

 Navigation

 	
 index

 	
 next |

 	Python Scrapyd API 2.1.2 documentation

Documentation for python-scrapyd-api

python-scrapyd-api is a very simple Python wrapper for working with
Scrapyd [https://github.com/scrapy/scrapyd]‘s API [http://scrapyd.readthedocs.org/en/latest/api.html]; it allows a Python application to talk to, and therefore
control, the Scrapy Daemon.

It is built on top of the Requests [http://python-requests.org] library and supports Python 2.6, 2.7, 3.3
& 3.4.

Contents

	Installation

	Usage Instructions
	Quick Usage

	Instantiating the wrapper

	Calling the API

	Handling Exceptions

 Copyright 2014, Darian Moody.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python Scrapyd API 2.1.2 documentation

Installation

The package is available via the Python Package Index and can be installed in
the usual ways:

$ easy_install python-scrapyd-api

or:

$ pip install python-scrapyd-api

 Copyright 2014, Darian Moody.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Python Scrapyd API 2.1.2 documentation

Usage Instructions

Quick Usage

Please see the README [https://github.com/djm/python-scrapyd-api/blob/master/README.md] for quick usage instructions.

Instantiating the wrapper

The wrapper is the core component which allows you to talk to Scrapyd’s API
and in most cases this will be the first and only point of interaction with
this package.

from scrapyd_api import ScrapydAPI
scrapyd = ScrapydAPI('http://localhost:6800')

Where http://localhost:6800 is the absolute URI to the location of the
service, including which port Scrapyd’s API is running on.

Note that while it is usually better to be explicit, if you are running Scrapyd
on the same machine and with the default port then the wrapper can be
instantiated with no arguments at all.

You may have further special requirements, for example one of the following:

	you may require HTTP Basic Authentication for your connections to Scrapyd.

	you may have changed the default endpoints for the various API actions.

	you may need to swap out the default connection client/handler.

	you may want to provide a timeout for client requests so the program does not
hang indefinitely in case the server is not responding.

Providing HTTP Basic Auth credentials

The auth parameter can be passed during instantiation. The value itself
should be a tuple containing two strings: the username and password required
to successfully authenticate:

credentials = ('admin-username', 'admin-p4ssw0rd')
scrapyd = ScrapydAPI('http//example.com:6800/scrapyd/', auth=credentials)

Note

If you pass the client argument explained below, the auth
argument’s value will be ignored. The auth argument is only meant as
a shortcut for setting the credentials on the built-in client; therefore,
when passing your own you will have to handle this yourself.

Supplying custom endpoints for the various API actions

You might have changed the location of the add version action for whatever
reason, here is how you would go about overriding that so the wrapper contacts
the correct endpoint:

from scrapyd_api.constants import ADD_VERSION_ENDPOINT

custom_endpoints = {
 ADD_VERSION_ENDPOINT: '/changed-add-version-location.json'
}
scrapyd = ScrapydAPI('http://localhost:6800', endpoints=custom_endpoints)

The code example above only overrides the add version endpoint location
and thus for all other endpoints, the default value would still be utilised.
Simply add extra endpoint keys to the dict you pass in to override extra
endpoints; the key values can either:

	be imported from scrapyd_api.constants as per the example.

	or simply set as strings, see the constants module for correct usage.

Replacing the client used

When no client argument is passed, the wrapper uses the default client
which can be found at scrapyd_api.client.Client. This default client is
effectively a small modification of Requests [http://python-requests.org]‘ Session client which
knows how to handle errors from Scrapyd in a more graceful fashion by raising
a ScrapydResponseError exception.

If you have custom authentication requirements or other issues which the
default client does not solve then you can create your own client class,
instantiate it and then pass it in to the constructor. This may be as simple
as subclassing scrapyd_api.client.Client and modifying its functionality
or it may require building your own Request’s Session-like class. It would
be done like so:

new_client = SomeNewClient()
scrapyd = ScrapydAPI('http://localhost:6800', client=new_client)

At the very minimum the client object should support:

	the .get() and .post() methods which should accept Requests-list args.

	the responses being parsed in a similar fashion to the
scrapd_api.client.Client._handle_response method which has the ability
to load the JSON returned and check the “status” which gets sent from
Scrapyd, raising the ScrapydResponseError exception as required.

Setting timeout for the requests

By default, client requests do not time out unless a timeout value is set
explicitly. Thus, if the server is not responding, your code may hang
indefinitely. You can tell the client to stop waiting for a response after
a given number of seconds with the timeout parameter provided during
instantiation of the wrapper:

scrapyd = ScrapydAPI('http//example.com:6800/scrapyd/', timeout=5)

The value should be a float or a (connect timeout, read timeout) tuple. It will
be supplied to every request to the server. Additional information can be found
in the Requests documentation [http://docs.python-requests.org/en/master/user/advanced/#timeouts].

Calling the API

The Scrapyd API has a number of different actions designed to enable the
full control and automation of the daemon itself, and this package provides
a wrapper for all of those.

Add a version

	
ScrapydAPI.add_version(project, version, egg)

	

Uploads a new version of a project. See the add version endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#addversion-json] on Scrapyd’s
documentation.

Arguments:

	project (string) The name of the project.

	version (string) The name of the new version you are uploading.

	egg (string) The Python egg you wish to upload as the project, as a pre-opened file.

Returns: (int) The number of spiders found in the uploaded project; this is
the only useful information returned by Scrapyd as part of this call.

>>> with open('some-egg.egg') as egg:
>>> scrapyd.add_version('project_name', 'version_name', egg)
3

Cancel a job

	
ScrapydAPI.cancel(project, job, signal=None)

	

Cancels a running or pending job with an optionally supplied termination signal.
A job in this regard is a previously scheduled run of a specific spider. See the
cancel endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#cancel-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project the job belongs to.

	job (string) The ID of the job (which was reported back on scheduling).

	signal (optional - string or int) The termination signal to use. If one is not provided, this field is not send allowing scrapyd to pick the default.

Returns: (string) 'running' if the cancelled job was active, or 'pending' if it was waiting to run.

>>> scrapyd.cancel('project_name', 'a3cb2..4efc1')
'running'
>>> scrapyd.cancel('project_name', 'b3ea2..3acc2', signal='TERM')
'pending'

Delete a project

	
ScrapydAPI.delete_project(project)

	

Deletes all versions of an entire project, this includes all spiders within
those versions. See the delete project endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#delproject-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project to delete.

Returns: (bool) Always True, an exception is raised for other outcomes.

>>> scrapyd.delete_project('project_name')
True

Delete a version of a project

	
ScrapydAPI.delete_version(project, version)

	

Deletes a specific version of a project and all spiders within that version.
See the delete version endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#delversion-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project which the version belongs to.

	version (string) The name of the version you wish to delete.

Returns: (bool) Always True, an exception is raised for other outcomes.

>>> scrapyd.delete_version('project_name', 'version_name')
True

Retrieve the status of a specific job

	
ScrapydAPI.job_status(project, job_id)

	

New in version 0.2.

Returns the job status for a single job. The status returned can be one of:
'', 'running', 'pending' or 'finished'. The empty string is
returned if the job ID could not be found and the status is therefore unknown.

Arguments:

	project (string) The name of the project which the version belongs to.

	job_id (string) The ID of the job you wish to check the status of.

Returns: (string) The status of the job, if known.

Note

Scrapyd does not support an endpoint for this specific action. This
method’s result is derived from the list jobs endpoint, and therefore
this is a helper method/shortcut provided by this wrapper itself. This is
why the call requires the project argument, as the list jobs endpoint
underlying this method also requires it.

>>> scrapyd.job_status('project_name', 'ac32a..bc21')
'running'

If you wish, the various strings defining job state can be imported from
the scrapyd module itself for use in comparisons. e.g:

from scrapyd_api import RUNNING, FINISHED, PENDING

state = scrapyd.job_status('project_name', 'ac32a..bc21')
if state == RUNNING:
 print 'Job is running'

List all jobs for a project

	
ScrapydAPI.list_jobs(project)

	

Lists all running, finished & pending spider jobs for a given project. See the
list jobs endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#listjobs-json] on Scrapyd’s documentation.

	project (string) The name of the project to list jobs for.

Returns: (dict) A dictionary with keys pending, running and
finished, each containing a list of job dicts. Each job dict has keys for
the id and the name of the spider which ran the job.

>>> scrapyd.list_jobs('project_name')
{
 'pending': [
 {
 u'id': u'24c35...f12ae',
 u'spider': u'spider_name'
 },
],
 'running': [
 {
 u'id': u'14a65...b27ce',
 u'spider': u'spider_name',
 u'start_time': u'2014-06-17 22:45:31.975358'
 },
],
 'finished': [
 {
 u'id': u'34c23...b21ba',
 u'spider': u'spider_name',
 u'start_time': u'2014-06-17 22:45:31.975358',
 u'end_time': u'2014-06-23 14:01:18.209680'
 }
]
}

List all projects

	
ScrapydAPI.list_projects()

	

Lists all available projects. See the list projects endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#listprojects-json] on Scrapyd’s
documentation.

Arguments:

	This method takes no arguments.

Returns: (list) A list of strings denoting the names of which projects
are available.

>>> scrapyd.list_projects()
[u'ecom_project', u'estate_agent_project', u'car_project']

List all spiders in a project

	
ScrapydAPI.list_spiders(project)

	

Lists all spiders available to a given project. See the list spiders
endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#listspiders-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project to list spiders for.

Returns: (list) A list of strings denoting the names of spider available
to the project.

>>> scrapyd.list_spiders('project_name')
[u'raw_spider', u'js_enhanced_spider', u'selenium_spider']

List all versions of a project

	
ScrapydAPI.list_versions(project)

	

This endpoint lists all available versions of a given project. See the list
versions endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#listversions-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project to list versions for.

Returns: (list) A list of strings denoting all available version names for
the requested project.

>>> scrapyd.list_versions('project_name'):
[u'345', u'346', u'347', u'348']

Schedule a job to run

	
ScrapydAPI.schedule(project, spider, settings=None, **kwargs)

	

The main action method which would actually cause scraping to start. This
action schedules a given spider to run immediately if there are no concurrent
jobs or as soon as possible once the current jobs are complete (this is a
Scrapyd setting).

There is currently no built-in ability in Scrapyd to schedule a spider for a
specific time, but this can be handled client side by simply firing off the
request at the desired time.

See the schedule endpoint [http://scrapyd.readthedocs.org/en/latest/api.html#schedule-json] on Scrapyd’s documentation.

Arguments:

	project (string) The name of the project that owns the spider.

	spider (string) The name of the spider you wish to run.

	settings (dict) A dictionary of Scrapy settings keys you wish to
override for this run.

	kwargs Any extra parameters you would like to pass to the spiders
constructor/init method.

Returns: (string) The Job ID of the newly created run.

Schedule a job to run now sans extra parameters.
>>> scrapyd.schedule('project_name', 'spider_name')
u'14a6599ef67111e38a0e080027880ca6'
Schedule a job to run now with overridden settings.
>>> settings = {'DOWNLOAD_DELAY': 2}
>>> scrapyd.schedule('project_name', 'spider_name', settings=settings)
u'23b5688df67111e38a0e080027880ca6'
Schedule a job to run now with overridden settings.
Schedule a joib to run now while passing init parameters.
>>> scrapyd.schedule('project_name', 'spider_name', extra_init_param='value')
u'14a6599ef67111e38a0e080027880ca6'
Schedule a job to run now with overridden settings.

Note

‘project’, ‘spider’ and ‘settings’ are reserved kwargs for this method and
therefore these names should be avoided when trying to pass extra
attributes to the spider init.

Handling Exceptions

As this library relies on the Requests [http://python-requests.org] library to handle HTTP connections,
the exceptions raised by Requests itself for such things as hard connection
errors, timeouts etc can be found in the Requests exceptions documentation [http://docs.python-requests.org/en/latest/api/?highlight=exceptions#exceptions].

However, when the problem is an error Scrapyd has returned itself instead,
the scrapyd_api.exceptions.ScrapydResponseError will be raised with the
applicable error message sent back from the Scrapyd API.

This works by simply checking the JSON return’s status key and raising
the exception with the return’s message value, allowing the developer
to debug the response.

 Copyright 2014, Darian Moody.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Python Scrapyd API 2.1.2 documentation

Index

 A
 | C
 | D
 | J
 | L
 | S

A

 	

 	add_version() (ScrapydAPI method)

C

 	

 	cancel() (ScrapydAPI method)

D

 	

 	delete_project() (ScrapydAPI method)

 	

 	delete_version() (ScrapydAPI method)

J

 	

 	job_status() (ScrapydAPI method)

L

 	

 	list_jobs() (ScrapydAPI method)

 	list_projects() (ScrapydAPI method)

 	

 	list_spiders() (ScrapydAPI method)

 	list_versions() (ScrapydAPI method)

S

 	

 	schedule() (ScrapydAPI method)

 Copyright 2014, Darian Moody.
 Created using Sphinx 1.2.3.

 search.html

 Navigation

 		
 index

 		Python Scrapyd API 2.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Darian Moody.
 Created using Sphinx 1.2.3.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

