

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/python-rq/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/python-rq/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 RQ (Redis Queue) is a simple Python library for queueing jobs and processing
them in the background with workers. It is backed by Redis and it is designed
to have a low barrier to entry. It should be integrated in your web stack
easily.

RQ requires Redis >= 2.7.0.

[image: Build status] [https://secure.travis-ci.org/nvie/rq]
[image: Downloads] [https://pypi.python.org/pypi/rq]
[image: Can I Use Python 3?] [https://caniusepython3.com/project/rq]
[image: Coverage Status] [https://coveralls.io/r/nvie/rq]

Full documentation can be found here [http://python-rq.org/].

Getting started

First, run a Redis server, of course:

$ redis-server

To put jobs on queues, you don’t have to do anything special, just define
your typically lengthy or blocking function:

import requests

def count_words_at_url(url):
 """Just an example function that's called async."""
 resp = requests.get(url)
 return len(resp.text.split())

You do use the excellent requests [http://python-requests.org] package, don’t you?

Then, create an RQ queue:

from redis import Redis
from rq import Queue

q = Queue(connection=Redis())

And enqueue the function call:

from my_module import count_words_at_url
result = q.enqueue(count_words_at_url, 'http://nvie.com')

For a more complete example, refer to the docs [http://python-rq.org/]. But this is the essence.

The worker

To start executing enqueued function calls in the background, start a worker
from your project’s directory:

$ rq worker
*** Listening for work on default
Got count_words_at_url('http://nvie.com') from default
Job result = 818
*** Listening for work on default

That’s about it.

Installation

Simply use the following command to install the latest released version:

pip install rq

If you want the cutting edge version (that may well be broken), use this:

pip install -e git+https://github.com/nvie/rq.git@master#egg=rq

Project history

This project has been inspired by the good parts of Celery [http://www.celeryproject.org/], Resque [https://github.com/resque/resque]
and this snippet [http://flask.pocoo.org/snippets/73/], and has been created as a lightweight alternative to the
heaviness of Celery or other AMQP-based queueing implementations.

0.8.2

	Fixed an issue where job.save() may fail with unpickleable return value.

0.8.1

	Replace job.id with Job instance in local _job_stack. Thanks @katichev!

	job.save() no longer implicitly calls job.cleanup(). Thanks @katichev!

	Properly catch StopRequested worker.heartbeat(). Thanks @fate0!

	You can now pass in timeout in days. Thanks @yaniv-g!

	The core logic of sending job to FailedQueue has been moved to rq.handlers.move_to_failed_queue. Thanks @yaniv-g!

	RQ cli commands now accept --path parameter. Thanks @kirill and @sjtbham!

	Make job.dependency slightly more efficient. Thanks @liangsijian!

	FailedQueue now returns jobs with the correct class. Thanks @amjith!

0.8.0

	Refactored APIs to allow custom Connection, Job, Worker and Queue classes via CLI. Thanks @jezdez!

	job.delete() now properly cleans itself from job registries. Thanks @selwin!

	Worker should no longer overwrite job.meta. Thanks @WeatherGod!

	job.save_meta() can now be used to persist custom job data. Thanks @katichev!

	Added Redis Sentinel support. Thanks @strawposter!

	Make Worker.find_by_key() more efficient. Thanks @selwin!

	You can now specify job timeout using strings such as queue.enqueue(foo, timeout='1m'). Thanks @luojiebin!

	Better unicode handling. Thanks @myme5261314 and @jaywink!

	Sentry should default to HTTP transport. Thanks @Atala!

	Improve HerokuWorker termination logic. Thanks @samuelcolvin!

0.7.1

	Fixes a bug that prevents fetching jobs from FailedQueue (#765). Thanks @jsurloppe!

	Fixes race condition when enqueueing jobs with dependency (#742). Thanks @th3hamm0r!

	Skip a test that requires Linux signals on MacOS (#763). Thanks @jezdez!

	enqueue_job should use Redis pipeline when available (#761). Thanks mtdewulf!

0.7.0

	Better support for Heroku workers (#584, #715)

	Support for connecting using a custom connection class (#741)

	Fix: connection stack in default worker (#479, #641)

	Fix: fetch_job now checks that a job requested actually comes from the
intended queue (#728, #733)

	Fix: Properly raise exception if a job dependency does not exist (#747)

	Fix: Job status not updated when horse dies unexpectedly (#710)

	Fix: request_force_stop_sigrtmin failing for Python 3 (#727)

	Fix Job.cancel() method on failed queue (#707)

	Python 3.5 compatibility improvements (#729)

	Improved signal name lookup (#722)

0.6.0

	Jobs that depend on job with result_ttl == 0 are now properly enqueued.

	cancel_job now works properly. Thanks @jlopex!

	Jobs that execute successfully now no longer tries to remove itself from queue. Thanks @amyangfei!

	Worker now properly logs Falsy return values. Thanks @liorsbg!

	Worker.work() now accepts logging_level argument. Thanks @jlopex!

	Logging related fixes by @redbaron4 and @butla!

	@job decorator now accepts ttl argument. Thanks @javimb!

	Worker.__init__ now accepts queue_class keyword argument. Thanks @antoineleclair!

	Worker now saves warm shutdown time. You can access this property from worker.shutdown_requested_date. Thanks @olingerc!

	Synchronous queues now properly sets completed job status as finished. Thanks @ecarreras!

	Worker now correctly deletes current_job_id after failed job execution. Thanks @olingerc!

	Job.create() and queue.enqueue_call() now accepts meta argument. Thanks @tornstrom!

	Added job.started_at property. Thanks @samuelcolvin!

	Cleaned up the implementation of job.cancel() and job.delete(). Thanks @glaslos!

	Worker.execute_job() now exports RQ_WORKER_ID and RQ_JOB_ID to OS environment variables. Thanks @mgk!

	rqinfo now accepts --config option. Thanks @kfrendrich!

	Worker class now has request_force_stop() and request_stop() methods that can be overridden by custom worker classes. Thanks @samuelcolvin!

	Other minor fixes by @VicarEscaped, @kampfschlaefer, @ccurvey, @zfz, @antoineleclair,
@orangain, @nicksnell, @SkyLothar, @ahxxm and @horida.

0.5.6

	Job results are now logged on DEBUG level. Thanks @tbaugis!

	Modified patch_connection so Redis connection can be easily mocked

	Customer exception handlers are now called if Redis connection is lost. Thanks @jlopex!

	Jobs can now depend on jobs in a different queue. Thanks @jlopex!

0.5.5

(August 25th, 2015)

	Add support for --exception-handler command line flag

	Fix compatibility with click>=5.0

	Fix maximum recursion depth problem for very large queues that contain jobs
that all fail

0.5.4

(July 8th, 2015)

	Fix compatibility with raven>=5.4.0

0.5.3

(June 3rd, 2015)

	Better API for instantiating Workers. Thanks @RyanMTB!

	Better support for unicode kwargs. Thanks @nealtodd and @brownstein!

	Workers now automatically cleans up job registries every hour

	Jobs in FailedQueue now have their statuses set properly

	enqueue_call() no longer ignores ttl. Thanks @mbodock!

	Improved logging. Thanks @trevorprater!

0.5.2

(April 14th, 2015)

	Support SSL connection to Redis (requires redis-py>=2.10)

	Fix to prevent deep call stacks with large queues

0.5.1

(March 9th, 2015)

	Resolve performance issue when queues contain many jobs

	Restore the ability to specify connection params in config

	Record birth_date and death_date on Worker

	Add support for SSL URLs in Redis (and REDIS_SSL config option)

	Fix encoding issues with non-ASCII characters in function arguments

	Fix Redis transaction management issue with job dependencies

0.5.0

(Jan 30th, 2015)

	RQ workers can now be paused and resumed using rq suspend and
rq resume commands. Thanks Jonathan Tushman!

	Jobs that are being performed are now stored in StartedJobRegistry
for monitoring purposes. This also prevents currently active jobs from
being orphaned/lost in the case of hard shutdowns.

	You can now monitor finished jobs by checking FinishedJobRegistry.
Thanks Nic Cope for helping!

	Jobs with unmet dependencies are now created with deferred as their
status. You can monitor deferred jobs by checking DeferredJobRegistry.

	It is now possible to enqueue a job at the beginning of queue using
queue.enqueue(func, at_front=True). Thanks Travis Johnson!

	Command line scripts have all been refactored to use click. Thanks Lyon Zhang!

	Added a new SimpleWorker that does not fork when executing jobs.
Useful for testing purposes. Thanks Cal Leeming!

	Added --queue-class and --job-class arguments to rqworker script.
Thanks David Bonner!

	Many other minor bug fixes and enhancements.

0.4.6

(May 21st, 2014)

	Raise a warning when RQ workers are used with Sentry DSNs using
asynchronous transports. Thanks Wei, Selwin & Toms!

0.4.5

(May 8th, 2014)

	Fix where rqworker broke on Python 2.6. Thanks, Marko!

0.4.4

(May 7th, 2014)

	Properly declare redis dependency.

	Fix a NameError regression that was introduced in 0.4.3.

0.4.3

(May 6th, 2014)

	Make job and queue classes overridable. Thanks, Marko!

	Don’t require connection for @job decorator at definition time. Thanks, Sasha!

	Syntactic code cleanup.

0.4.2

(April 28th, 2014)

	Add missing depends_on kwarg to @job decorator. Thanks, Sasha!

0.4.1

(April 22nd, 2014)

	Fix bug where RQ 0.4 workers could not unpickle/process jobs from RQ < 0.4.

0.4.0

(April 22nd, 2014)

	Emptying the failed queue from the command line is now as simple as running
rqinfo -X or rqinfo --empty-failed-queue.

	Job data is unpickled lazily. Thanks, Malthe!

	Removed dependency on the times library. Thanks, Malthe!

	Job dependencies! Thanks, Selwin.

	Custom worker classes, via the --worker-class=path.to.MyClass command line
argument. Thanks, Selwin.

	Queue.all() and rqinfo now report empty queues, too. Thanks, Rob!

	Fixed a performance issue in Queue.all() when issued in large Redis DBs.
Thanks, Rob!

	Birth and death dates are now stored as proper datetimes, not timestamps.

	Ability to provide a custom job description (instead of using the default
function invocation hint). Thanks, İbrahim.

	Fix: temporary key for the compact queue is now randomly generated, which
should avoid name clashes for concurrent compact actions.

	Fix: Queue.empty() now correctly deletes job hashes from Redis.

0.3.13

(December 17th, 2013)

	Bug fix where the worker crashes on jobs that have their timeout explicitly
removed. Thanks for reporting, @algrs.

0.3.12

(December 16th, 2013)

	Bug fix where a worker could time out before the job was done, removing it
from any monitor overviews (#288).

0.3.11

(August 23th, 2013)

	Some more fixes in command line scripts for Python 3

0.3.10

(August 20th, 2013)

	Bug fix in setup.py

0.3.9

(August 20th, 2013)

	Python 3 compatibility (Thanks, Alex!)

	Minor bug fix where Sentry would break when func cannot be imported

0.3.8

(June 17th, 2013)

	rqworker and rqinfo have a --url argument to connect to a Redis url.

	rqworker and rqinfo have a --socket option to connect to a Redis server
through a Unix socket.

	rqworker reads SENTRY_DSN from the environment, unless specifically
provided on the command line.

	Queue has a new API that supports paging get_jobs(3, 7), which will
return at most 7 jobs, starting from the 3rd.

0.3.7

(February 26th, 2013)

	Fixed bug where workers would not execute builtin functions properly.

0.3.6

(February 18th, 2013)

	Worker registrations now expire. This should prevent rqinfo from reporting
about ghosted workers. (Thanks, @yaniv-aknin!)

	rqworker will automatically clean up ghosted worker registrations from
pre-0.3.6 runs.

	rqworker grew a -q flag, to be more silent (only warnings/errors are shown)

0.3.5

(February 6th, 2013)

	ended_at is now recorded for normally finished jobs, too. (Previously only
for failed jobs.)

	Adds support for both Redis and StrictRedis connection types

	Makes StrictRedis the default connection type if none is explicitly provided

0.3.4

(January 23rd, 2013)

	Restore compatibility with Python 2.6.

0.3.3

(January 18th, 2013)

	Fix bug where work was lost due to silently ignored unpickle errors.

	Jobs can now access the current Job instance from within. Relevant
documentation here [http://python-rq.org/docs/jobs/].

	Custom properties can be set by modifying the job.meta dict. Relevant
documentation here [http://python-rq.org/docs/jobs/].

	Custom properties can be set by modifying the job.meta dict. Relevant
documentation here [http://python-rq.org/docs/jobs/].

	rqworker now has an optional --password flag.

	Remove logbook dependency (in favor of logging)

0.3.2

(September 3rd, 2012)

	Fixes broken rqinfo command.

	Improve compatibility with Python < 2.7.

0.3.1

(August 30th, 2012)

	.enqueue() now takes a result_ttl keyword argument that can be used to
change the expiration time of results.

	Queue constructor now takes an optional async=False argument to bypass the
worker (for testing purposes).

	Jobs now carry status information. To get job status information, like
whether a job is queued, finished, or failed, use the property status, or
one of the new boolean accessor properties is_queued, is_finished or
is_failed.

	Jobs return values are always stored explicitly, even if they have to
explicit return value or return None (with given TTL of course). This
makes it possible to distinguish between a job that explicitly returned
None and a job that isn’t finished yet (see status property).

	Custom exception handlers can now be configured in addition to, or to fully
replace, moving failed jobs to the failed queue. Relevant documentation
here [http://python-rq.org/docs/exceptions/] and
here [http://python-rq.org/patterns/sentry/].

	rqworker now supports passing in configuration files instead of the
many command line options: rqworker -c settings will source
settings.py.

	rqworker now supports one-flag setup to enable Sentry as its exception
handler: rqworker --sentry-dsn="http://public:secret@example.com/1"
Alternatively, you can use a settings file and configure SENTRY_DSN = 'http://public:secret@example.com/1' instead.

0.3.0

(August 5th, 2012)

	Reliability improvements

	Warm shutdown now exits immediately when Ctrl+C is pressed and worker is idle

	Worker does not leak worker registrations anymore when stopped gracefully

	.enqueue() does not consume the timeout kwarg anymore. Instead, to pass
RQ a timeout value while enqueueing a function, use the explicit invocation
instead:

```python
q.enqueue(do_something, args=(1, 2), kwargs={'a': 1}, timeout=30)
```


	Add a @job decorator, which can be used to do Celery-style delayed
invocations:

```python
from redis import StrictRedis
from rq.decorators import job

# Connect to Redis
redis = StrictRedis()

@job('high', timeout=10, connection=redis)
def some_work(x, y):
    return x + y
```


Then, in another module, you can call some_work:

```python
from foo.bar import some_work

some_work.delay(2, 3)
```


0.2.2

(August 1st, 2012)

	Fix bug where return values that couldn’t be pickled crashed the worker

0.2.1

(July 20th, 2012)

	Fix important bug where result data wasn’t restored from Redis correctly
(affected non-string results only).

0.2.0

(July 18th, 2012)

	q.enqueue() accepts instance methods now, too. Objects will be pickle’d
along with the instance method, so beware.

	q.enqueue() accepts string specification of functions now, too. Example:
q.enqueue("my.math.lib.fibonacci", 5). Useful if the worker and the
submitter of work don’t share code bases.

	Job can be assigned custom attrs and they will be pickle’d along with the
rest of the job’s attrs. Can be used when writing RQ extensions.

	Workers can now accept explicit connections, like Queues.

	Various bug fixes.

0.1.2

(May 15, 2012)

	Fix broken PyPI deployment.

0.1.1

(May 14, 2012)

	Thread-safety by using context locals

	Register scripts as console_scripts, for better portability

	Various bugfixes.

0.1.0:

(March 28, 2012)

	Initially released version.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

