

Welcome to the Python Utilities documentation!

Python utility classes. Use them as you wish.

Contents

	array - Converting sequences
	Providing read-write access for sequential data

	Accessing data over multiple dimensions

	API

	compat - Python compatibility helpers

	dll - DLL loading

	dojo - Training classes for functions and algorithms

	ebs - A component-based entity system framework
	Component-based patterns

	Component-based design with ebs

	API

	events - General purpose event handling routines

	resources - Resource management
	API

	scene - Scene management

	sysfont - Font detection helpers

Indices and tables

	Index

	Module Index

	Search Page

Documentation TODOs

Last generated on: Nov 07, 2017

array - Converting sequences

This module provides various functions and classes to access sequences and
buffer-style objects in different ways. It also provides conversion routines
to improve the interoperability of sequences with ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] data types.

Providing read-write access for sequential data

Two classes allow you to access sequential data in different ways. The
CTypesView provides byte-wise access to iterable objects and allows
you to convert the object representation to matching byte-widths for
ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] or other modules.

Depending on the the underlying object and the chosen size of each particular
item of the object, the CTypesView allows you to operate directly
on different representations of the object’s contents.

>>> text = bytearray("Hello, I am a simple ASCII string!")
>>> ctview = CTypesView(text, itemsize=1)
>>> ctview.view[0] = 0x61
>>> print(text)
aello, I am a simple ASCII string!"
>>> ctview.to_uint16()[3] = 0x6554
>>> print(text)
aello,Te am a simple ASCII string!"

The snippet above provides a single-byte sized view on a bytearray() [http://docs.python.org/library/functions.html#bytearray]
object. Afterwards, the first item of the view is changed, which causes a
change on the bytearray() [http://docs.python.org/library/functions.html#bytearray], on the first item as well, since both, the
CTypesView and the bytearray() [http://docs.python.org/library/functions.html#bytearray] provide a byte-wise access to
the contents.

By using CTypesView.to_uint16(), we change the access representation to
a 2-byte unsigned integer ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] pointer and change the fourth 2-byte
value, I to something else.

>>> text = bytearray("Hello, I am a simple ASCII string!")
>>> ctview = CTypesView(text, itemsize=2)
>>> ctview.view[0] = 0x61
>>> print(text)
aello, I am a simple ASCII string!"
>>> ctview.to_uint16()[3] = 0x6554
>>> print(text)
aello,Te am a simple ASCII string!"

If the encapsuled object does not provide a (writeable) buffer() [http://docs.python.org/library/functions.html#buffer]
interface, but is iterable, the CTypesView will create an
internal copy of the object data using Python’s array module and
perform all operations on that copy.

>>> mylist = [18, 52, 86, 120, 154, 188, 222, 240]
>>> ctview = CTypesView(mylist, itemsize=1, docopy=True)
>>> print(ctview.object)
array('B', [18, 52, 86, 120, 154, 188, 222, 240])
>>> ctview.view[3] = 0xFF
>>> print(mylist)
[18, 52, 86, 120, 154, 188, 222, 240]
>>> print(ctview.object)
array('B', [18, 52, 86, 255, 154, 188, 222, 240])

As for directly accessible objects, you can define your own itemsize to
be used. If the iterable does not provide a direct byte access to their
contents, this won’t have any effect except for resizing the item
widths.

>>> mylist = [18, 52, 86, 120, 154, 188, 222, 240]
>>> ctview = CTypesView(mylist, itemsize=4, docopy=True)
>>> print(ctview.object)
array('I', [18L, 52L, 86L, 120L, 154L, 188L, 222L, 240L])

Accessing data over multiple dimensions

The second class, MemoryView provides an interface to access
data over multiple dimensions. You can layout and access a simple
byte stream over e.g. two or more axes, providing a greater flexibility
for functional operations and complex data.

Let’s assume, we are reading image data from a file stream into some buffer
object and want to access and manipulate the image data. Images feature two
axes, one being the width, the other being the height, defining a rectangular
graphics area.

When we read all data from the file, we have an one-dimensional view of the
image graphics. The MemoryView allows us to define a
two-dimensional view over the image graphics, so that we can operate on
both, rows and columns of the image.

>>> imagedata = bytearray("some 1-byte graphics data")
>>> view = MemoryView(imagedata, 1, (5, 5))
>>> print(view)
[[s, o, m, e,], [1, -, b, y, t], [e, , g, r, a], [p, h, i, c, s], [, d, a, t, a]]
>>> for row in view:
... print(row)
...
[s, o, m, e,]
[1, -, b, y, t]
[e, , g, r, a]
[p, h, i, c, s]
[, d, a, t, a]
>>> for row in view:
... row[1] = "X"
... print row
...
[s, X, m, e,]
[1, X, b, y, t]
[e, X, g, r, a]
[p, X, i, c, s]
[, X, a, t, a]
>>> print(imagedata)
sXme 1XbyteXgrapXics Xata

On accessing a particular dimension of a MemoryView, a new
MemoryView is created, if it does not access a single
element.

>>> firstrow = view[0]
>>> type(firstrow)
<class 'mule.array.MemoryView'>
>>> type(firstrow[0])
<type 'bytearray'>

A MemoryView features, similar to Python’s builtin
memoryview [http://docs.python.org/library/stdtypes.html#memoryview], dimensions and strides, accessible via the
MemoryView.ndim and MemoryView.strides attributes.

>>> view.ndim
2
>>> view.strides
(5, 5)

The MemoryView.strides, which have to be passed on creating a
new MemoryView, define the layout of the data over different
dimensions. In the example above, we created a 5x5 two-dimensional view
to the image graphics.

>>> twobytes = MemoryView(imagedata, 2, (5, 1))
>>> print(twobytes)
[[sX, me, 1, Xb, yt], [eX, gr, ap, Xi, cs]]

API

	
class array.CTypesView(obj : iterable[, itemsize=1[, docopy=False[, objsize=None]]])

	A proxy class for byte-wise accessible data types to be used in
ctypes bindings. The CTypesView provides a read-write access to
arbitrary objects that are iterable.

In case the object does not provide a buffer() [http://docs.python.org/library/functions.html#buffer] interface for
direct access, the CTypesView can copy the object’s contents into an
internal buffer, from which data can be retrieved, once the necessary
operations have been performed.

Depending on the item type stored in the iterable object, you might
need to provide a certain itemsize, which denotes the size per
item in bytes. The objsize argument might be necessary of iterables,
for which len() does not return the correct amount of objects or is not
implemented.

	
bytesize

	Returns the length of the encapsuled object in bytes.

	
is_shared

	Indicates, if changes on the CTypesView data effect the encapsuled
object directly. if not, this means that the object was copied
internally and needs to be updated by the user code outside of the
CTypesView.

	
object

	The encapsuled object.

	
view

	Provides a read-write aware view of the encapsuled object data
that is suitable for usage from ctypes [http://docs.python.org/library/ctypes.html#module-ctypes].

	
to_bytes() → ctypes.POINTER

	Returns a byte representation of the encapsuled object. The return
value allows a direct read-write access to the object data, if it
is not copied. The ctypes.POINTER() [http://docs.python.org/library/ctypes.html#ctypes.POINTER] points to an array of
ctypes.c_ubyte [http://docs.python.org/library/ctypes.html#ctypes.c_ubyte].

	
to_uint16() → ctypes.POINTER

	Returns a 16-bit representation of the encapsuled object. The return
value allows a direct read-write access to the object data, if it
is not copied. The ctypes.POINTER() [http://docs.python.org/library/ctypes.html#ctypes.POINTER] points to an array of
ctypes.c_ushort [http://docs.python.org/library/ctypes.html#ctypes.c_ushort].

	
to_uint32() → ctypes.POINTER

	Returns a 32-bit representation of the encapsuled object. The return
value allows a direct read-write access to the object data, if it
is not copied. The ctypes.POINTER() [http://docs.python.org/library/ctypes.html#ctypes.POINTER] points to an array of
ctypes.c_uint [http://docs.python.org/library/ctypes.html#ctypes.c_uint].

	
to_uint64() → ctypes.POINTER

	Returns a 64-bit representation of the encapsuled object. The return
value allows a direct read-write access to the object data, if it
is not copied. The ctypes.POINTER() [http://docs.python.org/library/ctypes.html#ctypes.POINTER] points to an array of
ctypes.c_ulonglong [http://docs.python.org/library/ctypes.html#ctypes.c_ulonglong].

	
class array.MemoryView(source : object, itemsize : int, strides : tuple[, getfunc=None[, setfunc=None[, srcsize=None]]])

	The MemoryView provides a read-write access to arbitrary
data objects, which can be indexed.

itemsize denotes the size of a single item. strides defines
the dimensions and the length (n items * itemsize) for each
dimension. getfunc and setfunc are optional parameters to
provide specialised read and write access to the underlying
source. srcsize can be used to provide the correct source
size, if len(source) does not return the absolute size of the
source object in all dimensions.

Note

The MemoryView is a pure Python-based implementation and makes
heavy use of recursion for multi-dimensional access. If you aim
for speed on accessing a n-dimensional object, you want to
consider using a specialised library such as numpy. If you need
n-dimensional access support, where such a library is not
supported, or if you need to provide access to objects, which do
not fulfill the requirements of that particular libray,
MemoryView can act as solid fallback solution.

	
itemsize

	The size of a single item in bytes.

	
ndim

	The number of dimensions of the MemoryView.

	
size

	The size in bytes of the underlying source object.

	
source

	The underlying data source.

	
strides

	A tuple defining the length in bytes for accessing all
elements in each dimension of the MemoryView.

	
array.to_ctypes(dataseq : iterable, dtype[, mcount=0]) → array, int

	Converts an arbitrary sequence to a ctypes array of the specified
dtype and returns the ctypes array and amount of items as
two-value tuple.

Raises a TypeError, if one or more elements in the passed
sequence do not match the passed dtype.

	
array.to_list(dataseq : iterable) → list

	Converts a ctypes array to a list.

	
array.to_tuple(dataseq : iterable) → tuple

	Converts a ctypes array to a tuple.

	
array.create_array(obj : object, itemsize : int) → array.array

	Creates an array.array [http://docs.python.org/library/array.html#array.array] based copy of the passed object.
itemsize denotes the size in bytes for a single element within
obj.

compat - Python compatibility helpers

The compat module is for internal purposes of your package or
application and should not be used outside of it.

	
compat.ISPYTHON2

	True, if executed in a Python 2.x compatible interpreter, False
otherwise.

	
compat.ISPYTHON3

	True, if executed in a Python 3.x compatible interpreter, False
otherwise.

	
compat.long([x[, base]])

	
Note

Only defined for Python 3.x, for which it is the same as int() [http://docs.python.org/library/functions.html#int].

	
compat.unichr(i)

	
Note

Only defined for Python 3.x, for which it is the same as chr() [http://docs.python.org/library/functions.html#chr].

	
compat.unicode(string[, encoding[, errors]])

	
Note

Only defined for Python 3.x, for which it is the same as str() [http://docs.python.org/library/functions.html#str].

	
compat.callable(x) → bool

	
Note

Only defined for Python 3.x, for which it is the same as
isinstance(x, collections.Callable)

	
compat.byteify(x : string, enc : string) → bytes

	Converts a string to a bytes() object.

	
compat.stringify(x : bytes, enc : string) → string

	Converts a bytes() to a string object.

	
compat.isiterable(x) → bool

	Shortcut for isinstance(x, collections.Iterable).

	
compat.platform_is_64bit() → bool

	Checks, if the interpreter is 64-bit capable.

	
@compat.deprecated

	A simple decorator to mark functions and methods as deprecated. This will
print a deprecation message each time the function or method is invoked.

	
compat.deprecation(message : string) → None

	Prints a deprecation message using the warnings.warn() method.

	
exception compat.UnsupportedError(obj : object[, msg=None])

	Indicates that a certain class, function or behaviour is not supported in
the specific execution environment.

	
@compat.experimental

	A simple decorator to mark functions and methods as
experimental. This will print a warning each time the function or
method is invoked.

	
exception compat.ExperimentalWarning(obj : object[, msg=None])

	Indicates that a certain class, function or behaviour is in an
experimental state.

dll - DLL loading

The dll module is not intended for consumers of your specific
application or library. It is a helper module for loading the 3rd party
libraries used by your project itself.

	
class dll.DLL(libinfo : string, libnames : string or dict[, path=None])

	A simple wrapper class for loading shared libraries through ctypes.

The libinfo argument is a descriptive name of the library, that is
recommended to be platform neutral, since it is shown to the user on
errors. libnames can be a list of shared library names or a dictionary
consisting of platform->library name mappings. path is the explicit
library path to be used, if any. path acts as the first location to be
used for loading the library, before the standard mechanisms of
ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] will be used

	
libfile

	Gets the filename of the loaded library.

	
bind_function(funcname : string[, args=None[, returns=None[, optfunc=None]]]) → function

	Tries to resolve the passed function name and, if found, binds the
list of args, to its argtypes and the returns value to its
restype. If the function is not found, optfunc will be used
instead, without the assignment of args and returns.

dojo - Training classes for functions and algorithms

	
class dojo.Dojo(algorithms : sequence, environ : object[, runs=100])

	A simple testing class for competing algorithms. Dojo is the base
class for concrete implementations to measure the performance of algorithms
that shall perform the same task.

	
algorithms

	The list of algorithms to compare

	
environ

	An arbeitrary object that simulates the execution environment for the
algorithms. A copy of it will be passed as first argument to each
algorithm.

Note

The copy will be created via copy.deepcopy() [http://docs.python.org/library/copy.html#copy.deepcopy] to ensure that
(hopefully) no value of the original environment will be modified by
an algorithm.

	
runs

	The number of consecutive runs for each algorithm.

	
train(*args) → None

	Executes the algorithms, comparing their performance.

This has to be implemented by inheriting classes.

	
class dojo.TimingDojo(algorithms : sequence, environ : object[, runs=100])

	A Dojo implementation measuring the execution time of its
algorithms.

	
train(*args) → object

	Executes the algorithms and compares their run-time performance
Dojo.runs is used to create a reliable average mean for the
execution time and hence should not be chosen too small.

The method will return the best performing algorithm.

	
class dojo.FitnessDojo(algorithms : sequence, environ : object[, runs=100[, cmpfunc=min]])

	A Dojo implementation measuring the fitness of its algorithms.
The fitness is determined by the passed cmpfunc.

	
cmpfunc

	Comparision function for the fitness measurement. It has to return a
single object of a passed iterable and must accept a named argument
key, since its execution looks like

dojo.cmpfunc(result_dict, key=result_dict.get)

	
train(*args) → object

	Executes the algorithms and compares their return value, which must be
a float. Dojo.runs is used to create a reliable average mean for
the return value and hence should not be chosen too small.

ebs - A component-based entity system framework

This module loosely follows a component oriented pattern to separate
object instances, carried data and processing logic within applications
or games. It uses an entity based approach, in which object instances are
unique identifiers, while their data is managed within components, which
are separately stored. For each individual component type a processing
system will take care of all necessary updates on running the application.

Component-based patterns

Component-based means that - instead of a traditional OOP approach - object
information are split up into separate data bags for reusability and that those
data bags are separated from any application logic.

Behavioural design

Imagine a car game class in traditional OOP, which might look like

class Car:
 def __init__(self):
 self.color = "red"
 self.position = 0, 0
 self.velocity = 0, 0
 self.sprite = get_some_car_image()
 ...
 def drive(self, timedelta):
 self.position[0] = self.velocity[0] * timedelta
 self.position[1] = self.velocity[1] * timedelta
 ...
 def stop(self):
 self.velocity = 0, 0
 ...
 def render(self, screen):
 screen.display(self.sprite)

mycar = new Car()
mycar.color = "green"
mycar.velocity = 10, 0

The car features information stored in attributes (color, position,
...) and behaviour (application logic, drive(), stop() ...).

A component-based approach aims to split and reduce the car to a set of
information and external systems providing the application logic.

class Car:
 def __init__(self):
 self.color = "red"
 self.position = 0, 0
 self.velocity = 0, 0
 self.sprite = get_some_car_image()

class CarMovement:
 def drive(self, car, timedelta):
 car.position[0] = car.velocity[0] * timedelta
 car.position[1] = car.velocity[1] * timedelta
 ...
 def stop(self):
 car.velocity = 0, 0

class CarRenderer:
 def render(self, car, screen):
 screen.display(car.sprite)

At this point of time, there is no notable difference between both approaches,
except that the latter one adds additional overhead.

The benefit comes in, when you

	use subclassing in your OOP design

	want to change behavioural patterns on a global scale or based on states

	want to refactor code logic in central locations

	want to cascade application behaviours

The initial Car class from above defines, how it should be displayed
on the screen. If you now want to add a feature for rescaling the screen
size after the user activates the magnifier mode, you need to refactor
the Car and all other classes that render things on the screen, have
to consider all subclasses that override the method and so on.
Refactoring the CarRenderer code by adding a check for the magnifier
mode sounds quite simple in contrast to that, not?

The same applies to the movement logic - inverting the movement logic
requires you to refactor all your classes instead of a single piece of
application code.

Information design

Subclassing with traditional OOP for behavioural changes also might
bloat your classes with unnecessary information, causing the memory
footprint for your application to rise without any need. Let’s assume
you have a Truck class that inherits from Car. Let’s further
assume that all trucks in your application look the same. Why should any
of those carry a sprite or color attribute? You would need to
refactor your Car class to get rid of those superfluous information,
adding another level of subclassing. If at a later point of time you
decide to give your trucks different colors, you need to refactor
everything again.

Wouldn’t it be easier to deal with colors, if they are available on the
truck and leave them out, if they are not? We initially stated that the
component-based approach aims to separate data (information) from code
logic. That said, if the truck has a color, we can handle it easily, if
it has not, we will do as usual.

Also, checking for the color of an object (regardless, if it is a truck,
car, airplane or death star) allows us to apply the same or similar
behaviour for every object. If the information is available, we will
process it, if it is not, we will not do anything.

All in all

Once we split up the previously OOP-style classes into pure data containers and
some separate processing code for the behaviour, we are talking about components
and (processing) systems. A component is a data container, ideally grouping
related information on a granular level, so that it is easy to (re)use.
When you combine different components to build your in-application objects and
instantiate those, we are talking about entities.

[image: _images/ebs.png]

	Component

	provides information (data bag)

	Entity

	In-application instance that consists of component items

	System

	Application logic for working with Entity items and their
component data

	World

	The environment that contains the different System instances and
all Entity items with their component data

Within a strict COP design, the application logic (ideally) only knows about
data to process. It does not know anything about entities or complex classes
and only operates on the data.

[image: _images/copprocessing.png]
To keep things simple, modular and easy to maintain and change, you usually
create small processing systems, which perform the necessary operations on the
data they shall handle. That said, a MovementSystem for our car entity would
only operate on the position and velocity component of the car entity. It does
not know anything about the the car’s sprite or sounds that the car makes,
since this is nothing it has to deal with.

To display the car on the screen, a RenderSystem might pick up the sprite
component of the car, maybe along with the position information (so it know,
where to place the sprite) and render it on the screen.

If you want the car to play sounds, you would add an audio playback system,
that can perform the task. Afterwards you can add the necessary audio
information via a sound component to the car and it will make noise.

Component-based design with ebs

Note

This section will deal with the specialities of COP patterns and provides
the bare minimum of information.

ebs provides a World class in which all other objects
will reside. The World will maintain both, Entity and
component items, and allows you to set up the processing logic via
the System and Applicator classes.

>>> appworld = World()

Components can be created from any class that inherits from the
object type and represent the data bag of information for the
entity. and application world. Ideally, they should avoid any
application logic (except from getter and setter properties).

class Position2D(object):
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

Entity objects define the in-application objects and only consist of
component-based attributes. They also require a World at
object instantiation time.

class CarEntity(Entity):
 def __init__(self, world, x=0, y=0):
 self.position2d = Position2D(x, y)

Note

The world argument in __init__() is necessary. It will be
passed to the internal __new__() constructor of the
Entity and stores a reference to the World and also
allows the Entity to store its information in the
World.

The Entity also requries its attributes to be named exactly as
their component class name, but in lowercase letters. If you name a
component MyAbsolutelyAwesomeDataContainer, an Entity will
force you to write the following:

class SomeEntity(Entity):
 def __init__(self, world):
 self.myabsolutelyawesomedatacontainer = MyAbsolutelyAwesomeDataContainer()

Note

This is not entirely true. A reference of the object will be stored on a
per-class-in-mro basis. This means that if MyAbsolutelyAwesomeDataContainer
inherits from ShortName, you can also do:

class SomeEntity(Entity):
 def __init__(self, world):
 self.shortname = MyAbsolutelyAwesomeDataContainer()

Components should be as atomic as possible and avoid complex
inheritance. Since each value of an Entity is stored per class
in its mro list, components inheriting from the same class(es) will
overwrite each other on conflicting classes:

class Vector(Position2D):
 def __init__(self, x=0, y=0, z=0):
 super(Vector, self).__init__(x, y)

class SomeEntity(Entity):
 def __init__(self, world):
 # This will associate self.position2d with the new Position2D
 # value, while the previous Vector association is overwritten
 self.position2d = Position2D(4, 4)

 # self.vector will also associate a self.position2d attribute
 # with the Entity, since Vector inherits from Position2D. The
 # original association will vanish, and each call to
 # entity.position2d will effectively manipulate the vector!
 self.vector = Vector(1,2,3)

API

	
class ebs.Entity(world : World)

	An entity is a specific object living in the application world. It
does not carry any data or application logic, but merely acts as
identifier label for data that is maintained in the application
world itself.

As such, it is an composition of components, which would not exist
without the entity identifier. The entity itself is non-existent to
the application world as long as it does not carry any data that can
be processed by a system within the application world.

	
id

	The id of the Entity. Every Entity has a unique id, that is
represented by a uuid.UUID [http://docs.python.org/library/uuid.html#uuid.UUID] instance.

	
world

	The World the entity resides in.

	
delete() → None

	Deletes the Entity from its World. This
basically calls World.delete() with the Entity.

	
class ebs.Applicator

	A processing system for combined data sets. The Applicator
is an enhanced System that receives combined data sets based
on its set System.componenttypes

	
is_applicator

	A boolean flag indicating that this class operates on combined data sets.

	
componenttypes

	A tuple of class identifiers that shall be processed by the
Applicator.

	
process(world : World, componentsets : iterable)

	Processes tuples of component items. componentsets will
contain object tuples, that match the componenttypes
of the Applicator. If, for example, the Applicator
is defined as

class MyApplicator(Applicator):
 def __init__(self):
 self.componenttypes = (Foo, Bar)

its process method will receive (Foo, Bar) tuples

def process(self, world, componentsets):
 for foo_item, bar_item in componentsets:
 ...

Additionally, the Applicator will not process all possible
combinations of valid components, but only those, which are associated
with the same Entity. That said, an Entity must
contain a Foo as well as a Bar component in order to
have them both processed by the Applicator (while a
System with the same componenttypes would pick either of
them, depending on their availability).

	
class ebs.System

	A processing system within an application world consumes the
components of all entities, for which it was set up. At time of
processing, the system does not know about any other component type
that might be bound to any entity.

Also, the processing system does not know about any specific entity,
but only is aware of the data carried by all entities.

	
componenttypes

	A tuple of class identifiers that shall be processed by the
System

	
process(world : World, components : iterable)

	Processes component items.

This method has to be implemented by inheriting classes.

	
class ebs.World

	An application world defines the combination of application data and
processing logic and how the data will be processed. As such, it is a
container object in which the application is defined.

The application world maintains a set of entities and their related
components as well as a set of systems that process the data of the
entities. Each processing system within the application world only
operates on a certain set of components, but not all components of an
entity at once.

The order in which data is processed depends on the order of the
added systems.

	
systems

	The processing system objects bound to the world.

	
add_system(system : object)

	Adds a processing system to the world. The system will be
added as last item in the processing order.

The passed system does not have to inherit from System, but
must feature a componenttypes attribute and a process() method,
which match the signatures of the System class

class MySystem(object):
 def __init__(self):
 # componenttypes can be any iterable as long as it
 # contains the classes the system should take care of
 self.componenttypes = [AClass, AnotherClass, ...]

 def process(self, world, components):
 ...

If the system shall operate on combined component sets as specified
by the Applicator, the class instance must contain a
is_applicator property, that evaluates to True

class MyApplicator(object):
 def __init__(self):
 self.is_applicator = True
 self.componenttypes = [...]

 def process(self, world, components):
 pass

The behaviour can be changed at run-time. The is_applicator attribute
is evaluated for every call to World.process().

	
delete(entity : Entity)

	Removes an Entity from the World, including all its
component data.

	
delete_entities(entities : iterable)

	Removes a set of Entity instances from the World,
including all their component data.

	
insert_system(index : int, system : System)

	Adds a processing System to the world. The system will be
added at the specified position in the processing order.

	
get_entities(component : object) → [Entity, ...]

	Gets the entities using the passed component.

Note

This will not perform an identity check on the component
but rely on its __eq__ implementation instead.

	
process()

	Processes all component items within their corresponding
System instances.

	
remove_system(system : System)

	Removes a processing System from the world.

events - General purpose event handling routines

	
class events.EventHandler(sender)

	A simple event handling class, which manages callbacks to be
executed.

The EventHandler does not need to be kept as separate instance, but
is mainly intended to be used as attribute in event-aware class
objects.

>>> def myfunc(sender):
... print("event triggered by %s" % sender)
...
>>> class MyClass(object):
... def __init__(self):
... self.anevent = EventHandler(self)
...
>>> myobj = MyClass()
>>> myobj.anevent += myfunc
>>> myobj.anevent()
event triggered by <__main__.MyClass object at 0x801864e50>

	
callbacks

	A list of callbacks currently bound to the EventHandler.

	
sender

	The responsible object that executes the EventHandler.

	
add(callback : Callable)

	Adds a callback to the EventHandler.

	
remove(callback : Callable)

	Removes a callback from the EventHandler.

	
__call__(*args) → [...]

	Executes all connected callbacks in the order of addition,
passing the sender of the EventHandler as first
argument and the optional args as second, third, ... argument to
them.

This will return a list containing the return values of the callbacks
in the order of their execution.

	
class events.MPEventHandler(sender)

	An asynchronous event handling class based on EventHandler,
in which callbacks are executed in parallel. It is the responsibility
of the caller code to ensure that every object used maintains a
consistent state. The MPEventHandler class will not apply
any locks, synchronous state changes or anything else to the
arguments or callbacks being used. Consider it a “fire-and-forget” event
handling strategy.

Note

The MPEventHandler relies on the multiprocessing [http://docs.python.org/library/multiprocessing.html#module-multiprocessing]
module. If the module is not available in the target environment,
a sdl2.ext.compat.UnsupportedError is raised.

Also, please be aware of the restrictions that apply to the
multiprocessing [http://docs.python.org/library/multiprocessing.html#module-multiprocessing] module; arguments and callback functions for
example have to be pickable, etc.

	
__call__(*args) → AsyncResult

	Executes all connected callbacks within a
multiprocessing.pool.Pool, passing the sender as first
argument and the optional args as second, third, ... argument to them.

This will return a multiprocessing.pool.AsyncResult [http://docs.python.org/library/multiprocessing.html#multiprocessing.pool.AsyncResult] containing
the return values of the callbacks in the order of their execution.

resources - Resource management

Every application usually ships with various resources, such as image and data
files, configuration files and so on. Accessing those files in the folder
hierarchy or in a bundled format for various platforms can become a comple
task, for which the resources module can provide ideal
supportive application components.

The Resources class allows you to manage different application data
in a certain directory, providing a dictionary-style access functionality for
your in-application resources.

Let’s assume, your application has the following installation layout

Application Directory
 Application.exe
 Application.conf
 data/
 background.jpg
 button1.jpg
 button2.jpg
 info.dat

Within the Application.exe code, you can - completely system-agnostic -
define a new resource that keeps track of all data items.

apppath = os.path.dirname(os.path.abspath(__file__))
appresources = Resources(os.path.join(apppath, "data"))
Access some images
bgimage = appresources.get("background.jpg")
btn1image = appresources.get("button1.jpg")
...

To access individual files, you do not need to concat paths the whole
time and regardless of the current directory, your application operates
on, you can access your resource files at any time through the
Resources instance, you created initially.

The Resources class is also able to scan an index archived files,
compressed via ZIP or TAR (gzip or bzip2 compression), and subdiectories
automatically.

Application Directory
 Application.exe
 Application.conf
 data/
 audio/
 example.wav
 background.jpg
 button1.jpg
 button2.jpg
 graphics.zip
 [tileset1.bmp
 tileset2.bmp
 tileset3.bmp
]
 info.dat

tilesimage = appresources.get("tileset1.bmp")
audiofile = appresources.get("example.wav")

If you request an indexed file via Resources.get(), you will receive
a io.BytesIO [http://docs.python.org/library/io.html#io.BytesIO] stream, containing the file data, for further processing.

Note

The scanned files act as keys within the Resources class. This
means that two files, that have the same name, but are located in different
directories, will not be indexed. Only one of them will be accessible
through the Resources class.

API

	
class resources.Resources([path=None[, subdir=None[, excludepattern=None]]])

	The Resources class manages a set of file resources and eases
accessing them by using relative paths, scanning archives
automatically and so on.

	
add(filename : string)

	Adds a file to the resource container. Depending on the
file type (determined by the file suffix or name) the file will be
automatically scanned (if it is an archive) or checked for
availability (if it is a stream or network resource).

	
add_archive(filename : string[, typehint="zip"])

	Adds an archive file to the resource container. This will scan the
passed archive and add its contents to the list of available and
accessible resources.

	
add_file(filename : string)

	Adds a file to the resource container. This will only add the
passed file and do not scan an archive or check the file for
availability.

	
get(filename : string) → BytesIO

	Gets a specific file from the resource container.

Raises a KeyError, if the filename could not be found.

	
get_filelike(filename : string) → file object

	Similar to get(), but tries to return the original file
handle, if possible. If the found file is only available within an
archive, a io.BytesIO [http://docs.python.org/library/io.html#io.BytesIO] instance will be returned.

Raises a KeyError, if the filename could not be found.

	
get_path(filename : string) → string

	Gets the path of the passed filename. If filename is only
available within an archive, a string in the form
filename@archivename will be returned.

Raises a KeyError, if the filename could not be found.

	
scan(path : string[, subdir=None[, excludepattern=None])

	Scans a path and adds all found files to the resource
container. If a file within the path is a supported archive (ZIP
or TAR), its contents will be indexed aut added automatically.

The method will consider the directory part (os.path.dirname)
of the provided path as path to scan, if the path is not a
directory. If subdir is provided, it will be appended to the
path and used as starting point for adding files to the resource
container.

excludepattern can be a regular expression to skip
directories, which match the pattern.

	
resources.open_tarfile(archive : string, filename : string[, directory=None[, ftype=None]]) → BytesIO

	Opens and reads a certain file from a TAR archive. The result is
returned as BytesIO stream. filename can be a relative
or absolute path within the TAR archive. The optional directory
argument can be used to supply a relative directory path, under which
filename will be searched.

ftype is used to supply additional compression information, in
case the system cannot determine the compression type itself, and can
be either “gz” for gzip compression or “bz2” for bzip2
compression.

If the filename could not be found or an error occured on reading it,
None will be returned.

Raises a TypeError, if archive is not a valid TAR archive or
if ftype is not a valid value of (“gz”, “bz2”).

Note

If ftype is supplied, the compression mode will be enforced for
opening and reading.

	
resources.open_url(filename : string[, basepath=None]) → file object

	Opens and reads a certain file from a web or remote location. This
function utilizes the urllib2 [http://docs.python.org/library/urllib2.html#module-urllib2] module for Python 2.7 and
urllib [http://docs.python.org/library/urllib.html#module-urllib] for Python 3.x, which means that it is restricted to
the types of remote locations supported by the module.

basepath can be used to supply an additional location prefix.

	
resources.open_zipfile(archive : string, filename : string[, directory : string]) → BytesIO

	Opens and reads a certain file from a ZIP archive. The result is
returned as BytesIO stream. filename can be a relative
or absolute path within the ZIP archive. The optional directory
argument can be used to supply a relative directory path, under which
filename will be searched.

If the filename could not be found, a KeyError will be raised.
Raises a TypeError, if archive is not a valid ZIP archive.

scene - Scene management

	
class scene.SceneManager

	The SceneManager takes care of scene transitions, preserving scene
states and everything else to maintain and ensure the control flow
between different scenes.

	
name

	The name of the Scene.

	
scenes

	The scene stack.

	
next

	The next Scene to run on calling update().

	
current

	The currently running/active Scene.

	
switched

	A sdl2.ext.EventHandler that is invoked, when a new
Scene is started.

	
push(scene : Scene) → None

	Pushes a new Scene to the scene stack.

The current scene will be put on the scene stack for later
execution, while the passed scene will be set as current one.
Once the newly pushed scene has ended or was paused, the previous
scene will continue its execution.

	
pop() → None

	Pops a scene from the scene stack, bringing it into place for
being executed on the next update.

	
pause() → None

	Pauses the current scene.

	
unpause() → None

	Continues the current scene.

	
update() → None

	Updates the scene state and switches to the next scene, if any has
been pushed into place.

	
class scene.Scene([name=None])

	A simple scene state object used to maintain the application workflow
based on the presentation of an application.

	
manager

	The SceneManager, the Scene is currently executed on.

Note

This will be set automatically on starting the Scene by the
SceneManager. If the Scene is ended, it will be
reset.

	
state

	The current scene state.

	
started

	A sdl2.ext.EventHandler that is invoked, when the
Scene starts.

	
paused

	A sdl2.ext.EventHandler that is invoked, when the
Scene is paused.

	
unpaused

	A sdl2.ext.EventHandler that is invoked, when the
Scene is unpaused.

	
ended

	A sdl2.ext.EventHandler that is invoked, when the
Scene ends.

	
is_running

	Indicates, if the scene is currently running.

	
is_paused

	Indicates, if the scene is currently paused.

	
has_ended

	Indicates, if the scene has ended.

	
start() → None

	Starts the Scene. If the Scene is running or paused,
nothing will be done.

	
pause() → None

	Pauses the Scene. If the Scene is not running,
nothing will be done.

	
unpause() → None

	Continues the Scene. If the Scene is not paused,
nothing will be done.

	
end() → None

	Ends the Scene. If the Scene has ended already,
nothing will be done.

sysfont - Font detection helpers

The sysfont module enables you to find fonts installed on the
underlying operating system. It supports Win32 and fontconfig-based
(most Unix-like ones, such as Linux or BSD) systems.

	
sysfont.STYLE_NORMAL

	Indicates a normal font style.

	
sysfont.STYLE_BOLD

	Indicates a bold font style.

	
sysfont.STYLE_ITALIC

	Indicates an italic font style.

	
sysfont.init() → None

	Initializes the internal font cache. This does not need to be called
explicitly. It is called automatically, if one of the retrieval functions
is executed for the first time.

	
sysfont.get_font(name : string[, style=STYLE_NORMAL[, ftype=None]]) -> (str, str, int, str, str)

	Retrieves the best matching font file for the given name and criteria.
The return value will be a, containing the following information:
(family, font name, font style, font type, filename)

	family: string, denotes the font family

	font name: string, the name of the font

	font style: int, a combination of the different STYLE_ values

	font type: string, the font file type (e.g. TTF, OTF, ...)

	filename: the name of the physical file

If no font could be found, None will be returned.

	
sysfont.get_fonts(name : string[, style=STYLE_NORMAL[, ftype=None]]) -> ((str, str, int, str, str), ...)

	Retrieves all fonts matching the given family or font name, style and, if
provided, font file type. The return values will be tuples, containing the
following information: (family, font name, font style, font type, filename)

	family: string, denotes the font family

	font name: string, the name of the font

	font style: int, a combination of the different STYLE_ values

	font type: string, the font file type (e.g. TTF, OTF, ...)

	filename: the name of the physical file

If no font could be found, None will be returned.

	
sysfont.list_fonts() → iterator

	Retrieves an iterator over all found fonts. The values of the
iterator will be tuples, containing the following information:
(family, font name, font style, font type, filename)

	family: string, denotes the font family

	font name: string, the name of the font

	font style: int, a combination of the different STYLE_ values

	font type: string, the font file type (e.g. TTF, OTF, ...)

	filename: the name of the physical file

 Python Module Index

 a |
 c |
 d |
 e |
 r |
 s

 		 	

 		
 a	

 	
 	
 array	
 Conversion routines for sequences.

 		 	

 		
 c	

 	
 	
 compat	
 Python compatibility helpers.

 		 	

 		
 d	

 	
 	
 dll	
 DLL loading

 	
 	
 dojo	
 Training classes for functions and algorithms.

 		 	

 		
 e	

 	
 	
 ebs	
 A component-based entity system framework.

 	
 	
 events	
 General purpose event handling routines

 		 	

 		
 r	

 	
 	
 resources	
 Resource management.

 		 	

 		
 s	

 	
 	
 scene	
 Scene management.

 	
 	
 sysfont	
 Font dectection helpers

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (events.EventHandler method)

 	(events.MPEventHandler method)

A

 	
 	add() (events.EventHandler method)

 	(resources.Resources method)

 	add_archive() (resources.Resources method)

 	add_file() (resources.Resources method)

 	
 	add_system() (ebs.World method)

 	algorithms (dojo.Dojo attribute)

 	Applicator (class in ebs)

 	Applicator.process() (in module ebs)

 	array (module)

B

 	
 	bind_function() (dll.DLL method)

 	
 	byteify() (in module compat)

 	bytesize (array.CTypesView attribute)

C

 	
 	callable() (in module compat)

 	callbacks (events.EventHandler attribute)

 	cmpfunc (dojo.FitnessDojo attribute)

 	compat (module)

 	
 	componenttypes (ebs.Applicator attribute)

 	(ebs.System attribute)

 	create_array() (in module array)

 	CTypesView (class in array)

 	current (scene.SceneManager attribute)

D

 	
 	delete() (ebs.Entity method)

 	(ebs.World method)

 	delete_entities() (ebs.World method)

 	deprecated() (in module compat)

 	
 	deprecation() (in module compat)

 	DLL (class in dll)

 	dll (module)

 	Dojo (class in dojo)

 	dojo (module)

E

 	
 	ebs (module)

 	end() (scene.Scene method)

 	ended (scene.Scene attribute)

 	Entity (class in ebs)

 	
 	environ (dojo.Dojo attribute)

 	EventHandler (class in events)

 	events (module)

 	experimental() (in module compat)

 	ExperimentalWarning

F

 	
 	FitnessDojo (class in dojo)

G

 	
 	get() (resources.Resources method)

 	get_entities() (ebs.World method)

 	get_filelike() (resources.Resources method)

 	
 	get_font() (in module sysfont)

 	get_fonts() (in module sysfont)

 	get_path() (resources.Resources method)

H

 	
 	has_ended (scene.Scene attribute)

I

 	
 	id (ebs.Entity attribute)

 	init() (in module sysfont)

 	insert_system() (ebs.World method)

 	is_applicator (ebs.Applicator attribute)

 	is_paused (scene.Scene attribute)

 	
 	is_running (scene.Scene attribute)

 	is_shared (array.CTypesView attribute)

 	isiterable() (in module compat)

 	ISPYTHON2 (in module compat)

 	ISPYTHON3 (in module compat)

 	itemsize (array.MemoryView attribute)

L

 	
 	libfile (dll.DLL attribute)

 	
 	list_fonts() (in module sysfont)

 	long() (in module compat)

M

 	
 	manager (scene.Scene attribute)

 	
 	MemoryView (class in array)

 	MPEventHandler (class in events)

N

 	
 	name (scene.SceneManager attribute)

 	
 	ndim (array.MemoryView attribute)

 	next (scene.SceneManager attribute)

O

 	
 	object (array.CTypesView attribute)

 	open_tarfile() (in module resources)

 	
 	open_url() (in module resources)

 	open_zipfile() (in module resources)

P

 	
 	pause() (scene.Scene method)

 	(scene.SceneManager method)

 	paused (scene.Scene attribute)

 	platform_is_64bit() (in module compat)

 	
 	pop() (scene.SceneManager method)

 	process() (ebs.System method)

 	(ebs.World method)

 	push() (scene.SceneManager method)

R

 	
 	remove() (events.EventHandler method)

 	remove_system() (ebs.World method)

 	
 	Resources (class in resources)

 	resources (module)

 	runs (dojo.Dojo attribute)

S

 	
 	scan() (resources.Resources method)

 	Scene (class in scene)

 	scene (module)

 	SceneManager (class in scene)

 	scenes (scene.SceneManager attribute)

 	sender (events.EventHandler attribute)

 	size (array.MemoryView attribute)

 	source (array.MemoryView attribute)

 	start() (scene.Scene method)

 	started (scene.Scene attribute)

 	
 	state (scene.Scene attribute)

 	strides (array.MemoryView attribute)

 	stringify() (in module compat)

 	STYLE_BOLD (in module sysfont)

 	STYLE_ITALIC (in module sysfont)

 	STYLE_NORMAL (in module sysfont)

 	switched (scene.SceneManager attribute)

 	sysfont (module)

 	System (class in ebs)

 	systems (ebs.World attribute)

T

 	
 	TimingDojo (class in dojo)

 	to_bytes() (array.CTypesView method)

 	to_ctypes() (in module array)

 	to_list() (in module array)

 	to_tuple() (in module array)

 	
 	to_uint16() (array.CTypesView method)

 	to_uint32() (array.CTypesView method)

 	to_uint64() (array.CTypesView method)

 	train() (dojo.Dojo method)

 	(dojo.FitnessDojo method)

 	(dojo.TimingDojo method)

U

 	
 	unichr() (in module compat)

 	unicode() (in module compat)

 	unpause() (scene.Scene method)

 	(scene.SceneManager method)

 	
 	unpaused (scene.Scene attribute)

 	UnsupportedError

 	update() (scene.SceneManager method)

V

 	
 	view (array.CTypesView attribute)

W

 	
 	World (class in ebs)

 	
 	world (ebs.Entity attribute)

 _images/ebs.png
World

contains

consists of /

Zprocesses

AN s

Sprite Soundsource

Components

_images/copprocessing.png
Processing order
< >

MovementSystem AudioSystem RenderingSystem

Car Entity

PosAndvelocity

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to the Python Utilities documentation!

 		array - Converting sequences

 		Providing read-write access for sequential data

 		Accessing data over multiple dimensions

 		API

 		compat - Python compatibility helpers

 		dll - DLL loading

 		dojo - Training classes for functions and algorithms

 		ebs - A component-based entity system framework

 		Component-based patterns

 		Behavioural design

 		Information design

 		All in all

 		Component-based design with ebs

 		API

 		events - General purpose event handling routines

 		resources - Resource management

 		API

 		scene - Scene management

 		sysfont - Font detection helpers

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

