

Python Security

This page is an attempt to document security vulnerabilities in Python and the
versions including the fix.

Pages

	Packages and PyPI
	Check for known vulnerabilities

	GPG

	pip security

	PyPI

	Vulnerabilites in the Package Index

	PyPI typo squatting

	Links

	Python SSL and TLS security
	Cipher suite

	Options

	CA store

	SSLContext

	CRLs

	Validate TLS certificates

	TLS versions

	OpenSSL versions

	Links

	Python Security
	Python branches

	Dangerous functions and modules

	Security model

	RNG

	CPython Security Experts

	Windows

	Misc

	Python Security Response Team (PSRT)

	Links

	TODO list
	cookielib

Packages and PyPI

Check for known vulnerabilities

	https://github.com/pyupio/safety-db and https://pyup.io/

	safety package [https://pypi.python.org/pypi/safety]: Safety checks your
installed dependencies for known security vulnerabilities.

GPG

	Verifying PyPI and Conda Packages [http://stuartmumford.uk/blog/verifying-pypi-and-conda-packages.html]
by Stuart Mumford (2016-06-21)

	Sign a package using GPG and Twine [https://packaging.python.org/tutorials/distributing-packages/#upload-your-distributions]

pip security

	pip: Implement “hook” support for package signature verification [https://github.com/pypa/pip/issues/1035]

PyPI

	PEP 458 – Surviving a Compromise of PyPI [https://www.python.org/dev/peps/pep-0458/] (27-Sep-2013)

	PEP 480 – Surviving a Compromise of PyPI: The Maximum Security Model [https://www.python.org/dev/peps/pep-0480/] (8-Oct-2014)

	Making PyPI security independent of SSL/TLS [http://www.curiousefficiency.org/posts/2016/09/python-packaging-ecosystem.html#making-pypi-security-independent-of-ssl-tls]
by Nick Coghlan

Vulnerabilites in the Package Index

	Index Vulnerability: Unchecked File Deletion

	PyPI credential exposure on GitHub

PyPI typo squatting

	Typosquatting programming language package managers [http://incolumitas.com/2016/06/08/typosquatting-package-managers/]
by Nikolai Tschacher (8 June, 2016)

	LWN: Typosquatting in package repositories [https://lwn.net/Articles/694830/] (July 20, 2016)

	Building a botnet on PyPi [https://hackernoon.com/building-a-botnet-on-pypi-be1ad280b8d6]
by Steve Stagg (May 19, 2017)

	warehouse bug (pypi.org): Block package names that conflict with core
libraries [https://github.com/pypa/warehouse/issues/2151] (reported at June
28, 2017)

	2017-09-09: skcsirt-sa-20170909-pypi-malicious-code advisory [http://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/]

fate0:

	2017-05-27 04:38 - 2017-05-31 12:24 (5 days): 10,685 downloads

	May-June, 2017

	https://mail.python.org/pipermail/distutils-sig/2017-June/030592.html

	http://blog.fatezero.org/2017/06/01/package-fishing/

	https://github.com/pypa/pypi-legacy/issues/644

	http://evilpackage.fatezero.org/

	https://github.com/fate0/cookiecutter-evilpy-package

	Packages (this list needs to be validated):
	caffe

	ffmpeg

	ftp

	git

	hbase

	memcached

	mkl

	mongodb

	opencv

	openssl

	phantomjs

	proxy

	pygpu

	python-dev

	rabbitmq

	requirement.txt

	requirements.txt

	rrequirements.txt

	samba

	shadowsock

	smb

	tkinter

	vtk

	youtube-dl

	zookeeper

	ztz

	...

See also:

	pytosquatting.org project [https://www.pytosquatting.org/]

Example of typos:

	urllib, urllib2: part of the standard library

	urlib3 instead of urllib3

Links

	The Update Framework (TUF) [https://theupdateframework.github.io/]:
Like the S in HTTPS, a plug-and-play library for securing a software updater.

Index Vulnerability: Unchecked File Deletion

Improper checking of ACLs would have allowed any authenticated user to delete
any release file hosted on the Package Index by supplying its md5 to the
:files action in the pypi-legacy [https://github.com/pypa/pypi-legacy]
code base.

	Disclosure date: 2017-10-12 (Reported via security policy on pypi.org [https://pypi.org/security/])

	Disclosed by: Max Justicz [https://mastodon.mit.edu/@maxj]

Fixed In

	PyPI “Legacy Codebase” (2017-10-12) fixed by commit 18200fa [https://github.com/pypa/pypi-legacy/commit/18200fa6731faeeda2433dd1c61d04373ad8a653] (2017-10-12)

Audit

After mitigating the attack vector and deploying it, the responding Package
Index maintainer worked to verify that no release files had been improperly
removed using this exploit.

The Package Index maintains an audit log in the form of a “Journal” for all
actions initiated. It was determined that exploitation of this attack vector
would still remove files via the existing interface [https://github.com/pypa/pypi-legacy/blob/59e2e063b9ed887e3e5e00b7f4dc265150402d3d/webui.py#L2453]
an audit log would still be written [https://github.com/pypa/pypi-legacy/blob/59e2e063b9ed887e3e5e00b7f4dc265150402d3d/store.py#L1987-L1988].

Using this information, we were able to reconstruct the users with access to
legitimately remove release files at point in time of each file removal
using the audit log [https://gist.github.com/ewdurbin/ba3304b6c0d6c48ccace903d3a567755].

The output of this script were used to determine that no malicious actors
exploited this vulnerability. All flagged journal entries were related to one
of the following scenarios:

	Username updates that were not properly updated in the Journal

	Administrator intervention to remove packages

Timeline

Timeline using the disclosure date 2017-10-12 as reference:

	2017-10-12: Issue reported by Max Justicz [https://mastodon.mit.edu/@maxj] following guidelines in security policy on pypi.org [https://pypi.org/security/]

	2017-10-12 (+0days): Report investigated by Ernest W. Durbin III [https://ernest.ly] and determined to be exploitable

	2017-10-12 (+0days): Fix implemented and deployed in commit 18200fa [https://github.com/pypa/pypi-legacy/commit/18200fa6731faeeda2433dd1c61d04373ad8a653]

	2017-10-12 (+0days): The audit journals maintained by PyPI were used to reconstruct the full history of file removals to determine that no malicious deletions were performed.

PyPI credential exposure on GitHub

Introduction

A common mistake made by users is committing and publishing “dotfiles”
containing private material such as passwords, API keys, or cryptographic keys
to public repositories on services such as GitHub.

Compounding this issue, the Python packaging ecosystem historically and
currently encourages—albeit with some level of caution—the use of a
.pypirc file for storage of passwords consumption by packaging tools. For a
summary of the dangers of this methodology, see this article on securing PyPI
credentials [https://glyph.twistedmatrix.com/2017/10/careful-with-that-pypi.html].

With ever strengthening search tools on GitHub attackers are able to formulate
queries which quickly identify and obtain credentials from such hosting sites.

	Disclosure date: 2017-11-05 (Reported via security policy on pypi.org [https://pypi.org/security/])

	Disclosed by: Joachim Jablon

Report

The PyPI security team was notified by Joachim Jablon that .pypirc files
containing valid PyPI credentials were obtainable with a straightforward search
and scrape of GitHub.

Using tools developed by the reporter the PyPI security team was able to
identify 77 valid PyPI logins in 85 public files published to GitHub. These 77
logins had maintainer or administrator access to 146 unique projects on PyPI.

Audit

Action Taken by PyPI team

The PyPI security team followed up by auditing and extending the Proof of
Concept tools supplied by the reporter to verify the report.

After running the tooling against the full result set of the GitHub code search
the PyPI administrators unset the passphrases for all valid logins found and
issued an administrative password reset for exposed users.

Additionally an audit of PyPI’s journals showed no signs of malicious access
for the exposed accounts.

The email sent to affected users took the form

Recommendations

All users of PyPI should ensure that their PyPI login credentials are safe and
have not been inadvertently exposed in a public repository of dotfiles, in the
root of a project directory, or in some other public or shared medium.

The PyPI team does not have the resources to search or scrape all such services
and may not have identified all forms of this exposure.

Additionally, reviewing the Audit Journal for your projects on pypi.python.org
for suspicous activity is a good idea. If you identify any such activity,
please report it per our published security policy [https://pypi.org/security/].

Timeline

Timeline using the disclosure date 2017-11-05 as reference:

	2017-11-05 Issue reported by Joachim Jablon to a single member of the security team listed in our security policy on pypi.org [https://pypi.org/security/]

	2017-11-08 (+3days):Issue reported by Joachim Jablon to an additional member of the security team listed in our security policy on pypi.org [https://pypi.org/security/]

	2017-11-08 (+3days):Issue reported by Joachim Jablon to all members of the security team listed in our security policy on pypi.org [https://pypi.org/security/]

	2017-10-08 (+3days): Report investigated by Ernest W. Durbin III [https://ernest.ly] and determined to be valid.

	2017-10-09 (+4days): Administrative password resets issued.

Python SSL and TLS security

Evolutions of the ssl module.

Cipher suite

Python 2.7 and 3.5-3.7:

_DEFAULT_CIPHERS = (
 'ECDH+AESGCM:ECDH+CHACHA20:DH+AESGCM:DH+CHACHA20:ECDH+AES256:DH+AES256:'
 'ECDH+AES128:DH+AES:ECDH+HIGH:DH+HIGH:RSA+AESGCM:RSA+AES:RSA+HIGH:'
 '!aNULL:!eNULL:!MD5:!3DES'
)

Pytohn 3.4:

_DEFAULT_CIPHERS = (
 'ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:ECDH+HIGH:'
 'DH+HIGH:ECDH+3DES:DH+3DES:RSA+AESGCM:RSA+AES:RSA+HIGH:RSA+3DES:!aNULL:'
 '!eNULL:!MD5'
)

Python 3.3:

_DEFAULT_CIPHERS = 'DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2'

Options

	SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS: CBC IV attack countermeasure
(CVE-2011-3389)

	SSL_OP_NO_SSLv2: SSLv2 is unsafe

	SSL_OP_NO_SSLv3: SSLv3 is unsafe

	SSL_OP_NO_COMPRESSION: CRIME [https://en.wikipedia.org/wiki/CRIME_(security_exploit)] countermeasure

	SSL_OP_CIPHER_SERVER_PREFERENCE

	SSL_OP_SINGLE_DH_USE

	SSL_OP_SINGLE_ECDH_USE

Python 3.7:

/* Defaults */
 options = SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS;
 if (proto_version != PY_SSL_VERSION_SSL2)
 options |= SSL_OP_NO_SSLv2;
 if (proto_version != PY_SSL_VERSION_SSL3)
 options |= SSL_OP_NO_SSLv3;
 /* Minimal security flags for server and client side context.
 * Client sockets ignore server-side parameters. */
#ifdef SSL_OP_NO_COMPRESSION
 options |= SSL_OP_NO_COMPRESSION;
#endif
#ifdef SSL_OP_CIPHER_SERVER_PREFERENCE
 options |= SSL_OP_CIPHER_SERVER_PREFERENCE;
#endif
#ifdef SSL_OP_SINGLE_DH_USE
 options |= SSL_OP_SINGLE_DH_USE;
#endif
#ifdef SSL_OP_SINGLE_ECDH_USE
 options |= SSL_OP_SINGLE_ECDH_USE;
#endif
 SSL_CTX_set_options(self->ctx, options);

CA store

SSLContext.load_default_certs() new in Python 3.4.

	Windows: ssl.enum_certificates(store_name), new in Python 3.4.
Use CertOpenStore() [https://msdn.microsoft.com/en-us/library/windows/desktop/aa376559(v=vs.85).aspx]
and CertEnumCertificatesInStore() functions.

	Linux: xxx

	macOS: xxx

See also

	certifi [https://pypi.python.org/pypi/certifi]: “Python package for
providing Mozilla’s CA Bundle”.

	[Python-Dev] SSL certificates recommendations for downstream python packagers [https://mail.python.org/pipermail/python-dev/2017-January/147282.html]

SSLContext

New in Python 3.2.

CRLs

	SSLContext.verify_flags: New in Python 3.4

	SSLContext.load_verify_locations(): This method can also load
certification revocation lists (CRLs) in PEM or DER format. New in Python 3.5.

	ssl.enum_crls(store_name): new in Python 3.4, specific to Windows

Validate TLS certificates

	Python decides for certificate validation [https://lwn.net/Articles/611243/] (September, 2014)

	CVE-2014-9365

	Python 2.7.9 (2014-12-10)

	Python 3.4.3 (2015-02-23)

	PEP 476: Enabling certificate verification by default for stdlib http
clients [https://www.python.org/dev/peps/pep-0476/]: Python 3.4.3, 3.5

	PEP 466 [https://www.python.org/dev/peps/pep-0466/]: Python 2.7.9

	Version matrix?
	HTTP

	SMTP

	FTP

	IMAP

	POP3

	XML-RPC

	NNTP

TLS versions

	SSLv2 now black listed

	SSLv3 now black listed

OpenSSL versions

Python bundled OpenSSL in Windows and macOS installers.

OpenSSL versions (read from the Windows installer):

	Python 3.6.1: OpenSSL 1.0.2k

	Python 2.7.13, 3.5.3 and 3.6.0: OpenSSL 1.0.2j

	Python 2.7.12, 3.5.2: OpenSSL 1.0.2h

	Python 2.7.11, 3.4.4, 3.5.0, 3.5.1: OpenSSL 1.0.2d

	Python 2.7.10: OpenSSL 1.0.2a

	Python 2.7.9: OpenSSL 1.0.1j

	Python 3.3.5: OpenSSL 1.0.1e

Windows: see PCbuild/get_externals.bat [https://github.com/python/cpython/blob/master/PCbuild/get_externals.bat]
(or PCbuild/readme.txt in older versions).

macOS: see Mac/BuildScript/build-installer.py [https://github.com/ned-deily/cpython/blob/master/Mac/BuildScript/build-installer.py#L210].

macOS:

Since Apple removed the header files for the deprecated system
OpenSSL as of the Xcode 7 release (for OS X 10.10+), we do not
have much choice but to build our own copy here, too.

Example of OpenSSL update: Upgrade installers to OpenSSL 1.0.2k [http://bugs.python.org/issue29572] (March 2017).

Links

	The future of the Python ssl module [https://lwn.net/Articles/688974/] (June, 2016)

	cryptography (cryptography.io) [https://cryptography.io/]: Python library
which exposes cryptographic recipes and primitives

	pyOpenSSL [https://pypi.python.org/pypi/pyOpenSSL]

	M2Crypto [https://pypi.python.org/pypi/M2Crypto]

	urllib3 <https://urllib3.readthedocs.io/>_

	LibreSSL [http://www.libressl.org/]

	borringssl [https://boringssl.googlesource.com/boringssl/]

	multissl [https://github.com/tiran/multissl/blob/master/multissl.py] (by
Christian Heimes): Run Python tests against multiple installations of OpenSSL
and LibreSSL

Python Security

Python branches

	(Latest update: 2017-03-28) Python 2.6, 3.0, 3.1, 3.2 don’t get security
fixes anymore and so should be considered as vulnerable

	Branches getting security fixes: 2.7, 3.3, 3.4 and 3.5

	See Status of Python branches [https://docs.python.org/devguide/#status-of-python-branches]

Dangerous functions and modules

	Python 2 input()

	Python 2 execfile()

	eval()

	subprocess.Popen(shell=True)

	str.format(), Python 3 str.format_map, and Python 2 unicode.format() all
allow arbitrary attribute access on formatted values, and hence access
to Python’s introspection features:
Be Careful with Python’s New-Style String Format [http://lucumr.pocoo.org/2016/12/29/careful-with-str-format/]
(Armin Ronacher, December 2016)

	The pickle module executes arbitrary Python code: never use it with
untrusted data.

	archives:
	tarfile: Never extract archives from untrusted sources without prior
inspection. It is possible that files are created outside of path, e.g.
members that have absolute filenames starting with “/” or filenames with
two dots ”..”.

	zipfile: Never extract archives from untrusted sources without prior
inspection. It is possible that files are created outside of path, e.g.
members that have absolute filenames starting with “/” or filenames with
two dots ”..”. zipfile attempts to prevent that.

Security model

Bytecode

CPython doesn’t verify that bytecode is safe. If an attacker is able to
execute arbitrary bytecode, we consider that the security of the bytecode is
the least important issue: using bytecode, sensitive code can be imported and
executed.

For example, the marshal doesn’t validate inputs.

Sandbox

Don’t try to build a sandbox inside CPython. The attack surface is too large.
Python has many introspection features, see for example the inspect module.
Python also many convenient features which executes code on demand. Examples:

	the literal string '\N{Snowman}' imports the unicodedata module

	the code to log a warning might be abused to execute code

The good design is to put CPython into a sandbox, not the opposite.

Ok, understood, but I want a sandbox in Python. Well...

	Eval really is dangerous [http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html]
(Ned Batchelder, June 2012)

	PyPy sandboxing [http://pypy.org/features.html#sandboxing]

	For Linux, search for SECCOMP

RNG

	CSPRNG:
	os.urandom()

	random.SystemRandom

	secrets module [https://docs.python.org/dev/library/secrets.html]
(Python 3.6)

	os.urandom() uses:
	Python 3.6: CryptGenRandom(), getentropy(),
getrandom(0) (blocking) or /dev/urandom

	Python 3.5: CryptGenRandom(), getentropy(),
getrandom(GRND_NONBLOCK) (non-blocking) or /dev/urandom

	Python 2.7: CryptGenRandom(), getentropy() or /dev/urandom

	PEP 524: Make os.urandom() blocking on Linux [https://www.python.org/dev/peps/pep-0524/]: Python 3.6

	ssl.RAND_bytes() fork issue:
	Python issue: Re-seed OpenSSL’s PRNG after fork [http://bugs.python.org/issue18747]

	OpenSSL Random fork-safety [https://wiki.openssl.org/index.php/Random_fork-safety]

The random module must not be used in security sensitive code, except of
the random.SystemRandom class.

CPython Security Experts

	Alex Gaynor

	Antoine Pitrou

	Christian Heimes

	Donald Stufft

Windows

ASLR and DEP

ASLR and DEP protections enabled since Python 3.4 (and Python 2.7.11 if built
using PCbuild/ directory).

Unsafe Python 2.7 default installation directory

Python 2.7 installer uses C:Python27directory by default. The created
directory has the “Modify” access rights given to the “Authenticated Users”
group. An attacker can modify the standard library or even modify
python.exe. Python 3 installer now installs Python in “C:Program Files” by
default to fix this issue. Override the default installation directory, or
fix the directory permissions.

DLL injection

On Windows 8.1 and older, the installer is vulnerable to DLL injection:
evil DLL written in the same download directory that the downloaded Python
installer. See DLL Hijacking Just Won’t Die [https://textslashplain.com/2015/12/18/dll-hijacking-just-wont-die/].

DLL injection using PATH

Inject a malicious DLL in a writable directory included in PATH. The “pip” step
of the Python installer will run this DLL.

We consider that it is not an issue of Python (Python installer) itself.

Once you have write access to a directory on the system PATH (not the current
user PATH) and the ability to write binaries that are not validated by the
operating system before loading, there are many more interesting things you can
do rather than wait for the Python installer to be run.

Misc

	python3 -E [https://docs.python.org/3/using/cmdline.html#cmdoption-E]:
ignore PYTHON* environment variables like PYTHONPATH

	python3 -I [https://docs.python.org/3/using/cmdline.html#cmdoption-I]:
isolated mode, also implies -E and -s

	Python 3.7 adds a is_safe attribute to uuid.UUID objects:
http://bugs.python.org/issue22807

	XML: defusedxml [https://pypi.python.org/pypi/defusedxml], XML bomb
protection for Python stdlib modules

	Coverity:
	Coverity Scan: Python [https://scan.coverity.com/projects/python]

	devguide info about Coverity [https://docs.python.org/devguide/coverity.html]

	analysis of 2012 by Coverity Software resulted in CPython receiving their
highest quality rating [http://www.coverity.com/press-releases/coverity-finds-python-sets-new-level-of-quality-for-open-source-software/].

	sys.path:
	CVE-2008-5983: http://bugs.python.org/issue5753 added PySys_SetArgvEx()

	CVE-2015-5652 [http://www.cvedetails.com/cve/CVE-2015-5652/]:
Untrusted search path vulnerability in python.exe in Python through 3.5.0
on Windows allows local users to gain privileges via a Trojan horse
readline.pyd file in the current working directory. NOTE: the vendor says
“It was determined that this is a longtime behavior of Python that cannot
really be altered at this point.”

	python -E, python -I

	Python at HackerOne [https://hackerone.com/python]

	humans.txt of python.org [https://www.python.org/humans.txt]
with the list of “people who found security bugs in the website”.
For the rationale, see humanstxt.org [http://humanstxt.org/].

Python Security Response Team (PSRT)

	Handle security@python.org incoming emails

	PSRT issues (private) [https://github.com/python/psrt/issues]

	LWN: The Python security response team [https://lwn.net/Articles/691308/] (June, 2016)

Links

	Reporting security issues in Python [https://www.python.org/news/security/]

	OWASP Python Security Project (pythonsecurity.org) [http://www.pythonsecurity.org/]

	bandit: Python AST-based static analyzer from OpenStack Security Group [https://github.com/openstack/bandit]

	Python CVEs (cvedetails.com) [http://www.cvedetails.com/product/18230/Python-Python.html?vendor_id=10210]

	https://gemnasium.com/

	owasp-pysec: OWASP Python Security Project [https://github.com/ebranca/owasp-pysec]

	LWN: Python ssl module update [https://lwn.net/Articles/724209/] by Christian Heimes at the Python
Language Summit 2017 (during Pycon US, Portland, OR)

TODO list

TODO list for this python-security documentation.

	Get Red Hat impact from a Red Hat URL?

cookielib

Add https://hackerone.com/reports/26647 vulnerability.

	https://bugs.python.org/issue16611

	#16611: BaseCookie now parses ‘secure’ and ‘httponly’ flags.

	https://bugs.python.org/issue22796

	Regression in Python 3.2 cookie parsing

	https://bugs.python.org/issue25228

	Support for httponly/secure cookies reintroduced lax parsing behavior

	https://code.djangoproject.com/ticket/26158

	cookie parsing fails with python 3.x if request contains unnamed cookie

YAML template:

- name: "Issue #22796"
 summary: >
 hardened HTTP cookie parsing
 links:
 - http://bugs.python.org/issue22796
 disclosure: "2014-11-04 (issue #22796 created)"
 fixed-in:
 - b1e36073cdde71468efa27e88016aa6dd46f3ec7 # 3.x
 description: >
 HTTP cookie parsing is now stricter, in order to protect against potential
 injection attacks.

 Reported by Tim Graham.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		Python Security

 		Packages and PyPI

 		Check for known vulnerabilities

 		GPG

 		pip security

 		PyPI

 		Vulnerabilites in the Package Index

 		Index Vulnerability: Unchecked File Deletion

 		PyPI credential exposure on GitHub

 		PyPI typo squatting

 		Links

 		Python SSL and TLS security

 		Cipher suite

 		Options

 		CA store

 		SSLContext

 		CRLs

 		Validate TLS certificates

 		TLS versions

 		OpenSSL versions

 		Links

 		Python Security

 		Python branches

 		Dangerous functions and modules

 		Security model

 		Bytecode

 		Sandbox

 		RNG

 		CPython Security Experts

 		Windows

 		ASLR and DEP

 		Unsafe Python 2.7 default installation directory

 		DLL injection

 		DLL injection using PATH

 		Misc

 		Python Security Response Team (PSRT)

 		Links

 		TODO list

 		cookielib

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

