 'number': 1¢O}))
Or if you want your ACME products sorted alphabetically:
‘products = client.call (posts.GetPosts ({'post_type': 'acme_product', 'orderby': 'title’,"order':

Post Status

Another common scenario is that you only want published posts:

Chapter 1. Getting Started

'AS(

python-wordpress-xmirpc Documentation, Release 2.3

‘published_posts = client.call (posts.GetPosts ({'post_status': 'publish'})) ‘
Or only draft posts:
‘draft_posts = client.call (posts.GetPosts ({'post_status': 'draft'})) ‘

You can find the set of valid post_status by using the wordpress_xmlrpc.methods.posts.GetPostStatusList
method.

1.2.2 Working with Taxonomies

Taxonomies in WordPress are a means of classifying content. Out of the box, WordPress has two primary taxonomies,
categories (category) and tags (post_tag). Plugins and themes can specify additional custom taxonomies.

Taxonomies

To retrieve a list of taxonomies for a WordPress blog, use wordpress_xmlrpc.methods.taxonomies.Get Taxonomies:

from wordpress_xmlrpc import Client
from wordpress_xmlrpc.methods import taxonomies

client = Client(...)
taxes = client.call (taxonomies.GetTaxonomies ())
taxes == [WordPressTaxonomy, WordPressTaxonomy, ...]

An individual taxonomy can be retrieved by name:

category_tax = client.call (taxonomies.GetTaxonomy ('category'))

Note: Taxonomies can only be created and modified within WordPress using hooks in plugins or themes. The
XML-RPC API permits only reading of taxonomy metadata.

Terms

Terms are the individual entries in a taxonomy.

For example, to retrieve all blog categories:

categories = client.call (taxonomies.GetTerms ('category'))

And to create a new tag:

from wordpress_xmlrpc import WordPressTerm

tag = WordPressTerm ()

tag.taxonomies = 'post_tag'

tag.name = 'My New Tag'

tag.id = client.call (taxonomies.NewTerm(tag))

Or to create a child category:

parent_cat = client.call (taxonomies.GetTerm('category', 3))
child _cat = WordPressTerm()
child_cat.taxonomy = 'category'

1.2. Examples 7

http://codex.wordpress.org/Taxonomies

python-wordpress-xmirpc Documentation, Release 2.3

child_cat.parent = parent_cat.id
child_cat.name = 'My Child Category'
child _cat.id = client.call (taxonomies.NewTerm (child_cat))

Terms and Posts

Terms are of little use on their own, they must actually be assigned to posts.

If you already have WordPressTerm objects, use terms property of WordPressPost:

tags = client.call (taxonomies.GetTerms ('post_tag', {...}))

post = WordPressPost ()

post.title = 'Post with Tags'
post.content = "...'
post.terms = tags

post.id = client.call (posts.NewPost (post))

If you want to add a category to an existing post:

category = client.call (taxonomies.GetTerm('category', 3))
post = client.call (posts.GetPost (5))

post.terms.append (category)
client.call (posts.EditPost (post.id, post))

But what if you have not yet retrieved the terms or want to create new terms? For that, you can use the terms_names
property of WordPressPost:

post = WordPressPost ()

post.title = 'Post with new tags'
post.content = "'...'
post.terms_names = {
'post_tag': ['tagA', 'another tag'l],
'category': ['My Child Category'l],

}
post.id = client.call (posts.NewPost (post))

Note that terms_names is a dictionary with taxonomy names as keys and list of strings as values. WordPress
will look for existing terms with these names or else create new ones. Be careful with hierarchical taxonomies like
category because of potential name ambiguities (multiple terms can have the same name if they have different
parents); if WordPress detects ambiguity, it will throw an error and ask that you use terms instead with a proper
WordPressTerm.

Advanced Querying

By Count

To find the 20 most-used tags:

tags = client.call (taxonomies.GetTerms ('post_tag', {'number': 20, 'orderby': 'count', '(

for tag in tags:
print tag.name, tag.count

8 Chapter 1. Getting Started

rder':

'DESC

python-wordpress-xmlrpc Documentation, Release 2.3

Searching/Autocomplete

To perform case-insensitive searching against term names, use the search option for filter:

user_input = 'wor' # e.g., from UI textbox

tags = client.call (taxonomies.GetTerms ('post_tag', {'search': user_input, 'orderby':
suggestions = [tag.name for tag in tags]

suggestions == ['word', 'WordPress', 'world']

'c

1.2.3 Working with Media

Uploading a File

The wordpress_xmlrpc.methods.media.UploadFile method can be used to upload new files to a Word-

Press blog:

from wordpress_xmlrpc import Client, WordPressPost
from wordpress_xmlrpc.compat import xmlrpc_client
from wordpress_xmlrpc.methods import media, posts

client = Client(...)

set to the path to your file
filename = '/path/to/my/picture.jpg’

prepare metadata
data = {
'name': 'picture.jpg',
'type': 'image/jpeg', # mimetype

read the binary file and let the XMLRPC library encode it into baseb64
with open(filename, 'rb') as img:

data['bits'] = xmlrpc_client.Binary (img.read())
response = client.call (media.UploadFile (data))
response == {
'id': 6,
'file': 'picture. jpg’
'url': 'http://www.example.com/wp—-content/uploads/2012/04/16/picture. jpg',
"type': 'image/jpeg’,
}

attachment_id = response['id']

This newly-uploaded attachment can then be set as the thumbnail for a post:

post = WordPressPost ()

post.title = 'Picture of the Day'
post.content = 'What a lovely picture today!'
post.post_status = 'publish'

post.thumbnail = attachment_id
post.id = client.call (posts.NewPost (post))

Note: If you do not know the mimetype at development time, you can use the mimetypes library in Python:

1.2. Examples

unt',

'numbe:

http://python.readthedocs.org/en/latest/library/mimetypes.html#module-mimetypes

python-wordpress-xmirpc Documentation, Release 2.3

‘data['type'] = mimetypes.read_mime_types (filename) or mimetypes.guess_type (filename) [0]

Querying

Use wordpress_xmlrpc.methods.media.GetMedialLibrary and wordpress_xmlrpc.methods.media.GetMedi.
to retrieve information about attachments.

1.2.4 Custom XML-RPC Methods

See the WordPress Codex for details on how to write a WordPress plugin that adds custom XML-RPC method to
WordPress.

The following examples will use the sample methods from that codex page.
Anonymous Methods

To use the mynamespace.subtractTwoNumbers method, «create a class derived from
wordpress_xmlrpc.AnonymousMethod:

from wordpress xmlrpc import AnonymousMethod

class SubtractTwoNumbers (AnonymousMethod) :
method_name = 'mynamespace.subtractTwoNumbers'
method_args = ('numberl', 'number2')

This class can then be used with CI1ient.call ():

from wordpress_xmlrpc import Client

client = Client ('http://www.example.com/xmlrpc.php', 'harrietsmith', 'mypassword')
difference = client.call (SubtractTwoNumbers (10, 5))
difference == 5

Authenticated Methods

If your custom authenticated method follows the common method (blog_id, username, password,
xargs) structure, then you can use wordpress_xmlrpc.AuthenticatedMethod:

from wordpress_xmlrpc import AuthenticatedMethod

class GetUserID (AuthenticatedMethod) :
method_name = 'mynamespace.getUserID'

Again, this class can then be used with Client.call ():

user_1id = client.call (GetUserID())
user_id ==

Note that you do not have to supply blog_id, username, or password to the class constructor, since these
are automatically added by AuthenticatedMethod. Custom method classes only require arguments specified by
method_args and the optional optional_args.

10 Chapter 1. Getting Started

http://codex.wordpress.org/XML-RPC_Extending

CHAPTER 2

Reference

2.1 Client

The C1ient class is the gateway to your WordPress blog’s XML-RPC interface.

Once initialized with your blog URL and user credentials, the client object is ready to execute XML-RPC methods
against your WordPress blog using its C1ient.call () method.

2.1.1 Client

class Client (url, username, password [, blog_id, transport])
Parameters
* url — URL of the blog’s XML-RPC endpoint (e.g., http://www.example.com/xmlrpc.php)
* username — Username of a valid user account on the WordPress blog
» password — The password for this user account

* blog_id - The blog’s ID (note: WordPress ignores this value, but it is retained for back-
wards compatibility)

* transport — Custom XML-RPC transport implementation. See Python2 or Python3 doc-
umentation.

call (method)

Parameters method — wordpress xmlrpc.XmlrpcMethod-derived class

2.1.2 XML-RPC Method Classes

Library to interface with the WordPress XML-RPC API.
See README for usage instructions.

class wordpress_xmlrpc.XmlrpcMethod
Base class for XML-RPC methods.

Child classes can override methods and properties to customize behavior:
Properties:

* method_name: XML-RPC method name (e.g., ‘wp.getUserInfo’)

11

http://www.example.com/xmlrpc.php
https://docs.python.org/2/library/xmlrpclib.html#example-of-client-usage
https://docs.python.org/3/library/xmlrpc.client.html#example-of-client-usage

python-wordpress-xmirpc Documentation, Release 2.3

» method_args: Tuple of method-specific required parameters
* optional_args: Tuple of method-specific optional parameters
* results_class: Python class which will convert an XML-RPC response dict into an object

default_args (client)
Builds set of method-non-specific arguments.

get_args (client)
Builds final set of XML-RPC method arguments based on the method’s arguments, any default arguments,
and their defined respective ordering.

process_result (raw_result)
Performs actions on the raw result from the XML-RPC response.

If a results_class is defined, the response will be converted into one or more object instances of that class.

class wordpress_xmlrpc.AnonymousMethod
An XML-RPC method for which no authentication is required.

class wordpress_xmlrpc.AuthenticatedMethod
An XML-RPC method for which user authentication is required.

Blog ID, username and password details will be passed from the Client instance to the method call.

2.2 WordPress Objects

2.2.1 WordPressPost

class WordPressPost
Represents a post, page, or other registered custom post type in WordPress.

eid

euser

edate (datetime)
edate_modified (datetime)
eslug

*post_status

otitle

econtent

eexcerpt

elink

ecomment_status
*ping_status

sterms (list of WordPressTerms)
sterms_names (dict)
ecustom_fields (dict)

eenclosure (dict)

12 Chapter 2. Reference

python-wordpress-xmirpc Documentation, Release 2.3

epassword
epost_format
ethumbnail
esticky

*post_type

WordPressPage
class WordPressPage
Derived from WordPressPost, represents a WordPress page. Additional fields:
stemplate
eparent_id
eparent_title
eorder (int)

*post_type = ‘page’

2.2.2 WordPressPostType

class WordPressPostType
Metadata for registered WordPress post type.

ename

elabel

elabels (dict)
ecap (dict)
ehierarchical
emenu_icon
*menu_position
*public
eshow_in_menu
staxonomies (list)
is_builtin

esupports (list)

2.2.3 WordPressTaxonomy
class WordPressTaxonomy
Metadata for registered WordPress taxonomy.
*name

elabel

2.2. WordPress Objects 13

python-wordpress-xmirpc Documentation, Release 2.3

elabels (dict)
ehierarchical
*public
eshow_ui
ecap (dict)
*is_builtin

eobject_type (list)

2.2.4 WordPressTerm

class WordPressTerm

Represents a term (e.g., tag or category) in a WordPress taxonomy.

*id

egroup
etaxonomy
etaxonomy_id
*name

eslug
edescription
eparent

ecount (int)

2.2.5 WordPressBlog

class WordPressBlog

Represents a WordPress blog/site.

*id
ename
eurl
exmlrpc

eis_admin (bool)

2.2.6 WordPressAuthor

class WordPressAuthor

Minimal representation of a WordPress post author.

*id
euser_login

edisplay_name

14

Chapter 2. Reference

python-wordpress-xmirpc Documentation, Release 2.3

2.2.7 WordPressUser

class WordPressUser
Basic representation of a WordPress user.

eid
eusername
epassword
eroles
enickname
eurl
*first_name
eJast_name
eregistered
*bio

eemail
enicename

edisplay_name

2.2.8 WordPressComment

class WordPressComment
Represents a WordPress comment.

eid

euser

*post
epost_title
eparent
edate_created (datetime)
estatus
econtent

elink

eauthor
eauthor_url
eauthor_email

eauthor_ip

2.2. WordPress Objects 15

python-wordpress-xmirpc Documentation, Release 2.3

2.2.9 WordPressMedia

class WordPressMedia
Represents a WordPress post media attachment.

*id

eparent

otitle

edescription

ecaption

edate_created (datetime)
elink

ethumbnail

emetadata

2.2.10 WordPressOption

class WordPressOption
Represents a WordPress blog setting/option.

ename
edescription
evalue

eread_only (bool)

2.3 Methods

See Examples for guidance on how to use the following method classes.

2.3.1 methods.posts

class wordpress_xmlrpc.methods.posts.GetPosts ([ﬁlter,ﬁelds])
Retrieve posts from the blog.

Parameters:
filter: optional dict of filters:
* number
* offset
* orderby
* order: ‘ASC’ or ‘DESC’
* post_type: Defaults to ‘post’

* post_status

16 Chapter 2. Reference

python-wordpress-xmirpc Documentation, Release 2.3

Returns: list of WordPressPost instances.

class wordpress_xmlrpc.methods.posts.GetPost (post_id[,ﬁelds])
Retrieve an individual blog post.

Parameters: post_id: ID of the blog post to retrieve.
Returns: WordPressPost instance.

class wordpress_xmlrpc.methods.posts.NewPost (content)
Create a new post on the blog.

Parameters: content: A WordPressPost instance with at least the title and content values set.
Returns: ID of the newly-created blog post (an integer).

class wordpress_xmlrpc.methods.posts.EditPost (post_id, content)
Edit an existing blog post.

Parameters: post_id: ID of the blog post to edit. content: A WordPressPost instance with the new values
for the blog post.

Returns: True on successful edit.

class wordpress_xmlrpc.methods.posts.DeletePost (post_id)
Delete a blog post.

Parameters: post_id: ID of the blog post to delete.
Returns: True on successful deletion.

class wordpress_xmlrpc.methods.posts.GetPostStatusList
Retrieve the set of possible blog post statuses (e.g., “draft,” “private,” “publish”).

Parameters: None
Returns: dict of values and their pretty names.

Example:

>>> client.call (GetPostStatusList ())

{'draft': 'Draft', 'private': 'Private', 'pending': 'Pending Review',

'publish'|:

class wordpress_xmlrpc.methods.posts.GetPostFormats
Retrieve the set of post formats used by the blog.

Parameters: None
Returns: dict containing a dict of all blog post formats (all) and a list of formats supported by the theme.

Example:

>>> client.call (GetPostFormats())
{'all': {'status': 'Status', 'quote': 'Quote',
'supported': ['aside', 'link', 'gallery', 'status',

'image': 'aside': 'Asid

'quote’,

'Image’,
'image']}

class wordpress_xmlrpc.methods.posts.GetPostTypes
Retrieve a list of post types used by the blog.

Parameters: None
Returns: dict with names as keys and WordPressPost Type instances as values.

class wordpress_xmlrpc.methods.posts.GetPostType (post_type)
Retrieve an individual blog post type.

Parameters: post_type: Name of the blog post type to retrieve.

2.3. Methods 17

v
€y

'Published’

'standarc

python-wordpress-xmirpc Documentation, Release 2.3

Returns: WordPressPost Type instance.

2.3.2 methods.pages

class wordpress_xmlrpc.methods.pages.GetPageStatusList
Retrieve the set of possible blog page statuses (e.g., “draft,” “private,” “publish”).
Parameters: None
Returns: dict of values and their pretty names.

Example:

>>> client.call (GetPageStatusList ())

{'draft': 'Draft', 'private': 'Private', 'publish': 'Published'}

class wordpress_xmlrpc.methods.pages.GetPageTemplates
Retrieve the list of blog templates.

Parameters: None
Returns: dict of values and their paths.

Example:

>>> client.call (GetPageTemplates())

{'Default': 'default', 'Sidebar Template': 'sidebar-page.php',

'Showcase Templg

2.3.3 methods.taxonomies

class wordpress_xmlrpc.methods.taxonomies.GetTaxonomies
Retrieve the list of available taxonomies for the blog.
Parameters: None
Returns: list of WordPressTaxonomy instances.

class wordpress_xmlrpc.methods.taxonomies .GetTaxonomy (taxonomy)
Retrieve an individual taxonomy.

Parameters: taxonomy: name of the taxonomy
Returns: WordPressTaxonomy instance.

class wordpress_xmlrpc.methods.taxonomies.GetTerms (taxonomy[,ﬁlter])
Retrieve the list of available terms for a taxonomy.

Parameters: taxonomy: name of the taxonomy
filter: optional dict of filters:

* number
* offset
* orderby
* order: ‘ASC’ or ‘DESC’
* hide_empty: Whether to return terms with count==
* search: Case-insensitive search on term names

Returns: list of WordPressTerm instances.

18 Chapter 2. Reference

te':

'showcas

python-wordpress-xmirpc Documentation, Release 2.3

class wordpress_xmlrpc.methods.taxonomies .GetTerm (taxonomy, term_id)
Retrieve an individual term.

Parameters: raxonomy: name of the taxonomy
term_id: ID of the term
Returns: WordPressTerm instance.

class wordpress_xmlrpc.methods.taxonomies .NewTerm (term)
Create new term.

Parameters: term: instance of WordPressTerm
Returns: ID of newly-created term (an integer).

class wordpress_xmlrpc.methods.taxonomies .EditTerm (term_id, term)
Edit an existing term.

Parameters: ferm_id: 1D of the term to edit.
term: A WordPressTerm instance with the new values for the term.
Returns: True on successful edit.

class wordpress_xmlrpc.methods.taxonomies.DeleteTerm (taxonomy, term_id)
Delete a term.

Parameters: taxonomy: name of the taxonomy
term_id: ID of the term to delete.

Returns: True on successful deletion.

2.3.4 methods.comments
class wordpress_xmlrpc.methods.comments.GetComments (filter)
Gets a set of comments for a post.
Parameters:
filter: a dict with the following values:
* post_id: the id of the post to retrieve comments for
* status: type of comments of comments to retrieve (optional, defaults to ‘approve’)
* number: number of comments to retrieve (optional, defaults to 10)
* offset: retrieval offset (optional, defaults to 0)
Returns: list of WordPressComment instances.

class wordpress_xmlrpc.methods.comments.GetComment (comment_id)
Retrieve an individual comment.

Parameters: comment_id: ID of the comment to retrieve.
Returns: WordPressPost instance.

class wordpress_xmlrpc.methods.comments.NewComment (post_id, comment)
Create a new comment on a post.

Parameters: post_id: The id of the post to add a comment to. comment: A WordPressComment instance
with at least the content value set.

Returns: ID of the newly-created comment (an integer).

2.3. Methods 19

python-wordpress-xmirpc Documentation, Release 2.3

class wordpress_xmlrpc.methods.comments.NewAnonymousComment (post_id, comment)
Create a new comment on a post without authenticating.

NOTE: Requires support on the blog by setting the following filter in a plugin or theme:

add_filter(‘xmlrpc_allow_anonymous_comments’, ‘__return_true’);

Parameters: post_id: The id of the post to add a comment to. comment: A WordPressComment instance

with at least the content value set.

Returns: ID of the newly-created comment (an integer).

class wordpress_xmlrpc.methods.comments .EditComment (comment_id, comment)
Edit an existing comment.

Parameters: comment_id: The id of the comment to edit. comment: A WordPressComment instance with

at least the content value set.
Returns: True on successful edit.

class wordpress_xmlrpc.methods.comments.DeleteComment (commend_id)
Delete an existing comment.

Parameters: comment_id: The id of the comment to be deleted.
Returns: True on successful deletion.

class wordpress_xmlrpc.methods.comments.GetCommentStatusList
Retrieve the set of possible blog comment statuses (e.g., “approve,” “hold,” “spam”).

Parameters: None
Returns: dict of values and their pretty names.

Example:

>>> client.call (GetCommentStatusList ())
{'hold': 'Unapproved', 'approve': 'Approved',6 'spam': 'Spam'}

class wordpress_xmlrpc.methods.comments .GetCommentCount (post_id)
Retrieve comment count for a specific post.

Parameters: post_id: The id of the post to retrieve comment count for.
Returns: dict of comment counts for the post divided by comment status.

Example:

>>> client.call (GetCommentCount (1))

{'awaiting_moderation': '2', 'total_ comments': 23, 'approved': '18', 'spam':

3}

2.3.5 methods.users

class wordpress_xmlrpc.methods.users.GetUser (user_id[,ﬁelds])
Retrieve an individual user.

Parameters: user_id: ID of the user fields: (optional) list of fields to return. Specific fields, or groups ‘basic’

or ‘all’.
Returns: WordPressUser instance.

class wordpress_xmlrpc.methods.users.GetUsers ([ﬁlter,ﬁelds])
Retrieve list of users in the blog.

20 Chapter 2. Reference

python-wordpress-xmirpc Documentation, Release 2.3

Parameters:
filter: optional dict of filters:
* number
* offset
* role
fields: optional list of fields to return. Specific fields, or groups ‘basic’ or ‘all’.
Returns: list of WordPressUser instances.

class wordpress_xmlrpc.methods.users.GetProfile
Retrieve information about the connected user.

Parameters: None

Returns: instance of WordPressUser representing the user whose credentials are being used with the XML-
RPC APL

class wordpress_xmlrpc.methods.users.EditProfile (user)
Edit profile fields of the connected user.

Parameters: user: WordPressUser instance.
Returns: True on successful edit.

class wordpress_xmlrpc.methods.users.GetUsersBlogs
Retrieve list of blogs that this user belongs to.

Parameters: None
Returns: list of WordPressBl1og instances.

class wordpress_xmlrpc.methods.users.GetAuthors
Retrieve list of authors in the blog.

Parameters: None

Returns: list of WordPressAuthor instances.

2.3.6 methods.media

class wordpress_xmlrpc.methods.media.GetMediaLibrary ([ﬁlter])
Retrieve filtered list of media library items.

Parameters:
filter: dict with optional keys:
* number: number of media items to retrieve
* offset: query offset

* parent_id: ID of post the media item is attached to. Use empty string (default) to show all me-
dia items. Use 0 to show unattached media items.

» mime_type: file mime-type to filter by (e.g., ‘image/jpeg’)
Returns: list of WordPressMedia instances.

class wordpress_xmlrpc.methods.media.GetMediaItem (attachmend_id)
Retrieve an individual media item.

2.3. Methods 21

python-wordpress-xmirpc Documentation, Release 2.3

Parameters: attachment_id: ID of the media item.
Returns: WordPressMedia instance.

class wordpress_xmlrpc.methods.media.UploadFile (data)
Upload a file to the blog.

Note: the file is not attached to or inserted into any blog posts.
Parameters:
data: dict with three items:
* name: filename
* type: MIME-type of the file
* bits: base-64 encoded contents of the file. See xmlrpclib.Binary()
* overwrite (optional): flag to override an existing file with this name

Returns: dict with keys id, file (filename), ur! (public URL), and type (MIME-type).

2.3.7 methods.options

class wordpress_xmlrpc.methods.options.GetOptions (options)
Retrieve list of blog options.

Parameters: options: list of option names to retrieve; if empty, all options will be retrieved

Returns: list of WordPressOpt ion instances.

class wordpress_xmlrpc.methods.options.SetOptions (options)
Update the value of an existing blog option.

Parameters: options: dict of key/value pairs

Returns: list of WordPressOpt ion instances representing the updated options.

2.3.8 methods.demo

class wordpress_xmlrpc.methods.demo.SayHello

class wordpress_xmlrpc.methods.demo .AddTwoNumbers (numberl, number2)

22

Chapter 2. Reference

CHAPTER 3

Internals/Development

3.1 History/CHANGELOG

3.1.1 2.3

(June 29, 2014)
* Allow custom transports for XML-RPC connections.

Fix JPEG file MIME-type.

 Import media methods correctly.
* Fix ping_status field definition.
» Workaround a bug encountered when fetching old draft posts (#40, props strycore).

¢ Fixed some documentation bugs.

3.1.2 2.2

(December 2, 2012)
* Add wp.newComment variant for anonymous comments.
¢ Added support for user methods.
* Added support for post revisions.
¢ Fixed comment date_created field definition.

 Better unicode string handling.

3.1.3 2.1

(May 12, 2012)
* Added missing import that was causing failures during exception handling.
» Updated fields to match changes in WordPress 3.4 between Beta 1 and RC1.

¢ Fixed some documentation bugs.

23

python-wordpress-xmirpc Documentation, Release 2.3

3.1.4 2.0

(April 16, 2012)
* Major rewrite to support new XML-RPC features in WordPress 3.4.

Rewrote WordPressPost and methods.posts module.

Removed CRUD methods for pages.

Added WordPressTaxonomy and WordPressTerm classes.

Added methods .taxonomies module.

Removed WordPressCategory and WordPressTag classes.

Removed methods.categories module.

Added id field to WordPressMedia.

* Removed support for legacy-style (e.g., Blogger) methods.

— Removed args_start_position and default_args_position parameters on
XmlrpcMethod.

— Removed requires_blog parameter on AuthenticatedMethod.
* Set default values on all fields that are used in st r/unicode to avoid AttributeError exceptions.

* Fixed bug with FieldMap that caused False boolean values to be ignored.

Added ability to override results_class via a method class constructor kwarg.

* Added support for optional method arguments.

3.1.5 1.5

(August 27,2011)
* Refactored FieldMap to be more flexible.

¢ Added new Except ion subclasses for more specific error handling.

3.1.6 1.4

(July 31, 2011)
* Added support for post formats.

* Added support for media methods.

3.1.7 1.3

(July 31, 2011)
¢ Created test suite.
¢ Added support for page methods.
* Added support for post/page passwords.

24 Chapter 3. Internals/Development

python-wordpress-xmirpc Documentation, Release 2.3

3.1.8 1.2

(June 25, 2011)

¢ Added support for comments methods.

3.1.9 1.1

(October 11, 2010)

* Implemented automatic conversion of WordPress objects in method invocations.

3.1.10 1.0

(October 10, 2010)

¢ Initial release.

3.2 Testing

3.2.1 Requirements

nose is used as the test runner. Use easy_install or pip to install:

‘pip nose

3.2.2 Configuring against your server

To test this library, we must perform XML-RPC requests against an actual WordPress server. To configure against
your own server:

¢ Copy the included wp—config-sample.cfqg file to wp-config.cfg.

* Edit wo—config.cfg and fill in the necessary values.

3.2.3 Running Tests

Note: Be sure to have installed nose and created your wp-config.cfg.

To run the entire test suite, run the following from the root of the repository:

‘nosetests

To run a sub-set of the tests, you can specify a specific feature area:

‘nosetests —a posts

You can run against multiple areas:

‘nosetests —a posts —a comments

Or you can run everything except a specific area:

3.2. Testing 25

python-wordpress-xmirpc Documentation, Release 2.3

lnosetests -a '!comments' ‘

You can use all the normal nose command line options. For example, to increase output level:

’nosetests —-a demo --verbosity=3 ‘

Full usage details:

® nose

3.2.4 Contributing Tests

If you are submitting a patch for this library, please be sure to include one or more tests that cover the changes.

if you are adding new test methods, be sure to tag them with the appropriate feature areas using the @attr () deco-
rator.

26 Chapter 3. Internals/Development

http://readthedocs.org/docs/nose/en/latest/usage.html

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

27

python-wordpress-xmirpc Documentation, Release 2.3

28 Chapter 4. Indices and tables

Python Module Index

w

wordpress_xmlrpc, 11

wordpress_xmlrpc.methods.
wordpress_xmlrpc.methods.
.media, 21

wordpress_xmlrpc.methods

wordpress_xmlrpc.methods.
wordpress_xmlrpc.methods.
wordpress_xmlrpc.methods.
wordpress_xmlrpc.methods.
wordpress_xmlrpc.methods.

comments, 19
demo, 22

options, 22
pages, 18
posts, 16
taxonomies, 18
users, 20

29

python-wordpress-xmirpc Documentation, Release 2.3

30 Python Module Index

Index

A

AddTwoNumbers (class in
press_xmlrpc.methods.demo), 22

AnonymousMethod (class in wordpress_xmlrpc), 12

AuthenticatedMethod (class in wordpress_xmlrpc), 12

C

call() (Client method), 11
Client (built-in class), 11

D

default_args()
method), 12

DeleteComment (class in
press_xmlrpc.methods.comments), 20

DeletePost (class in wordpress_xmlrpc.methods.posts),

word-

(wordpress_xmlrpc. XmlrpcMethod

word-

17

DeleteTerm (class in word-
press_xmlrpc.methods.taxonomies), 19

E

EditComment (class in word-

press_xmlrpc.methods.comments), 20
EditPost (class in wordpress_xmlrpc.methods.posts), 17
EditProfile (class in wordpress_xmlrpc.methods.users),
21
EditTerm

(class in word-

press_xmlrpc.methods.taxonomies), 19

G

get_args() (wordpress_xmlrpc.XmlrpcMethod method),

12
GetAuthors (class in wordpress_xmlrpc.methods.users),
21
GetComment (class in word-
press_xmlrpc.methods.comments), 19
GetCommentCount (class in word-
press_xmlrpc.methods.comments), 20
GetComments (class in word-

press_xmlrpc.methods.comments), 19

GetCommentStatusList (class in word-
press_xmlrpc.methods.comments), 20
GetMedialtem (class in word-

press_xmlrpc.methods.media), 21
GetMediaLibrary (class in word-
press_xmlrpc.methods.media), 21
GetOptions (class in word-
press_xmlrpc.methods.options), 22
GetPageStatusList (class in word-
press_xmlrpc.methods.pages), 18
GetPageTemplates (class in word-

press_xmlrpc.methods.pages), 18

GetPost (class in wordpress_xmlrpc.methods.posts), 17

GetPostFormats (class in word-
press_xmlrpc.methods.posts), 17

GetPosts (class in wordpress_xmlrpc.methods.posts), 16

GetPostStatusList (class in word-
press_xmlrpc.methods.posts), 17

GetPostType (class in wordpress_xmlrpc.methods.posts),
17

GetPostTypes (class in
press_xmlrpc.methods.posts), 17

GetProfile (class in wordpress_xmlrpc.methods.users), 21

word-

GetTaxonomies (class in word-
press_xmlrpc.methods.taxonomies), 18
GetTaxonomy (class in word-
press_xmlrpc.methods.taxonomies), 18
GetTerm (class in word-
press_xmlrpc.methods.taxonomies), 18
GetTerms (class in word-

press_xmlrpc.methods.taxonomies), 18
GetUser (class in wordpress_xmlrpc.methods.users), 20
GetUsers (class in wordpress_xmlrpc.methods.users), 20

GetUsersBlogs (class in word-
press_xmlrpc.methods.users), 21

N

NewAnonymousComment (class in word-
press_xmlrpc.methods.comments), 20

NewComment (class in word-

press_xmlrpc.methods.comments), 19

31

python-wordpress-xmirpc Documentation, Release 2.3

NewPost (class in wordpress_xmlrpc.methods.posts), 17
NewTerm (class in word-
press_xmlrpc.methods.taxonomies), 19

P

process_result() (wordpress_xmlrpc. XmlrpcMethod
method), 12

S

SayHello (class in wordpress_xmlrpc.methods.demo), 22
SetOptions (class in wordpress_xmlrpc.methods.options),
22

U

UploadFile (class in wordpress_xmlrpc.methods.media),
22

W

wordpress_xmlrpc (module), 11
wordpress_xmlrpc.methods.comments (module), 19
wordpress_xmlrpc.methods.demo (module), 22
wordpress_xmlrpc.methods.media (module), 21
wordpress_xmlrpc.methods.options (module), 22
wordpress_xmlrpc.methods.pages (module), 18
wordpress_xmlrpc.methods.posts (module), 16
wordpress_xmlrpc.methods.taxonomies (module), 18
wordpress_xmlrpc.methods.users (module), 20
WordPressAuthor (built-in class), 14
WordPressBlog (built-in class), 14
WordPressComment (built-in class), 15
WordPressMedia (built-in class), 16
WordPressOption (built-in class), 16
WordPressPage (built-in class), 13

WordPressPost (built-in class), 12
WordPressPostType (built-in class), 13
WordPressTaxonomy (built-in class), 13
WordPressTerm (built-in class), 14

WordPressUser (built-in class), 15

X

XmlrpcMethod (class in wordpress_xmlrpc), 11

32

Index

	Getting Started
	Overview
	Examples

	Reference
	Client
	WordPress Objects
	Methods

	Internals/Development
	History/CHANGELOG
	Testing

	Indices and tables
	Python Module Index

