

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	flow 0.5 documentation

Python One/Flow

Flow is a business layer build upon Python One to use for building daemons,
transfer plugins and batch jobs for Viz One.

Contents:

	Introduction
	The Source

	The Worker

	Applications
	Introduction

	Built-in Applications
	XML Import

	XML Export

	Metadata Mapper

	Sources
	Introduction

	Built-in Sources
	Generic Stomp Listener

	Asset Entry Listener

	Unmanaged Files Listener

	STDIN

	Interval

	Building a Web Interface

	Utililities
	Working with Assets
	Create or Update Asset

	Modifying Group Permissions in an ACL

	Working with Files
	Import Unmanaged File

	Delete Unmanaged File

	Building a Transfer Plugin
	Extending the TransferPlugin class

	Setting up the Repository

	Creating and Installing a Package

	Setting up a Rewrite Rule so the Plugin Gets Used

	Miscellaneous
	Storing Data on the Server

	Parsing Data Fields with the MultiParser

	Locking Based on a Key

	Retrying on Conflict

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flow 0.5 documentation

Introduction

Flow is a framework for writing tools, daemons and transfer plugins for Viz
One [http://www.vizrt.com/products/viz_one/], Vizrt’s Media Asset Management
software. To communicate with Viz One, the Python SDK python-one is used.
Please contact Vizrt for your copy and more information.

The idea behind Flow is to make it simple to integrate with Viz One on an
enterprise level. The treats promoted by the framework are:

	Scalability (multi-threading and multi-server)

	Client statelessness

	Simplicity (one application does one thing)

To achieve this, all applications are limited to a certain structure:

Source -> Worker

The Source

Let’s start with the Source. The task of the Source is to gather information
in one way or another, do as little with it as possible, and hand it over to
the Worker. The Source runs in a single thread, which is the reason for
keeping the processing within it as simple as possible. Input to Sources can be
anything, but usually Stomp, Files or Standard Input.

Examples of built-in sources are:

	Asset Entry Listener flow.source.asset.AssetEntryListener
Reacts on creations, updates and deletions of Asset Entries.

	Unmanaged Files Listener flow.source.location.UnmanagedFilesListener
Reacts on creations, updates and deletions of Unmanaged Files.

	Generic Stomp Listener flow.source.stomp.GenericStompListener
Subscribes to a manually given Stomp URL.

	Interval flow.source.interval.Interval
Spawns a worker every nth second.

	STDIN flow.source.local.STDIN
Reads from Standard Input and spawns a worker.

You can also quite easily create your own Source class.

The Worker

The Flow process will at start-up create a thread-pool that is used to run worker
threads. Workers are essentially classes with a start method and a SOURCE
class specified. Optionally you can also have a configure method that will be
run once on start-up.

The start method will take an object as argument. This is the interface
between the Source and the Worker. The Source will call the start
method with one object as argument as a new thread for each event it produces.
If there are no free workers, the event will be held until there are, and then
called. There is also a time out for execution time, meaning the waiting time
cannot be infinitely long.

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flow 0.5 documentation

Applications

Contents

	Applications
	Introduction

	Built-in Applications
	XML Import

	XML Export

	Metadata Mapper

Introduction

Built-in Applications

XML Import

	
class xmlimport.XmlImport(instance_name=None)

	XML + Media Importer using the Unmanaged File API.

	If an XML file comes in, it will be read as an Import/Export payload and
a Placeholder will be created (or updated if id is given and an asset
with that id exists).

	If a non-XML file comes in, it will be considered “media”.

	If this “media” is mentioned by some read Import/Export payload, it will
be imported to it’s Placeholder.

	If this “media” is not mentioned yet, it will be remembered (server-side,
using the Client Config API).

	If an XML file comes in and mentiones a “media” that is “remembered”, it
will be imported to the Placeholder directly.

	If an XML file comes in and references an Asset Entry that is no longer
a Placeholder, the Metadata will be updated if changed.

	If a non-XML comes in, and there is an occupied Asset Entry pointing to
it, the import will fail.

Example ini file for using this importer:

[Flow]
class = xmlimport.XmlImport

[Source]
location = xmlimport
skip empty files = no

Note that the “skip empty files” option has the following effect:

	yes means Tail mode

	no means No tail mode

[Xml]
format = default|custom

If you choose default here, the daemon will do a default Viz One XML Import
based on the standard Import/Export format.

On the other hand, if you want a custom XML to be imported you can choose
custom and it will be parsed and mapped according to the following
rules specified by these sections in the INI:

[Namespaces]
short = http://long/name
...

Namespaces are optional. You will need to specify only the once used in the fields
you want to parse.

[Field:NAME]
xpath = /path/to/value
type = string|integer|date|time|datetime|dictionary
format = formatstring for parsing dates

For each field you want to parse, create one of these. For string fields, you only
need the xpath, since type defaults to string. The value will be stored
under the name NAME for later use with the mapper. Fields of type dictionary
will require a source argument, being an http link to the dictionary feed. Field
of type datetime support a default timezone argument, which should be parsable
by python; for instance Europe/Stockholm or GMT.

[Transform]
NAME = EXPR
compound_field = field1 + ':' + field2

The Transform section allows for simple data transformation. The left-hand side
denotes the name to store under and the right-hand side should contain a valid
python expression using the names from Field directives and previous Transform
operations. They will be carried out in the order they are written.

[Vdf]
form = FORM
asset.title = FIELD1
asset.alternativeTitle = FIELD2
...

Last is the actual mapping taking place, where you can put the stored data into VDF
fields. Remember to specify the form here. The current revision is always used, you
should not try to specify a revision.

	
SOURCE

	alias of UnmanagedFilesListener

XML Export

	
class xmlexport.XmlExportArdFTP(instance_name=None)

	XML + Media Export Transfer Plugin using ArdFTP SITE commands.

	
class xmlexport.XmlExportFXP(instance_name=None)

	XML + Media Export Transfer Plugin using FXP.

Metadata Mapper

	
class metadatamapper.MetadataMapper(instance_name=None)

	Metadata-mapping daemon that reacts on Asset Entry updates.

Example ini file:

[Flow]
class = metadatamapper.MetadataMapper

[Source]
AssetEntryListener has no configurable parameters

[Mappings]
asset.alternateTitle = metadata.get('asset.title') + ' alternative'

	
SOURCE

	alias of AssetEntryListener

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flow 0.5 documentation

Sources

Contents

	Sources
	Introduction

	Built-in Sources
	Generic Stomp Listener

	Asset Entry Listener

	Unmanaged Files Listener

	STDIN

	Interval

	Building a Web Interface

Introduction

Built-in Sources

Generic Stomp Listener

	
class flow.source.stomp.GenericStompListener(stomp_url)

	Source class that listens for events on a Stomp URL.

Options given under [Source]:

[Source]
stomp url = <full stomp url>

To use this with your flow daemon:

from flow import Flow
from flow.source import GenericStompListener

class MyFlow(Flow):
 SOURCE = GenericStompListener

 def start(self, message):
 # message is a vizone.net.message_queue.Message
 pass

Asset Entry Listener

	
class flow.source.asset.AssetEntryListener

	Source class that listens for Asset Entry events. Make sure to
have the Asset/Admin permission or it won’t work.

Options given under [Source]:

[Source]
None

To use this with your flow daemon:

from flow import Flow
from flow.source import AssetEntryListener

class MyFlow(Flow):
 SOURCE = AssetEntryListener

 def start(self, asset):
 # asset is a vizone.payload.asset.Item
 pass

Unmanaged Files Listener

	
class flow.source.location.UnmanagedFilesListener(location=None, skip_empty_files='no')

	Source class that listens for UnmanagedFile events for a given location.

Options given under [Source]:

[Source]
location = <handle of an import storage>
skip empty files = <yes/no>

To use this with your flow daemon:

from flow import Flow
from flow.source import UnmanagedFilesListener

class MyFlow(Flow):
 SOURCE = UnmanagedFilesListener

 def start(self, f):
 # f is a vizone.payload.media.UnmanagedFile
 pass

STDIN

	
class flow.source.local.STDIN(payload_class=None)

	Source class that reads standard in, designed to be run once, and especially
for Transfer Plugins.

Options given under [Source]:

[Source]
payload class = None|vizone.payload.transfer.PluginData|...

To use this with your flow daemon:

from flow import Flow
from flow.source.local import STDIN

class MyFlow(Flow):
 SOURCE = STDIN

 def start(self, data):
 # data is a vizone.payload.transfer.PluginData if that format is
 pass

Interval

	
class flow.source.interval.Interval(interval=60, window_start=None, window_end=None)

	Source class that triggers an event on interval.

Options given under [Source]:

[Source]
interval = 60 (seconds)
window start = 01:00 [HH[:MM[:SS]]]
window end = 03:00 [HH[:MM[:SS]]]

To use this with your flow daemon:

from flow import Flow
from flow.source import Interval

class MyFlow(Flow):
 SOURCE = Interval

 def start(self, data):
 pass

Note that data is always None for this source.

Building a Web Interface

This is an example of a web interface built with Flow. The advantages of using Flow
for this are:

	Easy to configure.

	The worker pool can be used to handle asyncronous jobs.

It’s recommended to use bottle since it’s part of the python-one package but any other
framework can be used. This example features bottle however:

from flow import Flow, EventBased
from flow.needs import NeedsClient
from vizone.resource.asset import get_asset_by_id
from one_depends import bottle

class Web(EventBased, NeedsClient):
 _has_event_loop = True # This prevents Flow from running a second
 # event loop when bottle.run() exists.
 instance = None

 def __init__(self, interface='localhost', port=8080):
 self.server_interface = interface
 self.server_port = int(port)
 self.callback = None

 logging.log("Web Interface Settings", {
 'interface': self.server_interface,
 'port': self.server_port,
 }, 'pp')

 Web.instance = self # We use this instance as a singleton

 def run(self):
 bottle.run(
 host=self.server_interface,
 port=self.server_port,
)

class XmlServer(Flow):
 SOURCE = Web

 # this class could also implement the run(message) method and act
 # as a worker pool. The web method would then call
 # Web.interface.callback(message) to spawn a job. If a worker pool
 # is not needed, just leave this class like implemented here.

@bottle.get('/<asset_id>')
def get_asset(asset_id):
 """
 Serve XML for a given asset id.
 """
 try:
 asset = get_asset_by_id(asset_id, client=Web.instance.client)
 except HTTPClientError:
 return bottle.HttpError(status=404, body="There is no such asset.")

 bottle.response.status = 200
 bottle.response.set_header('Content-Type', asset.content_type)
 bottle.response.set_header('Content-Disposition', 'attachment; filename="%s.xml"' % asset.id)
 return output.generate()

And the corresponding INI file:

[Flow]
app name = xmlserver
class = xmlserver.XmlServer

[Source]
interface = localhost
port = 34566

[Viz One]
hostname = vizoneserver
username = user
password = password
use https = no
check certificates = no

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	flow 0.5 documentation

Utililities

Contents

	Utililities
	Working with Assets
	Create or Update Asset

	Modifying Group Permissions in an ACL

	Working with Files
	Import Unmanaged File

	Delete Unmanaged File

	Building a Transfer Plugin
	Extending the TransferPlugin class

	Setting up the Repository

	Creating and Installing a Package

	Setting up a Rewrite Rule so the Plugin Gets Used

	Miscellaneous
	Storing Data on the Server

	Parsing Data Fields with the MultiParser

	Locking Based on a Key

	Retrying on Conflict

Working with Assets

Tools for working with Asset Entries (Items)

Create or Update Asset

	
flow.operation.create_or_update_asset(id=None, metadata=None, acl=None, mediaacl=None, tags=None, materialtype=None, category=None, rightscode=None, client=None)

	Creates or Updates an Item with a given id. Metadata updates will
be retried three times if there are conflicts.

	Parameters:	
	id (Optional[unicode]) – An asset id or “site identity”

	metadata (Optional[vizone.vdf.Payload]) – The metadata to update to. Can be a dict with a ‘form’ field too.

	acl (Optional[vizone.vizone.payload.user_group.Acl]) – Specify a ACL when creating the Asset

	mediaacl (Optional[vizone.vizone.payload.user_group.Acl]) – Specify a Media ACL when creating the Asset

	tags (Optional[dict]) – scheme => term dictionary for custom tags when creating the Asset

	materialtype (Optional[unicode]) – Set the Material Type to this when creating the Asset

	category (Optional[unicode]) – Set the Category to this when creating the Asset

	rightscode (Optional[unicode]) – Set the Rights Code to this when creating the Asset

	client (Optional[vizone.client.Instance]) – A Viz One client to use (None means the default)

	Returns:	The updated or created Asset Entry

	Return type:	vizone.payload.asset.Item

Modifying Group Permissions in an ACL

	
flow.acl.set_group_permissions(acl, group_name, read=True, write=True, admin=True)

	Make sure a group is in the ACL and that is has the correct rights, If no
rights are true, the group entry will be removed.

	Parameters:	
	vizone.payload.user_group.aclentry.Acl (acl) – The ACL to operate on

	str (group_name) – The name of the group

	bool (admin) – Read right

	bool – Write right

	bool – Admin right

	Returns:	True if altered, False otherwise

	Return type:	bool

Working with Files

Tools useful for handling file import flows.

Import Unmanaged File

	
flow.operation.import_unmanaged_file(asset, uri_list, client=None)

	Start an Unmanaged File import to a given Asset Entry

	Parameters:	
	asset (vizone.payload.asset.Item) – The Asset Entry to import to

	uri_list (vizone.urilist.UriList) – A URI List containing the link to the media

	client (Optional[vizone.client.Instance]) – A Viz One client to use (None means the default)

	Returns:	True if successful, False on error

	Return type:	bool

Delete Unmanaged File

	
flow.operation.delete_unmanaged_file(unmanaged_file, client=None)

	Delete an Unmanaged File from Viz One

	Parameters:	
	unmanaged_file (vizone.payload.media.UnmanagedFile) – The Unmanaged File to delete

	client (Optional[vizone.client.Instance]) – A Viz One client to use (None means the default)

Building a Transfer Plugin

You can use Flow to build a Transfer Plugin quite easily.

Extending the TransferPlugin class

	
class flow.transfer.TransferPlugin(instance_name=None)

	Transfer Plugin base class.

TransferPlugin child classes automatically inherits Flow and NeedsClient.

Very basic example (for more advanced ones, look at the XmlExport built-ins):

from flow.transfer import TransferPlugin
from vizone import logging

class MyTransferPlugin(TransferPlugin):
 def start(self, plugin_data):
 self.use(plugin_data)

 self.update_progress(0)

 logging.info(u'Asset is %s', self.asset.title)
 logging.info(u'Source URL is %s', self.source)
 logging.info(u'Destination URL is %s', self.destination)

 self.update_progress(100)

 # or why not:

 self.fail("There were errors!")

	
SOURCE

	alias of STDIN

	
fail(message)

	Failed the Transfer Step and exits the program with status 0.
This allows for a cleaner reporting in Viz One.

	Parameters:	unicode|str (message) – An error message that will show up
in Viz One.

	
start(data, **kwargs)

	You’ll have to implement this method yourself.

	
update_progress(progress)

	Update the progress of the associated Transfer Step.

	Parameters:	int (progress) – As a percentage from 0 to 100, e.g. 67

	
use(data, require_asset=True, require_source=True, require_destination=True)

	Extract and verify the plugin data that comes from the Transfer Subsystem. We
should have gotten two FTP addresses, plugin settings in the form of a VDF
payload containing username and password, as well as a transfer step and
request to control the workflow and report back progress.

You can use the require_asset, require_source and require_metadata
flags to control what to require in terms of content in the plugin data.

Setting up the Repository

Creating a Transfer Plugin package is easiest to do with pluginmgr on a Viz
One server. It will help you to create the files you need. Before you start,
create a new folder and add a file named plugin to it, with these contents:

type: runnable
package: myplugin
depends: python-one
methods: myplugin
mode: filecopy
title: My Plugin
author: Vizrt
version: 1.0
source-scheme: ftp
destination-scheme: ftp
destination-conflicts: none
killprocess: false
partial: false
partial-by-frame: false

You can now basically use pluginmgr make interactively until you get it right.

mkdir myplugin
cd myplugin
vim plugin
pluginmgr make

vdf: vdf model at ~/myplugin/etc/xfer-plugin-myplugin.vdf
required but missing at /opt/ardome/bin/pluginmgr line 847.

So, you need a VDF. This is for holding the settings of your plugin in a way
that is editable in Viz One’s Administration console. You can use pluginmgr
vdf to create one:

pluginmgr vdf plugin.user:Username:user …
 plugin.password:Password:user …
 > etc/xfer-plugin-myplugin.vdf

Now try pluginmgr make again:

pluginmgr make

Could not find the specified bin/myplugin in source tree

So there is no plugin executable to run. For flow this will be a script, named
bin/myplugin (where myplugin would be what you specified as method
above) create a folder bin and put a file myplugin with this in it:

#!/bin/bash

/opt/python-one/bin/wrap_python -m flow …
 /opt/ardome/apps/myplugin/myplugin.ini -g

Note that the path might need to be adjusted later, but this is a decent
convention. Now try pluginmgr make again:

pluginmgr make

INFO:
INFO: Edit files as necessary. Then run the following command to …
build the apa-package:
INFO:
INFO: $ apa dist xfer-plugin-myplugin/1.0
INFO:
INFO: To install:
INFO: # scamp install -i [version] xfer-plugin-myplugin--1.0.apa
INFO: # scamp apply
INFO: $ ardemctl restart xfer
INFO:

Now pluginmgr is happy with the setup. Included here are also the
instructions on how to build an APA package out of this. It’s not time for this
quite yet though, so just make a note of the command for later use. We should
create the actual app as well:

mkdir -p apps/myplugin
vim apps/myplugin/myplugin.py
vim apps/myplugin/myplugin.ini

Good starting point for the myplugin.py file:

from flow.transfer import TransferPlugin
from vizone import logging

class MyPlugin(TransferPlugin):
 def start(self, plugin_data):
 self.use(plugin_data)

 self.update_progress(0)

 logging.info(u'Asset is %s', self.asset.title)
 logging.info(u'Source URL is %s', self.source)
 logging.info(u'Destination URL is %s', self.destination)

 self.update_progress(100)

And for the myplugin.ini file:

[Flow]
app name = myplugin
class = myplugin.MyPlugin

[Source]
payload class = vizone.payload.transfer.PluginData

[Viz One]
use https = no

Now these files needs to be part of the APA package. To achieve this, edit the
file build/xfer-plugin-myplugin/FILES (the first line is new):

apps/myplugin/* -> apps/myplugin

@ chmod 755
bin/myplugin -> xferplugin/bin/myplugin
@ nochmod

@ nochmod
@ chmod 644
etc/xfer-plugin-myplugin.xml -> xferplugin/etc/xfer-plugin-myplugin.xml

@ nochmod
@ chmod 644
etc/xfer-plugin-myplugin.vdf -> xferplugin/etc/xfer-plugin-myplugin.vdf

@ nochmod

After changing this, do not run ``pluginmgr make`` again, as this will
overwrite the files in build/. You can actually delete the plugin file
now and edit etc/xfer-plugin-myplugin.xml if you want to change any plugin
settings.

Creating and Installing a Package

To build an APA package of your plugin, you can use the command given by
pluginmgr make previously. Remember: don’t run it again now!

apa dist xfer-plugin-myplugin/1.0

Note

The command apa might need to be called with explicit path, being
/opt/scamp/bin/apa.

This command should not give any output, but there should be an .apa file
in your working directory. Install this with scamp and restart the transfer
daemons:

sudo /opt/scamp/bin/scamp install xfer-plugin-myplugin--1.0.apa
sudo /opt/scamp/bin/scamp apply
ardemctl restart xfer

Setting up a Rewrite Rule so the Plugin Gets Used

That the plugin exists does not mean it’s automatically used. This example
shows how to set up an export storage and use it to export to it. First
create the export storage:

storagemgr add stg plugin-export description="Plugin Export"
storagemgr join export plugin-export
mkdir /home/ardome/plugin-export
sudo chown armedia:ardome /home/ardome/plugin-export
sudo ln -s /home/ardome/plugin-export /ardome/media/exp/plugin-export
storagemgr add mountpoint [INSERT SERVER HERE] plugin-export …
 /ardome/media/exp/plugin-export

To make every transfer to this new export destination use the plugin you must
create a rewrite rule. Run confmgr edit transfer.rewrite, and add a new
one:

1:
 criteria:
 destination-storage:
 - plugin-export
 apply:
 destination-step-method: myplugin

Miscellaneous

Various tools for making life easier.

Storing Data on the Server

	
class flow.store.Store(appname, client)

	A Store is a centralized store based on the Client Config API. Note that:

	The Client Config API operates per user.

	The Client Config API operates per application.

	Data can be any JSON serializable object, for instance nested python
dicts, lists, strings, ints, floats and booleans.

Usage example:

from flow import Flow
from flow.needs import NeedsStore, NeedsClient
from flow.source import UnmanagedFilesListener

class MyFlow(Flow, NeedsStore):
 """
 MyFlow uses a Store.
 """
 source = UnmanagedFilesListener

 def start(self, f, info=None, log_id=-1):

 # If your Flow class inherits NeedsStore, it will be equipped with
 # an ``self.store`` attribute which can be used to get, update and
 # delete stored data on the server.
 stored_info = self.store.get('key')
 if stored_info is None:
 # there was nothing there

 self.store.put('key', {
 'any': 'json',
 'serializable': ['structure', 'goes', 'here']
 })

 # You can also delete
 self.store.delete('key')

	
delete(key)

	Delete the stored value under a key for the object’s application.

	Parameters:	key (unicode) – The key to delete

	
get(key)

	Get the value of a certain key for the object’s application.

	Parameters:	key (unicode) – The key used for storage

	Returns:	The storede value or None

	Return type:	dict

	
put(key, value)

	Put a value under a key for the object’s application.

	Parameters:	
	key (unicode) – The key used for storage

	value (dict) – The data to store, as a dict

	Returns:	The storede value is returned

	Return type:	dict

Parsing Data Fields with the MultiParser

	
class flow.data.MultiParser(type='string', format=None, default_timezone='UTC', source=None)

	A value parser that converts various data formats into Python and Viz One
entities, including:

	unicode (default)

	int

	float

	iso8601 (timestamp)

	date (date with configurable format)

	time (time with configurable format)

	datetime (date + time with configurable format)

	dictionary (dictionary term with given source reference)

The intended use is for putting the resulting object as value into a
VDF Payload.

Example:

from flow.data import MultiParser

mp = MultiParser(type='date', format='%d/%m')
result = mp.convert('4/12')

For a more thourough example using the MultiParser together with configuration,
please check out xmlimport.XmlImport.

For more information about date and time parsing syntax, please refer to
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

	Parameters:	
	type (str) – string|integer|float|iso|date|time|datetime|dictionary

	format (str) – format string for parseing date, time and datetime

	default_timezone (str) – default time zone only used fore datetime

	source (str) – url do dictionary, should be an Atom-based feed

	
convert(raw_value, client)

	Perform conversion configured when contructing the object.

	Parameters:	
	raw_value (unicode) – The raw string to parse

	client (vizone.client.Instance) – The HTTP client to use when looking up dictionary terms.

	Returns:	object

Locking Based on a Key

	
class flow.lock.Locked(key)

	Thread-safe lock by key string.

Usage:

from flow.lock import Locked

with Locked('mystring'):
 # .. do stuff

Only one process per key can be run simultaneously, other attempt
will be held until the lock is released.

Retrying on Conflict

	
flow.operation.retry_on_conflict(max_retries=3)

	Decorator that can wrap a function or method and retry it upon
a conflict exception.

Example:

@retry_on_conflict(max_retries=3)
def my_function(self, entry, conflict=False):

 # If there was a conflict, the entry needs to be refetched
 if conflict:
 entry.parse(self.client.GET(entry.self_link))

 # Do the operations
 self.client.PUT(entry.edit_link, entry)

Note that:

	Any argument will be reused as it, with changes.

	You can raise a Retry exception to retry for other reasons than
a 409 Conflict.

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flow 0.5 documentation

 Python Module Index

 m |
 x

 			

 		
 m	

 	
 	
 metadatamapper	

 			

 		
 x	

 	
 	
 xmlexport	

 	
 	
 xmlimport	

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flow 0.5 documentation

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | X

A

 	

 	AssetEntryListener (class in flow.source.asset)

C

 	

 	convert() (flow.data.MultiParser method)

 	

 	create_or_update_asset() (in module flow.operation)

D

 	

 	delete() (flow.store.Store method)

 	

 	delete_unmanaged_file() (in module flow.operation)

F

 	

 	fail() (flow.transfer.TransferPlugin method)

G

 	

 	GenericStompListener (class in flow.source.stomp)

 	

 	get() (flow.store.Store method)

I

 	

 	import_unmanaged_file() (in module flow.operation)

 	

 	Interval (class in flow.source.interval)

L

 	

 	Locked (class in flow.lock)

M

 	

 	MetadataMapper (class in metadatamapper)

 	metadatamapper (module)

 	

 	MultiParser (class in flow.data)

P

 	

 	put() (flow.store.Store method)

R

 	

 	retry_on_conflict() (in module flow.operation)

S

 	

 	set_group_permissions() (in module flow.acl)

 	SOURCE (flow.transfer.TransferPlugin attribute)

 	

 	(metadatamapper.MetadataMapper attribute)

 	(xmlimport.XmlImport attribute)

 	start() (flow.transfer.TransferPlugin method)

 	

 	STDIN (class in flow.source.local)

 	Store (class in flow.store)

T

 	

 	TransferPlugin (class in flow.transfer)

U

 	

 	UnmanagedFilesListener (class in flow.source.location)

 	update_progress() (flow.transfer.TransferPlugin method)

 	

 	use() (flow.transfer.TransferPlugin method)

X

 	

 	xmlexport (module)

 	XmlExportArdFTP (class in xmlexport)

 	XmlExportFXP (class in xmlexport)

 	

 	XmlImport (class in xmlimport)

 	xmlimport (module)

 Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		flow 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Vizrt.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

