

Python Reference (The Right Way) - DRAFT

Contents

	Introduction
	Notes

	Scope

	Rationale

	Definitions

	Coding Guidelines
	Minimalism

	The Zen of Python

	PEP 8

	Fundamental Data Types
	None

	Numbers

	Sequences

	Mappings

	Sets

	Files

	Built-In Functions
	Functional Programming

	Numeric Types Conversions and Constructors

	Numeric Types Conversions

	Arithmetic

	String Conversions

	Sequences Constructors

	Mappings Constructors

	Operating on Containers

	Iterators

	Comparisons

	Identity

	File Objects Constructors

	Object Oriented Functions

	Information

	System

	Misc

	Comprehensions and Generator Expression
	Comprehensions

	Generator Expression

	Container Data Access
	Brackets Operators

	Operators
	Arithmetic Operators

	Assignment Operators

	Relational Operators

	Boolean Operators

	Conditional Operator

	Identity

	Membership

	Deletion

	Callables Operators

	Bitwise Operators

	Bitwise Assignment Operators

	Misc

	String and Sequence Operators

	Sequence Assignment Operators

	Statements
	Flow Control

	Loops

	Functions

	Generators

	Classes

	Context Managers

	System

	Imports and Scope

	Assertions

	Exceptions Handling

	Other Objects
	Data Types

	Method Decorators

	Others

	Double Underscore Methods and Variables
	Direct Attribute Access

	Descriptor Protocol

	Comparisons

	Containers

	Context Managers

	Numeric Methods

	Object Attributes

	Pickle Protocol

	Exceptions

	Constants

	Boilerplate

	Glimpse of the PSL
	Data Structures and Algorithms

	Time

	Files and Folders

	Resources

	Licence

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The goal of this documentation is to provide Python Community with high quality lookup reference.

Notes

Update 01/06/2015.

This project is put on the back-burner now. However, I aim to finish uploading the materials sometime this year.

Update 18/01/2015.

Moving all the contents from word files to Sphinx project has proven to be more time consuming than I originally thought. Getting the ver. 1.0 ready will take weeks.

Update

Moving stuff from Word files into reStructuredText is tedious. This is work in progress as of January 2015.

Currently all the material resides on my PC in a form of Word documents. I am going to convert those word documents into .rst files over the course of the next few days. Or weeks possibly if my motivation falters.

And I’m talking about 300-400 A4 pages describing all the Python features with working code examples. It took me about 4 months to put it all together.

All the work was done between April and August 2014.

Scope

Everything here is intended for Python 2.7.X. The reason is simple - this is the version I personally use and its specification is frozen (no new features will be added), so the content is bound to be up to date for good. Moreover, Python 3.X is not catching up - there’s like seven or eight people using it worldwide.

This work is not meant to be a total replacement for Python Manuals. As a matter of fact most of the definitions here are based on the official docs. I decided to only cover the core Python’s syntax, that means, the stuff that does not require using “import” statement.

This reference is designed to minimize the amount of time needed to look things up. The whole layout is well structured and consistent. I put a lot of emphasis on working code examples and very simple definitions. Being realistic, no one wants to read lengthy passages about some obscure functions, most people only need to glance at the code examples and then copy, paste and modify.

Python Standard Library is beyond the scope of this reference. If you are looking for a description of library modules have a look at:

	Python Module of The Week by Doug Hellman

	Python Reference by Fredrik Lundh (this one is a bit dated, but still top-notch in terms of clarity)

	Official Python Standard Library documentation (terse and lacks examples)

Rationale

Python is such a well-designed, clean and enjoyable to code in language so it sure deserves to have a decent syntax reference. I’ve been coding in Python for a few months now and whenever I need to check something about syntax 99.9% of the time I end up either on Stackoverflow or some other on-line resource. My main gripes with official docs are too terse descriptions and virtual lack of any code examples as well as lack of any coherent logical structure. It does not have to be this way. Just take a look on Mozilla’s JavaScript reference or Microsoft’s any .net language or VBA/VBScript references. Those are excellent examples of good technical writing.

Absurdly enough the whole Python documentation stands in contrast to the Zen of Python.

My first idea was to identify main use case scenarios for using any language reference. Luckily there are only two I can think of:

	I know what I am looking for and I only need a quick refresher on syntax or code snippet to copy/paste end edit for my needs.

	I want to see if what I need to do has already been implemented (good example is enum() function – lots of people implement that pattern themselves). In this case I need to be quickly able to scan through a list of descriptions gathered in one place.

In both cases Python docs fail miserably.

So I decided to introduce the following template logical structures:

Use case 1

This one is used to explain usage of functions/methods. It quickly gives you the info about:

	what does the function do

	what are the inputs

	what is the output

Name

[quick description field – preferably up to 80 characters long]

Syntax

[detailed description of calling this function]

Return Value

[if applicable]

Time Complexity

[if applicable]

Remarks

[further discussion]

Examples

[simple code snippets to illustrate basic usage; the simpler the better]

See Also

[links to related topics]

Use case 2

Used as a list of thematically grouped functions/methods. I decided to organize things by function rather than alphabetically. That’s the same way a handyman organizes his tools in the toolbox. Makes needed things easier to find.

Group

Method_a (hyperlink)

[quick description field – preferably up to 80 characters long]

Method_b (hyperlink)

[quick description field – preferably up to 80 characters long]

Definitions

Coding Guidelines

Minimalism

The Zen of Python

PEP 8

Fundamental Data Types

None

	None

	Object that denotes the lack of value.

Numbers

	bool

	True and False Boolean values. Evaluate to 1 and 0 respectively.

	int

	Integer numbers.

	long

	Long integer numbers.

	float

	Floating point numbers.

	complex

	Complex numbers.

Sequences

	str

	Strings of characters. Immutable.

	`unicode`_

	Unicode strings of characters. Immutable.

	list

	Indexed list of objects. Mutable.

	tuple

	Indexed list of objects. Immutable.

Mappings

	dict

	Hash table for storing unordered key-value pairs. Mutable.

Sets

	set

	Unordered list of unique objects. Mutable.

Files

	file

	File objects.

Built-In Functions

Functional Programming

	map

	Applies function to every item of an iterable object and returns a list of the results.

	filter

	Returns a sequence from those elements of iterable for which function returns True.

	reduce

	Applies function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value.

Numeric Types Conversions and Constructors

	bool

	Returns an expression converted into a Boolean.

	int

	Returns an expression converted into an integer number.

	long

	Returns an expression converted into a long integer number.

	float

	Returns an expression converted into a floating point number.

	complex

	Returns an expression converted into a complex number.

Numeric Types Conversions

	bin

	Returns an integer converted into a binary string.

	oct

	Returns an integer converted into an octal string.

	hex

	Returns an integer converted into a hexadecimal string.

Arithmetic

	abs

	Returns the absolute value of a number.

	pow

	Returns a number raised to a power; or optionally a modulus of the number raised to a power and another number.

	round

	Returns a floating point number rounded to a specified number of decimal places.

	divmod

	Returns quotient and remainder after a division of two numbers.

String Conversions

	chr

	Returns a string of one character whose ASCII code is the specified number.

	ord

	Returns an integer representing the code of the character.

	unichr

	Returns a Unicode character specified by the code.

	format

	Returns a formatted string.

	repr

	Returns a string containing a printable representation of an object.

Sequences Constructors

	str

	Returns a string containing a printable representation of an object.

	unicode

	Returns the Unicode string version of object.

	list

	Converts an object into a list.

	tuple

	Returns a tuple built from iterable.

	bytearray

	Returns a new array of bytes.

	buffer

	Returns a new buffer object which references the object argument.

	memoryview

	Returns a memoryview object.

	range

	Returns a list of arithmetic progressions.

	xrange

	Returns an xrange object.

Mappings Constructors

	dict

	Returns a dictionary object.

	set

	Returns a set type initialized from iterable.

	frozenset

	Returns a frozenset object.

Operating on Containers

	enumerate

	Returns an enumerate object.

	len

	Returns an int type specifying number of elements in the collection.

	reversed

	Returns a reverse iterator over a sequence.

	sorted

	Returns a sorted list from the iterable.

	sum

	Returns a total of the items contained in the iterable object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

	slice

	Returns a slice object.

Iterators

	iter

	Returns an iterator object.

	next

	Retrieves the next item from the iterator by calling its next() method.

Comparisons

	cmp

	Compares two objects and returns an integer according to the outcome.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	min

	Returns the smallest item from a collection.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

Identity

	hash

	Return the hash value of the object (if it has one).

	id

	Returns the “identity” of an object.

File Objects Constructors

	file

	Returns a file object.

	open

	Opens a file returning a file object.

Object Oriented Functions

	classmethod

	Returns a class method for the function.

	property

	Returns a property attribute for new-style classes (classes that derive from object).

	staticmethod

	Returns a static method for function.

	super

	Returns a proxy object that delegates method calls to a parent or sibling class of type.

	setattr

	Assigns a value to the object’s attribute given its name.

	getattr

	Returns the value of the named attribute of object.

	delattr

	Deletes the named attribute of an object.

	hasattr

	Returns a Boolean stating whether the object has the specified attribute.

	isinstance

	Returns a Boolean stating whether the object is an instance or subclass of another object.

	issubclass

	Returns a Bool type indicating whether an object is a subclass of a class.

	vars

	Returns the mapping of an object’s (writable) attributes.

	dir

	Returns the list of names in the current local scope. If supplied with an argument attempts to return a list of valid attributes for that object.

	type (1)

	Returns the type of an object (constructor name).

	type (2)

	Returns a new type object.

Information

	callable

	Returns a Boolean stating whether the object argument appears callable.

	globals

	Returns a dictionary representing the current global symbol table.

	locals

	Returns a dictionary representing the current local symbol table.

	help

	Invokes the built-in help system.

System

	__import__

	Imports a module.

	reload

	Reloads a previously imported module.

	compile

	Returns an AST or code object.

	execfile

	Evaluates contents of a file.

	eval

	Returns a result of the evaluation of a Python expression.

	input

	Evaluates user input.

	intern

	Enters the string into interned strings table (if not already there).

	print

	Returns a printed representation of the objects.

	raw_input

	Reads a line from standard input stream.

Misc

	object

	Returns a new featureless object.

	apply

	Returns the result of a function or class object called with supplied arguments.

	basestring

	This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it can be used to test whether an object is an instance of str or unicode.

	coerce

	Returns a tuple consisting of the two numeric arguments converted to a common type.

Comprehensions and Generator Expression

Comprehensions

	[] list comprehension

	Returns a list based on existing iterables.

	{} set comprehension

	Returns a set based on existing iterables.

	{} dictionary comprehension

	Returns a dictionary based on existing iterables.

Generator Expression

	() generator expression

	Returns an iterator over elements created by using list comprehension.

Container Data Access

Brackets Operators

	[] (indexing)

	Gives access to a sequence’s element.

	[] (slicing)

	Gives access to a specified range of sequence’s elements.

	[] (dict key lookup)

	Returns the value associated with the given key.

	[] (ellipsis)

	Gives access to a specified range of array’s elements.

Operators

Arithmetic Operators

	+ (addition)

	Returns the sum of two expressions.

	- (subtraction)

	Returns the difference of two expressions.

	* (multiplication)

	Returns the product of two expressions.

	** (power)

	Returns the value of a numeric expression raised to a specified power.

	/ (division)

	Returns the quotient of two expressions.

	// (floor division)

	Returns the integral part of the quotient.

	% (modulus)

	Returns the decimal part (remainder) of the quotient.

Assignment Operators

	= (simple assignment)

	Assigns a value to a variable(s).

	+= (increment assignment)

	Adds a value and the variable and assigns the result to that variable.

	-= (decrement assignment)

	Subtracts a value from the variable and assigns the result to that variable.

	*= (multiplication assignment)

	Multiplies the variable by a value and assigns the result to that variable.

	/= (division assignment)

	Divides the variable by a value and assigns the result to that variable.

	**= (power assignment)

	Raises the variable to a specified power and assigns the result to the variable.

	%= (modulus assignment)

	Computes the modulus of the variable and a value and assigns the result to that variable.

	//= (floor division assignment)

	Floor divides the variable by a value and assigns the result to that variable.

Relational Operators

	== (equal)

	Returns a Boolean stating whether two expressions are equal.

	!= (not equal)

	Returns a Boolean stating whether two expressions are not equal.

	> (greater than)

	Returns a Boolean stating whether one expression is greater than the other.

	>= (greater than or equal)

	Returns a Boolean stating whether one expression is greater than or equal the other.

	< (less than)

	Returns a Boolean stating whether one expression is less than the other.

	<= (less than or equal)

	Returns a Boolean stating whether one expression is less than or equal the other.

Boolean Operators

	and

	Returns the first operand that evaluates to False or the last one if all are True.

	or

	Returns the first operand that evaluates to True or the last one if all are False.

	not

	Returns a boolean that is the reverse of the logical state of an expression.

Conditional Operator

	if else

	Returns either value depending on the result of a Boolean expression.

Identity

	is

	Returns a Boolean stating whether two objects are the same.

Membership

	in

	Returns a Boolean stating whether the object is in the container.

Deletion

	`del`_

	Removes object.

Callables Operators

	* (tuple packing)

	Packs the consecutive function positional arguments into a tuple.

	** (dictionary packing)

	Packs the consecutive function keyword arguments into a dictionary.

	* (tuple unpacking)

	Unpacks the contents of a tuple into the function call.

	** (dictionary unpacking)

	Unpacks the contents of a dictionary into the function call.

	@ (decorator)

	Returns a callable wrapped by another callable.

	() (call operator)

	Calls a callable object with specified arguments.

	lambda

	Returns an anonymous function.

Bitwise Operators

	& (bitwise AND)

	Returns the result of bitwise AND of two integers.

	| (bitwise OR)

	Returns the result of bitwise OR of two integers.

	^ (bitwise XOR)

	Returns the result of bitwise XOR of two integers.

	<< (left shift)

	Shifts the bits of the first operand left by the specified number of bits.

	>> (right shift)

	Shifts the bits of the first operand right by the specified number of bits.

	~ (bitwise complement)

	Sets the 1 bits to 0 and 1 to 0 and then adds 1.

Bitwise Assignment Operators

	&= (bitwise AND assignment)

	Performs bitwise AND and assigns value to the left operand.

	|= (bitwise OR assignment)

	Performs bitwise OR and assigns value to the left operand.

	^= (bitwise XOR assignment)

	Performs bitwise XOR and assigns value to the left operand.

	<<= (bitwise right shift assignment)

	Performs bitwise left shift and assigns value to the left operand.

	>>= (bitwise left shift assignment)

	Performs bitwise right shift and assigns value to the left operand.

Misc

	; (statement separator)

	Separates two statements.

	(line continuation)

	Breaks the line of code allowing for the next line continuation.

	. (attribute access)

	Gives access to an object’s attribute.

String and Sequence Operators

	+ (concatenation)

	Returns a concatenation of two sequences.

	* (multiple concatenation)

	Returns a sequence self-concatenated specified amount of times.

	% (string formatting operator)

	Formats the string according to the specified format.

Sequence Assignment Operators

	+= (concatenation assignment)

	Concatenates the sequence with the right operand and assigns the result to that sequence.

	*= (multiple concatenation assignment)

	Multiple concatenates the sequence and assigns the result to that sequence.

Statements

Flow Control

`if`_

`elif`_

`else`_

Loops

	for in

	Loops over elements of an iterable object.

	while

	Executes block of code repeatedly while the specified condition is True.

	continue

	Skips the execution of the code below it and starts a new cycle of the loop.

	break

	Terminates the execution of a loop.

	else (2)

	Executes specified block of code after loop terminating condition other then break was met.

Functions

`def`_

`return`_

`pass`_

Generators

`yield`_

Classes

`class`_

`del`_

Context Managers

`with`_

System

`exec`_

`print`_

Imports and Scope

`import`_

`from`_

`as`_

`global`_

Assertions

	assert

	Raises AssertionError if the specified expression evaluates to False.

Exceptions Handling

`try`_

`except`_

`finally`_

`raise`_

Other Objects

Data Types

	frozenset

	Unordered list of unique objects. Immutable.

	bytearray

	Sequence of integers in the range between 0 and 255. Mutable.

	memoryview

	View of the object’s raw byte data.

Method Decorators

	classmethod

	Method that takes class as its first arguments (instead of a class instance).

	staticmethod

	Method that explicitly does not take the class instance as its first argument.

	property

	Allows for proper use of getter, setter and deleter methods in Python.

Others

	function

	A function object.

	generator

	A generator function object.

	code

	Compiled Python code.

	slice

	Slice objects.

Double Underscore Methods and Variables

Direct Attribute Access

Methods used for direct set, get and delete operations on attributes.

Descriptor Protocol

Used for management over attribute access for class instances.

Comparisons

Containers

Context Managers

Numeric Methods

Object Attributes

Pickle Protocol

Exceptions

Constants

Boilerplate

	`if __name__ == '__main__': main()`_

	Prevents main() from being executed during imports.

	`#!/usr/bin/env/python`_

	UNIX specific.

	`#!/usr/local/bin/python`_

	UNIX specific.

	`#!/usr/bin/python`_

	UNIX specific.

	`# -*- coding: utf-8 -*-`_

	Declares usage of UTF-8 characters in the script.

Glimpse of the PSL

Data Structures and Algorithms

`array`_

`bisect`_

`heapq`_

`Collections Counter`_

`Collections defaultdict`_

`Collections deque`_

`Collections namedTuple`_

`Collections orderedDict`_

`Queue`_

`functools`_

`itertools`_

Time

time

Files and Folders

`os`_

`os.path`_

`shutil`_

`glob`_

`ZipFile`_

Resources

#TODO
Books, on-line courses on Python etc.

Licence

The MIT License (MIT)

Copyright (c) 2015 Jakub Przywóski

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Index

 os.chdir(path)
os.getcwd()
os.listdir(path)
os.makedirs(path[, mode])
os.removedirs(path)
os.renames(old, new)
os.walk(top, topdown=True, onerror=None, followlinks=False)
os.startfile(path[, operation])

os.path.exists(path)
os.path.join(path, *paths)
os.path.split(path)

shutil.copy2(src, dst)
shutil.copytree(src, dst, symlinks=False, ignore=None)
shutil.rmtree(path[, ignore_errors[, onerror]])
shutil.move(src, dst)

shutil.make_archive(base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[, group[, logger]]]]]]])
ZipFile.extractall([path[, members[, pwd]]])
TarFile.extractfile(member)

glob.glob(pathname)
glob.iglob(pathname)

assert

Description

Raises AssertionError if the specified expression evaluates to False.

Syntax

assert expression, argument

	expression

	Required. Expression to evaluate.

	argument

	Optional. Argument passed to the exception raised.

Return Value

exception

Time Complexity

#TODO

Remarks

Assert statements are a convenient way to insert debugging assertions into a program.
The simple form, assert expression, is equivalent to

>>> if __debug__:
>>> if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

>>> if __debug__:
>>> if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

Example 1

>>> assert 2 + 2 == 4
>>> assert 2 + 2 == 3
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
AssertionError

Example 2

>>> assert 1 == False, "That can't be right."
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
AssertionError: That can't be right.

See Also

#TODO

break

Description

Terminates the execution of a loop.

Syntax

	loop:

	break

	else:

	suite

	loop

	for or while loop.

Remarks

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite.

Example 1

>>> for i in range(5):
... if i == 3:
... break
... print i
...
0
1
2

Example 2

i = 0
while i < 10:
 try:
 if i == 5:
 break
 print i
 i += 1
 finally:
 print 'that line was executed, i = ', i
*** Remote Interpreter Reinitialized ***
>>>
0
that line was executed, i = 1
1
that line was executed, i = 2
2
that line was executed, i = 3
3
that line was executed, i = 4
4
that line was executed, i = 5
that line was executed, i = 5

See Also

#TODO

continue

Description

Skips the execution of the code below it and starts a new cycle of the loop.

Syntax

	loop:

	continue

	else:

	suite

	loop

	for or while loop.

Remarks

The continue statement can only appear in a loop body. It causes the rest of the statement body in the loop to be skipped.

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition or finally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

A continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with the else clause if there was no next item.

Example 1

>>> for i in range(5):
... if i == 3:
... continue
... print i
...
0
1
2
4

Example 2

>>> i = 0
>>> while i < 5:
... try:
... i += 1
... if i == 3:
... continue
... print i
... finally:
... print i
...
1
1
2
2
3
4
4
5
5

See Also

#TODO

else

Description

Executes specified block of code after loop terminating condition other then break was met.

Syntax

	loop:

	suite

	else:

	suite

	loop

	for or while loop.

	else

	Optional. Indicates block of code executed when loop terminates without calling break statement.

	suite

	Block of code.

Remarks

Example 1

>>> for i in range(3):
... print i
... else:
... print "Loop terminating condition was reached"
...
0
1
2
Loop terminating condition was reached

Example 2

>>> i = 0
>>> while i < 3:
... print i
... i = i + 1
... else:
... print "Loop terminating condition was reached"
...
0
1
2
Loop terminating condition was reached

Example 3

>>> # in this example else *suite* is not executed since breaks terminates the whole loop
>>> for i in range(3):
... if i == 2:
... break
... print i
... else:
... print "Loop terminating condition was reached"
...
0
1

Example 4

>>> # in this example else simply means: no-break
>>> for i in range(3):
... if i == 5:
... break
... print i
... else:
... print "Loop terminating condition was reached"
...
0
1
2
Loop terminating condition was reached

Example 5

>>> # else *suite* is executed after continue
>>> for i in range(3):
... if i == 2:
... continue
... print i
... else:
... print "Loop terminating condition was reached"
...
0
1
Loop terminating condition was reached

See Also

#TODO

for

Description

Loops over elements of an iterable object.

Syntax

	for item in iterable:

	suite

	else:

	suite

	item

	Item retrieved from the iterable. This variable is bound to the current element of the iterable.

	iterable

	Any iterable object.

	else

	Optional. Indicates block of code executed when loop terminates without calling break statement.

	suite

	Block of code to be executed.

Remarks

After each iteration, next item is retrieved from the iterable container. The loop’s suite is executed repeatedly until the container is empty.

Python has only one for loop, which is functionally the same as for each in some other languages. To loop specified number of times range() or xrange() function is used.

Example 1

>>> for i in range(3):
... print i
...
0
1
2

Example 2

>>> # this example shows how files can be iterated over with a for loop
>>> for line in open("C:\\test\\test.txt"):
... print line
...
line 1
line 2
line 3

See Also

#TODO

if

Description

Used for conditional execution.

Syntax

	if expression:

	suite

	elif expression:

	suite

	else:

	suite

	if

	Required. Branching starting point.

	elif

	Optional. Another conditional expression.

	else

	Optional. Indicates block of code executed when none of the conditions specified in if or elif constructs was True.

Return Value

TODO

Time Complexity

#TODO

Remarks

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true; then that suite is executed (and no other part of the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

Example

See Also

#TODO

while

Description

Executes block of code repeatedly while the specified condition is True.

Syntax

	while condition:

	suite

	else:

	suite

	condition

	Any expression that has a Boolean value.

	else

	Optional. Indicates block of code executed when loop terminates without calling break statement.

	suite

	Block of code to be executed.

Remarks

The while statement provides an iterative condition based loop. The suite is executed repeatedly as long as expression is True. The test on expression takes place before each execution of statement.

Example

>>> i = 0
>>> while i < 3:
... print i
... i = i + 1
...
0
1
2

See Also

#TODO

func_closure

Description

Returns None or a tuple of cells that contain bindings for the function’s free variables.

Syntax

function.func_closure

Return Value

None or tuple

Time Complexity

#TODO

Example

>>> def func(): pass
...
>>> print func.func_closure
None

See Also

#TODO

func_code

Description

Returns the code object representing the compiled function body.

Syntax

function.func_code

Return Value

#TODO

Time Complexity

#TODO

Remarks

The func_code attribute is writeable.

Example

>>> def func(): pass
...
>>> c = foo.func_code
>>> c
<code object func at 00D9D188, file "<interactive input>", line 1>

See Also

#TODO

func_defaults

Description

Returns a tuple containing default argument values for those arguments that have defaults, or None if no arguments have a default value.

Syntax

function.func_defaults

Return Value

tuple

Time Complexity

#TODO

Remarks

The func_defaults attribute is writeable.

Example

>>> def foo(a, b='bar'): pass
...
>>> foo.func_defaults
('bar',)
EXAMPLE 2
>>> def foo(a, b='bar'): pass
...
>>> foo.func_defaults = 'bamf',
>>> foo.func_defaults
('bamf',)

See Also

#TODO

func_dict

Description

Returns the namespace supporting arbitrary function attributes.

Syntax

function.func_dict

Return Value

#TODO

Time Complexity

#TODO

Remarks

The func_dict attribute is writeable.

Example 1

>>> def foo(): pass
...
>>> foo.x = 10
>>> foo.func_dict
{'x': 10}

Example 2

>>> def foo(): pass
...
>>> foo.func_dict = {'a': 1, 'bamf': 10}
>>> foo.func_dict
{'a': 1, 'bamf': 10}

See Also

#TODO

func_doc

Description

Returns the function’s documentation string, or None if unavailable.

Syntax

type.func_doc

Return Value

#TODO

Time Complexity

#TODO

Remarks

The func_doc attribute is writeable.

Example 1

>>> def foo():
... ''' This is my docstring.'''
... pass
...
>>> foo.func_doc
' This is my docstring.'

Example 2

>>> def foo():
... ''' This is my docstring.'''
... pass
>>>
>>> foo.func_doc = 'foobar'
>>> foo.func_doc
'foobar'

See Also

#TODO

func_globals

Description

Returns a reference to the dictionary that holds the function’s global variables — the global namespace of the module in which the function was defined.

Syntax

function.func_globals

Return Value

#TODO

Time Complexity

#TODO

Remarks

Example

>>> def foo(): pass
...
>>> foo.func_globals #returns a lengthy dictionary

See Also

#TODO

function

Properties

	func_closure

	Returns None or a tuple of cells that contain bindings for the function’s free variables.

	func_code

	Returns the code object representing the compiled function body.

	func_defaults

	Returns a tuple containing default argument values for those arguments that have defaults, or None if no arguments have a default value.

	func_dict

	Returns the namespace supporting arbitrary function attributes.

	func_doc

	Returns the function’s documentation string, or None if unavailable.

	func_globals

	Returns a reference to the dictionary that holds the function’s global variables.

	func_name

	Returns the function’s name.

func_name

Description

Returns the function’s name.

Syntax

function.func_name

Return Value

#TODO

Time Complexity

#TODO

Remarks

The func_name attribute is writeable.

Example 1

>>> def foo(): pass
...
>>> foo.func_name
'foo'

Example 2

>>> def foo(): pass
>>> foo.func_name = 'frotz'
>>> foo.func_name
'frotz'

See Also

#TODO

add

Description

Adds an element to the set.

Syntax

set. add(element)

	element

	Required. Element to be added to the set. Must be of a hashable type.

Return Value

None

Time Complexity

#TODO

Example 1

>>> s = {1, 2}
>>> s.add(3)
>>> s
set([1, 2, 3])

Example 2

>>> s = {1, 2}
>>> s.add({3, 4})
TypeError: unhashable type: 'set'
>>> s.add([3, 4])
TypeError: unhashable type: 'list'
>>> s.add({'a': 5})
TypeError: unhashable type: 'dict'

See also

#TODO

clear

Description

Removes all elements from the set.

Syntax

set. clear()

Return Value

None

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s
set([1, 2])
>>> s.clear()
>>> s
set([])

See also

#TODO

copy

Description

Returns a copy of the set.

Syntax

set. copy()

Return Value

set

Time Complexity

#TODO

Example

>>> s = {0, 1}.copy()
>>> s
set([0, 1])

See also

#TODO

difference

Description

Returns a new set with elements in the set that are not in the specified iterables.

Syntax

set. difference(iterable, …)

	iterable, …

	Required. Iterable or multiple iterables to be compared against the set.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {1, 2}.difference([2, 3])
set([1])
>>> {1, 2}.difference((2, 3))
set([1])
>>> {1, 2}.difference({2, 3})
set([1])
>>> {1, 2}.difference({'a': 2, 'b': 3})
set([1, 2])
>>> {1, 2}.difference({'a': 2, 'b': 3}.values())
set([1])

Example 2

>>> {1, 2}.difference([2, 3], [4, 5])
set([1])

See also

#TODO

difference_update

Description

Updates the set, removing elements found in others.

Syntax

set. difference_update(iterable, …)

	iterable, …

	Required. Iterable or multiple iterables to be compared against the set.

Return Value

None

Time Complexity

O(len(t))

Example

>>> s = {1, 2}
>>> s.difference_update([2, 3])
>>> s
set([1])
>>> s.difference_update([1, 2], [3, 4])
>>> s
set([])

See also

#TODO

discard

Description

Removes an element from the set.

Syntax

set. discard(element)

	element

	Required. The item you want to delete.

Return Value

None

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s.discard(1)
>>> s
set([2])
>>> s.discard(3)
>>> s
set([2])

See also

See also `remove()`_.

set

Sets are mutable unordered collections of unique elements. Common uses include membership testing, removing duplicates from a sequence, and computing standard math operations on sets such as intersection, union, difference, and symmetric difference.

Sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior.

Sets are implemented using dictionaries. They cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable collections.

Constructors

	set()

	Returns a set type initialized from iterable.

	{} set comprehension

	Returns a set based on existing iterables.

	literal syntax

	Initializes a new instance of the set type.

Methods

Adding Elements

	add

	Adds a specified element to the set.

	update

	Adds specified elements to the set.

Deleting

	discard

	Removes an element from the set.

	remove

	Removes an element from the set (raises KeyError if not found).

	pop

	Removes and returns an arbitrary element from the set.

	clear

	Removes all elements from the set.

Information

	issuperset

	Returns a Boolean stating whether the set contains the specified set or iterable.

	issubset

	Returns a Boolean stating whether the set is contained in the specified set or iterable.

	isdisjoint

	Returns a Boolean stating whether the set contents do not overlap with the specified set or iterable.

Set Operations

	difference

	Returns a new set with elements in the set that are not in the specified iterables.

	intersection

	Returns a new set with elements common to the set and the specified iterables.

	symmetric_difference

	Returns a new set with elements in either the set or the specified iterable but not both.

	union

	Returns a new set with elements from the set and the specified iterables.

Set Operations Assignment

	difference_update

	Updates the set, removing elements found in the specified iterables.

	intersection_update

	Updates the set, keeping only elements found in it and the specified iterables.

	symmetric_difference_update

	Updates the set, keeping only elements found in either set or the specified iterable, but not in both.

Copying

	copy

	Returns a copy of the set.

Set Operators

Adding Elements

	|= (update)

	Adds elements from another set.

Relational Operators

	== (is equal)

	Returns a Boolean stating whether the set has the same elements as the other set.

	!= (is not equal)

	Returns a Boolean stating whether the set has different elements as the other set.

	<= (issubset)

	Returns a Boolean stating whether the set is contained in the other set.

	< (issubset proper)

	Returns a Boolean stating whether the set is contained in the specified set and that the sets are not equal.

	>= (issuperset)

	Returns a Boolean stating whether the set contains the other set.

	> (issuperset proper)

	Returns a Boolean stating whether the set contains the other set and that the sets are not equal.

Set Operations

	- (difference)

	Returns a new set with elements in the set that are not in the other set.

	& (intersection)

	Returns a new set with elements common to the set and the other set.

	^ (symmetric_difference)

	Returns a new set with elements in either the set or the other set but not both.

	| (union)

	Returns a new set with elements from the set and the other set.

Set Operations Assignment

	-= (difference_update)

	Updates the set, removing elements found in the other set.

	&= (intersection_update)

	Updates the set, keeping only elements found in it and the other set.

	^= (symmetric_difference_update)

	Updates the set, keeping only elements found in either set or the other set, but not in both.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	sum

	Returns a total of the items contained in the iterable object.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

intersection

Description

Returns a new set with elements common to the set and the specified iterables.

Syntax

set. intersection(iterable, …)

	iterable, …

	Required. Iterable or multiple iterables to be compared against the set.

Return Value

set

Time Complexity

#TODO

Example

>>> {1, 2}.intersection([2, 3])
set([2])
>>> {1, 2}.intersection([0, 1], [1, 2])
set([1])

See also

#TODO

intersection_update

Description

Updates the set, keeping only elements found in it and all others.

Syntax

set. intersection_update(iterable, …)

	iterable, …

	Required. Iterable or multiple iterables to be compared against the set.

Return Value

None

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s.intersection_update([2, 3])
>>> s
set([2])
>>> s = {1, 2}
>>> s.intersection_update([0, 1], [1, 2])
>>> s
set([1])

See also

#TODO

isdisjoint

Description

Returns a Boolean stating whether the set contents overlap with the specified set or iterable.

Syntax

set. isdisjoint(iterable)

	iterable

	Required. Iterable to be compared against the set.

Return Value

bool

Time Complexity

#TODO

Remarks

Sets are disjoint if and only if their intersection is the empty set.
If the iterable is empty, returns True.

Example

>>> {0, 1, 2}.isdisjoint([1])
False
>>> {0, 1, 2}.isdisjoint([0, 1])
False
>>> {0, 1, 2}.isdisjoint([3, 4])
True
>>> {0, 1, 2}.isdisjoint(())
True

See also

#TODO

issubset

Description

Returns a Boolean stating whether the set is contained in the specified set or iterable.

Syntax

set. issubset(iterable)

	iterable

	Required. Iterable to be compared against the set.

Return Value

bool

Time Complexity

#TODO

Remarks

If the iterable is empty, returns False.

Example

>>> {0, 1}.issubset({0, 1, 2})
True
>>> {1}.issubset({0, 1, 2})
True
>>> {1}.issubset({'A', 'B', 'C'})
False
>>> {1}.issubset(())
False

See also

#TODO

issuperset

Description

Returns a Boolean stating whether the set contains the specified set or iterable.

Syntax

set. issuperset(iterable)

	iterable

	Required. Iterable to be compared against the set.

Return Value

bool

Time Complexity

#TODO

Remarks

If the iterable is empty, returns True.

Example

>>> {0, 1, 2}.issuperset([1])
True
>>> {0, 1, 2}.issuperset([0, 1])
True
>>> {0, 1, 2}.issuperset([2, 3])
False
>>> {0, 1, 2}.issuperset(())
True

See also

#TODO

Literal Syntax

Sets can be initialized by enclosing set elements in squiggly brackets {}.

Example 1

>>> s = {True, 3.14, "ABC"}
>>> s
set([True, 3.14, 'ABC'])

Any duplicated elements are discarded during set creation. This can be useful to extract unique values from an array.

Example 2

>>> s = {0, 0, 1}
>>> s
set([0, 1])

Sets cannot contain mutable types.

Example 3

>>> s = {[0, 1], [1, 0]}
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: unhashable type: 'list'

- (difference)

Description

Returns a new set with elements in the set that are not in the other set.

Syntax

set - other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

O(len(s))

Example

>>> {1, 2} - {2, 3}
set([1])
>>> {1, 2, 3} - {2, 3, 4} - {3, 4, 5}
set([1])

See also

#TODO

-= (difference_update)

Description

Updates the set, removing elements found in the other set.

Syntax

set -= other | …

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s -= {2, 3}
>>> s
set([1])

See also

#TODO

== (is equal)

Description

Returns a Boolean stating whether the set has the same elements as the other set.

Syntax

set == other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

#TODO

Example

>>> {0, 1} == {1, 0}
True
>>> {0, 1} == {1, 0, 2}
False

See also

#TODO

& (intersection)

Description

Returns a new set with elements common to the set and the other set.

Syntax

set & other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

O(min(len(s), len(t)) to O(len(s) * len(t))

Example

>>> {1, 2} & {2, 3}
set([2])
>>> {1, 2} & {2, 3} & {2, 'foo'}
set([2])

See also

#TODO

&= (intersection_update)

Description

Updates the set, keeping only elements found in it and the other set.

Syntax

set &= other & …

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s &= {2, 3}
>>> s
set([2])

See also

#TODO

<= (issubset)

Description

Returns a Boolean stating whether the set is contained in the other set.

Syntax

set <= other

	other

	A set object or expression evaluating to a set.

Return Value

None

Time Complexity

#TODO

Example

>>> {1, 2} <= {0, 1, 2, 3}
True
>>> {1, 2} <= {0, 1,}
False

See also

#TODO

< (issubset proper)

Description

Returns a Boolean stating whether the set is contained in the specified set and that the sets are not equal.

Syntax

set < other

	other

	A set object or expression evaluating to a set.

Return Value

None

Time Complexity

#TODO

Example

>>> {1, 2} < {1, 2}
False
>>> {1, 2} < {1, 2, 3}
True
>>> {1, 2} < {'frob'}
False

See also

#TODO

>= (issuperset)

Description

Returns a Boolean stating whether the set contains the other set.

Syntax

set >= other

	other

	A set object or expression evaluating to a set.

Return Value

None

Time Complexity

#TODO

Example

>>> {0, 1, 2} >= {0, 1, 2}
True
>>> {0, 1, 2} >= {0, 1, 2, 3}
False
>>> {0, 1, 2} >= {0, 1}
True

See also

#TODO

> (issuperset proper)

Description

Returns a Boolean stating whether the set contains the other set and that the sets are not equal.

Syntax

set > other

	other

	A set object or expression evaluating to a set.

Return Value

None

Time Complexity

#TODO

Example

>>> {0, 1, 2} > {1, 2}
True
>>> {0, 1, 2} > {0, 1, 2}
False

See also

#TODO

!= (is not equal)

Description

Returns a Boolean stating whether the set has different elements as the other set.

Syntax

set != other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

#TODO

Example

>>> {0, 1} != {1, 0}
False
>>> {0, 1} != {1, 0, 2}
True

See also

#TODO

^ (symmetric_difference)

Description

Returns a new set with elements in either the set or the other set but not both.

Syntax

set ^ other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

O(len(s)) to O(len(s) * len(t))

Example

>>> {1, 2} ^ {2, 3}
set([1, 3])
>>> {1, 2} ^ {1, 2}
set([])

See also

#TODO

^= (symmetric_difference_update)

Description

Updates the set, keeping only elements found in either the set or the other set, but not in both.

Syntax

set ^= other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s ^= {2, 3}
>>> s
set([1, 3])

See also

#TODO

| (union)

Description

Returns a new set with elements from the set and the other set.

Syntax

set | other

	other

	A set object or expression evaluating to a set.

Return Value

set

Time Complexity

O(len(s)+len(t))

Example

>>> {1, 2} | {3, 4} | {4, 5}
set([1, 2, 3, 4, 5])

See also

#TODO

|= (update)

Description

Adds elements from another set.

Syntax

set |= other

	other

	A set object or expression evaluating to a set.

Return Value

None

Time Complexity

#TODO

Example 1

>>> s = {0, 1}
>>> s |= {1, 2}
>>> s
set([0, 1, 2])

Example 2

>>> s = {0, 1}
>>> s |= {1, 2} | {3, 4}
>>> s
set([0, 1, 2, 3, 4])

See also

#TODO

pop

Description

Removes and returns an arbitrary element from the set.

Syntax

set. pop()

Return Value

The same as deleted by calling this method.

Time Complexity

#TODO

Remarks

Raises KeyError if the set is empty.

Example

>>> s = {1, 2}
>>> s.pop()
1
>>> s
set([2])
>>> s.pop()
2
>>> s.pop()
KeyError: 'pop from an empty set'

See also

#TODO

remove

Description

Removes an element from the set (raises KeyError if not found).

Syntax

set. remove(element)

	element

	Required. The element you want to delete.

Return Value

None

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s.remove(1)
>>> s
set([2])
>>> s.remove(2)
>>> s.remove(2)
KeyError: 2

See also

#TODO

symmetric_difference

Description

Returns a new set with elements in either the set or the specified iterable but not both.

Syntax

set. symmetric_difference(iterable)

	iterable

	Required. Any iterable.

Return Value

set

Time Complexity

#TODO

Example

>>> {1, 2}.symmetric_difference([2, 3])
set([1, 3])
>>> {1, 2}.symmetric_difference([4, 5])
set([1, 2, 4, 5])

See also

#TODO

symmetric_difference_update

Description

Updates the set, keeping only elements found in either set, but not in both.

Syntax

set. symmetric_difference_update(iterable)

	iterable

	Required. Any iterable.

Return Value

None

Time Complexity

O(len(t)) to O(len(t) * len(s))

Example

>>> s = {1, 2}
>>> s.symmetric_difference_update((2, 3))
>>> s
set([1, 3])

See also

#TODO

union

Description

Returns a new set with elements from the set and the specified iterables.

Syntax

set. union(iterable, …)

	iterable, …

	Required. Iterable or multiple iterables to be compared against the set.

Return Value

set

Time Complexity

#TODO

Example

>>> {1, 2}.union([2, 3])
set([1, 2, 3])
>>> {1, 2}.union([3, 4])
set([1, 2, 3, 4])
>>> {1, 2}.union([3, 4], (5, 6), {7, 8})
set([1, 2, 3, 4, 5, 6, 7, 8])

See also

#TODO

update

Description

Adds elements to the set.

Syntax

set. update(other, …)

	other, …

	Required. Iterable or multiple iterables which elements are to be added to the set. The elements must be hashable.

Return Value

None

Time Complexity

#TODO

Example

>>> s = {1, 2}
>>> s.update({3, 4}, [5, 6])
>>> s
set([1, 2, 3, 4, 5, 6])

See also

#TODO

__import__

Description

Imports a module.

Syntax

__import__ (name[, globals[, locals[, fromlist[, level]]]])

	name

	Required. Name of the module to import.

	globals

	Optional. Dictionary of global names used to determine how to interpret the name in a package context.

	locals

	Optional. Dictionary of local names names used to determine how to interpret the name in a package context. The standard implementation does not use its locals argument at all, and uses its globals only to determine the package context of the import statement.

	fromlist

	Optional. The fromlist gives the names of objects or submodules that should be imported from the module given by name.

	level

	Optional. level specifies whether to use absolute or relative imports. The default is -1 which indicates both absolute and relative imports will be attempted. 0 means only perform absolute imports. Positive values for level indicate the number of parent directories to search relative to the directory of the module calling __import__().

Return Value

#TODO

Time Complexity

#TODO

Note

This is an advanced function that is not needed in everyday Python programming, unlike importlib.import_module().

Remarks

This function is invoked by the import statement. It can be replaced (by importing the __builtin__ module and assigning to __builtin__.__import__) in order to change semantics of the import statement, but nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__() is rare, except in cases where you want to import a module whose name is only known at runtime.

When the name variable is of the form package.module, normally, the top-level package (the name up till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the module named by name is returned.
For example, the statement import spam results in bytecode resembling the following code:

>>> spam = __import__('spam', globals(), locals(), [], -1)

The statement import spam.ham results in this call:

>>> spam = __import__('spam.ham', globals(), locals(), [], -1)

Note how __import__() returns the toplevel module here because this is the object that is bound to a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

>>> _temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], -1)
>>> eggs = _temp.eggs
>>> saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to import are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.import_module().

Example

#TODO

See Also

#TODO

abs

Description

Returns the absolute value of a number.

Syntax

abs (number)

	number

	Required. Any valid numeric expression.

Return Value

The same as passed to the function.

Time Complexity

#TODO

Remarks

If the number is a complex number, its magnitude is returned.

If the number is an integer with base other than 10 the abs() function will return its value as a decimal integer.

Example 1

>>> abs(-1)
1
>>> abs(0)
0
>>> abs(1)
1
>>> abs(3.14)
3.14
>>> abs(3 + 2j)
3.6055512754639896

Example 2

>>> abs(0x10)
16
>>> abs(0b10)
2
>>> abs(0o20)
16

See Also

#TODO

all

Description

Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

Syntax

all (iterable)

	iterable

	Required. Any iterable type.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the iterable is empty, all() returns True.

Example 1

>>> all([])
True
>>> all([True, False])
False
>>> all([True, True])
True

Example 2

>>> all('True')
True
>>> all('False') # note that non-empty strings are always True
True
>>> all([0, 1])
False
>>> all([1, 1])
True
>>> all((1, 1))
True
>>> all((1, 0))
False
>>> all({0: 'zero', 1: 'one'})
False
>>> all({1: 'one', 2: 'two'})
True
>>> all({0, 1})
False
>>> all({1, 1})
True

See Also

#TODO

any

Description

Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

Syntax

any (iterable)

	iterable

	Required. Any iterable type.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the iterable is empty, returns False.

Example

>>> any([True, True])
True
>>> any([True, False])
True
>>> any([False, False])
False
>>> any('False')
True
>>> any([])
False

See Also

#TODO

apply

Description

Returns the result of a function or class object called with supplied arguments.

Syntax

apply (function, args[, kwargs])

	function

	Required. The function argument must be a callable object (a user-defined or built-in function or method, or a class object).

	args

	Required. A sequence of positional arguments.

	kwargs

	Optional. The kwargs argument must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.

Return Value

#TODO

Time Complexity

#TODO

Note

This function is obsolete. Use function(*args, **kwargs) instead of apply(function, args, kwargs).

Example 1

>>> def foo(a, b):
... return a, b
...
>>> apply(foo, (1, 2))
(1, 2)

Example 2

>>> def bar(a, b, c=None):
... return a, b, c
...
>>> apply(bar, (1, 2), {'c': 3})
(1, 2, 3)

See Also

#TODO

basestring

Description

This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it can be used to test whether an object is an instance of str or unicode.

Syntax

basestring()

Return Value

#TODO

Time Complexity

#TODO

Example

>>> isinstance('hello', basestring)
True
>>> isinstance(u'hello', basestring)
True

See Also

#TODO

bin

Description

Returns an integer converted into a binary string.

Syntax

bin (integer)

	integer

	Required. An integer value to be converted into binary string.

Return Value

str

Time Complexity

#TODO

Note

If number is not a Python int object, it has to define an __index__() method that returns an integer.

Example

>>> bin(1)
'0b1'
>>> bin(1024)
'0b10000000000'
>>> bin(0b0111 + 0b1000)
'0b1111'

See Also

#TODO

bool

Description

Returns an expression converted into a Boolean.

Syntax

bool (expression)

	expression

	Required. If expression is False or omitted, this returns False; otherwise it returns True.

Return Value

bool

Time Complexity

#TODO

Remarks

bool is also a class, which is a subclass of int. Class bool cannot be subclassed further. Its only instances are False and True.

The following values are interpreted as false:

	False

	None

	numeric zero of all types

	empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets)

All other values are interpreted as true. (See the __nonzero__() special method for a way to change this.)

Example

>>> bool(1)
True
>>> bool(0)
False
>>> bool("False")
True
>>> bool([0, 0])
True
>>> bool([])
False
>>> bool(2+2)
True

See Also

#TODO

buffer

Description

Returns a new buffer object which references the object argument.

Syntax

buffer (object[, offset[, size]])

	object

	Required. The object argument must be an object that supports the buffer call interface (such as string, unicode, bytearray, mmap.mmap or array.array).

	offset

	Optional. Buffer slice offset; if omitted the buffer object will be a slice from the beginning of object.

	size

	Optional. Length of the slice; if omitted the slice will extend to the end of object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The buffer() function allows direct (read-only) access to an object’s byte-oriented data without needing to copy it first. That can yield large performance gains when operating on large objects since it does not create a copy of an object when slicing.
See memoryview() for read and write access.

Example

>>> b = buffer('hello')
>>> b
<read-only buffer for 0x00EE38A0, size -1, offset 0 at 0x00EE3020>
>>> print b
hello
>>> b = buffer('hello', 1)
>>> print b
ello
>>> b = buffer('hello', 1, 3)
>>> print b
ell

See Also

#TODO

bytearray

Description

Returns a new array of bytes.

Syntax

bytearray ([source[, encoding[,errors]]])

	source

	
	Optional. If source is:

	
	a string, encoding is required.

	an integer, the array will have that size and will be initialized with null bytes.

	an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize the bytes array.

	an iterable, it must be an iterable of integers in the range 0-256, which are used to initialize the array

	without an argument, an array of size 0 is created.

	encoding

	Optional. Required if source is a string. Typical values: ‘ascii’, ‘utf-8’,’ windows-1250’, ‘windows-1252’. See codecs module for more.

	errors

	
	Optional. Possible values for errors are:

	
	‘strict’: raise an exception in case of an encoding error

	‘replace’: replace malformed data with a suitable replacement marker, such as ‘?’ or ‘ufffd’

	‘ignore’: ignore malformed data and continue without further notice

	‘xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding only)

	‘backslashreplace’: replace with backslashed escape sequences (for encoding only)

Return Value

bytearray

Time Complexity

#TODO

Remarks

The bytearray type is a mutable sequence of integers in the range 0 <= x < 256. It can be used to work with low-level binary data such as that inside of images or arriving directly from the network.

Example 1

>>> bytearray()
bytearray(b'')
>>> bytearray(4)
bytearray(b'\x00\x00\x00\x00')
>>> bytearray([0,1,2])
bytearray(b'\x00\x01\x02')
>>> bytearray(buffer('hello'))
bytearray(b'hello')

Example 2

>>> bytearray('hello', 'ascii')
bytearray(b'hello')
>>> bytearray(u'źdźbło', 'ascii', 'strict') #’blade of grass’ in polish
UnicodeEncodeError: 'ascii' codec can't encode character u'\u017a' in position 0: ordinal not in range(128)
>>> bytearray(u'źdźbło', 'ascii', 'ignore')
bytearray(b'dbo')
>>> bytearray(u'źdźbło', 'ascii', 'replace')
bytearray(b'?d?b?o')
>>> bytearray(u'źdźbło', 'ascii', 'xmlcharrefreplace')
bytearray(b'źdźbło')
>>> bytearray(u'źdźbło', 'ascii', 'backslashreplace')
bytearray(b'\\u017ad\\u017ab\\u0142o')

See Also

#TODO

callable

Description

Returns a Boolean stating whether the object argument appears callable.

Syntax

callable (object)

	object

	Required. Any valid object.

Return Value

#TODO

Time Complexity

#TODO

Note

If callable() returns True, it is still possible that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class returns a new instance); class instances are callable if they have a __call__() method.

Example

>>> def bar(): pass
...
>>> callable(bar)
True
>>> class foo: pass
...
>>> callable(foo)
True
>>> callable(10)
False
>>> callable('hello')
False
>>> callable(True)
False

See Also

#TODO

chr

Description

Returns a string of one character whose ASCII code is the specified number.

Syntax

chr (number)

	number

	Required. Any integer within the 0-255 range.

Return Value

str

Time Complexity

#TODO

Example

>>> chr(65)
'A'
>>> chr(97)
'a'
>>> ''.join([chr(c) for c in range(65, 91)])
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

See Also

#TODO

classmethod

Description

Returns a class method for the function.

Syntax

classmethod (class)

	class

	Required. Name of a class.

Return Value

#TODO

Time Complexity

#TODO

Remarks

When classmethod is called, it gets the class as the first argument instead of the instance of that class (as we normally do with methods). This means we can use the class and its properties inside that method rather than a particular instance.
Class methods are useful when you need to have methods that aren’t specific to any particular instance, but still involve the class in some way.
If we have a class, and a module-level function that operates on that class (factory, dependency injection stub, etc), make it a classmethod. Then it’ll be available to subclasses.
Class methods can be overridden by subclasses unlike Python’s module-level functions.
The @classmethod form is a function decorator.
See also staticmethod(), property() and abstract class in abc module.

Example 1

>>> #This example shows obsolete syntax
>>> #Note that method bar can be called on both class and instance objects
>>> class Foo:
... def bar(cls): #
... print 'bar’ #
... bar = classmethod(bar) #<= not pythonic anymore, decorator syntax recommended
...
>>> Foo.bar
<bound method classobj.bar of <class __main__.Foo at 0x00CDAC00>>
>>> Foo.bar()
bar
>>> Foo().bar
<bound method classobj.bar of <class __main__.Foo at 0x00CDAC00>>
>>> Foo().bar()
bar

Example 2

>>> #This example shows usage of decorator syntax which is recommended
class Line:
 def __init__(self, length):
 self.length = length

@classmethod
def from_inches(cls, length_in):

length = float(length_in)*2.54
return cls(length)

l = Line.from_inches(3)
print l.length #returns 7.62

See Also

#TODO

cmp

Description

Compares two objects and returns an integer according to the outcome.

Syntax

cmp (object1, object2)

	object1, object2

	Required. If objects are of a sequence type cmp performs lexical comparison. The return value is -1 if object1 < object2, 0 if object1 == object2 and 1 if object1 > object2.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> cmp(1, 2)
-1
>>> cmp(0, 1)
-1
>>> cmp(1, 1)
0
>>> cmp(1, 2)
-1
>>> cmp('foo', 'bar')
1
>>> cmp([1, 2], [2, 1])
-1

See Also

#TODO

coerce

Description

Returns a tuple consisting of the two numeric arguments converted to a common type.

Syntax

coerce (number1, number2)

	number1, number2

	Required. Any numeric type.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Coercion is the implicit conversion of an instance of one type to another during an operation which involves two arguments of the same type. For example, in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type before they can be added or it will raise a TypeError. Coercion between two operands can be performed with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.
If coercion is not possible, coerce raises TypeError. Use of the coerce function is in not really necessary since Python’s interpreter automatically normalizes values in arithmetic expressions.

Example 1

>>> coerce(1, 1.5)
(1.0, 1.5)
>>> coerce(1 + 2j, 1)
((1+2j), (1+0j))
>>> coerce(1.0, 1+3j)
((1+0j), (1+3j))
>>> coerce('foo', 1+3j)
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: number coercion failed

Example 2

>>> 2 + 4.0 #note that the type coercion is done automatically
6.0
>>> 2 + 4.0
6.0
>>> 1 + 2j+1
(2+2j)

See Also

#TODO

compile

Description

Returns an AST or code object.

Syntax

compile (source, filename, mode[, flags[, dont_inherit]])

	source

	Required. source can either be a Unicode string, a Latin-1 encoded string or an AST object. Refer to the ast module documentation for information on how to work with AST objects.

	filename

	Required. The filename argument should give the file from which the code was read; pass some recognizable value if it wasn’t read from a file (‘<string>’ is commonly used).

	mode

	
Required. The mode argument specifies what kind of code must be compiled;

it can be ‘exec’ if source consists of a sequence of statements,
‘eval’ if it consists of a single expression (note that you cannot use statements in this mode; only a (single) expression is valid),
or ‘single’ if it consists of a single interactive statement (in the latter case, expression statements that evaluate to something other than None will be printed).

	flags, dont_inherit

	Optional. The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compilation of source. If neither is present (or both are zero) the code is compiled with those future statements that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then the future statements specified by the flags argument are used in addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it – the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature instance in the __future__ module.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Though code objects represent some piece of executable code, they are not, by themselves, directly callable.
Code objects can be executed by an exec statement or evaluated by a call to eval().
This function raises SyntaxError if the compiled source is invalid and TypeError if the source contains null bytes.
See also exec statement, eval() and execfile() functions.

Note

When compiling a string with multi-line code in ‘single’ or ‘eval’ mode, input must be terminated by at least one newline character. This is to facilitate detection of incomplete and complete statements in the code module.

Example 1

>>> c = compile('2 + 2', '<string>', 'eval')
>>> print c
<code object <module> at 00CE7B60, file "", line 1>
>>> c.co_code
'd\x01\x00S'
>>> eval(c)
4

Example 2

>>> code = compile('a = 1 + 2', '<string>', 'exec')
>>> exec code
>>> print a
3

Example 3

>>> s = '''
... print "foo"
... print "bar"
... '''
>>> c = compile(s, '<string>', 'single')
>>> exec c
foo

Example 4

>>> #This example executes code object against a new environment; that means the result won’t be injected into the global namespace
>>> code = compile('a = 1 + 2', '<string>', 'exec')
>>> ns = {}
>>> exec code in ns
>>> print ns['a']
3
>>> globals()['a']
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
KeyError: 'a'

See Also

#TODO

complex

Description

Returns an expression converted into a complex number.

Syntax

complex ([real[, imaginary]])

	real

	Optional. Must be a number.

	imaginary

	Optional. Must be a number.

complex ([string])

	string

	Optional. If string is used it must represent a valid Python numeric type.

Return Value

complex

Time Complexity

#TODO

Note

When converting from a string, the string must not contain whitespace around the central + or - operator. For example, complex(‘1+2j’) is fine, but complex(‘1 + 2j’) raises ValueError. The complex type is described in Numeric Types — int, float, long, complex.

Remarks

If the first parameter is a string, it will be interpreted as a complex number and the function must be called without a second parameter. The second parameter can never be a string. Each argument may be any numeric type (including complex). If imaginary is omitted, it defaults to zero and the function serves as a numeric conversion function like int(), long() and float(). If both arguments are omitted, returns 0j.

Example 1

>>> complex()
0j
>>> complex(1)
(1+0j)
>>> complex(1, 2)
(1+2j)

Example 2

>>> complex(1.12, 2.34)
(1.12+2.34j)
>>> complex(1, 2.34)
(1+2.34j)
>>> complex(1+2j)
(1+2j)
>>> complex(1+2j, 3+4j)
(-3+5j)

Example 2

>>> complex('1')
(1+0j)
>>> complex('1+5j')
(1+5j)

See Also

#TODO

delattr

Description

Deletes the named attribute of an object.

Syntax

delattr (object, name)

	object

	Required. The name of the object which attribute will be deleted. Must be an object.

	name

	Required. The name of the attribute to delete. Must be a string.

Return Value

#TODO

Time Complexity

#TODO

Remarks

See also setattr().

Example

>>> class Foo:
... def __init__(self, x=0):
... self.x = x
...
>>> f = Foo(10)
>>> f.x
10
>>> delattr(f, 'x')
>>> f.x
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
AttributeError: Foo instance has no attribute 'x'

See Also

#TODO

dict

Description

Returns a dictionary object.

Syntax

dict ([**kwargs])

dict ([mapping, **kwargs])

dict ([iterable, **kwargs])

	kwargs

	Optional. Keyword arguments.

	mapping

	Optional. Another dictionary.

	iterable

	Optional. An iterable object in a form of key-value pair(s). keys should be immutable.

Return Value

dict

Time Complexity

#TODO

Remarks

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument.

Example

>>> dict()
{}
>>> dict(a=1, b=2)
{'a': 1, 'b': 2}
>>> dict({'a': 1, 'b': 2}, c=3)
{'a': 1, 'b': 2, 'c': 3}
>>> dict([('a', 1), ['b', 2]], c=3)
{'a': 1, 'b': 2, 'c': 3}

See Also

#TODO

dir

Description

Returns the list of names in the current local scope. If supplied with an argument attempts to return a list of valid attributes for that object.

Syntax

dir ([object])

	object

	Optional. Name of the object which attributes will be displayed.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the object has a method named __dir__(), this method will be called and must return the list of attributes. This allows objects that implement a custom __getattr__() or __getattribute__() function to customize the way dir() reports their attributes.
If the object does not provide __dir__(), the function tries its best to gather information from the object’s __dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and may be inaccurate when the object has a custom __getattr__().
The default dir() mechanism behaves differently with different types of objects, as it attempts to produce the most relevant, rather than complete, information:
If the object is a module object, the list contains the names of the module’s attributes.
If the object is a type or class object, the list contains the names of its attributes, and recursively of the attributes of its bases.
Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.

Example 1

>>> class Foo:
... def __init__(self, x):
... self.x = x
...
>>> dir(Foo)
['__doc__', '__init__', '__module__']

Example 2

>>> dir()
['Foo', '__builtins__', '__doc__', '__name__', '__package__', 'pyscripter']

See Also

#TODO

divmod

Description

Returns quotient and remainder after a division of two numbers.

Syntax

divmod (number1, number2)

	number1, number2

	Required. Any numeric expression.

Return Value

tuple

Time Complexity

#TODO

Note

Using divmod() with complex numbers is deprecated.

Remarks

With mixed operand types, the rules for binary arithmetic operators apply. For plain and long integers, the result is the same as (a // b, a % b). For floating point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b).

Example

>>> divmod(10, 3)
(3, 1)
>>> divmod(10.5, 3)
(3.0, 1.5)
>>> divmod(10.5, 3.1)
(3.0, 1.1999999999999997)
>>> divmod(10.5, 3.5)
(3.0, 0.0)

See Also

#TODO

enumerate

Description

Returns an enumerate object.

Syntax

enumerate (sequence, start=0)

	sequence

	Required. Must be a sequence, an iterator, or some other object which supports iteration.

	start

	Optional. Index at which enumeration starts.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The next() method of the iterator returned by enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over sequence.

Example 1

>>> for i in enumerate((1, 2, 3)):
... print i
...
(0, 1)
(1, 2)
(2, 3)

Example 2

>>> e = enumerate([1, 2])
>>> e.next()
(0, 1)
>>> e.next()
(1, 2)
>>> e.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 3

>>> e = enumerate([1, 2, 3], 1)
>>> e = enumerate([1, 2, 3], start=1)
>>> e.next()
(1, 1)
>>> e.next()
(2, 2)
>>> e.next()
(3, 3)
>>> e.next()

See Also

#TODO

eval

Description

Returns a result of the evaluation of a Python expression.

Syntax

eval (expression[, globals[, locals]])

	expression

	Required. The arguments are a Unicode or Latin-1 encoded string

	globals

	Optional. A dictionary defining the namespace in which the expression is evaluated.

	locals

	Optional. A dictionary defining the local namespace.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means that expression normally has full access to the standard __builtin__ module and restricted environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment where eval() is called. The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.

This function can also be used to execute arbitrary code objects (such as those created by compile()). In this case pass a code object instead of a string. If the code object has been compiled with ‘exec’ as the mode argument, eval()‘s return value will be None.
Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from a file is supported by the execfile() function. The globals() and locals() functions returns the current global and local dictionary, respectively, which may be useful to pass around for use by eval() or execfile().

See ast.literal_eval() for a function that can safely evaluate strings with expressions containing only literals.
See also exec statement and execfile() and compile() functions.

Example 1

>>> x = 1
>>> print eval('x+1')
2
>>> eval('2*2')
4
>>> eval("len('bamf')")
4

Example 2

>>> # this example shows how eval can access global namespace; this is a potential security hazard
>>> eval("os.getcwd()")
NameError: name 'os' is not defined
>>> import os
>>> eval("os.getcwd()")
'C:\\Program Files\\PyScripter'

Example 3

>>> # this example shows how providing globals argument prevents eval from accessing real globals dictionary
>>> eval("os.getcwd()", {})
NameError: name 'os' is not defined
>>> # that example however can be bypassed by using __import__ function inside eval
>>> eval('__import__("os").getcwd()', {})
'C:\\Program Files\\PyScripter'

Example 4

>>> # this example shows how to prevent eval from importing any modules
>>> eval('__import__("os").getcwd()', {'__builtins__': {}})
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name '__import__' is not defined

See Also

#TODO

execfile

Description

Evaluates contents of a file.

Syntax

execfile (filename[, globals[, locals]])

	filename

	Required. A file to be parsed and evaluated as a sequence of Python statements (similarly to a module).

	globals

	Optional. Any mapping object providing global namespace.

	locals

	Optional. Any mapping object providing local namespace.

Return Value

#TODO

Time Complexity

#TODO

Remarks

This function is similar to the exec statement, but parses a file instead of a string. It is different from the import statement in that it does not use the module administration — it reads the file unconditionally and does not create a new module.
Remember that at module level, globals and locals are the same dictionary. If two separate objects are passed as globals and locals, the code will be executed as if it were embedded in a class definition.

If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment where execfile() is called. The return value is None.

Note

The default locals act as described for function locals() below: modifications to the default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on locals after function execfile() returns. execfile() cannot be used reliably to modify a function’s locals.

Example

>>> execfile(r'C:\test.py') #test.py contains the following line: 'print "foo"'
foo

See Also

#TODO

file

Description

Returns a file object.

Syntax

file (name[, mode[, buffering]])

	name

	Optional. Full filepath.

	mode

	
Optional. Possible values:

‘r’ open for reading (default)
‘w’ open for writing, truncating the file first
‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode
‘t’ text mode (default)
‘+’ open a disk file for updating (reading and writing)
‘U’ universal newlines mode (for backwards compatibility; should not be used in new code)

	buffering

	
Optional. Possible values:

‘0’ to switch buffering off (only allowed in binary mode)
‘1’ to select line buffering (only usable in text mode)
‘integer > 1’ to indicate the size of a fixed-size chunk buffer

Return Value

#TODO

Time Complexity

#TODO

Note

When opening a file, it’s preferable to use open() instead of invoking this constructor directly. file is more suited to type testing (for example, writing isinstance(f, file)).

Example

>>> file('C:\\alice_in_wonderland.txt')
<open file 'C:\\alice_in_wonderland.txt', mode 'r' at 0x02C1C390>
>>> alice = open(r'C:\alice_in_wonderland.txt', 'r+')
>>> alice.readline()
" ALICE'S ADVENTURES IN WONDERLAND\n"

See Also

#TODO

filter

Description

Returns a sequence from those elements of iterable for which function returns True.

Syntax

filter (function, iterable)

	function

	Required. A function. If set to None returns only elements that are True.

	iterable

	Required. Any iterable sequence.

Return Value

same as returned by function

Time Complexity

#TODO

Note

Note that filter(function, iterable) is equivalent to [item for item in iterable if function(item)] if function is not None and [item for item in iterable if item] if function is None.

See itertools.ifilter() and itertools.ifilterfalse() for iterator versions of this function, including a variation that filters for elements where the function returns False.

Example 1

>>> def f(x):
... if x > 0:
... return x
>>> filter(f, [-1, 0, 1])
[1]

Example 2

>>> filter(None, (0, 1, True))
(1, True)

See Also

map(), reduce() and Comprehensions and Generator Expression.

float

Description

Returns an expression converted into a floating point number.

Syntax

float (number)

	number

	Optional. A numeric type other than complex number or string representation of a number.

Return Value

float

Time Complexity

#TODO

Note

When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan, inf or -inf.

Example 1

>>> float(1)
1.0
>>> float(1.34)
1.34
>>> float('2')
2.0
>>> float('-2')
-2.0
>>> float('-2.313123')
-2.313123

Example 2

>>> float('+nan')
nan
>>> float('-infinity')
-inf

See Also

#TODO

format

Description

Returns a formatted string.

Syntax

format (value[, format_spec])

	value

	Optional. A type to be formatted.

	format_spec

	Optional. If omitted returns a string representation of an object. General form:

[[fill]align][sign][#][0][width][,][.precision][type]

See below for details.

Fill

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space if omitted.

Allign

	‘<’

	Forces the field to be left-aligned within the available space (this is the default for most objects).

	‘>’

	Forces the field to be right-aligned within the available space (this is the default for numbers).

	‘=’

	Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields in the form ‘+000000120’. This alignment option is only valid for numeric types.

	‘^’

	Forces the field to be centered within the available space.

Sign

	‘+’

	indicates that a sign should be used for both positive as well as negative numbers.

	‘-‘

	indicates that a sign should be used only for negative numbers (this is the default behavior).

	‘ ‘ (space)

	indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

	‘#’

	The ‘#’ option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that the output will be prefixed by ‘0b’, ‘0o’, or ‘0x’, respectively.

	‘,’

	The ‘,’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the ‘n’ integer presentation type instead.

Width

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by the content.
Preceding the width field by a zero (‘0’) character enables sign-aware zero-padding for numeric types. This is equivalent to a fill character of ‘0’ with an alignment type of ‘=’.

Precision

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating point value formatted with ‘f’ and ‘F’, or before and after the decimal point for a floating point value formatted with ‘g’ or ‘G’. For non-number types the field indicates the maximum field size - in other words, how many characters will be used from the field content. The precision is not allowed for integer values.

Type

Determines how the data should be presented.

The available string presentation types are:
‘s’

String format. This is the default type for strings and may be omitted.

	None

	The same as ‘s’.

The available integer presentation types are:
‘b’

Binary format. Outputs the number in base 2.

	‘c’

	Character. Converts the integer to the corresponding unicode character before printing.

	‘d’

	Decimal Integer. Outputs the number in base 10.

	‘o’

	Octal format. Outputs the number in base 8.

	‘x’

	Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.

	‘X’

	Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.

	‘n’

	Number. This is the same as ‘d’, except that it uses the current locale setting to insert the appropriate number separator characters.

	None

	The same as ‘d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed below (except ‘n’ and None). When doing so, float() is used to convert the integer to a floating point number before formatting.

The available presentation types for floating point and decimal values are:
‘e’

Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent. The default precision is 6.

	‘E’

	Exponent notation. Same as ‘e’ except it uses an upper case ‘E’ as the separator character.

	‘f’

	Fixed point. Displays the number as a fixed-point number. The default precision is 6.

	‘F’

	Fixed point. Same as ‘f’.

	‘g’

	General format. For a given precision p >= 1, this rounds the number to p significant digits and then formats the result in either fixed-point format or in scientific notation, depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type ‘e’ and precision p-1 would have exponent exp. Then if -4 <= exp < p, the number is formatted with presentation type ‘f’ and precision p-1-exp. Otherwise, the number is formatted with presentation type ‘e’ and precision p-1. In both cases insignificant trailing zeros are removed from the significand, and the decimal point is also removed if there are no remaining digits following it.
Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

	‘G’

	General format. Same as ‘g’ except switches to ‘E’ if the number gets too large. The representations of infinity and NaN are uppercased, too.

	‘n’

	Number. This is the same as ‘g’, except that it uses the current locale setting to insert the appropriate number separator characters.

	‘%’

	Percentage. Multiplies the number by 100 and displays in fixed (‘f’) format, followed by a percent sign.

	None

	The same as ‘g’.

Return Value

#TODO

Time Complexity

#TODO

Note

format(value, format_spec) merely calls value.__format__(format_spec).

Example 1

>>> #This example illustrates the use of [fill]align][width] options
>>> format(3.14, '0>10')
'0000003.14'
>>> format(3.14, '0>5')
'03.14'
>>> format(3.14, '#>5')
'#3.14'
>>> format(3.14, '#>10')
'######3.14'
>>> format(7, '#^10')
'####7#####'

Example 2

>>> #This example illustrates the use of [sign] option
>>> format(7, '-')
'7'
>>> format(-7, '+')
'-7'
>>> format(-7, ' ')
'-7'
>>> format(7, ' ')
' 7'

Example 3

>>> #This example illustrates the use of [#] option
>>> format(10, '0b')
'1010'
>>> format(10, '0o')
'12'
>>> format(10, '0x')
'a'

Example 4

>>> #This example illustrates the use of [,] option
>>> format(16777216, ',')
'16,777,216'
>>> format(16777216, 'n')
'16777216'

Example 5

>>> #This example illustrates the use of [precision] option
>>> format(16.777, '.1f')
'16.8'
>>> format(16.777, '.2f')
'16.78'
>>> format(16.777, '.3f')
'16.777'
>>> format(16.777, '.7f')
'16.7770000'

Example 6

>>> #This example illustrates the use of [type] option on integers
>>> format(2, 'b')
'10'
>>> format(2, 'b')
'10'
>>> format(2, 'c')
'\x02'
>>> format(2, 'd')
'2'
>>> format(100, 'o')
'144'
>>> format(100, 'x')
'64'
>>> format(100, 'n')
'100'
>>> format(100)
'100'

Example 7

>>> #This example illustrates the use of [type] option on floats
>>> format(3.13592, 'e')
'3.135920e+00'
>>> format(3.13592, 'E')
'3.135920E+00'
>>> format(3.13592, 'f')
'3.135920'
>>> format(3.13592, 'g')
'3.13592'
>>> format(3.13592, '.2g')
'3.1'
>>> format(3.13592, '%')
'313.592000%'
>>> format(3.13592, '.2%')
'313.59%'
>>> format(3.13592, 'n')
'3.13592'

See Also

#TODO

frozenset

Description

Returns a frozenset object.

Syntax

frozenset (iterable)

	iterable

	Optional. An iterable sequence from which the frozenset is created.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Frozenset is an immutable version of set object.

Example

>>> frozenset([1, 1, 2])
frozenset([1, 2])
>>> frozenset('foobar')
frozenset(['a', 'b', 'f', 'o', 'r'])
>>> frozenset((1, 2, 3))
frozenset([1, 2, 3])
>>> frozenset({'a': 1, 'b': 2})
frozenset(['a', 'b'])
>>> frozenset({1, 2})
frozenset([1, 2])
>>> fs = frozenset([1, 2, 3])
>>> fs[1] = 10
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: 'frozenset' object does not support item assignment

See Also

#TODO

getattr

Description

Returns the value of the named attribute of object.

Syntax

getattr (object, name[, default])

	object

	Required. An object whose attribute is to be returned.

	name

	Required. Must be a string. If the named attribute does not exist, default is returned if provided, otherwise AttributeError is raised.

	default

	Optional. Default value returned if the named attribute does not exist.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> class Foo:
... def __init__(self, x):
... self.x = x
...
>>> f = Foo(10)
>>> getattr(f, 'x')
10
>>> f.x
10
>>> getattr(f, 'y', 'bar')
'bar'

See Also

#TODO

globals

Description

Returns a dictionary representing the current global symbol table.

Syntax

globals()

Return Value

#TODO

Time Complexity

#TODO

Remarks

Returned value is always the dictionary of the current module (inside a function or method, this is the module where it is defined, not the module from which it is called).

Example

>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>,
 '__doc__': None,
 '__name__': '__main__',
 '__package__': None,
 'pyscripter': <module 'pyscripter' (built-in)>}

See Also

#TODO

hasattr

Description

Returns a Boolean stating whether the object has the specified attribute.

Syntax

hasattr (object, name)

	object

	Required. Any object.

	name

	Required. String representation of the attribute.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> class Foo:
... pass
...
>>> f = Foo()
>>> hasattr(f, 'x')
False
>>> f.x = 5
>>> hasattr(f, 'x')
True

See Also

#TODO

hash

Description

Return the hash value of the object (if it has one).

Syntax

hash (object)

	object

	Required. The object which hash value is to be returned. Only immutable types can be hashed.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The hash values are calculated by hashing algorithm.
Hash values are integers. They are used to quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if they are of different types, as is the case for 1 and 1.0).
The hash value -1 is reserved (it’s used to flag errors in the C implementation).
For ordinary integers, the hash value is simply the integer itself (unless it’s -1).

Hashable types:
* bool
* int
* long
* float
* string
* unicode
* tuple
* code object

Non-hashable types:
* bytearray
* list
* set
* dictionary
* memoryview

Example

>>> hash(1)
1
>>> hash(1.0)
1
>>> hash(1 + 2j)
2000007
>>> hash('foo')
-740391237
>>> hash((1, 2))
1299869600
>>> hash([1, 2])
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> hash({'a': 1, 'b': 2})
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: unhashable type: 'dict'
>>> hash({1, 2})
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: unhashable type: 'set'

See Also

#TODO

help

Description

Invokes the built-in help system.

Syntax

help (object)

	object

	Optional. If no argument is given, the interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the console. If the argument is any other kind of object, a help page on the object is generated.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> help()
Welcome to Python 2.7! This is the online help utility.
…
>>> help(set)
Help on class set in module __builtin__:
class set(object)
…

See Also

#TODO

hex

Description

Returns an integer converted into a hexadecimal string.

Syntax

hex (integer)

	integer

	Required. An integer value to be converted into hex string.

Return Value

str

Time Complexity

#TODO

Note

To obtain a hexadecimal string representation for a float, use the float.hex() method.

Example

>>> hex(100)
'0x64'
>>> hex(-30)
'-0x1e'
>>> hex(0b11)
'0x3'
>>> hex(0o67)
'0x37'

See Also

#TODO

id

Description

Returns the “identity” of an object.

Syntax

id (object)

	object

	Required. An object which id is to be returned.

Return Value

#TODO

Time Complexity

#TODO

Note

CPython implementation detail: This is the address of the object in memory.

Remarks

This is an integer (or long integer) which is guaranteed to be unique and constant for this object during its lifetime.
Two objects with non-overlapping lifetimes may have the same id() value.

Example

>>> l1 = [1, 2]
>>> l2 = [1, 2]
>>> id(l1)
46449768
>>> id(l2)
46210984
>>> id(l1) == id(l2)# note that objects with the same value can have different ids
False
>>> l1 == l2
True

See Also

#TODO

input

Description

Evaluates user input.

Syntax

input ([prompt])

	prompt

	Optional. The prompt text.

Return Value

#TODO

Time Complexity

#TODO

Note

Input is equivalent to eval(raw_input(prompt)).

Remarks

This function does not catch user errors. If the input is not syntactically valid, a SyntaxError will be raised. Other exceptions may be raised if there is an error during evaluation.

If the readline module was loaded, then input() will use it to provide elaborate line editing and history features.
Consider using the raw_input() function for general input from users.

Example

>>> input()
2+2
4
>>> input('Enter a valid python expression...\n')
Enter a valid python expression...
2*2
4

See Also

#TODO

int

Description

Returns an expression converted into an integer number.

Syntax

int ([number, [base]])

	number

	Optional. Can be of string, int, float or long type.

	base

	Optional. If used number must be a string.

Return Value

int

Time Complexity

#TODO

Remarks

If number is floating point, the conversion truncates towards zero. If the argument is outside the integer range, the function returns a long object instead.

If number is not a number or if base is given, then number must be a string or Unicode object representing an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be optionally prefixed with 0b/0B, 0o/0O/0, or 0x/0X, as with integer literals in code. Base 0 means to interpret the string exactly as an integer literal, so that the actual base is 2, 8, 10, or 16.

Example 1

>>> # this example converts octal, hex and binary integers into a decimal integer
>>> int(0o10)
8
>>> int(0x10)
16
>>> int(0b10)
2

Example 2

>>> # this example uses base argument
>>> int('0101', 2)
5
>>> int('0101', 8)
65
>>> int('0101', 16)
257
>>> int('0101', 10)
101

Example 3

>>> int(3.14)
3
>>> int(3.14e10)
31400000000L
>>> int(-3.14)
-3

Example 4

>>> int('-100')
-100
>>> int('+100')
100
>>> int('100')
100

See Also

#TODO

intern

Description

Enters the string into interned strings table (if not already there).

Syntax

intern (string)

	string

	Required. The string you want to intern.

Return Value

#TODO

Time Complexity

#TODO

Remarks

By using intern you ensure that you never create two string objects that have the same value - when you request the creation of a second string object with the same value as an existing string object, you receive a reference to the pre-existing string object. This way, you are saving memory. Also, string objects comparison is now very efficient because it is carried out by comparing the memory addresses of the two string objects instead of their content.

Essentially intern looks up (or stores if not present) the string in a collection of interned strings, so all interned instances will share the same identity. You trade the one-time cost of looking up this string for faster comparisons (the compare can return True after just checking for identity, rather than having to compare each character), and reduced memory usage.

However, python will automatically intern strings that are small, or look like identifiers, so you may find you get no improvement because your strings are already being interned behind the scenes.

Example 1

>>> f = 'foobar'
>>> b = 'foobar'
>>> f == b
True
>>> f is b
True
>>> b = 'foobar qwertyuiop'
>>> f = 'foobar qwertyuiop'
>>> b is f
False

Example 2

>>> a = intern('spam foobar snafu')
>>> b = 'spam foobar snafu'
>>> a is b
False
>>> b = intern('spam foobar snafu')
>>> a is b
True

See Also

#TODO

isinstance

Description

Returns a Boolean stating whether the object is an instance or subclass of another object.

Syntax

isinstance (object, classinfo)

	object

	Required. An object instance.

	classinfo

	Required. A class, type or a tuple containing classes, types or other tuples.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Also returns True if classinfo is a type object (new-style class) and object is an object of that type or of a (direct, indirect or virtual) subclass thereof. If object is not a class instance or an object of the given type, the function always returns false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are not accepted). If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError exception is raised.

Example 1

>>> isinstance('foo', basestring)
True
>>> isinstance('foo', float)
False

Example 2

>>> class Foo: pass
...
>>> class Bar(Foo): pass
...
>>> b = Bar()
>>> isinstance(b, Foo)
True
>>> isinstance(Bar, Foo)
False
>>> isinstance(Bar(), Foo)
True

Example 3

>>> isinstance(u'foo', (basestring, str, unicode))
True
>>> isinstance(u'foo', (basestring, str))
True
>>> isinstance(u'foo', (basestring))
True
>>> isinstance(u'foo', (str))
False

See Also

#TODO

issubclass

Description

Returns a Bool type indicating whether an object is a subclass of a class.

Syntax

issubclass (class, classinfo)

	class

	Required. A class.

	classinfo

	Required. A class, type or a tuple of classes and/or types.

Return Value

#TODO

Time Complexity

#TODO

Remarks

A class is considered a subclass of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other case, a TypeError exception is raised.

Example

>>> class Foo: pass
...
>>> class Bar(Foo): pass
...
>>> class Snafu: pass
...
>>> issubclass(Bar, Foo)
True
>>> issubclass(Bar, Snafu)
False
>>> issubclass(Foo, Foo)
True
>>> issubclass(Bar, (Foo, Snafu))
True

See Also

#TODO

iter

Description

Returns an iterator object.

Syntax

iter (object, [sentinel])

	object

	Required. An iterable sequence.

	sentinel

	Optional. If used object must be callable.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The first argument is interpreted very differently depending on the presence of the second argument. Without a second argument, object must be a collection object which supports the iteration protocol (the __iter__() method), or it must support the sequence protocol (the __getitem__() method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If the second argument, sentinel, is given, then o must be a callable object. The iterator created in this case will call o with no arguments for each call to its next() method; if the value returned is equal to sentinel, StopIteration will be raised, otherwise the value will be returned.

Example 1

>>> i = iter([1, 2, 3])
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> # The following example reads a file until the readline() method returns an empty string
>>> with open(r'C:\alice_in_wonderland.txt') as fp:
... for line in iter(fp.readline, ''):
... print line[0]

See Also

#TODO

len

Description

Returns an int type specifying number of elements in the collection.

Syntax

len (collection)

	collection

	Required. Must be of sequence type.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> len('foo')
3
>>> len([1, 2])
2
>>> len((1, 2))
2
>>> len({'a': 1, 'b': 2})
2
>>> len({1, 2})
2

See Also

#TODO

list

Description

Converts an object into a list.

Syntax

list ([iterable])

	iterable

	Optional. Any iterable.

Return Value

#TODO

Time Complexity

#TODO

Remarks

list() returns a list whose items are the same and in the same order as iterable‘s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to iterable[:]. For instance, list(‘abc’) returns [‘a’, ‘b’, ‘c’] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, returns a new empty list, [].

Example

>>> list('foo')
['f', 'o', 'o']
>>> list((1, 2))
[1, 2]
>>> list({1, 2})
[1, 2]
>>> list({'a': 1, 'b': 2})
['a', 'b']
>>> list([1, 2])
[1, 2]
>>> list()
[]
>>> list(iter([1, 2]))
[1, 2]

See Also

#TODO

locals

Description

Returns a dictionary representing the current local symbol table.

Syntax

locals()

Return Value

#TODO

Time Complexity

#TODO

Note

The contents of this dictionary should not be modified; changes may not affect the values of local and free variables used by the interpreter.

Example

>>> locals()
{'__builtins__': <module '__builtin__' (built-in)>,
 '__doc__': None,
 '__name__': '__main__',
 '__package__': None,
 'pyscripter': <module 'pyscripter' (built-in)>}
>>> a = 10
>>> locals()
{'__builtins__': <module '__builtin__' (built-in)>,
 '__doc__': None,
 '__name__': '__main__',
 '__package__': None,
 'a': 10,
 'pyscripter': <module 'pyscripter' (built-in)>}

See Also

#TODO

long

Description

Returns an expression converted into a long integer number.

Syntax

long ([number, [base]])

	number

	Optional. Can be of string, int, float or long type.

	base

	Optional. If used number must be a string.

Return Value

long

Time Complexity

#TODO

Remarks

If number is floating point, the conversion truncates towards zero. If the argument is outside the integer range, the function returns a long object instead.

If number is not a number or if base is given, then number must be a string or Unicode object representing an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be optionally prefixed with 0b/0B, 0o/0O/0, or 0x/0X, as with integer literals in code. Base 0 means to interpret the string exactly as an integer literal, so that the actual base is 2, 8, 10, or 16.

Example 1

>>> # this example converts an octal, hex and binary integer into a proper integer
>>> long(0o10)
8
>>> long (0x10)
16
>>> long (0b10)
2

Example 2

>>> # this example uses base argument
>>> long('0101', 2)
5L
>>> long('0101', 8)
65L
>>> long('0101', 16)
257L
>>> long('0101', 10)
101L

Example 3

>>> long(3.14)
3L
>>> long(3.14e10)
31400000000L
>>> long(-3.14)
-3L

Example 4

>>> long('-100')
-100L
>>> long('+100')
100
>>> long('100')
100L

See Also

#TODO

map

Description

Applies function to every item of an iterable and returns a list of the results.

Syntax

map (function, iterable [, …])

	function

	Required. A function that is used to create a new list.

	iterable

	Required. An iterable object or multiple comma-seperated iterable objects.

Return Value

list

Time Complexity

#TODO

Remarks

If additional iterable arguments are passed, function must take that many arguments and is applied to the items from all iterables in parallel. If one iterable is shorter than another it is assumed to be extended with None items. If function is None, the identity function is assumed; if there are multiple arguments, map() returns a list consisting of tuples containing the corresponding items from all iterables (a kind of transpose operation). The iterable arguments may be a sequence or any iterable object; the result is always a list.

Example 1

>>> map(lambda x: x+x, (1, 2, 3))
[2, 4, 6]
>>> map(lambda x, y: x/y, (1, 4, 9), (1, 2, 3))
[1, 2, 3]
>>> map(lambda x, y, z: x+y+z, (1, 2, 3), (1, 4, 9), (1, 16, 27))
[3, 22, 39]

Example 2

>>> map(None, [True, False])
[True, False]
>>> map(None, ['a', 'b'], [1, 2])
[('a', 1), ('b', 2)]
>>> map(None, ['a', 'b'], [1, 2, 3])
[('a', 1), ('b', 2), (None, 3)]

See Also

reduce(), filter() and Comprehensions and Generator Expression.

max

Description

Returns the largest item in an iterable or the largest of two or more arguments.

Syntax

max (collection[, key])

	colllection

	Required. A comma-separated list of objects or an iterable sequence.

	key

	Optional. Specifies a one-argument ordering function; must be in keyword form.

Return Value

#TODO

Time Complexity

#TODO

Remarks

When comparing sequences lexical comparison is used.

Example

>>> max(1, 2, 3)
3
>>> max('A', 'a', 'b')
'b'
>>> max([1, 2], [2, 1], [3, 1])
[3, 1]
>>> max(str([1, 2]), str([2, 1]), str([3, 1]))
'[3, 1]'

Example 2

>>> max('apple', 'Pear', key=lambda x: x.upper())
'Pear'
>>> max('apple', 'Pear')
'apple'

See Also

#TODO

memoryview

Description

Returns a memoryview object.

Syntax

memoryview (object)

	object

	Required. An object supporting buffer protocol - str and bytearray (but not unicode).

Return Value

#TODO

Time Complexity

#TODO

Remarks

The memoryview() function allows direct read and write access to an object’s byte-oriented data without needing to copy it first. That can yield large performance gains when operating on large objects since it doesn’t create a copy when slicing.
See also buffer().

Example

>>> memoryview('foo')
<memory at 0x02CCCDA0>
>>> m = memoryview('foo')
>>> m[:]
<memory at 0x02CCCF80>
>>> m[1]
'o'

See Also

#TODO

min

Description

Returns the smallest item from a collection.

Syntax

min (collection[, key])

	collection*

	Required. A comma-separated list of objects or an iterable sequence.

	key*

	Optional. Specifies a one-argument ordering function; must be in keyword form.

Return Value

#TODO

Time Complexity

#TODO

Remarks

When comparing sequences lexical comparison is used.

Example 1

>>> min(1, 2, 3)
1
>>> min('A', 'a', 'b')
'A'
>>> min([1, 2], [2, 1], [3, 1])
[1, 2]
>>> min(str([1, 2]), str([2, 1]), str([3, 1]))
'[1, 2]'

Example 2

>>> min('apple', 'Pear', key=lambda x: x.upper())
'apple'
>>> min('apple', 'Pear')
'Pear'

See Also

#TODO

next

Description

Retrieves the next item from the iterator by calling its next() method.

Syntax

next (iterator[, default])

	iterator

	Required. An iterator object.

	default

	Optional. This is the value that is returned after retrieving the last item instead of StopIteration error.

Return Value

#TODO

Time Complexity

#TODO

Example 1

>>> i = iter([1, 2])
>>> next(i)
1
>>> next(i)
2
>>> next(i)
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> i = iter([1, 2])
>>> next(i, 'No more items in the list.')
1
>>> next(i, 'No more items in the list.')
2
>>> next(i, 'No more items in the list.')
'No more items in the list.'

See Also

#TODO

object

Description

Returns a new featureless object.

Syntax

object()

Return Value

#TODO

Time Complexity

#TODO

Remarks

object is a base for all new style classes. It has the methods that are common to all instances of new style classes.

Example

>>> o = object()
>>> o
<object object at 0x02AA1510>

See Also

#TODO

oct

Description

Returns an integer converted into an octal string.

Syntax

oct (integer)

	integer

	Required. An integer value to be converted into octal string.

Return Value

str

Time Complexity

#TODO

Example

>>> oct(10)
'012'
>>> oct(256)
'0400'
>>> oct(4294967296L)
'040000000000L'

See Also

#TODO

open

Description

Opens a file returning a file object.

Syntax

open (name[, mode[, buffering]])

	name

	Optional. Full filepath.

	mode

	
Optional. Possible values:

‘r’ open for reading (default)
‘w’ open for writing, truncating the file first
‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode
‘t’ text mode (default)
‘+’ open a disk file for updating (reading and writing)
‘U’ universal newlines mode (for backwards compatibility; should not be used in new code)

	buffering*

	
Optional. Possible values:

‘0’ to switch buffering off (only allowed in binary mode)
‘1’ to select line buffering (only usable in text mode)
‘integer > 1’ to indicate the size of a fixed-size chunk buffer

Return Value

#TODO

Time Complexity

#TODO

Remarks

The most commonly-used values of mode are ‘r’ for reading, ‘w’ for writing (truncating the file if it already exists), and ‘a’ for appending (which on some Unix systems means that all writes append to the end of the file regardless of the current seek position). If mode is omitted, it defaults to ‘r’. The default is to use text mode, which may convert ‘n’ characters to a platform-specific representation on writing and back on reading. Thus, when opening a binary file, you should append ‘b’ to the mode value to open the file in binary mode, which will improve portability. (Appending ‘b’ is useful even on systems that don’t treat binary and text files differently, where it serves as documentation.) See below for more possible values of mode.

The optional buffering argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size (in bytes). A negative buffering means to use the system default, which is usually line buffered for tty devices and fully buffered for other files. If omitted, the system default is used.

Modes ‘r+’, ‘w+’ and ‘a+’ open the file for updating (note that ‘w+’ truncates the file). Append ‘b’ to the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems that don’t have this distinction, adding the ‘b’ has no effect.

In addition to the standard fopen() values mode may be ‘U’ or ‘rU’. Python is usually built with universal newlines support; supplying ‘U’ opens the file as a text file, but lines may be terminated by any of the following: the Unix end-of-line convention ‘n’, the Macintosh convention ‘r’, or the Windows convention ‘rn’. All of these external representations are seen as ‘n’ by the Python program. If Python is built without universal newlines support a mode with ‘U’ is the same as normal text mode. Note that file objects so opened also have an attribute called newlines which has a value of None (if no newlines have yet been seen), ‘n’, ‘r’, ‘rn’, or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping ‘U’, begins with ‘r’, ‘w’ or ‘a’.

Python provides many file handling modules including fileinput, os, os.path, tempfile, and shutil.

Example

>>> open('C:\\alice_in_wonderland.txt')
<open file 'C:\\alice_in_wonderland.txt', mode 'r' at 0x02C1C390>
>>> alice = open(r'C:\alice_in_wonderland.txt', 'r+')
>>> alice.readline()
" ALICE'S ADVENTURES IN WONDERLAND\n"

See Also

#TODO

ord

Description

Returns an integer representing the code of the character.

Syntax

ord (character)

	character

	Required. A character.

Return Value

int

Time Complexity

#TODO

Remarks

This function is the inverse of chr() for 8-bit strings and of unichr() for unicode objects. If a unicode argument is given and Python was built with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length is two, and a TypeError will be raised.

Example 1

>>> ord('a')
97
>>> ord('A')
65

Example 2

>>> ord(u'a')
97
>>> ord(u'\u2020')
8224

See Also

#TODO

pow

Description

Returns a number raised to a power; or optionally a modulus of the number raised to a power and another number.

Syntax

pow (base, power[, number])

	base

	Required. The number to be raised to a power.

	power

	Required. The power/index.

	number

	Optional. The number used for division of the result of the base**power expression.

Return Value

int or float

Time Complexity

#TODO

Remarks

The three argument form is computed more efficiently than pow(base, power) % number. The two-argument form pow(base, power) is equivalent to using the power operator: base**power.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. If the second argument is negative, the third argument must be omitted. If number is present, base and power must be of integer types, and power must be non-negative.

Example 1

>>> pow(2, 2)
4
>>> pow(2, -2)
0.25

Example 2

>>> pow(2.0, -2.0)
0.25
>>> pow(2.0, 1.0/2.0)
1.4142135623730951

Example 3

>>> pow(10, 2, 9)
1 #equivalent to remainder of (10**10)/9

See Also

#TODO

print

Description

Returns a printed representation of the objects.

Syntax

print (*objects, sep=’ ‘, end=’n’, file=sys.stdout)

	objects

	Optional. Objects to be printed.

	sep

	Optional. A string printed between objects. Keyword argument.

	end

	Optional. A string appended to the end of the statement. Keyword argument.

	file

	Optional. An object with write(string) method. Keyword argument.

Return Value

#TODO

Time Complexity

#TODO

Remarks

All non-keyword arguments are converted to strings like str() does and written to the stream, separated by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.stdout will be used. Output buffering is determined by file. Use file.flush() to ensure, for instance, immediate appearance on a screen.

Note

This function is not normally available as a built-in since the name print is recognized as the print statement. To disable the statement and use the print() function, use this future statement at the top of your module:

>>> from __future__ import print_function

Example 1

>>> from __future__ import print_function
>>> print('a', 'b')
a b

Example 2

>>> print(1, 2, 3, sep='|')
1|2|3
>>> print('foobar snafu', end='|')
foobar snafu|

Example 3

>>> print('foobar', file=open(r'C:\test.txt', "w"))
>>> open(r'C:\test.txt', "r").read()
'foobar\n'

See Also

#TODO

property

Description

Returns a property attribute for new-style classes (classes that derive from object).

Syntax

property ([fget[, fset[, fdel[, doc]]]])

	fget

	Optional. Function for getting an attribute value.

	fset

	Optional. Function for setting an attribute value.

	fdel

	Optional. Function for deleting an attribute value.

	doc

	Optional. The docstring of the property attribute. If omitted, the property will copy fget‘s docstring (if it exists).

Return Value

#TODO

Time Complexity

#TODO

Remarks

Property decorator allows a class’ attribute to be managed, validated, proxied, secured, or protected in any other way from direct access.
Typical use of property()is to define a managed attribute:

Example 1

	class C(object):

	
	def __init__(self):

	self._x = None

	def getx(self):

	return self._x

	def setx(self, value):

	self._x = value

	def delx(self):

	del self._x

x = property(getx, setx, delx, “I’m the ‘x’ property.”)

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the deleter.
If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring (if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

Example 2

	class Parrot(object):

	
	def __init__(self):

	self._voltage = 100000

@property
def voltage(self):

“”“Get the current voltage.”“”
return self._voltage

turns the voltage() method into a “getter” for a read-only attribute with the same name.
A property object has getter, setter, and deleter methods usable as decorators that create a copy of the property with the corresponding accessor function set to the decorated function. This is best explained with an example:

Example 3

	class C(object):

	
	def __init__(self):

	self._x = None

@property
def x(self):

“”“I’m the ‘x’ property.”“”
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor arguments.

See Also

#TODO

range

Description

Returns a list of arithmetic progressions.

Syntax

range (stop)
range (start, stop[, step])

	start

	Required if stop is used. An integer number.

	stop

	Required. An integer number.

	step

	Optional. An integer number specifying the progression.

Return Value

#TODO

Time Complexity

#TODO

Remarks

This is a versatile function to create lists containing arithmetic progressions. It is most often used in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start + 2 * step, …]. If step is positive, the last element is the largest start + i * step less than stop; if step is negative, the last element is the smallest start + i * step greater than stop. step must not be zero (or else ValueError is raised).

Example

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

See Also

#TODO

raw_input

Description

Reads a line from standard input stream.

Syntax

raw_input ([prompt])

	prompt

	Optional. Text that is displayed as a prompt.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the prompt argument is present, it is written to standard output without a trailing newline. The function then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read, EOFError is raised.
If the readline module was loaded, then raw_input() will use it to provide elaborate line editing and history features.

Example

>>> s = raw_input()
hello
>>> s
'hello'
>>> s = raw_input('Please enter a value...')
Please enter a value...1000
>>> s
'1000'
>>> raw_input('Please enter a value...\n')
Please enter a value...
100
'100'

See Also

#TODO

reduce

Description

Applies function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value.

Syntax

reduce (function, iterable [, initializer])

	function

	Required. A function of two arguments.

	iterable

	Required. An iterable sequence.

	initializer

	Optional. Value placed before the iterable; default value if iterable is empty.

Return Value

same as returned by function

Time Complexity

#TODO

Example 1

>>> reduce(lambda x, y: x+y, [1, 2, 3, 4]) # the left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable.
10 # ((1+2)+3)+4)
>>> reduce(lambda x, y: x-y, [125, 25, 5, 1])
94 # ((125-25)-5)-1)
>>> reduce(lambda x, y: x*y, [2, 2, 2, 2])
16 # ((2*2)*2)*2)
>>> reduce(lambda x, y: x/y, [125, 25, 5, 1])
1 # ((125/25)/5)/1)
>>> reduce(lambda x, y: x*y, [1])
1

Example 2

>>> reduce(lambda x, y: x+y, [], 1)
1
>>> reduce(lambda x, y: x+y, [], 0)
0
>>> reduce(lambda x, y: x*y, [1, 2, 3], 0)
0 # because ((0*1)*2)*3)

See Also

map(), filter() and Comprehensions and Generator Expression.

reload

Description

Reloads a previously imported module.

Syntax

reload (module)

	module

	Required. This is the name of the module you want to reload.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The argument must be a module object, so it must have been successfully imported before. This is useful if you have edited the module source file using an external editor and want to try out the new version without leaving the Python interpreter. The return value is the module object (the same as the module argument).

When reload(module) is executed:
Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects which are bound to names in the module’s dictionary. The init function of extension modules is not called a second time.

As with all other objects in Python the old objects are only reclaimed after their reference counts drop to zero.
The names in the module namespace are updated to point to any new or changed objects.

Other references to the old objects (such as names external to the module) are not rebound to refer to the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:
If a module is syntactically correct but its initialization fails, the first import statement for it does not bind its name locally, but does store a (partially initialized) module object in sys.modules. To reload the module you must first import it again (this will bind the name to the partially initialized module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions of names will override the old definitions, so this is generally not a problem. If the new version of a module does not define a name that was defined by the old version, the old definition remains. This feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a try statement it can test for the table’s presence and skip its initialization if desired:

>>> try:
>>> cache
>>> except NameError:
>>> cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys, __main__ and __builtin__. In many cases, however, extension modules are not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module using from … import …, calling reload() for the other module does not redefine the objects imported from it — one way around this is to re-execute the from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the method definitions of the instances — they continue to use the old class definition. The same is true for derived classes.

Example

>>> import math
>>> reload(math)
<module 'math' (built-in)>

See Also

#TODO

repr

Description

Returns a string containing a printable representation of an object.

Syntax

repr (object)

	object

	Required. A valid Python object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The returned value is the same value yielded by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many types, this function makes an attempt to return a string that would yield an object with the same value when passed to eval(), otherwise the representation is a string enclosed in angle brackets that contains the name of the type of the object together with additional information often including the name and address of the object. A class can control what this function returns for its instances by defining a __repr__() method.
See also str().

Example 1

>>> repr(1)
'1'
>>> repr([1, 2])
'[1, 2]'
>>> repr({'a': 1, 'b': 2})
"{'a': 1, 'b': 2}"

Example 2

>>> class Foo:
... pass
...
>>> repr(Foo())
'<__main__.Foo instance at 0x02C19FA8>'
>>>
>>> class Bar:
... def __repr__(self):
... return 'bar'
...
>>> repr(Bar())
'bar'

Example 3

>>> repr('hello')
"'hello'"
>>> repr("hello")
"'hello'"
>>> repr("""hello""")
"'hello'"
>>> repr('hello')
"'hello'"

See Also

#TODO

reversed

Description

Returns a reverse iterator over a sequence.

Syntax

reversed (sequence)

	sequence

	Required. Any iterable sequence.

Return Value

#TODO

Time Complexity

#TODO

Remarks

sequence must be an object which has a __reversed__() method or supports the sequence protocol (the __len__() method and the __getitem__() method with integer arguments starting at 0).

Example 1

>>> r = reversed([1, 2])
>>> r.next()
2
>>> r.next()
1
>>> r.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> for r in reversed((1, 2)):
... print r
...
2
1

See Also

#TODO

round

Description

Returns a floating point number rounded to a specified number of decimal places.

Syntax

round (number[, decimalplaces])

	number

	Required. An integer or float number.

	decimalplaces

	Optional. An integer specifying the number of decimal places. If omitted, defaults to zero.

Return Value

float

Time Complexity

#TODO

Note

The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be represented exactly as a float.

See Floating Point Arithmetic: Issues and Limitations for more information.

See also: Decimal module.

Remarks

Values are rounded to the closest multiple of 10 to the power minus decimalplaces; if two multiples are equally close, rounding is done away from 0 (so. for example, round(0.5) is 1.0 and round(-0.5) is -1.0).

Example

>>> round(3.333, 1)
3.3
>>> round(2.675, 2)
2.67 #this is not correct in proper arithmetic
>>> round(0, 1)
0.0

See Also

#TODO

set

Description

Returns a set type initialized from iterable.

Syntax

set ([iterable])

	iterable

	Required. All of the elements in iterable should be immutable.

Return Value

set

Time Complexity

#TODO

Remarks

Set is an unordered, mutable collection of unique elements. See frozenset() for the immutable version.

Example

>>> set()
set([])
>>> set([1, 2, 2])
set([1, 2])
>>> set({'a': 1, 'b': 2})
set(['a', 'b'])
>>> set('foo')
set(['f', 'o'])

See Also

#TODO

setattr

Description

Assigns a value to the object’s attribute given its name.

Syntax

setattr (object, name, value)

	object

	Required. An object that allows its attributes to be changed.

	name

	Required. A string name of the attribute.

	value

	Required. A new value of any type.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Note that setattr(x, ‘foobar’, 123) is equivalent to x.foobar = 123.

Example 1

>>> class Foo:
... def __init__(self, x):
... self.x = x
...
>>> f = Foo(10)
>>> f.x
10
>>> setattr(f, 'x', 20)
>>> f.x
20
>>> setattr(f, 'y', 10)
>>> f.y
10
>>> f.y = 100
>>> f.y
100

Example 2

>>> # you can dynamically add a function as a method to a class
def b(self):
 print 'bar'

	class Foo:

	pass

f = Foo()
print dir(f) #[‘__doc__’, ‘__module__’]
setattr(Foo, ‘bar’, b)
print dir(f) #[‘__doc__’, ‘__module__’, ‘bar’]
f.bar() #bar

See Also

#TODO

slice

Description

Returns a slice object.

Syntax

slice (stop)
slice (start, stop[, step])

	start

	Required if stop is used. Starting index.

	stop

	Required. Last item plus one returned by the slice

	step

	Optional. Value of the step.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Slice objects have read-only data attributes start, stop and step which merely return the argument values (or their default). They have no other explicit functionality; however they are used by Numerical Python and other third party extensions. Slice objects are also generated when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See itertools.islice() for an alternate version that returns an iterator.

Example

>>> slice(0, 5, 2)
slice(0, 5, 2)

See Also

#TODO

sorted

Description

Returns a sorted list from the iterable.

Syntax

sorted (iterable[, cmp[, key[, reverse]]])

	iterable

	Required.

	cmp

	Optional. A custom comparison function of two arguments (iterable elements) which should return a negative, zero or positive number depending on whether the first argument is considered smaller than, equal to, or larger than the second argument. The default value is None.

	key

	Optional. A function of one argument that is used to extract a comparison key from each list element. The default value is None (compare the elements directly).

	reverse

	Optional. Boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

Return Value

#TODO

Time Complexity

#TODO

Remarks

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function. This is because cmp is called multiple times for each list element while key and reverse touch each element only once. Use functools.cmp_to_key() to convert an old-style cmp function to a key function.
For sorting examples and a brief sorting tutorial, see Sorting HowTo.

Example 1

>>> sorted('foobar')
['a', 'b', 'f', 'o', 'o', 'r']
>>> sorted((3, 1, 2))
[1, 2, 3]
>>> sorted([3, 1, 2])
[1, 2, 3]
>>> sorted({3, 1, 2})
[1, 2, 3]
>>> sorted({'a': 1, 'c': 3, 'b': 2})
['a', 'b', 'c']

Example 2

>>> sorted({'a': 1, 'c': 3, 'b': 2}, reverse=True)
['c', 'b', 'a']
>>> sorted({1, 3, 2}, reverse=True)
[3, 2, 1]
>>> sorted((1, 3, 2), reverse=True)
[3, 2, 1]
>>> sorted('foobar', reverse=True)
['r', 'o', 'o', 'f', 'b', 'a']

Example 3

>>> sorted(['pear', 'apple', 'pineapple'])
['apple', 'pear', 'pineapple']
>>> sorted(['pear', 'apple', 'pineapple'], cmp=lambda x, y: cmp(len(x), len(y)))
['pear', 'apple', 'pineapple']

Example 4

>>> sorted(['A', 'b', 'C'])
['A', 'C', 'b']
>>> sorted(['A', 'b', 'C'], key=lambda x: x.lower())
['A', 'b', 'C']
>>> sorted(((1,), (1, 2, 3), (1, 2)))
[(1,), (1, 2), (1, 2, 3)]
>>> sorted(((9,), (1, 2, 3), (1, 2)), key=lambda x: sum(x))
[(1, 2), (1, 2, 3), (9,)]

See Also

#TODO

staticmethod

Description

Returns a static method for function.

Syntax

staticmethod (function)

	function

	Required. Function to be decorated.

Return Value

#TODO

Time Complexity

#TODO

Remarks

A static method does not receive an implicit first argument. When function decorated with @staticmethod is called, we don’t pass an instance of the class to it (as we normally do with methods). This means we can put a function inside a class but we can’t access the instance of that class (this is useful when your method does not use the instance).

staticmethods can be used when the code that belongs to a class doesn’t use the object itself at all. Python doesn’t have to instantiate a bound method for each object we instantiate. Bound methods are objects too, and creating them has a cost. Having a static method avoids that. There are very few situations where static-methods are necessary in Python.

The @staticmethod form is a function decorator.

Also see classmethod() for a variant that is useful for creating alternate class constructors.

Example 1

>>> class Foo:
... @staticmethod
... def bar():
... print 'bar'
...
>>> Foo.bar
<function bar at 0x00DBC1B0>
>>> Foo().bar
<function bar at 0x00DBC1B0>
>>> Foo.bar()
bar
>>> Foo().bar()
Bar

Example 2

>>> # this example uses obsolete no-decorator syntax
>>> class Foo:
... def bar():
... print 'bar'
... bar = staticmethod(bar)
...
>>> Foo.bar
<function bar at 0x00DBC270>
>>> Foo().bar
<function bar at 0x00DBC270>
>>> Foo().bar()
bar
>>> Foo.bar()
bar*

See Also

#TODO

str

Description

Returns a string containing a printable representation of an object.

Syntax

str (object)

	object

	Optional. Any object. If omitted an empty string is returned.

Return Value

str

Time Complexity

#TODO

Remarks

Returns a string containing a nicely printable representation of an object. For strings, this returns the string itself. The difference with repr(object) is that str(object) does not always attempt to return a string that is acceptable to eval(); its goal is to return a printable string.

See also unicode().

Example 1

>>> str()
''
>>> str(10)
'10'
>>> str([1, 2])
'[1, 2]'
>>> str((1, 2))
'(1, 2)'
>>> str({'a': 1, 'b': 2})
"{'a': 1, 'b': 2}"
>>> str({1, 2})
'set([1, 2])'

Example 2

>>> str('foobar')
'foobar'
>>> str("""foobar""")
'foobar'
>>> str("foobar")
'foobar'

Example 3

>>> print str('foobar')
foobar
>>> print repr('foobar')
'foobar'
>>> str('foobar') == repr('foobar')
False

See Also

#TODO

sum

Description

Returns a total of the items contained in the iterable object.

Syntax

sum (iterable[, start])

	iterable

	Required. An iterable object.

	start

	Optional. An integer specifying the start value.

Return Value

#TODO

Time Complexity

#TODO

Remarks

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of strings is by calling “”.join(sequence). To add floating point values with extended precision, see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

Example 1

>>> sum([1, 2, 3])
6 # 1+2+3
>>> sum((1, 2, 3))
6
>>> sum({1, 2, 3})
6
>>> sum({1: 'a', 2: 'b', 3: 'c'})
6

Example 2

>>> sum([1, 2, 3], 10)
16 # 10+1+2+3
>>> sum((1, 2, 3), 10)
16
>>> sum({1, 2, 3}, 10)
16
>>> sum({1: 'a', 2: 'b', 3: 'c'}, 10)
16

Example 3

>>> sum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
0.9999999999999999
>>> import math
>>> math.fsum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
1.0

See Also

#TODO

super

Description

Returns a proxy object that delegates method calls to a parent or sibling class of type.

Syntax

super (type[, object-or-type])

	type

	Required.

	object-or-type

	Optional.

Return Value

#TODO

Time Complexity

#TODO

Note

super() only works for new-style classes.

Remarks

super() is useful for accessing inherited methods that have been overridden in a class. The search order is same as that used by getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr() and super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use case is unique to Python and is not found in statically compiled languages or languages that only support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement the same method. Good design dictates that this method have the same calling signature in every case (because the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

>>> class C(B):
>>> def method(self, arg):
>>> super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups such as super().__getitem__(name). It does so by implementing its own __getattribute__() method for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super() is undefined for implicit lookups using statements or operators such as super()[name].
Also note that super() is not limited to use inside methods. The two argument form specifies the arguments exactly and makes the appropriate references.

For practical suggestions on how to design cooperative classes using super(), see guide to using super().

Example

>>> class Foo(object):
... def fb(self):
... print 'foo'
...
>>> class Bar(Foo):
... def fb(self):
... super(Bar, self).fb()
... print 'bar'
...
>>> f = Foo()
>>> f.fb()
foo
>>> b = Bar()
>>> b.fb()
foo
bar

See Also

#TODO

tuple

Description

Returns a tuple built from iterable.

Syntax

tuple (iterable)

	iterable

	Optional. An iterable object.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> tuple()
()
>>> tuple('foobar')
('f', 'o', 'o', 'b', 'a', 'r')
>>> tuple([1, 2])
(1, 2)
>>> tuple((1, 2))
(1, 2)
>>> tuple({1, 2})
(1, 2)
>>> tuple({'a': 1, 'b': 2})
('a', 'b')

See Also

#TODO

type (1)

Description

Returns the type of an object (constructor name).

Syntax

type (object)

	object

	Required. An object which type constructor is to be returned.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The isinstance() built-in function is recommended for testing the type of an object. See type() (2) for three arguments syntax.

Example 1

>>> type(2147483647)
<type 'int'>
>>> type(2147483648)
<type 'long'>
>>> type(3.14)
<type 'float'>
>>> type(3 + 2j)
<type 'complex'>

Example 2

>>> type('foobar')
<type 'str'>
>>> type(u'foobar')
<type 'unicode'>
>>> type((1, 2))
<type 'tuple'>
>>> type([1, 2])
<type 'list'>
>>> type({'a': 1, 'b': 2})
<type 'dict'>
>>> type({1, 2})
<type 'set'>

See Also

#TODO

type (2)

Description

Returns a new type object.

Syntax

type (name, bases, dict)

	name

	The name string is the class name and becomes the __name__ attribute

	bases

	the bases tuple itemizes the base classes and becomes the __bases__ attribute

	dict

	the dict dictionary is the namespace containing definitions for class body and becomes the __dict__ attribute

Return Value

#TODO

Time Complexity

#TODO

Remarks

This is essentially a dynamic form of the class statement. For example, the following two statements create identical type objects:

Example

>>> class X(object):
... a = 1
...
>>> x = X()
>>> x
<__main__.X object at 0x00DCE570>
>>> x.a
1
>>> X = type('X', (object,), dict(a=1))
>>> x = X()
>>> x
<__main__.X object at 0x00DCE5F0>
>>> x.a
1

See Also

#TODO

unichr

Description

Returns a Unicode character specified by the code.

Syntax

unichr (number)

	number

	Required. An integer specifying the Unicode code value of the character to be returned.

Return Value

unicode

Time Complexity

#TODO

Remarks

This function is the inverse of ord() for Unicode strings. The valid range for the argument depends how Python was configured – it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError is raised otherwise. For ASCII and 8-bit strings see chr().

Example

>>> unichr(97)
u'a'
>>> unichr(65)
u'A'

See Also

#TODO

unicode

Description

Returns the Unicode string version of object.

Syntax

unicode (object=’‘)
unicode (object[, encoding[, errors]])

	object

	Required. An object to be converted to string.

	encoding

	Optional. String encoding.

	errors

	Optional. Errors.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If encoding and/or errors are given, unicode() will decode the object which can either be an 8-bit string or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of an encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is ‘strict’ (the default), a ValueError is raised on errors, while a value of ‘ignore’ causes errors to be silently ignored, and a value of ‘replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that it returns Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__() method, it will call this method without arguments to create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted to a Unicode string using the codec for the default encoding in ‘strict’ mode.

Example 1

>>> unicode(10.25)
u'10.25'
>>> unicode((1, 2))
u'(1, 2)'
>>> unicode([1, 2])
u'[1, 2]'
>>> unicode({1, 2})
u'set([1, 2])'
>>> unicode({'a': 1, 'b': 2})
u"{'a': 1, 'b': 2}"
>>> unicode('foobar')
u'foobar'

Example 2

>>> unicode('źdźbło', 'windows-1250')
u'\u0139\u013dd\u0139\u015fb\u0139\u201ao'

Example 3

>>> unicode('źdźbło', 'ascii', 'ignore')
u'dbo'
>>> unicode('źdźbło', 'ascii', 'strict')
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 0: ordinal not in range(128)
>>> unicode('źdźbło', 'ascii', 'replace')
u'\ufffd\ufffdd\ufffd\ufffdb\ufffd\ufffdo'

See Also

#TODO

vars

Description

Returns the mapping of an object’s (writable) attributes.

Syntax

vars ([object])

	object

	Optional. An object with __dict__() special attribute.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Objects such as modules and instances have an updateable __dict__ attribute; however, other objects may have write restrictions on their __dict__ attributes (for example, new-style classes use a dictproxy to prevent direct dictionary updates).

Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads since updates to the locals dictionary are ignored.

Example 1

>>> vars()
{'Foo': <class '__main__.Foo'>,
 '__builtins__': <module '__builtin__' (built-in)>,
 '__doc__': None,
 '__name__': '__main__',
 '__package__': None,
 'f': <__main__.Foo object at 0x02BF35F0>,
 'pyscripter': <module 'pyscripter' (built-in)>}

Example 2

>>> class Foo:
... x = 10
... y = 20
...
>>> vars(Foo)
{'__doc__': None, '__module__': '__main__', 'x': 10, 'y': 20}

See Also

#TODO

xrange

Description

Returns an xrange object.

Syntax

xrange (stop)
xrange (start, stop[, step])

	start

	Required when full syntax is used. An integer specifying start value for the range.

	stop

	Required. The boundary value for the range.

	step

	Optional. Step value.

Return Value

#TODO

Time Complexity

#TODO

Note

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve this. The C implementation of Python restricts all arguments to native C longs (“short” Python integers), and also requires that the number of elements fit in a native C long. If a larger range is needed, an alternate version can be crafted using the itertools module: islice(count(start, step), (stop-start+step-1+2*(step<0))//step).

Remarks

This function is very similar to range(), but returns an xrange object instead of a list. This is an opaque sequence type which yields the same values as the corresponding list, without actually storing them all simultaneously. The advantage of xrange() over range() is minimal (since xrange() still has to create the values when asked for them) except when a very large range is used on a memory-starved machine or when all of the range’s elements are never used (such as when the loop is usually terminated with break). For more information on xrange objects, see XRange Type and Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange.

Example

>>> for i in xrange(10):
... print i
...
0
1
2
3
4
5
6
7
8
9

See Also

#TODO

zip

Description

Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

Syntax

zip ([iterable, …])

	iterable

	Optional. An iterable object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The returned list is truncated in length to the length of the shortest argument sequence. When there are multiple arguments which are all of the same length, zip() is similar to map() with an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n).

Example 1

>>> zip()
[]
>>> zip('foo', 'bar')
[('f', 'b'), ('o', 'a'), ('o', 'r')]
>>> zip((1, 1), (2, 4))
[(1, 2), (1, 4)]
>>> zip((1, 2), (3, 4))
[(1, 3), (2, 4)]
>>> zip([1, 2], [3, 4])
[(1, 3), (2, 4)]

Example 2

>>> #zip() in conjunction with the * operator can be used to unzip a list:
>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> zipped
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zipped)
>>> x == list(x2) and y == list(y2)
True

Example 3

>>> zip((1, 2, 3), (4, 5))
[(1, 4), (2, 5)]
>>> zip((1, 2), (3, 4), (5, 6))
[(1, 3, 5), (2, 4, 6)]

deleter

Description

Overrides attribute access mechanism.

Syntax

property.getter(method)

	method

	A method to decorate.

Return Value

None

Time Complexity

#TODO

Remarks

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the property with the corresponding accessor function set to the decorated function. This is best explained with an example:

class C(object):
 def __init__(self):
 self._x = None

 @property
 def x(self):
 """I'm the 'x' property."""
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor arguments.

Example

>>> foo
3.6055512754639896

fdel

Description

Overrides attribute access mechanism.

Syntax

property.fdel

Return Value

None

Time Complexity

#TODO

Remarks

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x
 def setx(self, value):
 self._x = value
 def delx(self):
 del self._x
 x = property(getx, setx, delx, "I'm the 'x' property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the deleter.
If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring (if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

fget

Description

Overrides attribute access mechanism.

Syntax

property.fget

Return Value

None

Time Complexity

#TODO

Remarks

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x
 def setx(self, value):
 self._x = value
 def delx(self):
 del self._x
 x = property(getx, setx, delx, "I'm the 'x' property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the deleter.
If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring (if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

fset

Description

Overrides attribute access mechanism.

Syntax

property.fset

Return Value

None

Time Complexity

#TODO

Remarks

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x
 def setx(self, value):
 self._x = value
 def delx(self):
 del self._x
 x = property(getx, setx, delx, "I'm the 'x' property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the deleter.
If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring (if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

getter

Description

Overrides attribute access mechanism.

Syntax

property.getter(method)

	method

	A method to decorate.

Return Value

None

Time Complexity

#TODO

Remarks

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the property with the corresponding accessor function set to the decorated function. This is best explained with an example:

class C(object):

 def __init__(self):
 self._x = None

 @property
 def x(self):
 """I'm the 'x' property."""
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor arguments.

Example

>>> foo
3.6055512754639896

property

property is used for managing attribute access. By defualt, Python allows unrestricted access to object attributes. Attributes can be added, retrieved, modified and deleted freely.

Using properties gives some features present in statically typed languages like C++ or C#. That means, instead of accessing attributes directly one can define separate methods for getting (getter), setting (setter) or deleting (deleter) them.

Constructors

	property

	Returns a property attribute for new-style classes (classes that derive from object).

Methods

getter

setter

deleter

fdel

fget

fset

setter

Description

Overrides attribute access mechanism.

Syntax

property.getter(method)

	method

	A method to decorate.

Return Value

None

Time Complexity

#TODO

Remarks

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the property with the corresponding accessor function set to the decorated function. This is best explained with an example:

class C(object):
 def __init__(self):
 self._x = None

 @property
 def x(self):
 """I'm the 'x' property."""
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor arguments.

Example

>>> foo
3.6055512754639896

conjugate

Description

Returns the complex conjugate.

Syntax

complex. conjugate()

Return Value

complex

Example

>>> 1+3j.conjugate()
(1-3j)

imag

Description

Retrieves the imaginary component of this number.

Syntax

complex. imag

Return Value

float

Example

>>> (1+3j).imag
3.0

See Also

real

complex

Complex numbers are an extension of the familiar real number system in which all numbers are expressed as a sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

Complex numbers are stored as a pair of machine-level double precision floating point numbers.

Constructors

	complex()

	Returns an expression converted into a complex number.

	literal syntax

	Initializes a new instance of the complex type.

Properties

	real

	Retrieves the real component of this number.

	imag

	Retrieves the imaginary component of this number.

Methods

	conjugate

	Returns the complex conjugate.

Literal Syntax

complex numbers can be simply initialized as a sum of real and imaginary parts.

Example

>>> 1+2j
(1+2j)
>>> 1.0+2.0j
(1+2j)

real

Description

Retrieves the real component of this number.

Syntax

complex. real

Return Value

float

Example

>>> (1+3j).real
1.0

See Also

imag

append

Description

Adds an item to the end of the list.

Syntax

list. append(object)

	object

	Required. Any valid type.

Return Value

None

Time Complexity

O(1)

Example

>>> l = [1, 2]
>>> l.append(3)
>>> l
[1, 2, 3]

See Also

insert() and extend()

count

Description

Returns the number of times the specified item appears in the list.

Syntax

list. count(item)

	item

	Required. Any valid type.

Return Value

int

Time Complexity

#TODO

Example

>>> [1, 1, 2].count(1)
2
>>> [1, 1, 2].count(2)
1
>>> [1, 1, 2].count(5)
0

See Also

`min()`_, `max()`_ and `len()`_ functions, `in`_ statement

extend

Description

Extends the list by appending all the items from the iterable.

Syntax

list. extend(iterable)

	iterable

	Required. Any iterable type.

Return Value

None

Time Complexity

O(k)

Example

>>> l = [1, 2]
>>> l.extend([3, 4])
>>> l
[1, 2, 3, 4]
>>> l.extend('foo')
>>> l
[1, 2, 3, 4, 'f', 'o', 'o']
>>> l.extend((5, 6))
>>> l
[1, 2, 3, 4, 'f', 'o', 'o', 5, 6]
>>> l.extend({'x': 100, 'y': 200})
>>> l
[1, 2, 3, 4, 'f', 'o', 'o', 5, 6, 'y', 'x']

See Also

`insert()`_ and `append()`_

list

Lists are mutable ordered and indexed collections of objects. The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expressions in square brackets. (Note that there are no special cases needed to form lists of length 0 or 1.)

Constructors

	list()

	Converts an object into a list.

	[] list comprehensions

	Returns a list based on existing iterables.

	literal syntax

	Initializes a new instance of the list type.

Methods

Adding Elements

	insert

	Inserts an item at a given position.

	append

	Adds an item to the end of the list.

	extend

	Extends the list by appending all the items from the iterable.

Deleting

	remove

	Removes the first item from the list which matches the specified value.

	pop

	Removes and returns the item at the specified index.

Information

	index

	Returns the index of the first occurrence of the specified list item.

	count

	Returns the number of times the specified item appears in the list.

Modifying

	sort

	Sorts the list in place.

	reverse

	Reverses the elements of the list, in place.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	cmp

	Compares two objects and returns an integer according to the outcome.

	sum

	Returns a total of the items contained in the iterable object.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

Operators

	[] (index operator)

	Gives access to a sequence’s element.

	[::] (slicing)

	Gives access to a specified range of sequence’s elements.

	+ (concatenation)

	Returns a concatenation of two sequences.

	* (multiple concatenation)

	Returns a sequence self-concatenated specified amount of times.

insert

Description

Inserts an item at a given position.

Syntax

list. insert(index, object)

	index

	Required. The index of the element before which to insert.

	object

	Required. The item to insert.

Return Value

None

Time Complexity

O(n)

Example

>>> l = [1, 2]
>>> l.insert(0, 0)
>>> l
[0, 1, 2]
>>> l.insert(2, 1.5)
>>> l
[0, 1, 1.5, 2]

See Also

`append()`_ and `extend()`_

index

Description

Returns the index of the first occurrence of the specified list item.

Syntax

list. index(item)

	item

	Required. Any valid type. ValueError is raised if item is not in the list.

Return Value

int

Time Complexity

O(1)

Example

>>> [1, 2, 3].index(2)
1
>>> [1, 2, 3].index('foo')
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
ValueError: 'foo' is not in list

See Also

`in`_ statement

Literal Syntax

Lists can be initialized separating enclosing comma separated values in square brackets [].

Example 1

>>> l = [1, 2]
>>> l
[1, 2]

Example 2

>>> a = 'AA'
>>> b = 'BB'
>>> l = [a, b]
>>> l
['AA', 'BB']

pop

Description

Removes and returns the item at the specified index.

Syntax

list. pop([index])

	index

	Optional. Index of the item you want to delete. Default value is -1 (the last item in the list).

Return Value

The same that was deleted.

Time Complexity

O(1) for pop()
O(n) for pop(index)

Example

>>> [1, 2, 3].pop()
3
>>> [1, 2, 3].pop(0)
1

See Also

`remove()`_, `del`_ statement

remove

Description

Removes the first item from the list which matches the specified value.

Syntax

list. remove(object)

	object

	Required. Any valid type. If not found error is raised.

Return Value

None

Time Complexity

#TODO

Example

>>> l = [1, 2]
>>> l.remove(2)
>>> l
[1]
>>> l.remove('foo')
ValueError: list.remove(x): x not in list

See Also

`pop()`_, `del`_ statement

reverse

Description

Reverses the elements of the list, in place.

Syntax

list. reverse()

Return Value

None

Time Complexity

O(n)

Example

>>> l = [1, 2, 3]
>>> l.reverse()
>>> l
[3, 2, 1]

See Also

`reversed()`_ function

sort

Description

Sorts the list in place.

Syntax

list. sort([cmp[, key[, reverse]]])

	cmp

	Optional. Specifies a custom comparison function of two arguments (list items) which should return a negative, zero or positive number depending on whether the first argument is considered smaller than, equal to, or larger than the second argument: The default value is None.

	key

	Optional. Specifies a function of one argument that is used to extract a comparison key from each list element. The default value is None.

	reverse

	Optional. A boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

Return Value

None

Time Complexity

O(n log n)

Remarks

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function. This is because cmp is called multiple times for each list element while key and reverse touch each element only once.

Example 1

>>> l = [1, 3, 2]
>>> l.sort()
>>> l
[1, 2, 3]

Example 2

>>> # this example shows how to use cmp argument
>>> l = ['a', 'B', 'A', 'c']
>>> l.sort()
>>> l
['A', 'B', 'a', 'c']
>>> l = ['a', 'B', 'A', 'c']
>>> l.sort(lambda x, y: cmp(x.lower(), y.lower()))
>>> l
['a', 'A', 'B', 'c']

Example 3

>>> l = ['a', 'B', 'c']
>>> l.sort()
>>> l
['B', 'a', 'c']
>>> l.sort(key=lambda x: x.lower())
>>> l
['a', 'B', 'c']

Example 4

>>> l = [1, 3, 2]
>>> l.sort()
>>> l
[1, 2, 3]
>>> l.sort(reverse=True)
>>> l
[3, 2, 1]

See Also

`sorted()`_ function

__delattr__

Description

Called when an attribute deletion is attempted.

Syntax

object. __delattr__(self, name)

	self

	Required. Instance of the class, passed automatically on call.

	name

	Required. The name of the attribute.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if del obj.name is meaningful for the object.

Example

>>> class Frob:
... def __delattr__(self, name):
... print "deleting `{}`".format(str(name))
... del self.__dict__[name]
... print "`{}` deleted".format(str(name))
...
>>> f = Frob()
>>> f.bamf = 10
>>> del f.bamf
deleting `bamf`
`bamf` deleted

__getattr__

Description

Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute nor is it found in the class tree for self).

Syntax

object. __getattr__(self, name)

	self

	Required. Instance of the class, passed automatically on call.

	name

	Required. The name of the attribute.

Return Value

#TODO

Time Complexity

#TODO

Remarks

This method should return the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency reasons and because otherwise __getattr__() would have no way to access other attributes of the instance.

Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute dictionary (but instead inserting them in another object).

See the __getattribute__() method for a way to actually get total control in new-style classes.

Example

>>> class Frob:
... def __init__(self, bamf):
... self.bamf = bamf
... def __getattr__(self, name):
... return 'Frob does not have `{}` attribute.'.format(str(name))
...
>>> f = Frob("bamf")
>>> f.bar
'Frob does not have `bar` attribute.'
>>> f.bamf
'bamf'

__getattribute__

Description

Called unconditionally to implement attribute accesses for instances of the class.

Syntax

object. __getattribute__(self, name)

	self

	Required. Instance of the class, passed automatically on call.

	name

	Required. The name of the attribute.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The following method only applies to new-style classes.

If the class also defines __getattr__(), the latter will not be called unless __getattribute__() either calls it explicitly or raises an AttributeError.

This method should return the (computed) attribute value or raise an AttributeError exception.

In order to avoid infinite recursion in this method, its implementation should always call the base class method with the same name to access any attributes it needs, for example,

>>> object.__getattribute__(self, name).

Note

This method may still be bypassed when looking up special methods as the result of implicit invocation via language syntax or built-in functions. See Special method lookup for new-style classes.

Example

>>> class Frob(object):
... def __getattribute__(self, name):
... print "getting `{}`".format(str(name))
... object.__getattribute__(self, name)
...
>>> f = Frob()
>>> f.bamf = 10
>>> f.bamf
getting `bamf`

Direct Attribute Access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of x.name) for class instances.

Methods

	__getattribute__

	Called unconditionally to implement attribute accesses for instances of the class.

	__getattr__

	Called when an attribute lookup has not found the attribute in the usual places.

	__setattr__

	Called when an attribute assignment is attempted.

	__delattr__

	Called when an attribute deletion is attempted.

__setattr__

Description

Called when an attribute assignment is attempted.

Syntax

object. __setattr__(self, name, value)

	self

	Required. Instance of the class, passed automatically on call.

	name

	Required. The name of the attribute.

	value

	Required. The value we want to assign to the attribute.

Return Value

#TODO

Time Complexity

#TODO

Remarks

This method is called instead of the normal mechanism (i.e. store the value in the instance dictionary).

If __setattr__() wants to assign to an instance attribute, it should not simply execute self.name = value — this would cause a recursive call to itself.

Instead, it should insert the value in the dictionary of instance attributes, e.g., self.__dict__[name] = value.

For new-style classes, rather than accessing the instance dictionary, it should call the base class method with the same name, for example,

>>> object.__setattr__(self, name, value).

Example

>>> # this example uses __setattr__ to dynamically change attribute value to uppercase
>>> class Frob:
... def __setattr__(self, name, value):
... self.__dict__[name] = value.upper()
...
>>> f = Frob()
>>> f.bamf = "bamf"
>>> f.bamf
'BAMF'

count

Description

Returns the number of times the specified item appears in the list.

Syntax

list. count(item)

	item

	Required. Any valid type.

Return Value

int

Time Complexity

#TODO

Example

>>> [1, 1, 2].count(1)
2
>>> [1, 1, 2].count(2)
1
>>> [1, 1, 2].count(5)
0

See Also

`min()`_, `max()`_ and `len()`_ functions, `in`_ statement

tuple

Tuples are immutable ordered and indexed collections of objects. Tuples of two or more items are formed by comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing a comma to an expression (an expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Constructors

	tuple

	Returns a tuple built from iterable.

	literal syntax

	Initializes a new instance of the tuple type.

Methods

Information

	index

	Returns the index of the first occurrence of the specified tuple item.

	count

	Returns the number of times the specified item appears in the tuple.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	cmp

	Compares two objects and returns an integer according to the outcome.

	sum

	Returns a total of the items contained in the iterable object.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

Operators

	[] (index operator)

	Gives access to a sequence’s element.

	[::] (slicing)

	Gives access to a specified range of sequence’s elements.

	+ (concatenation)

	Returns a concatenation of two sequences.

	* (multiple concatenation)

	Returns a sequence self-concatenated specified amount of times.

index

Description

Returns the index of the first occurrence of the specified list item.

Syntax

list. index(item)

	item

	Required. Any valid type. ValueError is raised if item is not in the list.

Return Value

int

Time Complexity

#TODO

Example

>>> [1, 2, 3].index(2)
1
>>> [1, 2, 3].index('foo')
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
ValueError: 'foo' is not in list

See Also

`in`_ statement

Literal Syntax

Tuples can be initialized using separating multiple expression with a comma ‘,’.

Example 1

>>> t = 'A', 'B'
>>> t
('A', 'B')

However, tuples should always be created using parentheses.

Example 2

>>> t = (1 , 2, 3)
>>> t
(1, 2, 3)

Not using parentheses can cause problems due to the operator precedence rules. Consider the following example using sequence concatenation:

Example 3

>>> (0, 1) + (2, 3) # this is the way it was intended
(0, 1, 2, 3)
>>> 0, 1 + (2, 3) # too ambiguous for the interpreter
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'tuple'

co_argcount

Description

Returns the number of positional arguments (including arguments with default values).

Syntax

code.co_argcount

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo(a, b=10): pass
...
>>> c = foo.func_code
>>> c.co_argcount
2

See Also

#TODO

co_cellvars

Description

Returns a tuple containing the names of local variables that are referenced by nested functions.

Syntax

code.co_cellvars

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo():
... a = 10
... def bar():
... return a
... return bar()
...
>>> c = foo.func_code
>>> c.co_cellvars
('a',)

See Also

#TODO

co_code

Description

Returns a string representing the sequence of bytecode instructions.

Syntax

code.co_code

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('2+2', '<string>', 'eval')
>>> c.co_code
'd\x01\x00S'

See Also

#TODO

co_consts

Description

Returns a tuple containing the literals used by the bytecode.

Syntax

code.co_consts

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('2+2', '<string>', 'eval')
>>> c.co_consts
(2, 4)

See Also

#TODO

co_filename

Description

Returns the filename from which the code was compiled.

Syntax

code.co_filename

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('2+2', '<string>', 'eval')
>>> c.co_filename
'<string>'

See Also

#TODO

co_firstlineno

Description

Returns the first line number of the function.

Syntax

code.co_firstlineno

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo():
... print 'bar'
...
>>> c = foo.func_code
>>> c.co_firstlineno
1

See Also

#TODO

co_flags

Description

Returns an integer encoding a number of flags for the interpreter.

Syntax

code.co_flags

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('2+2', '<string>', 'eval')
>>> c.co_flags
64

See Also

#TODO

co_freevars

Description

Returns a tuple containing the names of free variables.

Syntax

code.co_freevars

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo(a, b=10):
... c = 10
... return a+b+c
...
>>> c = foo.func_code
>>> c.co_freevars
()

See Also

#TODO

code

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object and a function object is that the function object contains an explicit reference to the function’s globals (the module in which it was defined), while a code object contains no context; also the default argument values are stored in the function object, not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly) to mutable objects.

Methods

co_argcount

co_cellvars

co_code

co_consts

co_filename

co_firstlineno

co_flags

co_freevars

co_lnotab

co_name

co_names

co_nlocals

co_stacksize

co_varnames

co_lnotab

Description

Returns a string encoding the mapping from bytecode offsets to line numbers.

Syntax

code.co_lnotab

Return Value

#TODO

Time Complexity

#TODO

Remarks

For details see the source code of the interpreter.

Example

>>> c = compile('a = 2+2; b=10', '<string>', 'exec')
>>> c.co_lnotab
'\x06\x00'

See Also

#TODO

co_name

Description

Returns the function name.

Syntax

code.co_name

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def func(frotz, bamf=10):
... pass
...
>>> c = foo.func_code

>>> c.co_name
'foo'

See Also

#TODO

co_names

Description

Returns a tuple containing the names used by the bytecode.

Syntax

code.co_names

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('a = 2+2; b=10', '<string>', 'exec')
>>> c.co_names
('a', 'b')

See Also

#TODO

co_nlocals

Description

Returns the number of local variables used by the function (including arguments).

Syntax

code.co_nlocals

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo(a, b=10):
... c = 10
... return a+b+c
...
>>> c = foo.func_code
>>> c.co_nlocals
3

See Also

#TODO

co_stacksize

Description

Returns the required stack size (including local variables).

Syntax

code.co_stacksize

Return Value

#TODO

Time Complexity

#TODO

Example

>>> c = compile('a = 2+2; b=10', '<string>', 'exec')
>>> c.co_stacksize
2

See Also

#TODO

co_varnames

Description

Returns a tuple containing the names of the local variables (starting with the argument names).

Syntax

code.co_varnames

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def foo(a, b=10):
... c = 10
... return a+b+c
...
>>> c = foo.func_code
>>> c.co_varnames
('a', 'b', 'c')

See Also

#TODO

{} dictionary comprehension

Description

Returns a dictionary based on existing iterables.

Syntax

{expression(variable): expression(variable) for variable, variable in input_set [predicate][, …]}

	expression

	Optional. An output expression producing members of the new set from members of the input set that satisfy the predicate expression.

	variable

	Required. Variables representing members of an input set.

	input_set

	Required. Represents the input set.

	predicate

	Optional. Expression acting as a filter on members of the input set.

	[, …]]

	Optional. Another nested comprehension.

Return Value

dict

Time Complexity

#TODO

Example 1

>>> {k: v for k, v in [(1, 2), (3, 4)]}
{1: 2, 3: 4}
>>> {n: n for n in range(2)}
{0: 0, 1: 1}
>>> {chr(n): n for n in (65, 66, 66)}
{'A': 65, 'B': 66}
>>> {k: v for k, v in (('I', 1), ('II', 2))}
{'I': 1, 'II': 2}

Example 2

>>> {k: v for k, v in (('a', 0), ('b', 1)) if v == 1}
{'b': 1}

See Also

#TODO

() generator expression

Description

Returns an iterator over elements created by using list comprehension.

Syntax

(expression(variable) for variable in input_set [predicate][, …])

	expression

	Optional. An output expression producing members of the new set from members of the input set that satisfy the predicate expression.

	variable

	Required. Variable representing members of an input set.

	input_set

	Required. Represents the input set.

	predicate

	Optional. Expression acting as a filter on members of the input set.

	[, …]]

	Optional. Another nested comprehension.

Return Value

generator

Time Complexity

#TODO

Example 1

>>> (n for n in [0, 1])
<generator object <genexpr> at 0x00ED7698>
>>> i = (n for n in [0, 1])
>>> i.next()
0
>>> i.next()
1
>>> i.next()
StopIteration

Example 2

>>> i = (n*2 for n in [0, 1, 2, 3])
>>> i
<generator object <genexpr> at 0x00ED7C10>
>>> i.next()
\0
>>> i.next()
2
>>> i.next()
4
>>> i.next()
6
>>> i.next()
StopIteration

Example 3

>>> i = (n*2 for n in [0, 1, 2, 3] if n % 2)
>>> i.next()
2
>>> i.next()
6
>>> i.next()

Example 4

>>> i = ((n, n**2) for n in range(5))
>>> for j in i: print j
...
(0, 0)
(1, 1)
(2, 4)
(3, 9)
(4, 16)

Example 5

>>> i = ((n, m) for n in range(2) for m in range(100, 102))
>>> for j in i: print j
...
(0, 100)
(0, 101)
(1, 100)
(1, 101)

See Also

#TODO

[] list comprehension

Description

Returns a list based on existing iterables.

Syntax

[expression(variable) for variable in input_set [predicate][, …]]

	expression

	Optional. An output expression producing members of the new set from members of the input set that satisfy the predicate expression.

	variable

	Required. Variable representing members of an input set.

	input_set

	Required. Represents the input set.

	predicate

	Optional. Expression acting as a filter on members of the input set.

	[, …]]

	Optional. Another nested comprehension.

Return Value

list

Time Complexity

#TODO

Remarks

A list comprehension follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map() and filter() functions.

Consider the following example:

>>> l = [2 * n for n in (0, 1, 2) if n > 0]
>>> l
[2, 4]

This can be read as:

l is the list of all numbers 2 times n where n is an item in the (0, 1, 2) tuple, for which tuple element is greater than zero.

Example 1

>>> [n for n in [1, 2, 3]]
[1, 2, 3]
>>> [n * 2 for n in [1, 2, 3]]
[2, 4, 6]
>>> [n**2 for n in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Example 2

>>> [n for n in [1, 2, 3] if n % 2] # odd numbers only
[1, 3]

Example 3

>>> [[m, n] for n in [0, 2] for m in [1, 2]]
[[1, 0], [2, 0], [1, 2], [2, 2]]
>>> [[m, n] for n in [i for i in [0, 1]] for m in [1, 2]]
[[1, 0], [2, 0], [1, 1], [2, 1]]

See Also

#TODO

{} set comprehension

Description

Returns a set based on existing iterables.

Syntax

{expression(variable) for variable in input_set [predicate][, …]}

	expression

	Optional. An output expression producing members of the new set from members of the input set that satisfy the predicate expression.

	variable

	Required. Variable representing members of an input set.

	input_set

	Required. Represents the input set.

	predicate

	Optional. Expression acting as a filter on members of the input set.

	[, …]]

	Optional. Another nested comprehension.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {s for s in [1, 2, 1, 0]}
set([0, 1, 2])
>>> {s**2 for s in [1, 2, 1, 0]}
set([0, 1, 4])
>>> {s**2 for s in range(10)}
set([0, 1, 4, 9, 16, 25, 36, 49, 64, 81])

Example 2

>>> {s for s in [1, 2, 3] if s % 2}
set([1, 3])

Example 3

>>> {(m, n) for n in range(2) for m in range(3, 5)}
set([(3, 0), (3, 1), (4, 0), (4, 1)])

See Also

#TODO

[, …,] (ellipsis)

Description

Gives access to a specified range of array’s elements.

Syntax

array [, …,]

Return Value

The same as selected.

Time Complexity

#TODO

Remarks

Ellipsis is used for slicing multidimensional numpy arrays.

The ellipsis syntax may be used to indicate selecting in full any remaining unspecified dimensions.

Example

>>> n = numpy.arange(16).reshape(2, 2, 2, 2)
>>> n
array([[[[0, 1],
 [2, 3]],

 [[4, 5],
 [6, 7]]],

 [[[8, 9],
 [10, 11]],

 [[12, 13],
 [14, 15]]]])
>>> n[1,...,1] # equivalent to n[1,:,:,1]
array([[9, 11],
 [13, 15]])
>>> # also Ellipsis object can be used interchangeably
>>> n[1, Ellipsis, 1]
array([[9, 11],
 [13, 15]])

See Also

#TODO

[] (index operator)

Description

Gives access to a sequence’s element.

Syntax

sequence [index]

	index

	Index of the item you want to access. Must be an integer.

Return Value

The same as selected.

Time Complexity

O(1)

Discussion

The built-in fundamental sequence types are:

	strings - str and unicode

	arrays - list and tuple

Since all sequences are ordered and indexed arrays of objects, each object stored in a sequence has it’s associated index number - positive one, zero indexed and starting from left, and the negative one starting at -1 from the right.

Consider the following ASCII graph showing the contents of the “ABCD” string:

>>> +---+---+---+---+
>>> |-4 |-3 |-2 |-1 | <= negative indexes
>>> +---+---+---+---+
>>> | A | B | C | D | <= sequence elements
>>> +---+---+---+---+
>>> | 0 | 1 | 2 | 3 | <= positive indexes
>>> +---+---+---+---+

Remarks

The number of items in a sequence cam be retrieved by using `len()`_ function:

>>> len("ABCD")
4
>>> len([0, 1, 2])
3

Trying to access an element out of range throws an IndexError.

Example 1

>>> # this example show how to retrieve elements of a sequence
>>> "ABCD"[0]
'A'
>>> [0, 1, 2][1]
1
>>> ("ABC", "DEF", "GHI")[1]
'DEF'

Example 2

>>> # index lookups can be chained to access nested containers
>>> ([0, 1], [2, 3])[1][1]
3

Example 3

>>> # using negative indexes to get the last element
>>> (0, 1, 2)[-1]
2
>>> "ABCD"[-1]
'D'

Example 4

>>> # since lists are mutable indexes can be used for item assignment or deletion
>>> l = [0, 1, 2, 3]
>>> l[0] = "ABCD"
>>> l
['ABCD', 1, 2, 3]

Example 5

>>> l = [0, 1, 2, 3]
>>> del l[2]
>>> l
[0, 1, 3]

See Also

#TODO

[] (key lookup)

Description

Returns the value associated with the given key.

Syntax

dict [key]

	key

	Required. Key which value is to be retrieved.

Return Value

The same as associated with key.

Time Complexity

#TODO

Remarks

If key is not found throws KeyError.

Example

>>> {'a': 1, 'b': 2}['a']
1

See Also

#TODO

[] (slicing)

Description

Gives access to a specified range of sequence’s elements.

Syntax

sequence [start:stop[:step]]

	start

	Optional. Starting index of the slice. Defaults to 0.

	stop

	Optional. The last index of the slice or the number of items to get. Defaults to len(sequence).

	step

	Optional. Extended slice syntax. Step value of the slice. Defaults to 1.

Return Value

The same as selected.

Time Complexity

O(k) for slice retrieval

O(n) for deletion

O(n+k) for slice assignment

Remarks

Consider the following ASCII graph showing the contents of the “ABCD” string:

>>> +---+---+---+---+
>>> |-4 |-3 |-2 |-1 | <= negative indexes
>>> +---+---+---+---+
>>> | A | B | C | D | <= sequence elements
>>> +---+---+---+---+
>>> | 0 | 1 | 2 | 3 | <= positive indexes
>>> +---+---+---+---+
>>> |<- 0:3:1 ->| <= extent of the slice: "ABCD"[0:3:1]

Consider the following example:

Example 1

>>> "ABCD"[0:2]
'AB'

It can be read as: get every single one item between indexes 0 and 2 (exclusive).

The next example shows usage of the step argument:

Example 2

>>> "ABCD"[0:4:2]
'AC'

That can be interpreted as: get every second element between indexes 0 and 4.

Usage of start, stop and step operators is optional:

Example 3

>>> "ABCD"[1:]
'BCD'
>>> "ABCD"[:3]
'ABC'
>>> "ABCD"[1:3]
'BC'
>>> "ABCD"[1:3:]
'BC'
>>> "ABCD"[::2]
'AC'
>>> "ABCD"[::]
'ABCD'
>>> "ABCD"[:]
'ABCD'

Negative step argument can be used to reverse the sequence:

Example 4

>>> "ABCD"[::-1]
'DCBA'
>>> [0, 1, 2, 3][::-1]
[3, 2, 1, 0]

Example 5

>>> # slices can be used to replace multiple items
>>> l = [0, 1, 2, 3]
>>> l[:2] = ("AB", "CD")
>>> l
['AB', 'CD', 2, 3]

Example 6

>>> l = [0, 1, 2, 3]
>>> l[1:2] = (7, 8, 9, 10)
>>> l
[0, 7, 8, 9, 10, 2, 3]

Example 7

>>> # when using extended slice syntax both chunks must match
>>> l = [0, 1, 2, 3]
>>> l[::2] = "ABCD"
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
ValueError: attempt to assign sequence of size 4 to extended slice of size 2

Example 8

>>> # deleting items
>>> l = [0, 1, 2, 3]
>>> del l[::2]
>>> l
[1, 3]

See Also

#TODO

close

Description

Flushes and closes the file.

Syntax

file. close()

Remarks

A closed file cannot be read or written any more. Any operation which requires that the file be open will raise a ValueError after the file has been closed. Calling close() more than once is allowed.

Return Value

None

Time Complexity

#TODO

Example 1

>>> f = open(r'C:\aiw.txt')
>>> f.readline()
" ALICE'S ADVENTURES IN WONDERLAND\n"
>>> f.close()
>>> f.readline()
ValueError: I/O operation on closed file

You can avoid having to call this method explicitly if you use the with statement. For example, the following code will automatically close f when the with block is exited:

Example 2

with open(r'C:\aiw.txt') as f:
 for line in f:
 print line,

In older versions of Python, you would have needed to do this to get the same effect:

Example 3

f = open("hello.txt")
try:
 for line in f:
 print line,
finally:
 f.close()

Note

Not all “file-like” types in Python support use as a context manager for the with statement. If your code is intended to work with any file-like object, you can use the function contextlib.closing() instead of using the object directly.

See Also

#TODO

closed

Description

Returns a Boolean stating whether the file is closed.

Syntax

file. closed

Remarks

This is a read-only attribute; the file.close() method changes the value. It may not be available on all file-like objects.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt')
>>> f.closed
False
>>> f.close()
>>> f.closed
True

See Also

#TODO

encoding

Description

Returns the encoding of the file.

Syntax

file. encoding

Return Value

None

Time Complexity

#TODO

Remarks

When Unicode strings are written to a file, they will be converted to byte strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file uses the system default encoding for converting Unicode strings.

Example

>>> f = io.open(r'C:\aiw.txt', encoding='utf-8')
>>> f.encoding
'utf-8'

See Also

#TODO

errors

Description

Returns the Unicode error handler used along with the encoding.

Syntax

file. errors

Return Value

None

Time Complexity

#TODO

Example

>>> f = io.open(r'C:\aiw.txt', errors='ignore')
>>> f.errors
'ignore'

See Also

#TODO

fileno

Description

Returns the integer file descriptor.

Syntax

file. fileno()

Remarks

The integer file descriptor is used by the underlying implementation to request I/O operations from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the fcntl module or os.read() and friends.

Note

File-like objects which do not have a real file descriptor should not provide this method!

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\aiw.txt')
>>> f.fileno()
3
>>> f1 = open(r'C:\aiw.txt')
>>> f1.fileno()
4

See Also

#TODO

flush

Description

Flushes the write buffers of the file.

Syntax

file. flush()

Note

It works like stdio‘s fflush(). This may be a no-op on some file-like objects. flush() does not necessarily write the file’s data to disk. Use flush() followed by os.fsync() to ensure this behavior.

Return Value

None

Time Complexity

#TODO

Example

>>> fw = open(r'C:\test.txt', "w")
>>> fw.write('foobar')
>>> fr = open(r'C:\test.txt')
>>> fr.readlines() # even though we just wrote a line to the fr file it appears empty until close() method is called
[]
>>> fw.flush() # flushing forces the buffer content into the file without closing it
>>> fr.readlines()
['foobar']

See Also

#TODO

file

File objects are implemented using C’s <stdio.h> package and can be created with the built-in file() and open() functions. File objects are also returned by some other built-in functions and methods, such as os.popen() and os.fdopen() and the makefile() method of socket objects. Temporary files can be created using the tempfile module, and high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations where the operation is not defined for some reason, like seek() on a tty device or writing a file opened for reading.

Files are viewed as a sequential stream of bytes. A file is terminated with an end of file marker (EOF). When a file is opened a file object is associated with it.

By default, there are three files initialized when the script execution starts - sys.stdin, sys.stdout and sys.stderr. They correspond to the interpreter’s standard input, output and error streams.

Constructors

	file

	Returns a file object.

	open

	Returns a file object.

Methods

Reading

	read

	Returns specified amount of bytes from the file.

	readline

	Reads one entire line from the file.

	readlines

	Returns a list containing lines from the file.

	xreadlines

	Returns an iterator over the lines of the file.

	next

	Returns a next line from the file.

Writing

	write

	Writes a string to the file.

	writelines

	Writes a sequence of strings to the file.

	flush

	Flushes the write buffers of the file.

File Position

	tell

	Returns the file’s current position.

	seek

	Sets the file’s current position.

Other

	close

	Flushes and closes the file.

	fileno

	Returns the integer “file descriptor”.

	truncate

	Truncates the file’s size.

	isatty

	Returns True if the file is if the stream is interactive (i.e., connected to a terminal/tty device).

Properties

	name

	Returns the name of the file.

	mode

	Returns the I/O mode for the file.

	encoding

	Returns the encoding of the file.

	closed

	Returns a Boolean stating whether the file is closed.

	errors

	Returns the Unicode error handler used along with the encoding.

	newlines

	Return type of newlines encountered while reading the file.

	softspace

	Returns a Boolean that indicates whether a space character needs to be printed before another value when using the print statement.

isatty

Description

Returns True if the file is if the stream is interactive (i.e., connected to a terminal/tty device).

Syntax

file. isatty()

Note

If a file-like object is not associated with a real file, this method should not be implemented.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\aiw.txt')
>>> f.isatty()
False

See Also

#TODO

mode

Description

Returns the I/O mode for the file.

Syntax

file. mode

Remarks

If the file was created using the open() built-in function, mode will be the value of the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt', 'w')
>>> f.mode
'w'

See Also

#TODO

name

Description

Returns the name of the file.

Syntax

file. name

Remarks

If the file object was created using open(), the name of the file. Otherwise, some string that indicates the source of the file object, of the form <…>. This is a read-only attribute and may not be present on all file-like objects.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt')
>>> f.name
'C:\\test.txt'

See Also

#TODO

newlines

Description

Return type of newlines encountered while reading the file.

Syntax

file. newlines

Remarks

If Python was built with universal newlines enabled (the default) this read-only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered while reading the file. The values it can take are ‘r’, ‘n’, ‘rn’, None (unknown, no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered. For files not opened in universal newlines read mode the value of this attribute will be None.

Return Value

None

Time Complexity

#TODO

See Also

#TODO

next

Description

Returns a next line from the file.

Syntax

file. next()

Remarks

A file object is its own iterator, for example iter(f) returns f (unless f is closed). When a file is used as an iterator, typically in a for loop (for example:

>>> for line in f:
... print line.strip()

), the next() method is called repeatedly. This method returns the next input line, or raises StopIteration when EOF is hit when the file is open for reading (behavior is undefined when the file is open for writing).

In order to make a for loop the most efficient way of looping over the lines of a file (a very common operation), the next() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combining next() with other file methods (like readline()) does not work right. However, using seek() to reposition the file to an absolute position will flush the read-ahead buffer.

Return Value

str

Time Complexity

#TODO

Example

>>> f = open(r'C:\aiw.txt')
>>> f.next()
" ALICE'S ADVENTURES IN WONDERLAND\n"
>>> f.next()
'\n'
>>> f.next()
' Lewis Carroll\n'

See Also

#TODO

Overview

File objects are implemented using C’s stdio package and can be created with the built-in open() function. File objects are also returned by some other built-in functions and methods, such as os.popen() and os.fdopen() and the makefile() method of socket objects. Temporary files can be created using the tempfile module, and high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations where the operation is not defined for some reason, like seek() on a tty device or writing a file opened for reading.

read

Description

Returns specified amount of bytes from the file.

Syntax

file. read([size])

	size

	Optional. Reads at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument is negative or omitted, reads all data until EOF is reached.

Remarks

The bytes are returned as a string object. An empty string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue reading after an EOF is hit.)

Note that this method may call the underlying C function fread() more than once in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less data than was requested may be returned, even if no size parameter was given.

Note

This function is simply a wrapper for the underlying fread() C function, and will behave the same in corner cases, such as whether the EOF value is cached.

Return Value

None

Time Complexity

#TODO

Example

>>> f.read(8)
' '
>>> f.read(128)
" ALICE'S ADVENTURES IN WONDERLAND\n\n Lewis Carroll\n\n THE MILLENNIUM FULCRUM EDITION"
>>> f.read() # this returns contents of the whole file

See Also

#TODO

readline

Description

Reads one entire line from the file.

Syntax

file. readline([size])

	size

	Optional. If the size argument is present and non-negative, it is a maximum byte count (including the trailing newline) and an incomplete line may be returned. When size is not 0, an empty string is returned only when EOF is encountered immediately.

Remarks

A trailing newline character is kept in the string (but may be absent when a file ends with an incomplete line).

Note

Unlike stdio‘s fgets() in C, the returned string contains null characters (‘0’) if they occurred in the input.

Return Value

str

Time Complexity

#TODO

Example

>>> f = open(r'C:\aiw.txt')
>>> f.readline()
" ALICE'S ADVENTURES IN WONDERLAND\n"
>>> f.readline(32)
'\n'
>>> f.readline(64)
' Lewis Carroll\n'

See Also

#TODO

readlines

Description

Returns a list containing lines from the file.

Syntax

file. readlines([sizehint])

	sizehint

	Optional. If the optional sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly after rounding up to an internal buffer size) are read.

Remarks

Reads lines until EOF using readline() and return a list containing the lines thus read. Objects implementing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

Return Value

list

Time Complexity

#TODO

Example

>>> f = open(r'C:\aiw.txt')
>>> f.readlines() # this will return the list of all the lines in the file

See Also

#TODO

seek

Description

Sets the file’s current position.

Syntax

file. seek(offset[, whence])

	offset

	Required. The offset from the beginning of the file.

	whence

	Optional. The whence argument is optional and defaults to os.SEEK_SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current position) and os.SEEK_END or 2 (seek relative to the file’s end). There is no return value.

Remarks

Note that if the file is opened for appending (mode ‘a’ or ‘a+’), any seek() operations will be undone at the next write. If the file is only opened for writing in append mode (mode ‘a’), this method is essentially a no-op, but it remains useful for files opened in append mode with reading enabled (mode ‘a+’). If the file is opened in text mode (without ‘b’), only offsets returned by tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

Changed in version 2.6: Passing float values as offset has been deprecated.

Return Value

None

Time Complexity

#TODO

Example 1

>>> # test.txt contents:
>>> # ABCDE
>>> f = open(r'C:\test.txt')
>>> f.seek(3)
>>> f.read() # starts reading from the 3rd character
'DE'

Example 2

>>> f = open(r'C:\test.txt')
>>> f.seek(2) # move two characters ahead
>>> f.seek(2, 1) # move two characters ahead from the current position
>>> f.read()
'E'

Example 3

>>> f = open(r'C:\test.txt')
>>> f.seek(-3, 2) # move to the 3rd character from the end of the file
>>> f.read()
'CDE'

See Also

#TODO

softspace

Description

Returns a Boolean that indicates whether a space character needs to be printed before another value when using the print statement.

Syntax

file. softspace

Remarks

Classes that are trying to simulate a file object should also have a writable softspace attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python (care may be needed for objects that override attribute access); types implemented in C will have to provide a writable softspace attribute.

Note

This attribute is not used to control the print statement, but to allow the implementation of print to keep track of its internal state.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt')
>>> f.softspace
0

See Also

#TODO

tell

Description

Returns the file’s current position.

Syntax

file. tell()

Note

On Windows, tell() can return illegal values (after an fgets()) when reading files with Unix-style line-endings. Use binary mode (‘rb’) to circumvent this problem.

Return Value

long

Time Complexity

#TODO

Example

>>> # test.txt contents:
>>> # 0000 0000
>>> f = open(r'C:\test.txt')
>>> f.tell()
0L
>>> f.seek(3) # changes position by 3
>>> f.tell()
3L

See Also

#TODO

truncate

Description

Truncates the file’s size.

Syntax

file. truncate([size])

	size

	Optional. If the optional size argument is present, the file is truncated to (at most) that size. The size defaults to the current position.

Remarks

The current file position is not changed.

Note that if a specified size exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new content. Availability: Windows, many Unix variants.

Return Value

None

Time Complexity

#TODO

Example

>>> # test.txt contents:
>>> # ABCDE
>>> f = open(r'C:\test.txt', 'r+')
>>> f.truncate(2)
>>> f.read()
'AB'

See Also

#TODO

write

Description

Writes a string to the file.

Syntax

file. write(str)

	str

	A string you want to write to the file.

Remarks

There is no return value. Due to buffering, the string may not actually show up in the file until the flush() or close() method is called.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt', 'w')
>>> f.write('foo')
>>> f.close()
>>> f = open(r'C:\test.txt')
>>> f.read()
'foo'

See Also

#TODO

writelines

Description

Writes a sequence of strings to the file.

Syntax

file. writelines(iterable)

	sequence

	Any iterable object producing strings, typically a list of strings.

Remarks

There is no return value. (The name is intended to match readlines(); writelines() does not add line separators.)
Files support the iterator protocol. Each iteration returns the same result as readline(), and iteration ends when the readline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should be implemented if they make sense for the particular object.

Return Value

None

Time Complexity

#TODO

Example

>>> f = open(r'C:\test.txt', 'w')
>>> f.writelines(['foo', 'bar'])
>>> f.close()
>>> f = open(r'C:\test.txt')
>>> f.read()
'foobar'

See Also

#TODO

xreadlines

Description

Returns an iterator over the lines of the file.

Syntax

file. xreadlines()

Remarks

This method returns the same thing as iter(file). Usage of this function is deprecated since Python 2.3. File objects are iterators by default now.

Use for line in file instead.

Return Value

file

Time Complexity

#TODO

Example

>>> # test.txt contents:
>>> #ABC AB A
>>> #ABC AB
>>> #ABC
>>> f = open(r'C:\test.txt')
>>> fx = f.xreadlines()
>>> fx.next()
'ABC AB A\n'
>>> fx.next()
'ABC AB\n'
>>> fx.next()
'ABC\n'
>>> fx.next()
StopIteration

See Also

#TODO

Fundamental Data Types

Numbers

	

Strings

	

Lists

	

Dictionaries

	

Tuples

	

Sets

	

as_integer_ratio

Description

Returns a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.

Syntax

float. as_integer_ratio()

Return Value

tuple

Remarks

Raises OverflowError on infinities and a ValueError on NaNs.

Example

>>> 3.14.as_integer_ratio()
(7070651414971679L, 2251799813685248L)
>>> 1.5.as_integer_ratio()
(3, 2)

fromhex

Description

Returns the float represented by a hexadecimal string s.

Syntax

float. fromhex(s)

	s

	Required. Must be a string; may have leading and trailing whitespace.

Return Value

str or float depending on arguments

Remarks

Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] [‘0x’] integer [‘.’ fraction] [‘p’ exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().
Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3 + 10./16 + 7./16**2) * 2.0**10, or 3740.0:

Example 1

>>> float.fromhex('0x3.a7p10')
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

Example 2

>>> float.hex(3740.0)
'0x1.d380000000000p+11'

hex

Description

Returns a representation of a floating-point number as a hexadecimal string.

Syntax

float. hex()

Return Value

str

Discussion

For finite floating-point numbers, this representation will always include a leading 0x and a trailing p and exponent.
Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work.

Example

>>> 1.5.hex()
'0x1.8000000000000p+0'
>>> 1.0.hex()
'0x1.0000000000000p+0'
>>> 16.0.hex()
'0x1.0000000000000p+4'

float

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

Floating point numbers are usually implemented using double in C; information about the precision and internal representation of floating point numbers for the machine on which your program is running is available in sys.float_info.

Constructors

	float()

	Returns an expression converted into a floating point number.

	literal syntax

	Initializes a new instance of the float type.

Scientific Notation

	e | E (scientific notation)

	Returns a float multiplied by the specified power of 10.

Methods

	as_integer_ratio

	Returns a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.

	is_integer

	Returns True if the float instance is finite with integral value, and False otherwise.

	hex

	Returns a representation of a floating-point number as a hexadecimal string.

	fromhex

	Returns the float represented by a hexadecimal string s.

is_integer

Description

Returns True if the float instance is finite with integral value, and False otherwise.

Syntax

float. is_integer()

Return Value

bool

Example

>>> 1.5.is_integer()
False
>>> 1.0.is_integer()
True
>>> 1.4142135623730951.is_integer()
False

Literal Syntax

floats can be simply initialized by using numeric values or obtained as a result of an expression. Values must consist of integral and fractional parts separated by a dot.

Example 1

>>> 1.0
1.0
>>> 3.14
3.14
>>> 3.0/2
1.5
>>> 2.0 + 1.5
3.5

e | E (scientific notation)

Description

Returns a float multiplied by the specified power of 10.

Syntax

[0-9].e[0-9]

[0-9].E[0-9]

Example

>>> 1.1
1.1
>>> 1.1e0
1.1 # 1.1 * 10**0
>>> 1.1e1
11.0 # 1.1 * 10**1
>>> 1.1e2
110.0 # 1.1 * 10**2
>>> 1.1e3
1100.0 # 1.1 * 10**3
>>> 8e-2
0.08 # 8 * 10**-2

staticmethod

staticmethod is basically a function defined inside a class. The difference is, we don’t have to pass the instance of the class to the method as its first argument (self by convention). Since staticmethods don’t receive the object itself as an argument we can’t access its attributes inside the staticmethod body.

Also, while using staticmethod there is only one instance of the decorated method bound to the class rather then to respective objects instantiated from it.

Constructors

	staticmethod

	Returns a static method for function.

fromhex

Description

Returns a new bytearray object initialized from a string of hex numbers.

Syntax

bytearray. fromhex(string)

	string

	Required. String containing hex numbers.

Return Value

bytearray

Time Complexity

#TODO

Remarks

Spaces between numbers can be used.

Example

>>> bytearray.fromhex("A1 FF 92")
bytearray(b'\xa1\xff\x92')
>>> bytearray.fromhex("A1FF92")
bytearray(b'\xa1\xff\x92')

See Also

bytearray

The bytearray type is a mutable sequence of integers in the range between 0 and 255. It allows you to work directly with binary data. It can be used to work with low-level data such as that inside of images or arriving directly from the network.

Bytearray type inherits methods from both list and str types. This type can be used in lieu of a mutable string if needed.

>>> +-----+-----+-----+-----+
>>> |0-255|0-255|0-255|0-255|
>>> +-----+-----+-----+-----+

An example of a bytearray length 4.

Constructors

	bytearray()

	Returns a new bytearray object.

Methods

	fromhex

	Returns a new bytearray object initialized from a string of hex numbers.

Methods Inherited From str

Methods Inherited From list

Fundamental Data Types

Numbers

	

Strings

	

Lists

	

Dictionaries

	

Tuples

	

Sets

	

__delete__

Description

Called to delete the attribute on an instance instance of the owner class.

Syntax

object. __delete__(self, instance)

	self

	Required. Instance of the class, passed automatically on call.

	instance

	Required. Instance is the instance that the attribute was accessed through, or None when the attribute is accessed through the owner.

Remarks

The following method only apply to new-style classes.

The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents).

This method should delete attribute value if found or raise an AttributeError exception otherwise.

Example

this is our descriptor object
class Bar(object):
 def __init__(self):
 self.value = ''
 def __get__(self, instance, owner):
 print "returned from descriptor object"
 return self.value
 def __set__(self, instance, value):
 print "set in descriptor object"
 self.value = value
 def __delete__(self, instance):
 print "deleted in descriptor object"
 del self.value

class Foo(object):
 bar = Bar()

f = Foo()
f.bar = 10
print f.bar
del f.bar

set in descriptor object
returned from descriptor object
10
deleted in descriptor object

__get__

Description

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute access).

Syntax

object. __get__(self, instance, owner)

	self

	Required. Instance of the class, passed automatically on call.

	instance

	Required. Instance is the instance that the attribute was accessed through, or None when the attribute is accessed through the owner.

	owner

	Required. Owner is always the owner class.

Remarks

The following method only applies to new-style classes.

The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents).

This method should return the (computed) attribute value or raise an AttributeError exception.

Example

this is our descriptor object
class Bar(object):
 def __init__(self):
 self.value = ''
 def __get__(self, instance, owner):
 print "returned from descriptor object"
 return self.value
 def __set__(self, instance, value):
 print "set in descriptor object"
 self.value = value
 def __delete__(self, instance):
 print "deleted in descriptor object"
 del self.value

class Foo(object):
 bar = Bar()

f = Foo()
f.bar = 10
print f.bar
del f.bar

set in descriptor object
returned from descriptor object
10
deleted in descriptor object

Descriptor Protocol

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by methods in the descriptor protocol: __get__(), __set__(), and __delete__(). If any of those methods are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a.x has a lookup chain starting with a.__dict__[‘x’], then type(a).__dict__[‘x’], and continuing through the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style objects or classes (ones that subclass object() or type()).

The starting point for descriptor invocation is a binding, a.x. How the arguments are assembled depends on a:

	Direct Call

	The simplest and least common call is when user code directly invokes a descriptor method: x.__get__(a).

	Instance Binding

	If binding to a new-style object instance, a.x is transformed into the call: type(a).__dict__[‘x’].__get__(a, type(a)).

	Class Binding

	If binding to a new-style class, A.x is transformed into the call: A.__dict__[‘x’].__get__(None, A).

	Super Binding

	If a is an instance of super, then the binding super(B, obj).m() searches obj.__class__.__mro__ for the base class A immediately preceding B and then invokes the descriptor with the call: A.__dict__[‘m’].__get__(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are defined. A descriptor can define any combination of __get__(), __set__() and __delete__(). If it does not define __get__(), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s instance dictionary. If the descriptor defines __set__() and/or __delete__(), it is a data descriptor; if it defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and __set__(), while non-data descriptors have just the __get__() method. Data descriptors with __set__() and __get__() defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can be overridden by instances.

Python methods (including staticmethod() and classmethod()) are implemented as non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of a property.

Methods

	__get__

	Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute access).

	__set__

	Called to set the attribute on an instance instance of the owner class to a new value, value.

	__delete__

	Called to delete the attribute on an instance instance of the owner class.

__set__

Description

Called to set the attribute on an instance instance of the owner class to a new value, value.

Syntax

object. __set__(self, instance, value)

	self

	Required. Instance of the class, passed automatically on call.

	instance

	Required. Instance is the instance that the attribute was accessed through, or None when the attribute is accessed through the owner.

	value

	Required. The value we want to assign to the attribute.

Remarks

The following method only apply to new-style classes.

The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents).

Example

this is our descriptor object
class Bar(object):
 def __init__(self):
 self.value = ''
 def __get__(self, instance, owner):
 print "returned from descriptor object"
 return self.value
 def __set__(self, instance, value):
 print "set in descriptor object"
 self.value = value
 def __delete__(self, instance):
 print "deleted in descriptor object"
 del self.value

class Foo(object):
 bar = Bar()

f = Foo()
f.bar = 10
print f.bar
del f.bar

set in descriptor object
returned from descriptor object
10
deleted in descriptor object

bool

These represent the truth values False and True. The two objects representing the values False and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings “False” or “True” are returned, respectively.

Constructors

	bool()

	Returns an expression converted into a Boolean.

	literal syntax

	Initializes a new instance of the bool type.

Literal Syntax

Booleans can be simply initialized by using True or False keywords.

EXAMPLE

>>> a = True
>>> b = False
>>> int(a)
1
>>> int(b)
0

format

Description

Returns a string containing the format (in struct module style) for each element in the view.

Syntax

memoryview. format

Return Value

str

Time Complexity

#TODO

Remarks

Defaults to ‘B’, a simple bytestring.

Example

>>> m = memoryview('foo')
>>> m.format
'B'

See Also

#TODO

memoryview

Constructors

	memoryview()

	Returns a new memoryview object.

Methods

	tobytes

	Returns the data in the buffer as a string.

	tolist

	Returns the data in the buffer as a list of integers.

Properties

	format

	Returns a string containing the format (in struct module style) for each element in the view.

	itemsize

	Returns the size in bytes of each element of the memoryview.

	ndim

	Returns an integer indicating how many dimensions of a multi-dimensional array the memory represents.

	readonly

	Returns a Boolean indicating whether the memory is read only.

	shape

	Returns a tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

	strides

	Returns a tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of the array.

itemsize

Description

Returns the size in bytes of each element of the memoryview.

Syntax

memoryview. itemsize

Return Value

long

Time Complexity

#TODO

Example

>>> m = memoryview('foo')
>>> m.itemsize
1L

See Also

#TODO

ndim

Description

Returns an integer indicating how many dimensions of a multi-dimensional array the memory represents.

Syntax

memoryview. ndim

Return Value

None

Time Complexity

#TODO

Example

>>> m = memoryview('foo')
>>> m.ndim
1L

See Also

#TODO

readonly

Description

Returns a Boolean indicating whether the memory is read only.

Syntax

memoryview. readonly

Return Value

bool

Time Complexity

#TODO

Example

>>> m = memoryview('foo')
>>> m.readonly
True

See Also

#TODO

shape

Description

Returns a tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

Syntax

memoryview. shape

Return Value

tuple

Time Complexity

#TODO

Example

>>> m = memoryview('foo')
>>> m.shape
(3L,)

See Also

#TODO

strides

Description

Returns a tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of the array.

Syntax

memoryview. strides

Return Value

tuple

Time Complexity

#TODO

Example

>>> m = memoryview('foo')
>>> m.strides
(1L,)

See Also

#TODO

tobytes

Description

Returns the data in the buffer as a string.

Syntax

memoryview. tobytes()

Return Value

str

Time Complexity

#TODO

Example

>>> m = memoryview("abc")
>>> m.tobytes()
'abc'

See Also

#TODO

tolist

Description

Returns the data in the buffer as a list of integers.

Syntax

memoryview. tolist()

Return Value

list

Time Complexity

#TODO

Example

>>> memoryview("abc").tolist()
[97, 98, 99]

See Also

#TODO

ASCII Chart

	Decimal

	Binary

	Octal

	Hexadecimal

	Symbol

	Description

	0

	0

	0

	0

	NUL

	Null char

	1

	1

	1

	1

	SOH

	Start of Heading

	2

	10

	2

	2

	STX

	Start of Text

	3

	11

	3

	3

	ETX

	End of Text

	4

	100

	4

	4

	EOT

	End of Transmission

	5

	101

	5

	5

	ENQ

	Enquiry

	6

	110

	6

	6

	ACK

	Acknowledgement

	7

	111

	7

	7

	BEL

	Bell

	8

	1000

	10

	8

	BS

	Back Space

	9

	1001

	11

	9

	HT

	Horizontal Tab

	10

	1010

	12

	0A

	LF

	Line Feed

	11

	1011

	13

	0B

	VT

	Vertical Tab

	12

	1100

	14

	0C

	FF

	Form Feed

	13

	1101

	15

	0D

	CR

	Carriage Return

	14

	1110

	16

	0E

	SO

	Shift Out / X-On

	15

	1111

	17

	0F

	SI

	Shift In / X-Off

	16

	10000

	20

	10

	DLE

	Data Line Escape

	17

	10001

	21

	11

	DC1

	Device Control 1 (oft.XON)

	18

	10010

	22

	12

	DC2

	Device Control 2

	19

	10011

	23

	13

	DC3

	Device Control 3 (oft.XOFF)

	20

	10100

	24

	14

	DC4

	Device Control 4

	21

	10101

	25

	15

	NAK

	Negative Acknowledgement

	22

	10110

	26

	16

	SYN

	Synchronous Idle

	23

	10111

	27

	17

	ETB

	End of Transmit Block

	24

	11000

	30

	18

	CAN

	Cancel

	25

	11001

	31

	19

	EM

	End of Medium

	26

	11010

	32

	1A

	SUB

	Substitute

	27

	11011

	33

	1B

	ESC

	Escape

	28

	11100

	34

	1C

	FS

	File Separator

	29

	11101

	35

	1D

	GS

	Group Separator

	30

	11110

	36

	1E

	RS

	Record Separator

	31

	11111

	37

	1F

	US

	Unit Separator

	32

	100000

	40

	20

	SPACE

	Space

	33

	100001

	41

	21

	!

	Exclamation mark

	34

	100010

	42

	22

	“

	Double quotes (or speech marks)

	35

	100011

	43

	23

	#

	Number

	36

	100100

	44

	24

	$

	Dollar

	37

	100101

	45

	25

	%

	Percent

	38

	100110

	46

	26

	&

	Ampersand

	39

	100111

	47

	27

	‘

	Single quote

	40

	101000

	50

	28

	(

	Open parenthesis (or open bracket)

	41

	101001

	51

	29

)

	Close parenthesis (orclose bracket)

	42

	101010

	52

	2A

	*

	Asterisk

	43

	101011

	53

	2B

	+

	Plus

	44

	101100

	54

	2C

	,

	Comma

	45

	101101

	55

	2D

	-

	Hyphen

	46

	101110

	56

	2E

	.

	Period, dot or full stop

	47

	101111

	57

	2F

	/

	Slash or divide

	48

	110000

	60

	30

	0

	Zero

	49

	110001

	61

	31

	1

	One

	50

	110010

	62

	32

	2

	Two

	51

	110011

	63

	33

	3

	Three

	52

	110100

	64

	34

	4

	Four

	53

	110101

	65

	35

	5

	Five

	54

	110110

	66

	36

	6

	Six

	55

	110111

	67

	37

	7

	Seven

	56

	111000

	70

	38

	8

	Eight

	57

	111001

	71

	39

	9

	Nine

	58

	111010

	72

	3A

	:

	Colon

	59

	111011

	73

	3B

	;

	Semicolon

	60

	111100

	74

	3C

	<

	Less than (or open angled bracket)

	61

	111101

	75

	3D

	=

	Equals

	62

	111110

	76

	3E

	>

	Greater than (or closeangled bracket)

	63

	111111

	77

	3F

	?

	Question mark

	64

	1000000

	100

	40

	@

	At symbol

	65

	1000001

	101

	41

	A

	Uppercase A

	66

	1000010

	102

	42

	B

	Uppercase B

	67

	1000011

	103

	43

	C

	Uppercase C

	68

	1000100

	104

	44

	D

	Uppercase D

	69

	1000101

	105

	45

	E

	Uppercase E

	70

	1000110

	106

	46

	F

	Uppercase F

	71

	1000111

	107

	47

	G

	Uppercase G

	72

	1001000

	110

	48

	H

	Uppercase H

	73

	1001001

	111

	49

	I

	Uppercase I

	74

	1001010

	112

	4A

	J

	Uppercase J

	75

	1001011

	113

	4B

	K

	Uppercase K

	76

	1001100

	114

	4C

	L

	Uppercase L

	77

	1001101

	115

	4D

	M

	Uppercase M

	78

	1001110

	116

	4E

	N

	Uppercase N

	79

	1001111

	117

	4F

	O

	Uppercase O

	80

	1010000

	120

	50

	P

	Uppercase P

	81

	1010001

	121

	51

	Q

	Uppercase Q

	82

	1010010

	122

	52

	R

	Uppercase R

	83

	1010011

	123

	53

	S

	Uppercase S

	84

	1010100

	124

	54

	T

	Uppercase T

	85

	1010101

	125

	55

	U

	Uppercase U

	86

	1010110

	126

	56

	V

	Uppercase V

	87

	1010111

	127

	57

	W

	Uppercase W

	88

	1011000

	130

	58

	X

	Uppercase X

	89

	1011001

	131

	59

	Y

	Uppercase Y

	90

	1011010

	132

	5A

	Z

	Uppercase Z

	91

	1011011

	133

	5B

	[

	Opening bracket

	92

	1011100

	134

	5C

	\

	Backslash

	93

	1011101

	135

	5D

]

	Closing bracket

	94

	1011110

	136

	5E

	^

	Caret - circumflex

	95

	1011111

	137

	5F

	_

	Underscore

	96

	1100000

	140

	60

	`

	Grave accent

	97

	1100001

	141

	61

	a

	Lowercase a

	98

	1100010

	142

	62

	b

	Lowercase b

	99

	1100011

	143

	63

	c

	Lowercase c

	100

	1100100

	144

	64

	d

	Lowercase d

	101

	1100101

	145

	65

	e

	Lowercase e

	102

	1100110

	146

	66

	f

	Lowercase f

	103

	1100111

	147

	67

	g

	Lowercase g

	104

	1101000

	150

	68

	h

	Lowercase h

	105

	1101001

	151

	69

	i

	Lowercase i

	106

	1101010

	152

	6A

	j

	Lowercase j

	107

	1101011

	153

	6B

	k

	Lowercase k

	108

	1101100

	154

	6C

	l

	Lowercase l

	109

	1101101

	155

	6D

	m

	Lowercase m

	110

	1101110

	156

	6E

	n

	Lowercase n

	111

	1101111

	157

	6F

	o

	Lowercase o

	112

	1110000

	160

	70

	p

	Lowercase p

	113

	1110001

	161

	71

	q

	Lowercase q

	114

	1110010

	162

	72

	r

	Lowercase r

	115

	1110011

	163

	73

	s

	Lowercase s

	116

	1110100

	164

	74

	t

	Lowercase t

	117

	1110101

	165

	75

	u

	Lowercase u

	118

	1110110

	166

	76

	v

	Lowercase v

	119

	1110111

	167

	77

	w

	Lowercase w

	120

	1111000

	170

	78

	x

	Lowercase x

	121

	1111001

	171

	79

	y

	Lowercase y

	122

	1111010

	172

	7A

	z

	Lowercase z

	123

	1111011

	173

	7B

	{

	Opening brace

	124

	1111100

	174

	7C

	|

	Vertical bar

	125

	1111101

	175

	7D

	}

	Closing brace

	126

	1111110

	176

	7E

	~

	Equivalency sign - tilde

	127

	1111111

	177

	7F

	DEL

	Delete

capitalize

Description

Returns a copy of the string in Capital case.

Syntax

str. capitalize()

Return Value

str

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent.

Example

>>> 'foo'.capitalize()
'Foo'
>>> 'Foo'.capitalize()
'Foo'
>>> 'fOO'.capitalize()
'Foo'

See Also

upper

lower

title

swapcase

center

Description

Returns the string centered in a string of specified length.

Syntax

str. center(width[, fillchar])

	width

	Required. The width of the field containing the string.

	fillchar

	Optional. Specifies the padding character (default is a space).

Return Value

str

Time Complexity

#TODO

Remarks

The original string is returned if width is less than or equal to len(str).

Example

>>> "ABC".center(10)
' ABC '
>>> "ABC".center(10, "#")
'###ABC####'
>>> "ABC".center(2, "#")
'ABC'

See Also

`ljust()`_, rjust(), center()

count

Description

Returns the number of non-overlapping occurrences of a substring in the searched string.

Syntax

str. count(sub[, start[, end]])

	sub

	Required. The string searched for.

	start

	Optional. Index from which to start counting. Default is 0 (start of the string).

	end

	Optional. The end index for the search. End of the string is the default value.

Return Value

int

Time Complexity

#TODO

Remarks

Optional arguments start and end are interpreted as in slice notation.

Example

>>> "ABCAB".count("A")
2
>>> "ABCAB".count("A", 1)
1
>>> "ABCAB".count("A", 1, 2)
0
>>> "ABCAB".count("D", 1, 2)
0

See Also

#TODO

decode

Description

Decodes the string using the codec registered for encoding.

Syntax

str. decode([encoding[, errors]])

	encoding

	Optional. The desired encoding. Defaults to the default string encoding. See codecs module for a full list.

	errors

	Optional. errors may be given to set a different error handling scheme.

Typical errors values:

	‘strict’

	Raise ValueError (or a subclass); this is the default.

	‘ignore’

	Ignore the character and continue with the next.

	‘replace’

	Replace with a suitable replacement character

Other possible values are any other name registered via codecs.register_error(), see section Codec Base Classes.

Return Value

unicode

Time Complexity

#TODO

Example

>>> 'źdźbło'.decode('windows-1250') # polish word meaning a blade of grass
u'\u0139\u015fd\u0139\u015fb\u0139\u201ao'
>>> 'źdźbło'.decode('ascii', 'strict')
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 0: ordinal not in range(128)
>>> 'źdźbło'.decode('ascii', 'ignore')
u'dbo'
>>> 'źdźbło'.decode('ascii', 'replace')
u'\ufffd\ufffdd\ufffd\ufffdb\ufffd\ufffdo'

See Also

encode()

…”“

Description

Returns a modified string.

Syntax

[designator]string

	r | R

	Raw string. Uses different rules for interpreting backslash escape sequences.

	u | U

	Unicode string.

	b | B

	Alias for bytes type; ignored in Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted with 2to3)

	Ur | UR | Ur | uR

	Raw Unicode.

	br | Br | bR | BR

	Raw bytes (see above).

Example 1

>>> r'AB\nCD'
'AB\\nCD'
>>> 'AB\nCD'
'AB\nCD'

Example 2

>>> u'ABCD'
u'ABCD'
>>> b'ABCD'
'ABCD'

encode

Description

Returns an encoded version of the string.

Syntax

str. encode([encoding[, errors]])

	encoding

	Optional. The desired encoding. Defaults to the default string encoding. See codecs module for a full list.

	errors

	Optional. errors may be given to set a different error handling scheme.

Typical errors values:

	‘strict’

	Raise ValueError (or a subclass); this is the default.

	‘ignore’

	Ignore the character and continue with the next.

	‘replace’

	Replace with a suitable replacement character

Other possible values are any other name registered via codecs.register_error(), see section Codec Base Classes.

Return Value

str

Time Complexity

#TODO

Example

>>> 'foo'.encode()
'foo'
>>> 'foo'.encode('windows-1250', 'strict')
'foo'
>>> 'foo'.encode('windows-1250', 'ignore')
'foo'
>>> 'foo'.encode('windows-1250', 'replace')
'foo'
>>> 'foo'.encode('windows-1250', 'xmlcharrefreplace')
'foo'
>>> 'foo'.encode('windows-1250', 'backslashreplace')
'foo'

See Also

decode()

endswith

Description

Returns a Boolean stating whether a string ends with the specified suffix.

Syntax

str. startswith(suffix[, start[, end]])

	suffix

	Required. The substring looked for. suffix can also be a tuple of suffixes to look for.

	start

	Optional. Specifies beginning position for the search.

	end

	Optional. Specifies ending position for the search.

Return Value

bool

Time Complexity

#TODO

Example

>>> "image.png".endswith("png")
True
>>> "image.png".endswith(("png", "jpg"))
True
>>> "123_log_ABC".endswith("log", 4, 7)
True

See Also

#TODO

Escape Characters

The recognized escape sequences are:

	\newline

	Ignored

	\

	Backslash (\)

	'

	Single quote (‘)

	"

	Double quote (“)

	\a

	ASCII Bell (BEL)

	\b

	ASCII Backspace (BS)

	\f

	ASCII Formfeed (FF)

	\n

	ASCII Linefeed (LF)

	\N{name}

	Character named NAME in the Unicode database (Unicode only)

	\r

	ASCII Carriage Return (CR)

	\t

	ASCII Horizontal Tab (TAB)

	\uxxxx

	Character with 16-bit hex value XXXX (Unicode only) (1)

	\Uxxxxxxxx

	Character with 32-bit hex value XXXXXXXX (Unicode only) (2)

	\v

	ASCII Vertical Tab (VT)

	\ooo

	Character with octal value OOO (3,5)

	\xhh

	Character with hex value HH (4,5)

Notes

	Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

	Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).

	As in Standard C, up to three octal digits are accepted.

	Unlike in Standard C, exactly two hex digits are required.

	In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character with the given value.

Remarks

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those used by Standard C.
Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table above fall into the category of unrecognized escapes for non-Unicode string literals.

When an ‘r’ or ‘R’ prefix is present, a character following a backslash is included in the string without change, and all backslashes are left in the string. For example, the string literal r”n” consists of two characters: a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the backslash remains in the string; for example, r”“” is a valid string literal consisting of two characters: a backslash and a double quote; r”” is not a valid string literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by a newline is interpreted as those two characters as part of the string, NOT as a line continuation.

When an ‘r’ or ‘R’ prefix is used in conjunction with a ‘u’ or ‘U’ prefix, then the uXXXX and UXXXXXXXX escape sequences are processed while all other backslashes are left in the string. For example, the string literal ur”u0062n” consists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL LETTER N’. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a result, uXXXX escape sequences are only recognized when there are an odd number of backslashes.

Additionally, you can express any character by its numerical ASCII code by writing a backslash character \ followed by the ASCII code expressed as an octal (base-8) or hexadecimal (base-16) number. In the first case (octal) the digits must immediately follow the backslash (for example 23 or 40), in the second case (hexadecimal), an x character must be written before the digits themselves (for example x20 or x4A).

Example 1

>>> # this example writes a string "ABC" using hex
>>> "\x41\x42\x43"
'ABC'

Example 2

>>> # this time using octal
>>> "\101\102\103"
'ABC'

expandtabs

Description

Returns a copy of the string where all tab characters were replaced by spaces.

Syntax

str. expandtabs([tabsize])

	tabsize

	Optional. Size of the tab; default step is 8.

Return Value

str

Time Complexity

#TODO

Remarks

Tab positions occur every tabsize characters (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab (t), one or more space characters are inserted in the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a newline (n) or return (r), it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed.

Example

>>> "AA\tBB\n".expandtabs()
'AA BB\n'
>>> "AA\tBB\n".expandtabs(4)
'AA BB\n'

See Also

#TODO

find

Description

Returns the index of the first occurrence of the string searched for.

Syntax

str. find(sub[, start[, end]])

	sub

	Required. The string searched for.

	start

	Optional. Search start position.

	end

	Optional. Search end position.

Return Value

int

Time Complexity

#TODO

Remarks

Returns -1 if sub is not found.

The find() method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

Example

>>> "ABAB".find("B")
1
>>> "ABAB".find("B", 2, 4)
3
>>> "ABAB".find("B", 2)
3

See Also

rfind()

index()

rindex()

format

Description

Returns a formatted version of the string.

Syntax

str. format(*args, **kwargs)

	args

	Required. Format strings.

	kwargs

	Optional. Format strings.

Replacement field can contain format specification in general form:

[[fill]align][sign][#][0][width][,][.precision][type]

fill

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space if omitted.

allign

	‘<’

	Forces the field to be left-aligned within the available space (this is the default for most objects).

	‘>’

	Forces the field to be right-aligned within the available space (this is the default for numbers).

	‘=’

	Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields in the form ‘+000000120’. This alignment option is only valid for numeric types.

	‘^’

	Forces the field to be centered within the available space.

sign

	‘+’

	Indicates that a sign should be used for both positive as well as negative numbers.

	‘-‘

	indicates that a sign should be used only for negative numbers (this is the default behavior).

	‘ ‘

	(space) indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

	‘#’

	The ‘#’ option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that the output will be prefixed by ‘0b’, ‘0o’, or ‘0x’, respectively.

	‘,’

	The ‘,’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the ‘n’ integer presentation type instead.

width

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by the content.
Preceding the width field by a zero (‘0’) character enables sign-aware zero-padding for numeric types. This is equivalent to a fill character of ‘0’ with an alignment type of ‘=’.

precision

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating point value formatted with ‘f’ and ‘F’, or before and after the decimal point for a floating point value formatted with ‘g’ or ‘G’. For non-number types the field indicates the maximum field size - in other words, how many characters will be used from the field content. The precision is not allowed for integer values.

type

Determines how the data should be presented.

The available string presentation types are:

	‘s’

	String format. This is the default type for strings and may be omitted.

	None

	The same as ‘s’.

The available integer presentation types are:

	‘b’

	Binary format. Outputs the number in base 2.

	‘c’

	Character. Converts the integer to the corresponding unicode character before printing.

	‘d’

	Decimal Integer. Outputs the number in base 10.

	‘o’

	Octal format. Outputs the number in base 8.

	‘x’

	Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.

	‘X’

	Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.

	‘n’

	Number. This is the same as ‘d’, except that it uses the current locale setting to insert the appropriate number separator characters.

	None

	The same as ‘d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed below (except ‘n’ and None). When doing so, float() is used to convert the integer to a floating point number before formatting.

The available presentation types for floating point and decimal values are:

	‘e’

	Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent. The default precision is 6.

	‘E’

	Exponent notation. Same as ‘e’ except it uses an upper case ‘E’ as the separator character.

	‘f’

	Fixed point. Displays the number as a fixed-point number. The default precision is 6.

	‘F’

	Fixed point. Same as ‘f’.

	‘g’

	General format. For a given precision p >= 1, this rounds the number to p significant digits and then formats the result in either fixed-point format or in scientific notation, depending on its magnitude.
The precise rules are as follows: suppose that the result formatted with presentation type ‘e’ and precision p-1 would have exponent exp. Then if -4 <= exp < p, the number is formatted with presentation type ‘f’ and precision p-1-exp. Otherwise, the number is formatted with presentation type ‘e’ and precision p-1. In both cases insignificant trailing zeros are removed from the significand, and the decimal point is also removed if there are no remaining digits following it.
Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf, 0, -0 and nan respectively, regardless of the precision.
A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

	‘G’

	General format. Same as ‘g’ except switches to ‘E’ if the number gets too large. The representations of infinity and NaN are uppercased, too.

	‘n’

	Number. This is the same as ‘g’, except that it uses the current locale setting to insert the appropriate number separator characters.

	‘%’

	Percentage. Multiplies the number by 100 and displays in fixed (‘f’) format, followed by a percent sign.

	None

	The same as ‘g’.

Return Value

str

Time Complexity

#TODO

Remarks

The string on which this method is called can contain literal text or replacement fields delimited by braces {}. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'

This method of string formatting is the new standard in Python 3, and should be preferred to the % formatting described in String Formatting Operations in new code.

Example 1

>>> # accessing arguments by position:
>>> '{0}, {1}, {2}'.format('a', 'b', 'c')
'a, b, c'
>>> '{}, {}, {}'.format('a', 'b', 'c') # 2.7+ only
'a, b, c'
>>> '{2}, {1}, {0}'.format('a', 'b', 'c')
'c, b, a'
>>> '{2}, {1}, {0}'.format(*'abc') # unpacking argument sequence
'c, b, a'
>>> '{0}{1}{0}'.format('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Example 2

>>> # accessing arguments by name:
>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-115.81W')
'Coordinates: 37.24N, -115.81W'
>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}
>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)
'Coordinates: 37.24N, -115.81W'

Example 3

>>> # accessing arguments’ attributes:
>>> c = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
... 'and the imaginary part {0.imag}.').format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.'
>>> class Point(object):
... def __init__(self, x, y):
... self.x, self.y = x, y
... def __str__(self):
... return 'Point({self.x}, {self.y})'.format(self=self)
...
>>> str(Point(4, 2))
'Point(4, 2)'

Example 4

>>> # accessing arguments’ items:
>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)
'X: 3; Y: 5'

Example 5

>>> # replacing %s and %r:
>>> "repr() shows quotes: {!r}; str() doesn't: {!s}".format('test1', 'test2')
"repr() shows quotes: 'test1'; str() doesn't: test2"

Example 6

>>> # aligning the text and specifying the width:
>>> '{:<30}'.format('left aligned')
'left aligned '
>>> '{:>30}'.format('right aligned')
' right aligned'
>>> '{:^30}'.format('centered')
' centered '
>>> '{:*^30}'.format('centered') # use '*' as a fill char
'***********centered***********'

Example 7

>>> # this example shows how to format numbers to specified precision
>>> "PI: {:.2f}".format(3.141592653589793)
'PI: 3.14'
>>> "PI: {:.2e}".format(3.141592653589793)
'PI: 3.14e+00'
>>> "PI: {:.2g}".format(3.141592653589793)
'PI: 3.1'
>>> "PI: {:.2n}".format(3.141592653589793)
'PI: 3.1'
>>> "PI: {:.2%}".format(3.141592653589793)
'PI: 314.16%'

Example 8

>>> # replacing %+f, %-f, and % f and specifying a sign:
>>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it always
'+3.140000; -3.140000'
>>> '{: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000'
>>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f}'
'3.140000; -3.140000'

Example 9

>>> # replacing %x and %o and converting the value to different bases:
>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)
'int: 42; hex: 2a; oct: 52; bin: 101010'
>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)
'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'

Example 10

>>> # using the comma as a thousands separator:
>>> '{:,}'.format(1234567890)
'1,234,567,890'

Example 11

>>> # expressing a percentage:
>>> points = 19.5
>>> total = 22
>>> 'Correct answers: {:.2%}'.format(points/total)
'Correct answers: 88.64%'

Example 12

>>> # using type-specific formatting:
>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d %H:%M:%S}'.format(d)
'2010-07-04 12:15:58'

Example 13

>>> # nesting arguments and more complex examples
>>> for align, text in zip('<^>', ['left', 'center', 'right']):
... '{0:{fill}{align}16}'.format(text, fill=align, align=align)
...
'left<<<<<<<<<<<<'
'^^^^^center^^^^^'
'>>>>>>>>>>>right'
>>>
>>> octets = [192, 168, 0, 1]
>>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)
'C0A80001'
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
... for base in 'dXob':
... print '{0:{width}{base}}'.format(num, base=base, width=width),
... print
...
 5 5 5 101
 6 6 6 110
 7 7 7 111
 8 8 10 1000
 9 9 11 1001
 10 A 12 1010
 11 B 13 1011

See Also

#TODO

% (String Formatting Operator)

Description

Formats the string according to the specified format.

Syntax

%[key][flags][width][.precision][length type]conversion type % values

	%

	Required. The ‘%’ character, which marks the start of the specifier.

	key

	Optional. Mapping key, consisting of a parenthesised sequence of characters (for example, (somename)).

	flags

	Optional. Conversion flags, which affect the result of some conversion types.

	width

	Optional. Minimum field width. If specified as an ‘*’ (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

	precision

	Optional. Precision, given as a ‘.’ (dot) followed by the precision. If specified as ‘*’ (an asterisk), the actual width is read from the next element of the tuple in values, and the value to convert comes after the precision.

	length type

	Optional. Length modifier.

	conversion type

	Optional. Conversion type.

	values

	Required. A number, string or a container with values to substitute for the conversion type.

Conversion Flags

	‘#’

	The value conversion will use the “alternate form” (where defined below).

	‘0’

	The conversion will be zero padded for numeric values.

	‘-‘

	The converted value is left adjusted (overrides the ‘0’ conversion if both are given).

	‘ ‘

	(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

	‘+’

	A sign character (‘+’ or ‘-‘) will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical to %d.

Conversion Types

	‘d’

	Signed integer decimal.

	‘i’

	Signed integer decimal.

	‘o’

	Signed octal value. The alternate form causes a leading zero (‘0’) to be inserted between left-hand padding and the formatting of the number if the leading character of the result is not already a zero.

	‘u’

	Obsolete type – it is identical to ‘d’. See PEP 237.

	‘x’ or ‘X’

	Signed hexadecimal. The alternate form causes a leading ‘0x’ or ‘0X’ (depending on whether the ‘x’ or ‘X’ format was used) to be inserted between left-hand padding and the formatting of the number if the leading character of the result is not already a zero.

	‘e’ or ‘E’

	Floating point exponential format. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

	‘f’ or ‘F’

	Floating point decimal format. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

	‘g’ or ‘G’

	Floating point format. Uses exponential format if exponent is less than -4 or not less than precision, decimal format otherwise. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

	‘c’

	Single character (accepts integer or single character string).

	‘r’

	String (converts any Python object using repr()).

The precision determines the maximal number of characters used.

	‘s’

	String (converts any Python object using str()).

If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

	‘%’

	No argument is converted, results in a ‘%’ character in the result.

Remarks

If format specifier is a Unicode object, or if any of the objects being converted using the %s conversion are Unicode objects, the result will also be a Unicode object.

If format specifier requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the ‘%’ character. The mapping key selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(number)03d quote types.' % \
... {"language": "Python", "number": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

Example 1

>>> '%d' % 100 # This Example shows simple substitution.
'100'
>>> '%d' % 0b1111
'15'
>>> "%s" % 'foo'
'foo'
>>> "%s %s" % ('foo', 'bar')
'foo bar'
>>> dct = {'foo': 10, 'bar': 20}
>>> "%(foo)s" % dct
'10'

Example 2

>>> "%x" % 17 # This Example shows usage of # flag (alternate form).
'11'
>>> "%#x" % 17
'0x11'
>>> "%#X" % 17
'0X11'

Example 3

>>> "%d" % 1 # This Example shows usage of zero padding and width flags.
'1'
>>> "%03d" % 1
'001'

Example 4

>>> "%d" % 1 # This Example shows usage of left adjust flag.
'1'
>>> "%-5d" % 1
'1 '
>>> "%0-5d" % 1
'1 '

Example 5

>>> '%d' % 1 # This Example shows usage of space flag.
'1'
>>> '%d' % -1
'-1'
>>> '% d' % 1
' 1'
>>> '% d' % -1
'-1'

Example 6

>>> '%d' % 1 # This Example shows usage of sign flag.
'1'
>>> '%+d' % 1
'+1'
>>> '%+d' % -1
'-1'
>>> '% +d' % -1
'-1'
>>> '% +d' % 1
'+1'

Example 7

>>> '%f' % 3.14 # This Example shows usage of precision modifier.
'3.140000'
>>> '%.1f' % 3.14
'3.1'
>>> '%.2f' % 3.14
'3.14'
>>> '%.3f' % 3.14
'3.140'

Example 8

>>> '%i' % 0b1111 # This Example shows how to covert to signed integer decimals.
'15'
>>> '%d' % 0b1111
'15'
>>> '%d' % 10
'10'
>>> '%d' % 3.14
'3'
>>> '%i' % 3.14
'3'
>>> '%i' % -10
'-10'

Example 9

>>> '%x' % 27 # Hex and octal conversions.
'1b'
>>> '%X' % 27
'1B'
>>> '%o' % 27
'33'

Example 10

>>> '%f' % 10 # Float conversions.
'10.000000'
>>> '%F' % 10
'10.000000'
>>> '%g' % 1234567890
'1.23457e+09'
>>> '%G' % 1234567890
'1.23457E+09'
>>> '%e' % 1234567890
'1.234568e+09'
>>> '%E' % 1234567890
'1.234568E+09'

Example 11

>>> 'ABC %c' % 10 # Character and string conversions.
'ABC \n'
>>> 'ABC %c' % 67
'ABC C'
>>> 'ABC %c' % 68
'ABC D'
>>> 'ABC %c' % 'D'
'ABC D'
>>> 'ABC %s' % 68
'ABC 68'
>>> 'ABC %r' % 68
'ABC 68'

str

The items of a string are characters. There is no separate character type; a character is represented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions chr() and ord() convert between characters and nonnegative integers representing the byte values. Bytes with the values 0-127 usually represent the corresponding ASCII values, but the interpretation of values is up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read from a file.

Strings are immutable sequences.

Constructors

	str()

	Returns a string containing a printable representation of an object.

	x”string” (string designators)

	Returns a modified string.

	literal syntax

	Initializes a new instance of the str type.

Methods

Searching

	find

	Returns the index of the first occurrence of the string searched for.

	rfind

	Returns the index of the last occurrence of the string searched for.

	index

	Returns the index of the first occurrence of the string searched for (raises ValueError if not found).

	rindex

	Returns the index of the last occurrence of the string searched for (raises ValueError if not found).

Replacing

	replace

	Returns a copy of the string with a specified substring replaced specified number of times.

	translate

	Returns a copy of the string with characters mapped through the given translation table or deleted.

Leading and Trailing Characters

	lstrip

	Returns a copy of the string with leading characters removed.

	rstrip

	Returns a copy of the string with trailing characters removed.

	strip

	Returns a copy of the string with leading and trailing characters removed.

Splitting and Joining

	split

	Returns a list of the words in the string, separated by the delimiter string.

	rsplit

	Returns a list of the words in the string, separated by the delimiter string (starting from right).

	partition

	Returns a tuple containing the first part of the string split by the specified separator, the separator itself and the other part of the string.

	rpartition

	Returns a tuple containing the first part of the string split by the specified separator, the separator itself and the other part of the string (starting from right).

	splitlines

	Returns a list of the lines in the string, breaking at line boundaries.

	join

	Returns a string made from the elements of an iterable.

Changing Case

	upper

	Returns a copy of the string in UPPER CASE.

	lower

	Returns a copy of the string in lower case.

	capitalize

	Returns a copy of the string in Capital case.

	title

	Returns a copy of the string in Title Case.

	swapcase

	Returns a copy of the string with case swapped.

Information

	count

	Returns the number of non-overlapping occurrences of a substring in the searched string.

	startswith

	Returns a Boolean stating whether a string starts with the specified prefix.

	endswith

	Returns a Boolean stating whether a string ends with the specified suffix.

	isalnum

	Returns a Boolean stating whether the string contains only letters and digits.

	isalpha

	Returns a Boolean stating whether the string contains only letters.

	isdigit

	Returns a Boolean stating whether the string contains only digits.

	islower

	Returns a Boolean stating whether the string is in lower case.

	isspace

	Returns a Boolean stating whether the string contains only whitespace characters.

	istitle

	Returns a Boolean stating whether the string is in Title case.

	isupper

	Returns a Boolean stating whether the string is in UPPER CASE.

Formatting

	ljust

	Returns the string left justified in a string of specified length.

	rjust

	Returns the string right justified in a string of specified length.

	center

	Returns the string centered in a string of specified length.

	zfill

	Returns the numeric string left filled with zeros in a string of specified length.

	expandtabs

	Returns a copy of the string where all tab characters were replaced by spaces.

	`format`_

	Returns a formatted version of the string.

Encodings

	decode

	Decodes the string using the codec registered for encoding.

	encode

	Returns an encoded version of the string.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	cmp

	Compares two objects and returns an integer according to the outcome.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

	chr

	Returns a string of one character whose ASCII code is the specified number.

	ord

	Returns an integer representing the code of the character.

	unichr

	Returns a Unicode character specified by the code.

	`format`_

	Returns a formatted string.

Operators

	`% (string formatting)`_

	Formats the string according to the specified format.

	[] (index operator)

	Gives access to a sequence’s element.

	[::] (slicing)

	Gives access to a specified range of sequence’s elements.

	+ (concatenation)

	Returns a concatenation of two sequences.

	* (multiple concatenation)

	Returns a sequence self-concatenated specified amount of times.

Misc

	Escape Characters

	List of valid escape characters.

	ASCII Table (0 - 127)

	Basic character set.

isalnum

Description

Returns a Boolean stating whether the string contains only letters and digits.

Syntax

str. isalnum()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.isalnum()
False
>>> 'abc123'.isalnum()
True
>>> 'abc'.isalnum()
True
>>> '123'.isalnum()
True
>>> 'Abc'.isalnum()
True
>>> '!@#'.isalnum()
False
>>> ' '.isalnum()
False
>>> 'ABC'.isalnum()
True

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

isalpha

Description

Returns a Boolean stating whether the string contains only letters.

Syntax

str. isalpha()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.isalpha()
False
>>> 'abc123'.isalpha()
False
>>> 'abc'.isalpha()
True
>>> '123'.isalpha()
False
>>> 'Abc'.isalpha()
True
>>> '!@#'.isalpha()
False
>>> ' '.isalpha()
False
>>> 'ABC'.isalpha()
True

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

isdigit

Description

Returns a Boolean stating whether the string contains only digits.

Syntax

str. isdigit()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.isdigit()
False
>>> 'abc123'.isdigit()
False
>>> 'abc'.isdigit()
False
>>> '123'.isdigit()
True
>>> 'Abc'.isdigit()
False
>>> '!@#'.isdigit()
False
>>> ' '.isdigit()
False
>>> 'ABC'.isdigit()
False

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

islower

Description

Returns a Boolean stating whether the string is in lower case.

Syntax

str. islower()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.islower()
False
>>> 'abc123'.islower()
True
>>> 'abc'.islower()
True
>>> '123'.islower()
False
>>> 'Abc'.islower()
False
>>> '!@#'.islower()
False
>>> ' '.islower()
False
>>> 'ABC'.islower()
False

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

isspace

Description

Returns a Boolean stating whether the string contains only whitespace characters.

Syntax

str. isspace()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.isspace()
False
>>> 'abc123'.isspace()
False
>>> 'abc'.isspace()
False
>>> '123'.isspace()
False
>>> 'Abc'.isspace()
False
>>> '!@#'.isspace()
False
>>> ' '.isspace()
True
>>> 'ABC'.isspace()
False

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

istitle

Description

Returns a Boolean stating whether the string is in Title case.

Syntax

str. istitle()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.istitle()
False
>>> 'abc123'.istitle()
False
>>> 'abc'.istitle()
False
>>> '123'.istitle()
False
>>> 'Abc Def'.istitle()
True
>>> 'Abc def'.istitle()
False
>>> '!@#'.istitle()
False
>>> ' '.istitle()
False
>>> 'ABC'.istitle()
False

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

isupper

Description

Returns a Boolean stating whether the string is in UPPER CASE.

Syntax

str. isupper()

Return Value

bool

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent. Returns False if string is empty.

Example

>>> ''.isupper()
False
>>> 'abc123'.isupper()
False
>>> 'abc'.isupper()
False
>>> '123'.isupper()
False
>>> 'Abc Def'.isupper()
False
>>> 'Abc def'.isupper()
False
>>> '!@#'.isupper()
False
>>> ' '.isupper()
False
>>> 'ABC'.isupper()
True

See Also

isalnum(), isalpha(), isdigit(), islower(), isspace(), istitle(), isupper()

join

Description

Returns a string made from the elements of an iterable.

Syntax

str. join(iterable)

	iterable

	Required. The iterable used for creating the string.

Return Value

str

Time Complexity

#TODO

Remarks

The separator between elements is the string providing this method.

Example

>>> ''.join(['A', 'B', 'C'])
'ABC'
>>> ''.join({'A': 0, 'B': 0, 'C': 0}) # note that dicts are unordered
'ACB'
>>> '-'.join(['A', 'B', 'C']) # '-' string is the seprator
'A-B-C'

See Also

#TODO

Literal Syntax

String literals can be enclosed in matching single quotes (‘) or double quotes (“).

Example 1

>>> 'ABC'
'ABC'
>>> "ABC"
'ABC'

String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and their meaning is the same as their concatenation. Thus, “hello” ‘world’ is equivalent to “helloworld”. This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile(
 "[A-Za-z_]" # letter or underscore
 "[A-Za-z0-9_]*" # letter, digit or underscore
)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each component (even mixing raw strings and triple quoted strings).

Example 2

>>> 'AB' "CD"
'ABCD'

Strings can be broken into two or more lines by using line continaution character:

Example 3

>>> s = "AB\
... CD"
>>> s
'ABCD'

Unescaped quotes of the same type as the one that was used for creating the string can’t be used inside of it:

Example 4

>>> "AB'CD"
"AB'CD"
>>> "AB"CD"
 File "<interactive input>", line 1
 "AB"CD"
 ^
SyntaxError: invalid syntax

Multi line strings

Strings can also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).

Example 5

>>> '''AB
... CD
... '''
'AB\nCD\n'
>>> """AB
... CD
... """
'AB\nCD\n'

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e. either ‘ or “.)

Example 6

>>> """
... AB "BC"
... """
'\nAB "BC"\n'
>>> '''
... AB 'BC'
... '''
"\nAB 'BC'\n"

The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash itself, or the quote character.

Example 6

>>> print "AA\nBB"
AA
BB

ljust

Description

Returns the string left justified in a string of specified length.

Syntax

str. ljust(width[, fillchar])

	width

	Required. The width of the field containing the string.

	fillchar

	Optional. Specifies the padding character (default is a space).

Return Value

str

Time Complexity

#TODO

Remarks

The original string is returned if width is less than or equal to len(str).

Example

>>> "ABC".ljust(10)
'ABC '
>>> "ABC".ljust(10, "#")
'ABC#######'
>>> "ABC".ljust(2, "#")
'ABC'

See Also

`ljust()`_, rjust(), center()

lower

Description

Returns a copy of the string in lower case.

Syntax

str. lower()

Return Value

str

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent.

Example

>>> 'foo'.lower()
'foo'
>>> 'Foo'.lower()
'foo'
>>> 'FOO'.lower()
'foo'
>>> '123'.lower()
'123'
>>> ''.lower()
''
>>> ' '.lower()
' '
>>> '!@#'.lower()
'!@#'

See Also

upper

capitalize

title

swapcase

lstrip

Description

Returns a copy of the string with leading characters removed.

Syntax

str. lstrip([chars])

	chars

	Optional. String specifying the set of characters to be removed.
If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped.

Return Value

str

Time Complexity

#TODO

Example

>>> ' spacious '.lstrip()
'spacious '
>>> "AABAA".lstrip("A")
'BAA'
>>> "ABBA".lstrip("AB") # both AB and BA are stripped
''
>>> "ABCABBA".rstrip("AB")
'ABC'
>>> "ABCABBA".lstrip("AB")
'CABBA'

See Also

strip() and rstrip()

partition

Description

Returns a tuple containing the left part of the string split by the specified separator, the separator itself and the right part of the string.

Syntax

str. partition(sep)

	sep

	Required. Separator for the returned tuple. If the separator is not found, partition returns a 3-tuple containing the string itself, followed by two empty strings.

Return Value

tuple

Time Complexity

#TODO

Example

>>> "AB-CD-EF".partition('-')
('AB', '-', 'CD-EF')
>>> "AB-CD-EF".partition(' ')
('AB-CD-EF', '', '')
>>> "AB-CD-EF".partition('D')
('AB-C', 'D', '-EF')

Example 2

>>> "image.png".partition('.') # this example breaks image file-path into its components
('image', '.', 'png')

See Also

rpartition() for version that splits from right.

replace

Description

Returns a copy of the string with a specified substring replaced specified number of times.

Syntax

str. replace(old, new[, count])

	old

	Required. String to be replaced.

	new

	Optional. String to replace the old one.

	count

	Optional. Number of old occurrences to replace.

Return Value

str

Time Complexity

#TODO

Example

>>> "ABCAB".replace('AB', 'ab')
'abCab'
>>> "ABCAB".replace('YZ', 'ab')
'ABCAB'
>>> "ABCAB".replace('AB', 'ab', 1)
'abCAB'
>>> "ABCAB".replace('AB', 'ab', 2)
'abCab'

See Also

str.translate()

rfind

Description

Returns the index of the last occurrence of the string searched for.

Syntax

str. rfind(sub[, start[, end]])

	sub

	Required. The string searched for.

	start

	Optional. Search start position.

	end

	Optional. Search end position.

Return Value

int

Time Complexity

#TODO

Remarks

Returns -1 if sub is not found.

The rfind() method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

Example

>>> "ABAB".rfind("B")
3
>>> "ABAB".rfind("B", 0, 2)
1
>>> "ABAB".rfind("B", 2)
3

See Also

`rfind()`_

index()

rindex()

rindex

Description

Returns the index of the first occurrence of the string searched for (raises ValueError if not found).

Syntax

str. rindex(sub[, start[, end]])

	sub

	Required. The string searched for.

	start

	Optional. Search start position.

	end

	Optional. Search end position.

Return Value

int

Time Complexity

#TODO

Example

>>> "ABAB".rindex("B")
3
>>> "ABAB".rindex("B", 2, 4)
3
>>> "ABAB".rindex("B", 2)
3
>>> "ABAB".rindex("C")
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
ValueError: substring not found

See Also

find()

rfind()

index()

rjust

Description

Returns the string right justified in a string of specified length.

Syntax

str. rjust(width[, fillchar])

	width

	Required. The width of the field containing the string.

	fillchar

	Optional. Specifies the padding character (default is a space).

Return Value

str

Time Complexity

#TODO

Remarks

The original string is returned if width is less than or equal to len(str).

Example

>>> "ABC".rjust(10)
' ABC'
>>> "ABC".rjust(10, "#")
'#######ABC'
>>> "ABC".rjust(2, "#")
'ABC'

See Also

ljust(), rjust(), center()

rpartition

Description

Returns a tuple containing the left part of the string split by the specified separator, the separator itself and the right part of the string (starting from right).

Syntax

str. rpartition(sep)

	sep

	Required. Separator for the returned tuple. If the separator is not found, partition returns a 3-tuple containing two empty strings, followed by the string itself.

Return Value

tuple

Time Complexity

#TODO

Example 1

>>> "AB-CD-EF".rpartition('-')
('AB-CD', '-', 'EF')
>>> "AB-CD-EF".rpartition(' ')
('', '', 'AB-CD-EF')
>>> "AB-CD-EF".rpartition('D')
('AB-C', 'D', '-EF')

Example 2

>>> "image.png".rpartition('.') # this example breaks image file-path into its components
('image', '.', 'png')

See Also

partition()

rsplit

Description

Returns a list of the words in the string, separated by the delimiter string (starting from right).

Syntax

str. rsplit([sep[, maxsplit]])

	sep

	Optional. Character dividing the string into split groups; default is space.

	maxsplit

	Optional. Number of splits to do; default is -1 which splits all the items.

Return Value

list

Time Complexity

#TODO

Example 1

>>> ' a b c '.rsplit()
['a', 'b', 'c']
>>> ' a b c '.rsplit(None, 1)
[' a b', 'c']
>>> ' a b c '.rsplit(None, 2)
[' a', 'b', 'c']
>>> ' a b c '.rsplit(None, 3)
['a', 'b', 'c']
>>> ' a b c '.rsplit(None, 4)
['a', 'b', 'c']
>>> ' a b c '.rsplit(None, 5)
['a', 'b', 'c']

Example 2

>>> '----a---b--c-'.rsplit('-')
['', '', '', '', 'a', '', '', 'b', '', 'c', '']
>>> '----a---b--c-'.rsplit('-', 1)
['----a---b--c', '']
>>> '----a---b--c-'.rsplit('-', 2)
['----a---b-', 'c', '']
>>> '----a---b--c-'.rsplit('-', 3)
['----a---b', '', 'c', '']
>>> '----a---b--c-'.rsplit('-', 4)
['----a--', 'b', '', 'c', '']
>>> '----a---b--c-'.rsplit('-', 5)
['----a-', '', 'b', '', 'c', '']
>>> '----a---b--c-'.rsplit('-', 6)
['----a', '', '', 'b', '', 'c', '']

See Also

split()

rstrip

Description

Returns a copy of the string with trailing characters removed.

Syntax

str. rstrip([chars])

	chars

	Optional. String specifying the set of characters to be removed.
If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped.

Return Value

str

Time Complexity

#TODO

Example

>>> ' spacious '.rstrip()
' spacious'
>>> "AABAA".rstrip("A")
'AAB'
>>> "ABBA".rstrip("AB") # both AB and BA are stripped
''
>>> "ABCABBA".rstrip("AB")
'ABC'

See Also

strip() and lstrip()

split

Description

Returns a list of the words in the string, separated by the delimiter string.

Syntax

str. split([sep[, maxsplit]])

	sep

	Optional. Character dividing the string into split groups; default is space.

	maxsplit

	Optional. Number of splits to do; default is -1 which splits all the items.

Return Value

list

Time Complexity

#TODO

Remarks

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example,

>>> '1,,2'.split(',')

returns [‘1’, ‘’, ‘2’]). The sep argument may consist of multiple characters (for example,

>>> '1<>2<>3'.split('<>')

returns [‘1’, ‘2’, ‘3’]). Splitting an empty string with a specified separator returns [‘’].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a None separator returns [].

Example 1

>>> ' a b c '.split()
['a', 'b', 'c']
>>> ' a b c '.split(None)
['a', 'b', 'c']
>>> ' a b c '.split(' ', 1)
['', 'a b c ']
>>> ' a b c '.split(' ', 2)
['', 'a', 'b c ']
>>> ' a b c '.split(' ', 3)
['', 'a', 'b', 'c ']
>>> ' a b c '.split(' ', 4)
['', 'a', 'b', 'c', '']
>>> ' a b c '.split(' ', 5)
['', 'a', 'b', 'c', '']

Example 2

>>> '-a-b-c-'.split('-')
['', 'a', 'b', 'c', '']
>>> '-a-b-c-'.split('-', 1)
['', 'a-b-c-']
>>> '-a-b-c-'.split('-', 2)
['', 'a', 'b-c-']
>>> '-a-b-c-'.split('-', 3)
['', 'a', 'b', 'c-']
>>> '-a-b-c-'.split('-', 4)
['', 'a', 'b', 'c', '']
>>> '-a-b-c-'.split('-', 5)
['', 'a', 'b', 'c', '']

Example 3

>>> '----a---b--c-'.split('-')
['', '', '', '', 'a', '', '', 'b', '', 'c', '']
>>> '----a---b--c-'.split('-', 1)
['', '---a---b--c-']
>>> '----a---b--c-'.split('-', 2)
['', '', '--a---b--c-']
>>> '----a---b--c-'.split('-', 3)
['', '', '', '-a---b--c-']
>>> '----a---b--c-'.split('-', 4)
['', '', '', '', 'a---b--c-']
>>> '----a---b--c-'.split('-', 5)
['', '', '', '', 'a', '--b--c-']
>>> '----a---b--c-'.split('-', 6)
['', '', '', '', 'a', '', '-b--c-']

See Also

rsplit() for version that splits from the right

splitlines

Description

Returns a list of the lines in the string, breaking at line boundaries.

Syntax

str. splitlines([keepends])

	keepends

	Optional. When set to True line breaks are included in the resulting list.

Return Value

list

Time Complexity

#TODO

Remarks

This method uses the universal newlines approach to splitting lines.

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line.

Example

>>> "AB\nCD\n".splitlines()
['AB', 'CD']
>>> "AB\nCD\n".splitlines(True)
['AB\n', 'CD\n']
>>> "\n\n".splitlines()
['', '']
>>> "".splitlines()
[]

See Also

split(), rsplit(), partition(), rpartition()

startswith

Description

Returns a Boolean stating whether a string starts with the specified prefix.

Syntax

str. startswith(prefix[, start[, end]])

	prefix

	Required. The substring looked for. prefix can also be a tuple of prefixes to look for.

	start

	Optional. Specifies beginning position for the search.

	end

	Optional. Specifies ending position for the search.

Return Value

bool

Time Complexity

#TODO

Example

>>> "log_A1.csv".startswith("log")
True
>>> "log_A1.csv".startswith(("log", "out"))
True
>>> "in_A1.csv".startswith(("log", "out"))
False
>>> "013232_log_B.csv".startswith("log", 7)
True

See Also

#TODO

Literal Syntax

int types can be simply initialized by using numeric values or obtained as a result of an expression.

Example

>>> 2
2
>>> 2+2
4
>>> 2**30
1073741824
>>> -1073741824
-1073741824

Overview

The items of a string are characters. There is no separate character type; a character is represented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions chr() and ord() convert between characters and nonnegative integers representing the byte values. Bytes with the values 0-127 usually represent the corresponding ASCII values, but the interpretation of values is up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read from a file.
Strings are immutable sequences.

index

Description

Returns the index of the last occurrence of the string searched for (raises ValueError if not found).

Syntax

str. index(sub[, start[, end]])

	sub

	Required. The string searched for.

	start

	Optional. Search start position.

	end

	Optional. Search end position.

Return Value

int

Time Complexity

#TODO

Example

>>> "ABAB".index("B")
1
>>> "ABAB".index("B", 2, 4)
3
>>> "ABAB".index("B", 2)
3
>>> "ABAB".index("C")
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
ValueError: substring not found

See Also

find()

rfind()

`index()`_

strip

Description

Returns a copy of the string with the leading and trailing characters removed.

Syntax

str. strip([chars])

	chars

	Optional. String specifying the set of characters to be removed.
If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped.

Return Value

str

Time Complexity

#TODO

Example 1

>>> ' spacious '.strip()
'spacious'
>>> "AABAA".strip("A")
'B'
>>> "ABBA".strip("AB")
''
>>> "ABCABBA".strip("AB")
'C'

Example 2

>>> 'www.example.com'.strip('cmowz.') # this example extracts web address
'example'

See Also

lstrip() and rstrip()

swapcase

Description

Returns a copy of the string with case swapped.

Syntax

str. swapcase()

Return Value

str

Time Complexity

#TODO

Remarks

For 8-bit strings, this method is locale-dependent.

Example

>>> 'foo'
'foo'
>>> 'foo'.swapcase()
'FOO'
>>> 'Foo'.swapcase()
'fOO'
>>> 'fOo'.swapcase()
'FoO'
>>> '123'.swapcase()
'123'
>>> '!@#'.swapcase()
'!@#'
>>> ' '.swapcase()
' '

See Also

upper

lower

capitalize

title

title

Description

Returns a copy of the string in Title Case.

Syntax

str. title()

Return Value

str

Time Complexity

#TODO

Remarks

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result:

Example 1

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

Example 2

>>> import re
>>> def titlecase(s):
... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0].upper() +
... mo.group(0)[1:].lower(), s)
...
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

See Also

upper

lower

capitalize

swapcase

translate

Description

Returns a copy of the string with characters mapped through the given translation table or deleted.

Syntax

str. translate(table[, deletechars])

	table

	Required. Must be a string of length 256.

	deletechars

	Optional. Characters to be deleted from the string.

Return Value

str

Time Complexity

#TODO

Remarks

You can use the maketrans() helper function in the string module to create a translation table.

For string objects, set the table argument to None for translations that only delete characters:

Example 1

>>> # this example deletes all the vowels from the string
>>> "ABCDE".translate(None, "AEIOU")
'BCD'

Example 2

>>> import string
>>> translation_table = string.maketrans('aeiou', '!@#$%')
>>> translation_table # note the replaced vowels
'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`!bcd@fgh#jklmn$pqrst%vwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff'
>>> translation_table = string.maketrans('AEIOU', '!@#$%')
>>> "ABCDE".translate(translation_table)
'!BCD@'
>>> "ABCDE".translate(translation_table, "B")
'!CD@'

See Also

#TODO

upper

Description

Returns a copy of the string in UPPER CASE.

Syntax

str. upper()

Return Value

str

Time Complexity

#TODO

Remarks

Note that s.upper().isupper() might be False if s contains uncased characters or if the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

For 8-bit strings, this method is locale-dependent.

Example

>>> 'abc'.upper()
'ABC'
>>> 'ABC'.upper()
'ABC'
>>> 'Abc'.upper()
'ABC'
>>> '123'.upper()
'123'
>>> '!@#'.upper()
'!@#'
>>> ' '.upper()
' '
>>> ''.upper()
''

See Also

lower

capitalize

title

swapcase

zfill

Description

Returns the numeric string left filled with zeros in a string of specified length.

Syntax

str. zfill(width)

	width

	Required. Width of the padding field.

Return Value

str

Time Complexity

#TODO

Remarks

A sign prefix is handled correctly. The original string is returned if width is less than or equal to len(str).

Example

>>> '350'.zfill(1)
'350'
>>> '350'.zfill(2)
'350'
>>> '350'.zfill(3)
'350'
>>> '350'.zfill(4)
'0350'
>>> '350'.zfill(10)
'0000000350'
>>> '350'.zfill(20)
'00000000000000000350'
>>> '-350'.zfill(5)
'-0350'

See Also

#TODO

classmethod

When this method is called, we pass the class as the first argument instead of the instance of that class (as we normally do with methods). This means you can use the class and its properties inside that method rather than a particular instance.

Canonical uses for that are alternate constructor methods.

Constructors

	classmethod

	Returns a class method for the function.

slice

clear

Description

Removes all items from the dictionary.

Syntax

dict. clear()

Return Value

None

Time Complexity

#TODO

Example

>>> d = {'a': 1, 'b': 2}
>>> d
{'a': 1, 'b': 2}
>>> d.clear()
>>> d
{}

See Also

#TODO

copy

Description

Returns a shallow copy of the dictionary.

Syntax

dict. copy()

Return Value

dict

Time Complexity

#TODO

Example 1

>>> d = {'a': 1, 'b': 2}
>>> dd = d.copy()
>>> dd
{'a': 1, 'b': 2}

Example 2

>>> d = {'a': 1, 'b': [1, 2]}
>>> dd = d.copy()
>>> dd
{'a': 1, 'b': [1, 2]}
>>> d['b'][0] = 'foo' # since copy() returns a shallow copy
>>> dd # (only references to the copied elements are returned),
{'a': 1, 'b': ['foo', 2]} # altering the objects in original dictionary will affect it’s copy as well

See Also

#TODO

- (difference)

Description

Returns the elements that appear in the dictview and not in the specified iterable.

Syntax

dictview - other

	other

	Any iterable item.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {'a': 1, 'b': 2}.viewitems() - {'b': 2, 'c': 3}.viewitems()
set([('a', 1)])
>>> {'a': 1, 'b': 2}.viewkeys() - {'b': 2, 'c': 3}.viewkeys()
set(['a'])

Example 2

>>> {'a': 1, 'b': 2}.viewkeys() - ['b', 'c']
set(['a'])
>>> {'a': 1, 'b': 2}.viewitems() - [('b', 2), ('c', 3)]
set([('a', 1)])

fromkeys

Description

Returns a new dictionary with keys from a supplied iterable and values all set to specified value.

Syntax

dict. fromkeys(iterable[, value])

	iterable

	Required. Any iterable.

	value

	Optional. Default value for the keys. Default value is None.

Return Value

dict

Time Complexity

#TODO

Example 1

>>> l = [1, 2, 3]
>>> d = {}
>>> d.fromkeys(l)
{1: None, 2: None, 3: None}

Example 2

>>> d = {}.fromkeys([1, 2, 3], "NULL")
>>> d
{1: 'NULL', 2: 'NULL', 3: 'NULL'}

See Also

#TODO

get

Description

Returns the value for key in the dictionary; if not found returns a default value.

Syntax

dict. get(key[, default])

	key

	Required. A key in the dictionary.

	default

	Optional. Value that is returned when the key is not found. Defaults to None, so that this method never raises a KeyError.

Return Value

The value of the key.

Time Complexity

#TODO

Example

>>> d = {'a': 1, 'b': 2}
>>> d.get('a')
1
>>> d.get('x')
>>> d.get('x', 'foobar')
'foobar'

See Also

#TODO

has_key

Description

Returns a Boolean stating whether the specified key is in the dictionary.

Syntax

dict. has_key(key)

	key

	Required. The key you are looking for.

Return Value

**bool*

Time Complexity

#TODO

Note

has_key() is deprecated in favor of key in d.

Example

>>> d = {'a': 1, 'b': 2}
>>> d.has_key('a')
True
>>> d.has_key('x')
False
>>> 'a' in d # <= this is recommended instead
True

See Also

#TODO

dict

Dictionaries are mutable unordered collections (they do not record element position or order of insertion) of key-value pairs. Keys within the dictionary must be unique and must be hashable. That includes types like numbers, strings and tuples. Lists and dicts can not be used as keys since they are mutable. Dictionaries in other languages are also called hash tables or associative arrays.

Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Constructors

	dict()

	Returns a dictionary object.

	{} dict comprehension

	Returns a dictionary based on existing iterables.

	literal syntax

	Initializes a new instance of the dict type.

Methods

Contents Access

	get

	Returns the value for key in the dictionary; if not found returns a default value.

	items

	Returns a copy of the dictionary’s list of (key, value) pairs.

	keys

	Returns a copy of the dictionary’s list of keys.

	values

	Returns a copy of the dictionary’s list of values.

Adding Elements

	update

	Adds key:value pairs to the dictionary.

Deleting

	clear

	Removes all items from the dictionary.

	pop

	Removes the key in the dictionary and returns its value.

	popitem

	Removes and returns an arbitrary key:value pair from the dictionary.

Information

	has_key

	Returns a Boolean stating whether the specified key is in the dictionary.

Other

	copy

	Returns a shallow copy of the dictionary.

	fromkeys

	Returns a new dictionary with keys from a supplied iterable and values all set to specified value.

Iterators

	iteritems

	Returns an iterator over the dictionary’s key:value pairs.

	itervalues

	Returns an iterator over the dictionary’s values.

	iterkeys

	Returns an iterator over the dictionary’s keys.

Dictionary Views

	viewitems

	Returns a new view of the dictionary’s items (key:value pairs).

	viewvalues

	Returns a new view of the dictionary’s values.

	viewkeys

	Returns a new view of the dictionary’s keys.

Dictionary Views Operators

	& (intersection)

	Returns only the elements that appear both in the dictview and the specified iterable.

	^ (symmetric difference)

	Returns the elements that appear in either the dictview or the specified iterable, but not in both.

	- (difference)

	Returns the elements that appear in the dictview and not in the specified iterable.

	| (union)

	Returns all the elements that appear in the dictview and the specified iterable.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	sum

	Returns a total of the items contained in the iterable object.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

Misc

	[] (key lookup)

	Returns the value associated with the given key.

& (intersection)

Description

Returns only the elements that appear both in the dictview and the specified iterable.

Syntax

dictview & other

	other

	Any iterable item.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {'a': 1, 'b': 2}.viewitems() & {'b': 2, 'c': 3}.viewitems()
set([('b', 2)])
>>> {'a': 1, 'b': 2}.viewkeys() & {'b': 2, 'c': 3}.viewkeys()
set(['b'])

Example 2

>>> {'a': 1, 'b': 2}.viewkeys() & ['b', 'c']
set(['b'])
>>> {'a': 1, 'b': 2}.viewitems() & [('b', 2), ('c', 3)]
set([('b', 2)])

items

Description

Returns a copy of the dictionary’s list of (key, value) pairs.

Syntax

dict. items()

Return Value

list

Time Complexity

#TODO

Remarks

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations, and depends on the dictionary’s history of insertions and deletions.

If items(), keys(), values(), iteritems(), iterkeys(), and itervalues() are called with no intervening modifications to the dictionary, the lists will directly correspond. This allows the creation of (value, key) pairs using zip():

>>> pairs = zip(d.values(), d.keys())

The same relationship holds for the iterkeys() and itervalues() methods: pairs = zip(d.itervalues(), d.iterkeys()) provides the same value for pairs. Another way to create the same list is pairs = [(v, k) for (k, v) in d.iteritems()].

Example

>>> d = {'a': 1, 'b': 2}
>>> d.items()
[('a', 1), ('b', 2)]

See Also

#TODO

iteritems

Description

Returns an iterator over the dictionary’s (key, value) pairs.

Syntax

dict. iteritems()

Return Value

iterator

Time Complexity

#TODO

Remarks

See also dict.items().
Using iteritems() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.

Example 1

>>> d = {'a': 1, 'b': 2}
>>> di = d.iteritems()
>>> di.next()
('a', 1)
>>> di.next()
('b', 2)
>>> di.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> d = {'a': 1, 'b': 2}
>>> di = d.iteritems()
>>> di.next()
('a', 1)
>>> d['x'] = 'foobar' # adding a new key:value pair during iterarion;
>>> di.next() # that raises an error later on
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

iterkeys

Description

Returns an iterator over the dictionary’s keys.

Syntax

dict. iterkeys()

Return Value

iterator

Time Complexity

#TODO

Remarks

See also dict.items().
Using iterkeys() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.

Example 1

>>> d = {'a': 1, 'b': 2}
>>> dki = d.iterkeys()
>>> dki.next()
'a'
>>> dki.next()
'b'
>>> dki.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> d = {'a': 1, 'b': 2}
>>> dki = d.iterkeys()
>>> dki.next()
'a'
>>> d['x'] = 'foobar' # adding a new key:value pair during iterarion
>>> dki.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

itervalues

Description

Returns an iterator over the dictionary’s values.

Syntax

dict. itervalues()

Return Value

iterator

Time Complexity

#TODO

Remarks

See the note for dict.items().
Using itervalues() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.

Example 1

>>> d = {'a': 1, 'b': 2}
>>> dvi = d.itervalues()
>>> dvi.next()
1
>>> dvi.next()
2
>>> dvi.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

Example 2

>>> d = {'a': 1, 'b': 2}
>>> dvi = d.itervalues()
>>> dvi.next()
1
>>> d['x'] = 'foobar' # adding a new key:value pair during iterarion
>>> dvi.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

keys

Description

Returns a copy of the dictionary’s list of keys.

Syntax

dict. keys()

Return Value

list

Time Complexity

#TODO

Remarks

See the note for dict.items().

Example

>>> d = {'a': 1, 'b': 2}
>>> d.keys()
['a', 'b']

See Also

#TODO

Literal Syntax

Dictionaries can be initialized by enclosing comma separated colon delimited key: value pairs in squiggly brackets {}. Keys within the dict must be unique. Dictionaries do not maintain the items order.

Example 1

>>> d = {'A': 1, 'B': 2}
>>> d
{'A': 1, 'B': 2}

Any duplicated keys are discarded during dict creation.

Example 2

>>> d = {'A': 1, 'B': 2, 'A': 3}
>>> d
{'A': 3, 'B': 2}

pop

Description

Removes the key in the dictionary and returns its value.

Syntax

dict. pop(key[, default])

	key

	Required. A dictionary key.

	default

	Optional. Default value to be returned if key is not found.

Return Value

The same as deleted item.

Time Complexity

#TODO

Remarks

If default is not given and key is not in the dictionary, a KeyError is raised.

Example

>>> d = {'a': 1, 'b': 2}
>>> d.pop('a')
1
>>> d.pop('x', 'foobar')
'foobar'
>>> d
{'b': 2}

See Also

#TODO

popitem

Description

Removes and returns an arbitrary (key, value) pair from the dictionary.

Syntax

dict. popitem()

Return Value

tuple

Time Complexity

#TODO

Remarks

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary is empty, calling popitem() raises a KeyError.

Example

>>> d = {'a': 1, 'b': 2}
>>> d.popitem()
('a', 1)
>>> d.popitem()
('b', 2)
>>> d.popitem()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
KeyError: 'popitem(): dictionary is empty'

See Also

#TODO

 setdefault

Description

Returns a value of the key in the dictionary; if key is not found inserts that key with the specified value and returns that value.

Syntax

dict. setdefault(key[, default])

	key

	Required. A dictionary key.

	default

	Optional. The value that is inserted when the key is not found. Defaults to None.

Return Value

The value of the key.

Time Complexity

#TODO

Example

>>> d = {'a': 1, 'b': 2}
>>> d.setdefault('a')
1
>>> d
{'a': 1, 'b': 2}
>>> d.setdefault('x')
>>> d
{'a': 1, 'b': 2, 'x': None}
>>> d.setdefault('y', 'foobar')
'foobar'
>>> d
{'a': 1, 'b': 2, 'x': None, 'y': 'foobar'}

See Also

#TODO

^ (symmetric difference)

Description

Returns the elements that appear in either the dictview or the specified iterable, but not in both.

Syntax

dictview ^ other

	other

	Any iterable item.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {'a': 1, 'b': 2}.viewitems() ^ {'b': 2, 'c': 3}.viewitems()
set([('a', 1), ('c', 3)])
>>> {'a': 1, 'b': 2}.viewkeys() ^ {'b': 2, 'c': 3}.viewkeys()
set(['a', 'c'])

Example 2

>>> {'a': 1, 'b': 2}.viewkeys() ^ ['b', 'c']
set(['a', 'c'])
>>> {'a': 1, 'b': 2}.viewitems() ^ [('b', 2), ('c', 3)]
set([('a', 1), ('c', 3)])

| (union)

Description

Returns all the elements that appear in the dictview and the specified iterable.

Syntax

dictview | other

	other

	Any iterable item.

Return Value

set

Time Complexity

#TODO

Example 1

>>> {'a': 1, 'b': 2}.viewitems() | {'b': 2, 'c': 3}.viewitems()
set([('a', 1), ('b', 2), ('c', 3)])
>>> {'a': 1, 'b': 2}.viewkeys() | {'b': 2, 'c': 3}.viewkeys()
set(['a', 'b', 'c'])

Example 2

>>> {'a': 1, 'b': 2}.viewkeys() | ['b', 'c']
set(['a', 'b', 'c'])
>>> {'a': 1, 'b': 2}.viewitems() | [('b', 2), ('c', 3)]
set([('a', 1), ('b', 2), ('c', 3)])

update

Description

Adds key:value elements to the dictionary.

Syntax

dict. update([mapping])

	mapping

	Required. Either another dictionary object or an iterable of key:value pairs (iterables of length two). If keyword arguments are specified, the dictionary is then updated with those key:value pairs.

Return Value

None

Time Complexity

#TODO

Example 1

>>> d = {'a': 1, 'b': 2}
>>> d.update({'a': 'I', 'c': 3})
>>> d
{'a': 'I', 'b': 2, 'c': 3}

Example 2

>>> d = {'a': 1, 'b': 2}
>>> d.update([('x', 10), ('y', 20)])
>>> d
{'a': 1, 'b': 2, 'x': 10, 'y': 20}

Example 3

>>> d = {'a': 1, 'b': 2}
>>> d.update(foo='bar', sn='afu')
>>> d
{'a': 1, 'b': 2, 'foo': 'bar', 'sn': 'afu'}

See Also

#TODO

values

Description

Returns a copy of the dictionary’s list of values.

Syntax

dict. values()

Return Value

list

Time Complexity

#TODO

Remarks

See the note for dict.items().

Example

>>> d = {'a': 1, 'b': 2}
>>> d.values()
[1, 2]

See Also

#TODO

viewitems

Description

Returns a new view of the dictionary’s items ((key, value) pairs).

Syntax

dict. viewitems()

Return Value

dict_items object

Time Complexity

#TODO

Remarks

The objects returned by dict.viewkeys(), dict.viewvalues() and dict.viewitems() are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes.

Example

>>> d = {'a': 1, 'b': 2}
>>> dv = d.viewitems()
>>> dv
dict_items([('a', 1), ('b', 2)])
>>> d['a'] = 'foobar'
>>> d
{'a': 'foobar', 'b': 2}
>>> dv #note that the view returns the
dict_items([('a', 'foobar'), ('b', 2)]) #current contents of the dictionary

See Also

See dict views set operators.

viewkeys

Description

Returns a new view of the dictionary’s keys.

Syntax

dict. viewitems()

Return Value

dict_keys object

Time Complexity

#TODO

Remarks

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries are generally not unique.)

Example

>>> d = {'a': 1, 'b': 2}
>>> dk = d.viewkeys()
>>> dk
dict_keys(['a', 'b'])

See Also

See dict views set operators.

viewvalues

Description

Returns a new view of the dictionary’s values.

Syntax

dict. viewvalues()

Return Value

dict_values object

Time Complexity

#TODO

Example

>>> d = {'a': 1, 'b': 2}
>>> dv = d.viewvalues()
>>> dv
dict_values([1, 2])

See Also

See dict views set operators.

0… (Base Designators)

Description

Returns a decimal integer converted from the specified base.

Syntax

Base 2 (binary):

0b[0-1]

0B[0-1]

Base 8 (octal):

0o[0-7]

0O[0-7]

0[0-7]

Base 16 (hexadecimal, hex):

0x[0-9a-fA-F]

0X[0-9a-fA-F]

Remarks

Lowercase and uppercase letters work exactly the same.

Example 1

>>> 0b111
7
>>> 0B111
7

Example 2

>>> 0o11
9
>>> 0O11
9
>>> 011
9

Example 3

>>> 0xff
255
>>> 0Xff
255

See Also

#TODO

bit_length

Description

Returns the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros.

Syntax

int. bit_length()

Return Value

int

Remarks

If x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1) <= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm, then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Example

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

int

These represent numbers in the range -2147483648 through 2147483647. (The range may be larger on machines with a larger natural word size, but not smaller.) When the result of an operation would fall outside this range, the result is normally returned as a long integer (in some cases, the exception OverflowError is raised instead). For the purpose of shift and mask operations, integers are assumed to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits from the user (i.e., all 4294967296 different bit patterns correspond to different values).

Plain integers (also just called integers) are implemented using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum plain integer value for the current platform; the minimum value is -sys.maxint - 1). Long integers have unlimited precision.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long integer. Integer literals with an ‘L’ or ‘l’ suffix yield long integers (‘L’ is preferred because 1l looks too much like eleven!).

Constructors

	int()

	Returns an expression converted into an integer number.

	literal syntax

	Initializes a new instance of the int type.

Base Designators

	0… (Base Designators)

	Returns a decimal integer converted from the specified base.

Methods

	bit_length

	Returns the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros.

long

These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Constructors

	long()

	Returns an expression converted into a long integer number.

	literal syntax

	Initializes a new instance of the long type.

Base Designators

	0… (Base Designators)

	Returns a decimal integer converted from the specified base.

Methods

	bit_length

	Returns the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros.

Literal Syntax

int types can be simply initialized by using numeric values or obtained as a result of an expression.

Example

>>> 2
2
>>> 2+2
4
>>> 2**30
1073741824
>>> -1073741824
-1073741824

Literal Syntax

long types can be simply intilized by using numeric values or obtained as a result of an expression. Values must be larger the int type.’ L’ or ‘l’ prefix can be used as well without meeting the size requirement.

Example

>>> 10l
10L
>>> 10L
10L
>>> 2**32
4294967296L

 Shebang (Unix)
From Wikipedia, the free encyclopedia

It has been suggested that this article be merged with Interpreter directive. (Discuss) Proposed since June 2014.

A “shebang” character sequence

In computing, a shebang (also called a sha-bang,[1][2][3] hashbang,[4][5] pound-bang,[2][6] or hash-pling[2][7]), is the character sequence consisting of the characters number sign and exclamation mark (that is, “#!”) at the beginning of a script.

Under Unix-like operating systems, when a script with a shebang is run as a program, the program loader parses the rest of the script’s initial line as an interpreter directive; the specified interpreter program is run instead, passing to it as an argument the path that was initially used when attempting to run the script.[8] For example, if a script is named with the path “path/to/script”, and it starts with the following line:

#!/bin/sh

then the program loader is instructed to run the program “/bin/sh” instead (usually this is the Bourne shell or a compatible shell), passing “path/to/script” as the first argument.

The shebang line is usually ignored by the interpreter because the “#” character is a comment marker in many scripting languages; some language interpreters that do not use the hash mark to begin comments (such as Scheme) still may ignore the shebang line in recognition of its purpose.[9]

Contents

1 Syntax
2 Examples
3 Purpose

3.1 Strengths

	4 Portability

	4.1 Magic number
4.2 Security issues

5 Etymology
6 History
7 Notes
8 See also
9 References
10 External links

Syntax

The form of a shebang interpreter directive is as follows:[8]

#! interpreter [optional-arg]

The interpreter must be an absolute path to an executable[1] program (if this interpreter program is a script, it must contain a shebang as well). The optional‑arg should either not be included or it should be a string that is meant to be a single argument (for reasons of portability, it should not contain any whitespace).
Examples

Some typical shebang lines:

#!/bin/sh — Execute the file using sh, the Bourne shell, or a compatible shell
#!/bin/csh -f — Execute the file using csh, the C shell, or a compatible shell, and suppress the execution of the user’s .cshrc file on startup
#!/usr/bin/perl -T — Execute using Perl with the option for taint checks

Shebang lines may include specific options that are passed to the interpreter (see the Perl example above). However, implementations vary in the parsing behavior of options; for portability, only one option should be specified (if any) without any embedded whitespace. Further portability guidelines are found below.
Purpose

Interpreter directives allow scripts and data files to be used as system commands, hiding the details of their implementation from users and other programs, by removing the need to prefix scripts with their interpreter on the command line.

Consider a Bourne shell script that is identified by the path “some/path/to/foo” and that has the following as its initial line:

#!/bin/sh -x

If the user attempts to run this script with the following command line (specifying “bar” and “baz” as arguments):

some/path/to/foo bar baz

then the result would be similar to having actually executed the following command line instead:

/bin/sh -x some/path/to/foo bar baz

If “/bin/sh” specifies the Bourne shell, then the end result is that all of the shell commands in the file “some/path/to/foo” are executed with the positional variables $1 and $2 set to “bar” and “baz”, respectively. Also, because the initial number sign is the character used to introduce comments in the Bourne shell language (and in the languages understood by many other interpreters), the entire shebang line is ignored by the interpreter.

However, it is up to the interpreter to ignore the shebang line; thus, a script consisting of the following two lines simply echos both lines to standard output when run:

#!/bin/cat
Hello world!

Strengt

real

Description

Retrieves the real component of this number.

Syntax

complex. real

Return Value

float

Example

>>> (1+3j).real
1.0

See Also

imag

 # -- Mode: Python; coding: utf-8; indent-tabs-mode: t; c-basic-offset: 4; tab-width: 4 --

real

Description

Retrieves the real component of this number.

Syntax

complex. real

Return Value

float

Example

>>> (1+3j).real
1.0

See Also

imag

real

Description

Retrieves the real component of this number.

Syntax

complex. real

Return Value

float

Example

>>> (1+3j).real
1.0

See Also

imag

close

Description

Raises a GeneratorExit at the point where the generator function was paused.

Syntax

generator. close()

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the generator function then raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal exit.

Example

>>> g = (n**2 for n in (1, 2, 3))
>>> g.next()
1
>>> g.close()
>>> g.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

See Also

#TODO

generator

Generator iterators are created by the yield keyword. The real difference between them and ordinary functions is that yield unlike return is both exit and entry point for the function’s body. That means, after each yield call not only the generator returns something but also remembers its state. Calling the next() method brings control back to the generator starting after the last executed yield statement. Each yield statement is executed only once, in the order it appears in the code. After all the yield statements have been executed iteration ends.

Since generators support iterator protocol, they can be used in for loops.

Constructors

`yield`_

	() generator expression

	Returns an iterator over elements created by using list comprehension.

Methods

	next

	Starts the execution of a generator function or resumes it at the last executed yield expression.

	send

	Resumes the execution and “sends” a value into the generator function.

	throw

	Raises a specified exception at the point where generator was paused, and returns the next value yielded by the generator function.

	close

	Raises a GeneratorExit at the point where the generator function was paused.

next

Description

Starts the execution of a generator function or resumes it at the last executed yield expression.

Syntax

generator. next()

Return Value

#TODO

Time Complexity

#TODO

Remarks

When a generator function is resumed with a next() method, the current yield expression always evaluates to None. The execution then continues to the next yield expression, where the generator is suspended again, and the value of the expression_list is returned to next()’s caller. If the generator exits without yielding another value, a StopIteration exception is raised.

Example 1

>>> def gen():
... yield 1
... yield 2
... yield 3
...
>>> g = gen()
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.next()
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

See Also

#TODO

send

Description

Resumes the execution and “sends” a value into the generator function.

Syntax

generator. send(value)

	value

	Required. The value of the item to be sent.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The value argument becomes the result of the current yield expression. The send() method returns the next value yielded by the generator, or raises StopIteration if the generator exits without yielding another value. When send() is called to start the generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Example

>>> def gen(n=None):
... for i in range(n):
... n = yield n
...
>>> g = gen(3)
>>> g.next()
3
>>> g.next()
>>> g.send(10)
10
>>> g.send(10)
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
StopIteration

See Also

#TODO

throw

Description

Raises a specified exception at the point where generator was paused, and returns the next value yielded by the generator function.

Syntax

generator. throw(type[, value[, traceback]])

	type

	Required. Type of execpetion.

	value

	Optional. The value of the error.

	traceback

	Optional. A traceback object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

If the generator exits without yielding another value, a StopIteration exception is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

Example 1

>>> # this example shows how to use throw method
>>> g = (n**2 for n in (1, 2, 3))
>>> g.throw(TypeError)
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "<interactive input>", line 1, in <genexpr>
TypeError

Example 2

>>> # this example shows how to use throw method with value argument
>>> g = (n**2 for n in (1, 2, 3))
>>> g.throw(TypeError, 'ERROR')
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "<interactive input>", line 1, in <genexpr>
TypeError: ERROR

See Also

#TODO

str

The items of a string are characters. There is no separate character type; a character is represented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions chr() and ord() convert between characters and nonnegative integers representing the byte values. Bytes with the values 0-127 usually represent the corresponding ASCII values, but the interpretation of values is up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read from a file.

Strings are immutable sequences.

Constructors

	str()

	Returns a string containing a printable representation of an object.

literal syntax

Misc

	ASCII Table (0 - 127)

	Basic character set.

	…”” (String Designators)

	Returns a modified string.

	% (String Formatting Operator)

	Formats the string according to the specified format.

	Escape Characters

	List of valid escape characters.

	[] (index operator)

	Gives access to a sequence’s element.

	[::] (slicing)

	Gives access to a specified range of sequence’s elements.

Functions

	len

	Returns an int type specifying number of elements in the collection.

	min

	Returns the smallest item from a collection.

	max

	Returns the largest item in an iterable or the largest of two or more arguments.

	sorted

	Returns a sorted list from the iterable.

	reversed

	Returns a reverse iterator over a sequence.

	all

	Returns a Boolean value that indicates whether the collection contains only values that evaluate to True.

	any

	Returns a Boolean value that indicates whether the collection contains any values that evaluate to True.

	enumerate

	Returns an enumerate object.

	zip

	Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables.

Methods

Searching

	find

	Returns the index of the first occurrence of the string searched for.

	rfind

	Returns the index of the last occurrence of the string searched for.

	index

	Returns the index of the first occurrence of the string searched for (raises ValueError if not found).

	rindex

	Returns the index of the last occurrence of the string searched for (raises ValueError if not found).

Replacing

	replace

	Returns a copy of the string with a specified substring replaced specified number of times.

	translate

	Returns a copy of the string with characters mapped through the given translation table or deleted.

Leading and Trailing Characters

	lstrip

	Returns a copy of the string with leading characters removed.

	rstrip

	Returns a copy of the string with trailing characters removed.

	strip

	Returns a copy of the string with leading and trailing characters removed.

Splitting and Joining

	split

	Returns a list of the words in the string, separated by the delimiter string.

	rsplit

	Returns a list of the words in the string, separated by the delimiter string (starting from right).

	partition

	Returns a tuple containing the first part of the string split by the specified separator, the separator itself and the other part of the string.

	rpartition

	Returns a tuple containing the first part of the string split by the specified separator, the separator itself and the other part of the string (starting from right).

	splitlines

	Returns a list of the lines in the string, breaking at line boundaries.

	join

	Returns a string made from the elements of an iterable.

Changing Case

	upper

	Returns a copy of the string in UPPER CASE.

	lower

	Returns a copy of the string in lower case.

	capitalize

	Returns a copy of the string in Capital case.

	title

	Returns a copy of the string in Title Case.

	swapcase

	Returns a copy of the string with case swapped.

Information

	count

	Returns the number of non-overlapping occurrences of a substring in the searched string.

	startswith

	Returns a Boolean stating whether a string starts with the specified prefix.

	endswith

	Returns a Boolean stating whether a string ends with the specified suffix.

	isalnum

	Returns a Boolean stating whether the string contains only letters and digits.

	isalpha

	Returns a Boolean stating whether the string contains only letters.

	isdigit

	Returns a Boolean stating whether the string contains only digits.

	islower

	Returns a Boolean stating whether the string is in lower case.

	isspace

	Returns a Boolean stating whether the string contains only whitespace characters.

	istitle

	Returns a Boolean stating whether the string is in Title case.

	isupper

	Returns a Boolean stating whether the string is in UPPER CASE.

Formatting

	ljust

	Returns the string left justified in a string of specified length.

	rjust

	Returns the string right justified in a string of specified length.

	center

	Returns the string centered in a string of specified length.

	zfill

	Returns the numeric string left filled with zeros in a string of specified length.

	expandtabs

	Returns a copy of the string where all tab characters were replaced by spaces.

	format

	Returns a formatted version of the string.

Encodings

	decode

	Decodes the string using the codec registered for encoding.

	encode

	Returns an encoded version of the string.

translate

Description

Returns a copy of the string with characters mapped through the given translation table or deleted.

Syntax

str. translate(table[, deletechars])

	table

	Required. Must be a string of length 256.

	deletechars

	Optional. Characters to be deleted from the string.

Return Value

str

Time Complexity

#TODO

Remarks

You can use the maketrans() helper function in the string module to create a translation table.

For string objects, set the table argument to None for translations that only delete characters:

Example 1

>>> # this example deletes all the vowels from the string
>>> "ABCDE".translate(None, "AEIOU")
'BCD'

Example 2

>>> import string
>>> translation_table = string.maketrans('aeiou', '!@#$%')
>>> translation_table # note the replaced vowels
'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`!bcd@fgh#jklmn$pqrst%vwxyz{|}~\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff'
>>> translation_table = string.maketrans('AEIOU', '!@#$%')
>>> "ABCDE".translate(translation_table)
'!BCD@'
>>> "ABCDE".translate(translation_table, "B")
'!CD@'

See Also

#TODO

+ addition

Description

Returns the sum of two expressions.

Syntax

A + B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Example

>>> 2 + 2
4
>>> 2.0 + 2
4.0

See also

#TODO

+= Addition Assignment

Description

Adds a value and the variable and assigns the result to that variable.

Syntax

A += B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A + B.

Example

>>> a = 10
>>> a += 5
>>> a
15

See Also

#TODO

and

Description

Returns the first operand that evaluates to False or the last one if all are True.

Syntax

A and B

	A

	Any valid object.

	B

	Any valid object.

Return Value

The same as passed to the expression.

Time Complexity

#TODO

Remarks

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the __nonzero__() special method for a way to change this.)

The expression:

>>> x and y

first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Example 1

>>> 0 and '' and False
0
>>> 1 and '' and False
''
>>> 1 and 'A' and False
False
>>> 1 and 2 and 3
3

Example 2

>>> b = '' and 'ABCD'
>>> b
''
>>> b = 0 and 1
>>> b
0

See Also

#TODO

= Assignment

Description

Assigns a value to a variable(s).

Syntax

A = B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Assignment operation always works from right to left. The object that was referenced by the variable prior to the assignment is now dereferenced.

Example 1

>>> a = 10
>>> a = 5
>>> a
5

Multiple assignment also follows the right-to-left rule. Consider the following example:

Example 2

>>> a = b = c = 10
>>> a
10
>>> b
10
>>> c
10

First the integer 10 is assigned to the variable c, then the value of c (10) is assigned to b and b is assigned to a. After evaluating this expression all the variables are referencing the same object - integer 10.

Another case of assignment is a multi-variable assignment. Consider the following example:

Example 3

>>> a, b, c = 1, 2, 3 # <- this is a tuple
>>> a
1
>>> b
2
>>> c
3

Following right-to-left rule a tuple containing (1, 2, 3) is created, then it is iterated over and its consequent values are assigned to the comma separated list of variables on the left.

This syntax can be used to swap the values of two variables:

Example 4

>>> a = 0
>>> b = 1
>>> a, b = b, a
>>> a
1
>>> b
0

Another common use is when we want to assign new values based on existing values:

Example 5a

>>> a = 10
>>> b = 5
>>> a, b = a + b, a * b
>>> a
15
>>> b
50

this is different than:

Example 5b

>>> a = 10
>>> b = 5
>>> a = a + b
>>> b = a * b
>>> a
15
>>> b
75

See Also

#TODO

. (attribute access)

Description

Gives access to an object’s attribute.

Syntax

object.attribute

	object

	Any object.

	attribute

	The attribute to be accessed or created.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Note that Python is a dynamic language and attributes can be accessed and created explicitly.

Example 1

>>> "ABCD".islower()
False

Example 2

>>> # this example adds a new attribute to a class instance
>>> class Example:
... pass
...
>>> e = Example()
>>> e.dummy = 10

See Also

#TODO

& Bitwise AND

Description

Returns the result of bitwise AND of two integers.

Syntax

A & B

	A

	Integer object.

	B

	Integer object.

Remarks

Bitwise AND sets the bits in the result to 1 if both the corresponding bits in the two operands are 1.

Example 1

>>> bin(0b1111 & 0b1111)
'0b1111'
>>> bin(0b1111 & 0b0000)
'0b0'
>>> bin(0b0000 & 0b1111)
'0b0'
>>> bin(0b1010 & 0b1111)
'0b1010'

Example 2

>>> # this example checks if an integer is even/uneven using bitwise AND
>>> bool(8 & 1)
False
>>> bool(9 & 1)
True

See also

#TODO

&= Bitwise AND Assignment

Description

Performs bitwise AND and assigns value to the left operand.

Syntax

A &= B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to A = A & B.

Example

>>> b = 0b1111
>>> b &= 0b0101
>>> bin(b)
'0b101'

See Also

#TODO

| Bitwise Inclusive OR

Description

Returns the result of bitwise OR of two integers.

Syntax

A | B

	A

	Integer object.

	B

	Integer object.

Return Value

int

Time Complexity

#TODO

Remarks

Bitwise OR sets the bits in the result to 1 if either of the corresponding bits in the two operands is 1.

Example

>>> bin(0b1111 | 0b1111)
'0b1111'
>>> bin(0b1111 | 0b0000)
'0b1111'
>>> bin(0b0000 | 0b1111)
'0b1111'
>>> bin(0b1010 | 0b1111)
'0b1111'

See also

#TODO

^ Bitwise Exclusive XOR

Description

Returns the result of bitwise XOR of two integers.

Syntax

A ^ B

	A

	Integer object.

	B

	Integer object.

Remarks

Bitwise XOR sets the bits in the result to 1 if either, but not both, of the corresponding bits in the two operands is 1.

Example 1

>>> bin(0b1111 ^ 0b1111)
'0b0'
>>> bin(0b1111 ^ 0b0000)
'0b1111'
>>> bin(0b0000 ^ 0b1111)
'0b1111'
>>> bin(0b1010 ^ 0b1111)
'0b101'

Example 2

>>> # this example swaps integers without a temporary variable using XOR
>>> a = 2
>>> b = 8
>>> a ^= b
>>> b ^= a
>>> a ^= b
>>> a
8
>>> b
2

See also

#TODO

~ bitwise complement

Description

Sets the 1 bits to 0 and 1 to 0.

Syntax

~A

	A

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The bitwise inversion of A is defined as -(A + 1). It only applies to integral numbers.

Example

>>> bin(~0b1111)
'-0b10000'
>>> bin(~0b0000)
'-0b1'
>>> bin(~0b1010)
'-0b1011'
>>> bin(~0b1011)
'-0b1100'

See also

#TODO

^= Bitwise Exclusive OR Assignment

Description

Performs bitwise XOR and assigns value to the left operand.

Syntax

A ^= B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to A = A ^ B.

Example

>>> b = 0b1111
>>> b ^= 0b1010
>>> bin(b)
'0b101'

See Also

#TODO

|= Bitwise Inclusive OR Assignment

Description

Performs bitwise OR and assigns value to the left operand.

Syntax

A |= B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to A = A | B.

Example

>>> b = 0b1111
>>> b |= 0b0101
>>> bin(b)
'0b1111'

See Also

#TODO

<< Bitwise Left Shift

Description

Shifts the bits of the first operand left by the specified number of bits.

Syntax

A << B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Negative shift counts are illegal and cause a ValueError to be raised.

A left shift by n bits is equivalent to multiplication by pow(2, n). A long integer is returned if the result exceeds the range of plain integers.

Example 1

>>> bin(0b1111 << 1)
'0b11110'
>>> bin(0b1111 << 2)
'0b111100'
>>> bin(0b1111 << 3)
'0b1111000'
>>> bin(0b1111 << 4)
'0b11110000'

Example 2

>>> 128 * 2
256
>>> 128 << 1
256

See also

#TODO

<<= Bitwise Left Shift Assignment

Description

Performs bitwise left shift and assigns value to the left operand.

Syntax

A >>= B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to A = A << B.

Example

>>> b = 0b1111
>>> b <<= 1
>>> bin(b)
'0b11110'

See also

#TODO

>> Bitwise Right Shift

Description

Shifts the bits of the first operand right by the specified number of bits.

Syntax

A >> B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Negative shift counts are illegal and cause a ValueError to be raised.

A right shift by n bits is equivalent to division by pow(2, n).

Example 1

>>> bin(0b1111 >> 1)
'0b111'
>>> bin(0b1111 >> 2)
'0b11'
>>> bin(0b1111 >> 3)
'0b1'
>>> bin(0b1111 >> 4)
'0b0'

Example 2

>>> 128 / 2
64
>>> 128 >> 1
64

See also

#TODO

>>= Bitwise Right Shift Assignment

Description

Performs bitwise right shift and assigns value to the left operand.

Syntax

A >>= B

	A

	Integer object.

	B

	Integer object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to A = A >> B.

Example

>>> b = 0b1111
>>> b >>= 1
>>> bin(b)
'0b111'

See also

#TODO

() Decorator Operator

Description

Calls a callable object with specified arguments.

Syntax

callable([*args, **kwargs])

	callable

	A callable object, like for instance: a function, class, method or class instance with __call__ method defined.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> # calling a built-in function
>>> abs(-10)
10

See Also

#TODO

+ concatenation

Description

Returns a concatenation of two sequences.

Syntax

A + B

	A

	Any sequence.

	B

	Sequence of the same type as A.

Return Value

the same as used as sequence operands

Time Complexity

O(k)

Example

>>> "AB" + "CD"
'ABCD'
>>> [0, 1] + [2, 3]
[0, 1, 2, 3]
>>> (0, 1) + (2, 3)
(0, 1, 2, 3)

See also

#TODO

+= concatenation assignment

Description

Concatenates the sequence with the right operand and assigns the result to that sequence.

Syntax

A += B

	A

	Any sequence.

	B

	Sequence of the same type as A.

Return Value

the same as used as sequence operand

Time Complexity

#TODO

Remarks

Equivalent to A = A + B.

Example 1

>>> s = "AA"
>>> s += "BB"
>>> s
'AABB'

Example 2

>>> l = [0, 1]
>>> l += [2, 3]
>>> l
[0, 1, 2, 3]

Example 3

>>> t = (0, 1)
>>> t += (2, 3)
>>> t
(0, 1, 2, 3)

See Also

#TODO

@ Decorator Operator

Description

Returns a callable wrapped by another callable.

Syntax

@decorator

	def function():

	suite

	decorator

	A callable that takes another callable as an argument.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Decorator syntax

>>> def decorator(f):
... pass
...
>>> @decorator
... def function():
... pass

is equivalent to:

>>> def function():
... pass
>>> function = decorator(function)

Example 1

>>> # this example shows how to use a decorator to add functionality to a function
>>> def decorator(f):
... def inner():
... print('before')
... retval = f()
... print('after')
... return retval
... return inner
...
>>> @decorator
... def example():
... print('inside')
...
>>> example()
before
inside
after

Example 2

>>> # this is actually a useful example - decorator is used to measure
>>> # time taken to execute a function
>>> def timeit(func, *args, **kwargs):
... def inner(*args, **kwargs):
... import time
... start = time.clock()
... retval = func(*args, **kwargs)
... finish = time.clock() - start
... return finish, retval
... return inner
...
>>> @timeit
... def adder(a):
... return sum(a)
...
>>> adder(range(10))
(3.682225269585615e-06, 45)
>>> adder(range(1000))
(1.8076378694331652e-05, 499500)
>>> adder(range(1000000))
(0.0833967122414947, 499999500000L)

See Also

#TODO

del

Description

Returns a Boolean stating whether the object is in the container.

Syntax

A [not] in B

	A

	Any valid object.

	B

	Any valid object.

Return Value

#TODO

Time Complexity

O(1) for dict
O(n) for sequence (str, list, tuple)

Remarks

When used with dictionaries checks the keys instead of values.

Example

>>> 'A' in 'ABCD'
True
>>> 0 in [0, 1, 2]
True
>>> 0 not in {'a': 0, 'b': 1}
True

See also

#TODO

** Dictionary Packing

Description

Packs the consecutive function keyword arguments into a dictionary.

Syntax

	def function(**dict):

	suite

	dict

	A dictionary object used for storing the passed in arguments. All the arguments can be accessed within the function body the same way as with any other dictionary.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The dict name **kwargs is used by convention.

Example

>>> def example(**kwargs):
... return kwargs.keys()
...
>>> example(a=10, b=20, c=[0, 0, 0])
['a', 'c', 'b']

See also

#TODO

** Dictionary Unpacking

Description

Unpacks the contents of a dictionary into the function call.

Syntax

function(**dict)

	dict

	The dictionary containing pairs of keyword arguments and their values.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> def add(a=0, b=0):
... return a + b
...
>>> d = {'a': 2, 'b': 3}
>>> add(**d)
5

See also

#TODO

/ division

Description

Returns the quotient of two expressions.

Syntax

A / B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long integer, regardless of the numeric value.

Example

>>> 2 / 1
2
>>> 2 / 1.0
2.0
>>> 2.0 / 1
2.0
>>> 2 / 0.7
2.857142857142857

See also

#TODO

/= Division Assignment

Description

Divides the variable by a value and assigns the result to that variable.

Syntax

A /= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A / B.

Example

>>> a = 10
>>> a /= 5
>>> a
2

See also

#TODO

== is equal to

Description

Returns a Boolean stating whether two expressions are equal.

Syntax

A == B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example 1

>>> 'ABC' == 'ABC'
True
>>> 1 == 1
True
>>> 1 == 1.0
True
>>> {1: None, 2: None} == 10
False

Example 2

>>> a = 1
>>> b = 1
>>> a == b
True

See also

#TODO

** power

Description

Returns the value of a numeric expression raised to a specified power.

Syntax

A ** B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

Example 1

>>> 2**2
4
>>> 2**2.0
4.0
>>> 2.0**2
4.0

Example 2

>>> 4**0.5
2.0
>>> 4**-2
0.0625

See also

#TODO

**= Power Assignment

Description

Raises the variable to a specified power and assigns the result to the variable.

Syntax

A **= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A**B.

Example

>>> a = 2
>>> a **= 10
>>> a
1024

See Also

#TODO

// floor division

Description

Returns the integral part of the quotient.

Syntax

A // B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int.

Example

>>> 5.0 / 2
2.5
>>> 5.0 // 2
2.0

See also

#TODO

//= Floor Division Assignement

Description

Floor divides the variable by a value and assigns the result to that variable.

Syntax

A //= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A // B.

Example

>>> a = 5
>>> a //= 2
>>> a
2

See also

#TODO

> greater than

Description

Returns a Boolean stating whether one expression is greater than the other.

Syntax

A > B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example

>>> 10 > 5
True
>>> 10 > 10
False

See also

#TODO

>= greater than or equal to

Description

Returns a Boolean stating whether one expression is greater than or equal the other.

Syntax

A >= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example

>>> 10 >= 5
True
>>> 10 >= 10
True

See also

#TODO

in

Description

Returns a Boolean stating whether the object is in the container.

Syntax

A [not] in B

	A

	Any valid object.

	B

	Any valid object.

Return Value

#TODO

Time Complexity

O(1) for dict
O(1) to O(n) for sets
O(n) for sequences (str, list, tuple)

Remarks

When used with dictionaries checks the keys instead of values.

Example

>>> 'A' in 'ABCD'
True
>>> 0 in [0, 1, 2]
True
>>> 0 not in {'a': 0, 'b': 1}
True

See also

#TODO

is

Description

Returns a Boolean stating whether two objects are the same.

Syntax

A is [not] B

	A

	Any object.

	B

	Any object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

Equivalent to id(A) == id(B). Note that two different objects can have the same value.

Example 1

>>> a = 'ABCD'
>>> b = 'ABCD'
>>> a is b
True

Example 2

>>> a = 'Arbeitsunfähigkeitbescheinigung-' # certificate of inability to work in German
>>> b = 'Arbeitsunfähigkeitbescheinigung-'
>>> a is b
False
>>> a == b
True
>>> id(a)
14418904
>>> id(b)
14418288

See also

intern() and id() functions, equals operator

lambda

Description

Returns an anonymous function.

Syntax

lambda variable, …: expression

	variable, …

	Optional. One or more variables used in the right part of the expression.

	expression

	Required. Return value of the function.

Return Value

#TODO

Time Complexity

#TODO

Remarks

lambda expression is a shorthand way of defining a function that is not bound to a specified name during its creation.

Consider the following function:

>>> def func(a): return a + 1
...
>>> func(0)
1
>>>

The same function can be defined using lambda expression as follows:

>>> func = lambda a: a + 1
>>> func(0)
1

Both functions are the same. Note that lambda does not include a return statement. The right expression is the implicit return value. Lambda functions need not to be assigned to any variables.

Example 1

>>> # this example shows how to use lambda with sorted function
>>> # lambda function is grabage collected after it has been used
>>> # (there is no reference to it to keep it alive)
>>> sorted(['A', 'b', 'C'], key=lambda x: x.lower())
['A', 'b', 'C']

Example 2

>>> # this is a code snippet from a Tkinter gui app
>>> # in this case lambda is quite convenient
>>> self.btn_cancel = Button(self.progress_container, text='Cancel',
>>> command=lambda: subprocess.call('taskkill /f /im uberzip.exe',
>>> shell=True))

See also

#TODO

< less than

Description

Returns a Boolean stating whether one expression is less than the other.

Syntax

A < B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example

>>> 10 < 5
False

See also

#TODO

<= less than or equal to

Description

Returns a Boolean stating whether one expression is less than or equal the other.

Syntax

A <= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example

>>> 10 <= 5
False
>>> 10 <= 10
True

See also

#TODO

- Unary Minus

Description

Returns True if both x and y are true..

Syntax

A and B

	A

	Any valid object.

	B

	Any valid object.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> True and True
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

See also

#TODO

% modulus

Description

Returns the decimal part (remainder) of the quotient.

Syntax

A % B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Example

>>> 5 % 2
1
>>> 4.7 % 1
0.7000000000000002 # if curious how come read up on floating point numbers implementation
>>> (1+2j) % 1
2j

See also

#TODO

%= Modulus Assignment

Description

Computes the modulus of the variable and a value and assigns the result to that variable.

Syntax

A %= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A % B.

Example

>>> a = 5
>>> a %= 2
>>> a
1

See also

#TODO

* multiple concatenation

Description

Returns a sequence self-concatenated specified amount of times.

Syntax

A * N or N * A

	A

	Any sequence.

	N

	Any expression evaluating to a numeric type.

Return Value

the same as used as sequence operand

Time Complexity

O(nk)

Example 1

>>> "A" * 10
'AAAAAAAAAA'
>>> [0, 1] * 2
[0, 1, 0, 1]
>>> (0, 1) * 2
(0, 1, 0, 1)

See also

#TODO

*= multiple concatenation assignment

Description

Multiple concatenates the sequence and assigns the result to that sequence.

Syntax

A *= B

	A

	Any sequence.

	B

	Sequence of the same type as A.

Return Value

the same as used as sequence operands

Time Complexity

#TODO

Remarks

Equivalent to A = A * B.

Example

>>> a = 10
>>> a *= 5
>>> a
50

See also

#TODO

* multiplication

Description

Returns the product of two expressions.

Syntax

A * B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Example

>>> 2 * 2
4
>>> 2 * 2.0
4.0
>>> 2.0 * 2
4.0

See also

#TODO

*= Multiplication Assignment

Description

Multiplies the variable by a value and assigns the result to that variable.

Syntax

A *= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A * B.

Example

>>> a = 10
>>> a *= 5
>>> a
50

See also

#TODO

not

Description

Returns a boolean that is the reverse of the logical state of an expression.

Syntax

not A

	A

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Remarks

Note that not does not return the evaluated argument but a Boolean instead.

Example 1

>>> not True
False
>>> not False
True

Example 2

>>> True and not False
True
>>> True and not True
False
>>> True or not True
True
>>> True or not False
True

See Also

#TODO

!= is not equal to

Description

Returns a Boolean stating whether two expressions are not equal.

Syntax

A != B

	A

	Any valid object.

	B

	Any valid object.

Return Value

bool

Time Complexity

#TODO

Example 1

>>> 'ABC' != 'ABC'
False
>>> 1 != 1
False
>>> {1: None, 2: None} != 10
True
>>> 1 != 1.0
False

Example 2

>>> a = 1
>>> b = 1
>>> a != b
False

See also

#TODO

or

Description

Returns the first operand that evaluates to True or the last one if all are False.

Syntax

A or B

	A

	Any valid object.

	B

	Any valid object.

Return Value

#TODO

Time Complexity

#TODO

Remarks

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the __nonzero__() special method for a way to change this.)

The expression:

>>> x or y

first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Example 1

>>> 0 or '' or False
False
>>> 1 or '' or False
1
>>> 1 or 'A' or False
1
>>> 1 or 2 or 3
1

Example 2

>>> b = '' or 'ABCD'
>>> b
'ABCD'
>>> b = 0 or 1
>>> b
1

See Also

#TODO

+ unary plus

Description

Returns True if either x or y is true.

Syntax

A or B

	A

	Any valid object.

	B

	Any valid object.

Return Value

#TODO

Time Complexity

#TODO

Example

>>> True or True
True
>>> True or False
True
>>> False or True
True
>>> False or False
False

See also

#TODO

; Statement Separator

Description

Separates two statements.

Syntax

statement; another statement

Return Value

#TODO

Time Complexity

#TODO

Remarks

Avoid having multiple statements on a single line.

Though the language definition allows one to use a semi-colon to delineate statements, doing so without reason makes one’s code harder to read. Typically violated with the previous rule.

Harmful

>>> if this_is_bad_code: rewrite_code(); make_it_more_readable();

Idiomatic

>>> if this_is_bad_code:
... rewrite_code()
... make_it_more_readable()

See Also

#TODO

Line Continuation

Description

Breaks the line of code allowing for the next line continuation.

Syntax

line \

Return Value

#TODO

Time Complexity

#TODO

Remarks

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

Example

>>> if 1900 < year < 2100 and 1 <= month <= 12 \
... and 1 <= day <= 31 and 0 <= hour < 24 \
... and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
... return 1

See Also

#TODO

- subtraction

Description

Returns the difference of two expressions.

Syntax

A – B

	A

	Any expression evaluating to a numeric type.

	B

	Any expression evaluating to a numeric type.

Return Value

According to coercion rules.

Time Complexity

#TODO

Example

>>> 2 - 1
1
>>> 2.0 - 1
1.0
>>> 2 - 1.0
1.0

See also

#TODO

-= Subtraction Assignment

Description

Subtracts a value from the variable and assigns the result to that variable.

Syntax

A -= B

	A

	Any valid object.

	B

	Any valid object.

Return Value

According to coercion rules.

Time Complexity

#TODO

Remarks

Equivalent to A = A - B

Example

>>> a = 10
>>> a -= 5
>>> a
5

See also

#TODO

if else conditional operator

Description

Returns either value depending on the result of a Boolean expression.

Syntax

A if expression else B

	A

	The value for the entire conditional expression if the condition is True.

	expression

	The condition that evaluates to a Boolean.

	B

	The value for the entire conditional expression if the condition is False.

Return Value

The same as passed to the expression.

Time Complexity

#TODO

Remarks

Python’s conditional operator is similar to the if else statement. It is also called a ternary operator since it takes three operands (as opposed to binary operands like +, - or unary ones like ~).

Example 1

>>> 1 if True else 0
1
>>> 1 if False else 0
0

Example 2

>>> rating = 100
>>> 'good' if rating > 80 else 'bad'
'good'

The above expression returns ‘good’ if rating is greater than 80 and ‘bad’ otherwise.

Note that conditional operator does not allow the use of statements:

Example 3

>>> print 'good' if rating > 80 else print 'bad'
 File "<interactive input>", line 1
 print 'good' if rating > 80 else print 'bad'
 ^
SyntaxError: invalid syntax

See also

#TODO

* Tuple Packing

Description

Packs the consecutive function positional arguments into a tuple.

Syntax

	def function(*tuple):

	suite

	tuple

	A tuple object used for storing the passed in arguments. All the arguments can be accessed within the function body the same way as with any other tuple.

Return Value

#TODO

Time Complexity

#TODO

Remarks

The tuple name *args is used by convention.

Example

>>> def add(*args):
... total = 0
... for arg in args:
... total += arg
... return total
...
>>> add(1, 2, 3)
6

See also

#TODO

* Tuple Unpacking

Description

Unpacks the contents of a tuple into the function call.

Syntax

function(*iterable)

	iterable

	An iterable object containing the positional arguments.

Return Value

#TODO

Time Complexity

#TODO

Example 1

>>> def add(a, b):
... return a + b
...
>>> t = (2, 3)
>>> add(*t)
5

Example 2

>>> def add(a, b):
... return a + b
...
>>> add(*[2, 4])
6
>>> add(*"AD")
'AD'
>>> add(*{1: 1, 2: 2})
3

See also

#TODO

 nav.xhtml

 Table of Contents

 		
 Python Reference (The Right Way) - DRAFT

 		
 Introduction

 		
 Notes

 		
 Scope

 		
 Rationale

 		
 Use case 1

 		
 Name

 		
 Use case 2

 		
 Group

 		
 Definitions

 		
 Coding Guidelines

 		
 Minimalism

 		
 The Zen of Python

 		
 PEP 8

 		
 Fundamental Data Types

 		
 None

 		
 Numbers

 		
 Sequences

 		
 Mappings

 		
 Sets

 		
 Files

 		
 Built-In Functions

 		
 Functional Programming

 		
 Numeric Types Conversions and Constructors

 		
 Numeric Types Conversions

 		
 Arithmetic

 		
 String Conversions

 		
 Sequences Constructors

 		
 Mappings Constructors

 		
 Operating on Containers

 		
 Iterators

 		
 Comparisons

 		
 Identity

 		
 File Objects Constructors

 		
 Object Oriented Functions

 		
 Information

 		
 System

 		
 Misc

 		
 Comprehensions and Generator Expression

 		
 Comprehensions

 		
 Generator Expression

 		
 Container Data Access

 		
 Brackets Operators

 		
 Operators

 		
 Arithmetic Operators

 		
 Assignment Operators

 		
 Relational Operators

 		
 Boolean Operators

 		
 Conditional Operator

 		
 Identity

 		
 Membership

 		
 Deletion

 		
 Callables Operators

 		
 Bitwise Operators

 		
 Bitwise Assignment Operators

 		
 Misc

 		
 String and Sequence Operators

 		
 Sequence Assignment Operators

 		
 Statements

 		
 Flow Control

 		
 Loops

 		
 Functions

 		
 Generators

 		
 Classes

 		
 Context Managers

 		
 System

 		
 Imports and Scope

 		
 Assertions

 		
 Exceptions Handling

 		
 Other Objects

 		
 Data Types

 		
 Method Decorators

 		
 Others

 		
 Double Underscore Methods and Variables

 		
 Direct Attribute Access

 		
 Descriptor Protocol

 		
 Comparisons

 		
 Containers

 		
 Context Managers

 		
 Numeric Methods

 		
 Object Attributes

 		
 Pickle Protocol

 		
 Exceptions

 		
 Constants

 		
 Boilerplate

 		
 Glimpse of the PSL

 		
 Data Structures and Algorithms

 		
 Time

 		
 Files and Folders

 		
 Resources

 		
 Licence

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_static/down.png

_static/minus.png

_static/file.png

_static/plus.png

