

Contents

	Overview
	Installation

	Documentation

	Development

	Contributing

	Installation

	Usage

	XEP: OMEMO Encryption
	1. Introduction

	2. Requirements

	3. Glossary

	4. Use Cases

	5. Business Rules

	6. Implementation Notes

	7. Security Considerations

	9. XMPP Registrar Considerations

	10. XML Schema

	11. Acknowledgements

	Appendices

	Reference
	OmemoState

	Collective Code Construction Contract
	License

	Language

	Goals

	Design

	Authors

	Changelog
	0.1.0 (2016-01-11)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs
	[image: Documentation Status] [https://readthedocs.org/projects/python-omemo]

	tests
	
[image: Travis-CI Build Status] [https://travis-ci.org/omemo/python-omemo] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/omemo/python-omemo] [image: Requirements Status] [https://requires.io/github/omemo/python-omemo/requirements/?branch=master]

[image: Coverage Status] [https://codecov.io/github/omemo/python-omemo]

	package
	[image: PyPI Package latest release] [https://pypi.python.org/pypi/python-omemo] [image: PyPI Package monthly downloads] [https://pypi.python.org/pypi/python-omemo] [image: PyPI Wheel] [https://pypi.python.org/pypi/python-omemo] [image: Supported versions] [https://pypi.python.org/pypi/python-omemo] [image: Supported implementations] [https://pypi.python.org/pypi/python-omemo]

This is an implementation OMEMO Multi-End Message and Object Encryption in Python.

Installation

pip install python-omemo

Documentation

https://python-omemo.readthedocs.org/

Development

To set up python-omemo for local development:

	Fork python-omemo on GitHub [https://github.com/omemo/python-omemo/fork].

	Clone your fork locally:

git clone git@github.com:your_name_here/python-omemo.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.org/en/latest/install.html] one command:

tox

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Contributing

The Python OMEMO project direction is the sum of documented problems:
everybody is invited to describe and discuss a problem in the issue
tracker [https://github.com/omemo/python-omemo/issues]. Contributed solutions

encourage participation.

Some problem fields we initially focus on are:

	Creation of a reusable python omemo implementation

	Reusability bu the Gajim OMEMO plugin [https://github.com/omemo/gajim-omemo]

Installation

At the command line:

pip install python-omemo

Usage

To use Python OMEMO Library in a project:

import omemo

XEP: OMEMO Encryption

	Abstract::

	This specification defines a protocol for end-to-end encryption in
one-on-one chats that may have multiple clients per account.

	Copyright::

	© 1999 - 2015 XMPP Standards Foundation. SEE LEGAL NOTICES.

	Status::

	ProtoXEP

	Type::

	Standards Track

	Version::

	0.0.1

	Last Updated:

	2015-10-25

Warning

WARNING: This document has not yet been accepted for consideration or
approved in any official manner by the XMPP Standards Foundation, and this
document is not yet an XMPP Extension Protocol (XEP). If this document is
accepted as a XEP by the XMPP Council, it will be published at
<https://xmpp.org/extensions/> and announced on the <standards@xmpp.org>
mailing list.

1. Introduction

1.1 Motivation

There are two main end-to-end encryption schemes in common use in the XMPP
ecosystem, Off-the-Record (OTR) messaging (Current Off-the_Record Messaging
Usage (XEP-0364) [https://xmpp.org/extensions/xep-0364.html]) and OpenPGP
(Current Jabber OpenPGP Usage (XEP-0027) [https://xmpp.org/extensions/xep-0027.html]). OTR has significant usability
drawbacks for inter-client mobility. As OTR sessions exist between exactly two
clients, the chat history will not be synchronized across other clients of the
involved parties. Furthermore, OTR chats are only possible if both participants
are currently online, due to how the rolling key agreement scheme of OTR works.
OpenPGP, while not suffering from these mobility issues, does not provide any
kind of forward secrecy and is vulnerable to replay attacks. Additionally, PGP
over XMPP uses a custom wireformat which is defined by convention rather than
standardization, and involves quite a bit of external complexity.

This XEP defines a protocol that leverages axolotl encryption to provide
multi-end to multi-end encryption, allowing messages to be synchronized
securely across multiple clients, even if some of them are offline.

1.2 Overview

The general idea behind this protocol is to maintain separate, long-standing
axolotl-encrypted sessions with each device of each contact (as well as with
each of our other devices), which are used as secure key transport channels. In
this scheme, each message is encrypted with a fresh, randomly generated
encryption key. An encrypted header is added to the message for each device that
is supposed to receive it. These headers simply contain the key that the payload
message is encrypted with, and they are seperately encrypted using the session
corresponding to the counterpart device. The encrypted payload is sent together
with the headers as a <message> stanza. Individual recipient devices can decrypt
the header item intended for them, and use the contained payload key to decrypt
the payload message.

As the encrypted payload is common to all recipients, it only has to be included
once, reducing overhead. Furthermore, axolotl’s transparent handling of messages
that were lost or received out of order, as well as those sent while the
recipient was offline, is maintained by this protocol. As a result, in
combination with Message Carbons (XEP-0280) [https://xmpp.org/extensions/xep-0280.html] and Message Archive Management
(XEP-0313) [https://xmpp.org/extensions/xep-0313.html], the desired property of
inter-client history synchronization is achieved.

OMEMO version 0 uses v3 messages of the axolotl protocol. Instead of an axolotl
key server, PEP (Personal Eventing Protocol (XEP-0163) [https://xmpp.org/extensions/xep-0163.html]) is used to publish key data.

2. Requirements

	Provide forward secrecy

	Ensure chat messages can be deciphered by all (capable) clients of both

	parties

	Be usable regardless of the participants’ online statuses

	Provide a method to exchange auxilliary keying material. This

	could for example be used to secure encrypted file transfers.

3. Glossary

3.1 General Terms

	Device::

	A communication end point, i.e. a specific client instance

	OMEMO element::

	An <encrypted> element in the urn:xmpp:omemo:0 namespace. Can be either
MessageElement or a KeyTransportElement

	MessageElement::

	An OMEMO element that contains a chat message. Its <payload>, when
decrypted, corresponds to a <message>‘s <body>.

	KeyTransportElement::

	An OMEMO element that does not have a <payload>. It contains a fresh
encryption key, which can be used for purposes external to this XEP.

	Bundle::

	A collection of publicly accessible data that can be used to build a
session with a device, namely its public IdentityKey, a signed PreKey with
corresponding signature, and a list of (single use) PreKeys.

	rid::

	The device id of the intended recipient of the containing <key>

	sid::

	The device id of the sender of the containing OMEMO element

3.2 Axolotl-specific

	IdentityKey::

	Per-device public/private key pair used to authenticate communications

	PreKey::

	A Diffie-Hellman public key, published in bulk and ahead of time

	PreKeyWhisperMessage::

	An encrypted message that includes the initial key exchange. This is used
to transparently build sessions with the first exchanged message.

	WhisperMessage::

	An encrypted message

4. Use Cases

4.1 Setup

The first thing that needs to happen if a client wants to start using OMEMO is
they need to generate an IdentityKey and a Device ID. The IdentityKey is a
Curve25519 public/private Key pair. The Device ID is a randomly generated
integer between 1 and 2^31 - 1.

4.2 Discovering peer support

In order to determine whether a given contact has devices that support OMEMO,
the devicelist node in PEP is consulted. Devices MUST subscribe to
‘urn:xmpp:omemo:0:devicelist via PEP, so that they are informed whenever their
contacts add a new device. They MUST cache the most up-to-date version of the
devicelist.

Example 1. Devicelist update received by subscribed clients

<message from='juliet@capulet.lit'
 to='romeo@montague.lit'
 type='headline'
 id='update_01'>
<event xmlns='http://jabber.org/protocol/pubsub#event'>
 <items node='urn:xmpp:omemo:0:devicelist'>
 <item>
 <list xmlns='urn:xmpp:omemo:0'>
 <device id='12345' />
 <device id='4223' />
 </list>
 </item>
 </items>
</event>
</message>

4.3 Announcing support

In order for other devices to be able to initiate a session with a given
device, it first has to announce itself by adding its device ID to the
devicelist PEP node.

Example 2. Adding the own device ID to the list

<iq from='juliet@capulet.lit' type='set' id='announce1'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <publish node='urn:xmpp:omemo:0:devicelist'>
 <item>
 <list xmlns='urn:xmpp:omemo:0'>
 <device id='12345' />
 <device id='4223' />
 <device id='31415' />
 </list>
 </item>
 </publish>
</pubsub>
</iq>

This step presents the risk of introducing a race condition: Two devices might
simultaneously try to announce themselves, unaware of the other’s existence.
The second device would overwrite the first one. To mitigate this, devices MUST
check that their own device ID is contained in the list whenever they receive a
PEP update from their own account. If they have been removed, they MUST
reannounce themselves.

Furthermore, a device MUST announce it’s IdentityKey, a signed PreKey, and a
list of PreKeys in a separate, per-device PEP node. The list SHOULD contain 100
PreKeys, but MUST contain no less than 20.

Example 3. Announcing bundle information

<iq from='juliet@capulet.lit' type='set' id='announce2'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <publish node='urn:xmpp:omemo:0:bundles:31415'>
 <item>
 <bundle xmlns='urn:xmpp:omemo:0'>
 <signedPreKeyPublic signedPreKeyId='1'>
 BASE64ENCODED...
 </signedPreKeyPublic>
 <signedPreKeySignature>
 BASE64ENCODED...
 </signedPreKeySignature>
 <identityKey>
 BASE64ENCODED...
 </identityKey>
 <prekeys>
 <preKeyPublic preKeyId='1'>
 BASE64ENCODED...
 </preKeyPublic>
 <preKeyPublic preKeyId='2'>
 BASE64ENCODED...
 </preKeyPublic>
 <preKeyPublic preKeyId='3'>
 BASE64ENCODED...
 </preKeyPublic>
 <!-- ... -->
 </prekeys>
 </bundle>
 </item>
 </publish>
</pubsub>
</iq>

4.4 Building a session

In order to build a session with a device, their bundle information is fetched.

Example 4. Fetching a device’s bundle information

<iq type='get'
 from='romeo@montague.lit'
 to='juliet@capulet.lit'
 id='fetch1'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <items node='urn:xmpp:omemo:0:bundles:31415'/>
</pubsub>
</iq>

A random preKeyPublic entry is selected, and used to build an axolotl session.

4.5 Sending a message

In order to send a chat message, its <body> first has to be encrypted. The
client MUST use fresh, randomly generated key/IV pairs with AES-128 in
Galois/Counter Mode (GCM). For each intended recipient device, i.e. both own
devices as well as devices associated with the contact, this key is encrypted
using the corresponding long-standing axolotl session. Each encrypted payload
key is tagged with the recipient device’s ID. This is all serialized into a
MessageElement, which is transmitted in a <message> as follows:

Example 5. Sending a message

<message to='juliet@capulet.lit' from='romeo@montague.lit' id='send1'>
<encrypted xmlns='urn:xmpp:omemo:0'>
 <header sid='27183'>
 <key rid='31415'>BASE64ENCODED...</key>
 <key rid='12321'>BASE64ENCODED...</key>
 <!-- ... -->
 <iv>BASE64ENCODED...</iv>
 </header>
 <payload>BASE64ENCODED</payload>
</encrypted>
<store xmlns='urn:xmpp:hints'/>
</message>

4.6 Sending a key

The client may wish to transmit keying material to the contact. This first has
to be generated. The client MUST generate a fresh, randomly generated key/IV
pair. For each intended recipient device, i.e. both own devices as well as
devices associated with the contact, this key is encrypted using the
corresponding long-standing axolotl session. Each encrypted payload key is
tagged with the recipient device’s ID. This is all serialized into a
KeyTransportElement, omitting the <payload> as follows:

Example 6. Sending a key

<encrypted xmlns='urn:xmpp:omemo:0'>
<header sid='27183'>
 <key rid='31415'>BASE64ENCODED...</key>
 <key rid='12321'>BASE64ENCODED...</key>
 <!-- ... -->
 <iv>BASE64ENCODED...</iv>
</header>
</encrypted>

This KeyTransportElement can then be sent over any applicable transport mechanism.

4.7 Receiving a message

When an OMEMO element is received, the client MUST check whether there is a
<key> element with an rid attribute matching its own device ID. If this is
not the case, the element MUST be silently discarded. If such an element
exists, the client checks whether the element’s contents are a
PreKeyWhisperMessage.

If this is the case, a new session is built from this received element. The
client SHOULD then republish their bundle information, replacing the used
PreKey, such that it won’t be used again by a different client. If the client
already has a session with the sender’s device, it MUST replace this session
with the newly built session. The client MUST delete the private key belonging
to the PreKey after use.

If the element’s contents are a WhisperMessage, and the client has a session
with the sender’s device, it tries to decrypt the WhisperMessage using this
session. If the decryption fails or if the element’s contents are not a
WhisperMessage either, the OMEMO element MUST be silently discarded.

If the OMEMO element contains a <payload>, it is an OMEMO message element. The
client tries to decrypt the base 64 encoded contents using the key extracted
from the <key> element. If the decryption fails, the client MUST silently
discard the OMEMO message. If it succeeds, the decrypted contents are treated
as the <body> of the received message.

If the OMEMO element does not contain a <payload>, the client has received a
KeyTransportElement. The key extracted from the <key> element can then be used
for other purposes (e.g. encrypted file transfer).

5. Business Rules

Before publishing a freshly generated Device ID for the first time, a device
MUST check whether that Device ID already exists, and if so, generate a new
one.

Clients SHOULD NOT immediately fetch the bundle and build a session as soon as
a new device is announced. Before the first message is exchanged, the contact
does not know which PreKey has been used (or, in fact, that any PreKey was used
at all). As they have not had a chance to remove the used PreKey from their
bundle announcement, this could lead to collisions where both Alice and Bob
pick the same PreKey to build a session with a specific device. As each PreKey
SHOULD only be used once, the party that sends their initial
PreKeyWhisperMessage later loses this race condition. This means that they
think they have a valid session with the contact, when in reality their
messages MAY be ignored by the other end. By postponing building sessions, the
chance of such issues occurring can be drastically reduced. It is RECOMMENDED
to construct sessions only immediately before sending a message.

As there are no explicit error messages in this protocol, if a client does
receive a PreKeyWhisperMessage using an invalid PreKey, they SHOULD respond
with a KeyTransportElement, sent in a <message> using a PreKeyWhisperMessage.
By building a new session with the original sender this way, the invalid
session of the original sender will get overwritten with this newly created,
valid session.

If a PreKeyWhisperMessage is received as part of a Message Archive Management
(XEP-0313) [https://xmpp.org/extensions/xep-0313.html] catch-up and used to establish a new session with the sender,
the client SHOULD postpone deletion of the private key corresponding to the
used PreKey until after MAM catch-up is completed. If this is done, the client
MUST then also send a KeyTransportMessage using a PreKeyWhisperMessage before
sending any payloads using this session, to trigger re-keying. (as above) This
practice can mitigate the previously mentioned race condition by preventing
message loss.

As the asynchronous nature of OMEMO allows decryption at a later time to
currently offline devices client SHOULD include a Message Processing Hints
(XEP-0334) [https://xmpp.org/extensions/xep-0334.html] <store /> hint in
their OMEMO messages. Otherwise, server implementations of Message Archive
Management (XEP-0313) [https://xmpp.org/extensions/xep-0313.html] will
generally not retain OMEMO messages, since they do not contain a <body />

6. Implementation Notes

For details on axoltol, see the specification and reference implementation.

The axolotl library’s reference implementation (and presumably its ports to
various other platforms) uses a trust model that doesn’t work very well with
OMEMO. For this reason it may be desirable to have the library consider all
keys trusted, effectively disabling its trust management. This makes it
necessary to implement trust handling oneself.

7. Security Considerations

Clients MUST NOT use a newly built session to transmit data without user
intervention. If a client were to opportunistically start using sessions for
sending without asking the user whether to trust a device first, an attacker
could publish a fake device for this user, which would then receive copies of
all messages sent by/to this user. A client MAY use such “not (yet) trusted”
sessions for decryption of received messages, but in that case it SHOULD
indicate the untrusted nature of such messages to the user.

When prompting the user for a trust decision regarding a key, the client SHOULD
present the user with a fingerprint in the form of a hex string, QR code, or
other unique representation, such that it can be compared by the user.

While it is RECOMMENDED that clients postpone private key deletion until after
MAM catch-up and this standards mandates that clients MUST NOT use
duplicate-PreKey sessions for sending, clients MAY delete such keys immediately
for security reasons. For additional information on potential security impacts
of this decision, refer to Menezes, Alfred, and Berkant Ustaoglu. “On reusing
ephemeral keys in Diffie-Hellman key agreement protocols.” International
Journal of Applied Cryptography 2, no. 2 (2010): 154-158..

In order to be able to handle out-of-order messages, the axolotl stack has to cache the keys belonging to “skipped” messages that have not been seen yet. It is up to the implementor to decide how long and how many of such keys to keep around.
8. IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA).

9. XMPP Registrar Considerations

9.1 Protocol Namespaces

This specification defines the following XMPP namespaces:

urn:xmpp:omemo:0

The XMPP Registrar [https://xmpp.org/registrar/] shall include the foregoing
namespace in its registry at <https://xmpp.org/registrar/namespaces.html>, as
goverened by XMPP Registrar Function (XEP-0053) [https://xmpp.org/extensions/xep-0053.html].

9.2 Protocol Versioning

If the protocol defined in this specification undergoes a revision that is not
fully backwards-compatible with an older version, the XMPP Registrar shall
increment the protocol version number found at the end of the XML namespaces
defined herein, as described in Section 4 of XEP-0053.

10. XML Schema

Xml Schema

<xml version="1.0" encoding="utf8">
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:xmpp:omemo:0"
 xmlns="urn:xmpp:omemo:0">

<xs:element name="encrypted">
 <xs:element name="header">
 <xs:attribute name="sid" type="xs:integer"/>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" type="xs:base64Binary" maxOccurs="unbounded">
 <xs:attribute name="rid" type="xs:integer"/>
 </xs:element>
 <xs:element name="iv" type="xs:base64Binary"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="payload" type="xs:base64Binary" minOccurs="0"/>
</xs:element>

<xs:element name="list">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="device" maxOccurs="unbounded">
 <xs:attribute name="id" type="integer"/>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="bundle">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="signedPreKeyPublic" type="base64Binary">
 <xs:attribute name="id" type="integer"/>
 </xs:element>
 <xs:element name="signedPreKeySignature" type="base64Binary"/>
 <xs:element name="identityKey" type="base64Binary"/>
 <xs:element name="prekeys">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preKeyPublic" type="base64Binary" maxOccurs="unbounded">
 <xs:attribute name="id" type="integer"/>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

11. Acknowledgements

Big thanks to Daniel Gultsch for mentoring me during the development of this
protocol. Thanks to Thijs Alkemade and Cornelius Aschermann for talking through
some of the finer points of the protocol with me. And lastly I would also like
to thank Sam Whited, Holger Weiss, and Florian Schmaus for their input on the
standard.

Appendices

Appendix A: Document Information

	Series::

	XEP

	Number::

	xxxx

	Publisher::

	XMPP Standards Foundation

	Status::

	ProtoXEP

	Type::

	Standards Track

	Version::

	0.0.1

	Last Updated::

	2015-10-25

	Approving Body::

	XMPP Council

	Dependencies::

	XMPP Core, XEP-0163

	Supersedes::

	None

	Superseded By::

	None

	Short Name::

	NOT_YET_ASSIGNED

	This document in other formats::

	XML PDF

Appendix B: Author Information

Andreas Straub

	Email::

	andy@strb.org

	JabberID::

	andy@strb.org

Appendix C: Legal Notices

Copyright

This XMPP Extension Protocol is copyright (c) 1999 - 2014 by the XMPP Standards
Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of
this specification (the “Specification”), to make use of the Specification
without restriction, including without limitation the rights to implement the
Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense,
or sell copies of the Specification, and to permit persons to whom the
Specification is furnished to do so, subject to the condition that the
foregoing copyright notice and this permission notice shall be included in all
copies or substantial portions of the Specification. Unless separate permission
is granted, modified works that are redistributed shall not contain misleading
information regarding the authors, title, number, or publisher of the
Specification, and shall not claim endorsement of the modified works by the
authors, any organization or project to which the authors belong, or the XMPP
Standards Foundation.

Disclaimer of Warranty

Note

This Specification is provided on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. In no event shall the XMPP Standards Foundation or the authors of this Specification be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the Specification or the implementation, deployment, or other use of the Specification.

Limitation of Liability

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall the XMPP Standards
Foundation or any author of this Specification be liable for damages, including
any direct, indirect, special, incidental, or consequential damages of any
character arising out of the use or inability to use the Specification
(including but not limited to damages for loss of goodwill, work stoppage,
computer failure or malfunction, or any and all other commercial damages or
losses), even if the XMPP Standards Foundation or such author has been advised
of the possibility of such damages.

IPR Conformance

This XMPP Extension Protocol has been contributed in full conformance with the
XSF’s Intellectual Property Rights Policy (a copy of which may be found at
<https://xmpp.org/extensions/ipr-policy.shtml> or obtained by writing to XSF,
P.O. Box 1641, Denver, CO 80201 USA).

Appendix D: Relation to XMPP

The Extensible Messaging and Presence Protocol (XMPP) is defined in the XMPP
Core (RFC 6120) and XMPP IM (RFC 6121) specifications contributed by the XMPP
Standards Foundation to the Internet Standards Process, which is managed by the
Internet Engineering Task Force in accordance with RFC 2026. Any protocol
defined in this document has been developed outside the Internet Standards
Process and is to be understood as an extension to XMPP rather than as an
evolution, development, or modification of XMPP itself.

Appendix E: Discussion Venue

The primary venue for discussion of XMPP Extension Protocols is the
<standards@xmpp.org> discussion list.

Discussion on other xmpp.org discussion lists might also be appropriate; see
<https://xmpp.org/about/discuss.shtml> for a complete list.

Errata can be sent to <editor@xmpp.org>.

Appendix F: Requirements Conformance

The following requirements keywords as used in this document are to be
interpreted as described in RFC 2119: “MUST”, “SHALL”, “REQUIRED”; “MUST NOT”,
“SHALL NOT”; “SHOULD”, “RECOMMENDED”; “SHOULD NOT”, “NOT RECOMMENDED”; “MAY”,
“OPTIONAL”.

Appendix G: Notes

	XEP-0364: Current Off-the-Record Messaging Usage <https://xmpp.org/extensions/xep-0364.html>.

	XEP-0027: Current Jabber OpenPGP Usage <https://xmpp.org/extensions/xep-0027.html>.

	XEP-0280: Message Carbons <https://xmpp.org/extensions/xep-0280.html>.

	XEP-0313: Message Archive Management <https://xmpp.org/extensions/xep-0313.html>.

	XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>.

	XEP-0313: Message Archive Management <https://xmpp.org/extensions/xep-0313.html>.

	XEP-0334: Message Processing Hints <https://xmpp.org/extensions/xep-0334.html>.

	XEP-0313: Message Archive Management <https://xmpp.org/extensions/xep-0313.html>.

	Menezes, Alfred, and Berkant Ustaoglu. “On reusing ephemeral keys in Diffie-Hellman key agreement protocols.” International Journal of Applied Cryptography 2, no. 2 (2010): 154-158.

	The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further information, see <https://xmpp.org/registrar/>.

11. XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
Appendix H: Revision History

Note: Older versions of this specification might be available at https://xmpp.org/extensions/attic/
Version 0.0.1 (2015-10-25)

First draft.
(as)

Reference

	OmemoState

OmemoState

	
class omemo.state.OmemoState(own_jid, connection)

	
	
__init__(own_jid, connection)

	Instantiates an OmemoState object.

	Parameters:	connection – an sqlite3.Connection

	
__module__ = 'omemo.state'

	

	
add_device(name, device_id)

	

	
add_own_device(device_id)

	

	
build_session(recipient_id, device_id, bundle_dict)

	

	
bundle

	.. highlight – python
Returns all data needed to announce bundle information.

bundle_dict = {
 'signedPreKeyPublic': bytes,
 'prekeys': [(int, bytes) (int, bytes)],
 'identityKey': bytes,
 'signedPreKeyId': int,
 'signedPreKeySignature': bytes
}

	
create_msg(from_jid, jid, plaintext)

	

	
decrypt_msg(msg_dict)

	

	
device_list_for(jid)

	Return a list of known device ids for the specified jid.

	Parameters:	jid (string) – The contacts jid

	
devices_without_sessions(jid)

	List device_ids for the given jid which have no axolotl session.

	Parameters:	jid (string) – The contacts jid

	Returns:	[int] – A list of device_ids

	
get_session_cipher(jid, device_id)

	

	
handlePreKeyWhisperMessage(recipient_id, device_id, key)

	

	
handleWhisperMessage(recipient_id, device_id, key)

	

	
own_device_id

	

	
own_device_id_published()

	Return True only if own device id was added via
:py:method:`OmemoState.set_own_devices()`.

	
own_devices_without_sessions(own_jid)

	List own device_ids which have no axolotl session.

	Parameters:	own_jid (string) – Workaround for missing own jid in OmemoState

	Returns:	[int] – A list of device_ids

	
set_devices(name, devices)

	Return a an.

	Parameters:	
	jid (string) – The contacts jid

	devices ([int]) – A list of devices

	
set_own_devices(devices)

	Overwrite the current :py:attribute:`OmemoState.own_devices` with
the given devices.

	Parameters:	devices ([int]) – A list of device_ids

Collective Code Construction Contract

The Collective Code Construction Contract (C4) is an evolution of the
github.com Fork + Pull Model [https://help.github.com/articles/using-pull-requests/], aimed at providing an
optimal collaboration model for free software projects. This is revision 1 of
the C4 specification.

License

Copyright (c) 2009-2015 Pieter Hintjens.

This Specification is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option) any
later version.

This Specification is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, see <http://www.gnu.org/licenses>.

Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119].

Goals

C4 is meant to provide a reusable optimal collaboration model for open source
software projects. It has these specific goals:

	To maximize the scale of the community around a project, by reducing the
friction for new Contributors and creating a scaled participation model with
strong positive feedbacks;

	To relieve dependencies on key individuals by separating different skill sets
so that there is a larger pool of competence in any required domain;

	To allow the project to develop faster and more accurately, by increasing the
diversity of the decision making process;

	To support the natural life cycle of project versions from experimental
through to stable, by allowing safe experimentation, rapid failure, and
isolation of stable code;

	To reduce the internal complexity of project repositories, thus making it
easier for Contributors to participate and reducing the scope for error;

	To enforce collective ownership of the project, which increases economic
incentive to Contributors and reduces the risk of hijack by hostile entities.

Design

Preliminaries

	The project SHALL use the git distributed revision control system.

	The project SHALL be hosted on github.com or equivalent, herein called the
“Platform”.

	The project SHALL use the Platform issue tracker.

	The project SHOULD have clearly documented guidelines for code style.

	A “Contributor” is a person who wishes to provide a patch, being a set of
commits that solve some clearly identified problem.

	A “Maintainer” is a person who merges patches to the project. Maintainers are
not developers; their job is to enforce process.

	Contributors SHALL NOT have commit access to the repository unless they are
also Maintainers.

	Maintainers SHALL have commit access to the repository.

	Everyone, without distinction or discrimination, SHALL have an equal right to
become a Contributor under the terms of this contract.

Licensing and Ownership

	The project SHALL use a share-alike license, such as the GPLv3 or a variant
thereof (LGPL, AGPL), or the MPLv2.

	All contributions to the project source code (“patches”) SHALL use the same
license as the project.

	All patches are owned by their authors. There SHALL NOT be any copyright
assignment process.

	The copyrights in the project SHALL be owned collectively by all its
Contributors.

	Each Contributor SHALL be responsible for identifying themselves in the
project Contributor list.

Patch Requirements

	Maintainers and Contributors MUST have a Platform account and SHOULD
use their real names or a well-known alias.

	A patch SHOULD be a minimal and accurate answer to exactly one identified and
agreed problem.

	A patch MUST adhere to the code style guidelines of the project if these are
defined.

	A patch MUST adhere to the “Evolution of Public Contracts” guidelines defined
below.

	A patch SHALL NOT include non-trivial code from other projects unless the
Contributor is the original author of that code.

	A patch MUST compile cleanly and pass project self-tests on at least the
principle target platform.

	A patch commit message SHOULD consist of a single short (less than 50
character) line summarizing the change, optionally followed by a blank line
and then a more thorough description.

	A “Correct Patch” is one that satisfies the above requirements.

Development Process

	Change on the project SHALL be governed by the pattern of accurately
identifying problems and applying minimal, accurate solutions to these
problems.

	To request changes, a user SHOULD log an issue on the project Platform issue
tracker.

	The user or Contributor SHOULD write the issue by describing the problem they
face or observe.

	The user or Contributor SHOULD seek consensus on the accuracy of their
observation, and the value of solving the problem.

	Users SHALL NOT log feature requests, ideas, suggestions, or any solutions to
problems that are not explicitly documented and provable.

	Thus, the release history of the project SHALL be a list of meaningful issues
logged and solved.

	To work on an issue, a Contributor SHALL fork the project repository and then
work on their forked repository.

	To submit a patch, a Contributor SHALL create a Platform pull request back to
the project.

	A Contributor SHALL NOT commit changes directly to the project.

	If the Platform implements pull requests as issues, a Contributor MAY
directly send a pull request without logging a separate issue.

	To discuss a patch, people MAY comment on the Platform pull request, on the
commit, or elsewhere.

	To accept or reject a patch, a Maintainer SHALL use the Platform interface.

	Maintainers SHOULD NOT merge their own patches except in exceptional cases,
such as non-responsiveness from other Maintainers for an extended period (more
than 1-2 days).

	Maintainers SHALL NOT make value judgments on correct patches.

	Maintainers SHALL merge correct patches from other Contributors rapidly.

	The Contributor MAY tag an issue as “Ready” after making a pull request for
the issue.

	The user who created an issue SHOULD close the issue after checking the patch
is successful.

	Maintainers SHOULD ask for improvements to incorrect patches and
SHOULD reject incorrect patches if the Contributor does not respond
constructively.

	Any Contributor who has value judgments on a correct patch SHOULD express
these via their own patches.

	Maintainers MAY commit changes to non-source documentation directly to the
project.

Creating Stable Releases

	The project SHALL have one branch (“master”) that always holds the latest
in-progress version and SHOULD always build.

	The project SHALL NOT use topic branches for any reason. Personal forks
MAY use topic branches.

	To make a stable release someone SHALL fork the repository by copying it and
thus become maintainer of this repository.

	Forking a project for stabilization MAY be done unilaterally and without
agreement of project maintainers.

	A stabilization project SHOULD be maintained by the same process as the main
project.

	A patch to a stabilization project declared “stable” SHALL be accompanied by
a reproducible test case.

Evolution of Public Contracts

	All Public Contracts (APIs or protocols) SHALL be documented.

	All Public Contracts SHOULD have space for extensibility and experimentation.

	A patch that modifies a stable Public Contract SHOULD not break existing
applications unless there is overriding consensus on the value of doing this.

	A patch that introduces new features to a Public Contract SHOULD do so using
new names.

	Old names SHOULD be deprecated in a systematic fashion by marking new names
as “experimental” until they are stable, then marking the old names as
“deprecated”.

	When sufficient time has passed, old deprecated names SHOULD be marked
“legacy” and eventually removed.

	Old names SHALL NOT be reused by new features.

	When old names are removed, their implementations MUST provoke an exception
(assertion) if used by applications.

Project Administration

	The project founders SHALL act as Administrators to manage the set of project
Maintainers.

	The Administrators SHALL ensure their own succession over time by promoting
the most effective Maintainers.

	A new Contributor who makes a correct patch SHALL be invited to become a
Maintainer.

	Administrators MAY remove Maintainers who are inactive for an extended period
of time, or who repeatedly fail to apply this process accurately.

	Administrators SHOULD block or ban “bad actors” who cause stress and pain to
others in the project. This should be done after public discussion, with a
chance for all parties to speak. A bad actor is someone who repeatedly ignores
the rules and culture of the project, who is needlessly argumentative or
hostile, or who is offensive, and who is unable to self-correct their behavior
when asked to do so by others.

Further Reading

	Argyris’ Models 1 and 2 - the goals of C4.1 are consistent with Argyris’
Model 2.

	Toyota Kata - covering the Improvement Kata (fixing problems one at a time)
and the Coaching Kata (helping others to learn the Improvement Kata).

Implementations

	The ZeroMQ community uses the C4.1 process for many projects.

	OSSEC uses the C4.1 process.

	The Machinekit community uses the C4.1 process.

Authors

	Bahtiar kalkin- Gadimov - https://github.com/kalkin

	Daniel Gultsch - https://github.com/inputmice

	Tarek Galal - https://github.com/tgalal (original axolotl store implementation)

	Bob Mottram - https://github.com/bashrc (message padding)

Changelog

0.1.0 (2016-01-11)

	First release on PyPI.

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | G
 | H
 | O
 | S

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 _
 | A
 | B
 | C
 | D
 | G
 | H
 | O
 | S

_

 	
 	__init__() (omemo.state.OmemoState method)

 	
 	__module__ (omemo.state.OmemoState attribute)

A

 	
 	add_device() (omemo.state.OmemoState method)

 	
 	add_own_device() (omemo.state.OmemoState method)

B

 	
 	build_session() (omemo.state.OmemoState method)

 	
 	bundle (omemo.state.OmemoState attribute)

C

 	
 	create_msg() (omemo.state.OmemoState method)

D

 	
 	decrypt_msg() (omemo.state.OmemoState method)

 	
 	device_list_for() (omemo.state.OmemoState method)

 	devices_without_sessions() (omemo.state.OmemoState method)

G

 	
 	get_session_cipher() (omemo.state.OmemoState method)

H

 	
 	handlePreKeyWhisperMessage() (omemo.state.OmemoState method)

 	
 	handleWhisperMessage() (omemo.state.OmemoState method)

O

 	
 	OmemoState (class in omemo.state)

 	own_device_id (omemo.state.OmemoState attribute)

 	
 	own_device_id_published() (omemo.state.OmemoState method)

 	own_devices_without_sessions() (omemo.state.OmemoState method)

S

 	
 	set_devices() (omemo.state.OmemoState method)

 	
 	set_own_devices() (omemo.state.OmemoState method)

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index _static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		Contents

 		Overview

 		Installation

 		Documentation

 		Development

 		Tips

 		Contributing

 		Installation

 		Usage

 		XEP: OMEMO Encryption

 		1. Introduction

 		1.1 Motivation

 		1.2 Overview

 		2. Requirements

 		3. Glossary

 		3.1 General Terms

 		3.2 Axolotl-specific

 		4. Use Cases

 		4.1 Setup

 		4.2 Discovering peer support

 		4.3 Announcing support

 		4.4 Building a session

 		4.5 Sending a message

 		4.6 Sending a key

 		4.7 Receiving a message

 		5. Business Rules

 		6. Implementation Notes

 		7. Security Considerations

 		9. XMPP Registrar Considerations

 		9.1 Protocol Namespaces

 		9.2 Protocol Versioning

 		10. XML Schema

 		11. Acknowledgements

 		Appendices

 		Appendix A: Document Information

 		Appendix B: Author Information

 		Appendix C: Legal Notices

 		Appendix D: Relation to XMPP

 		Appendix E: Discussion Venue

 		Appendix F: Requirements Conformance

 		Appendix G: Notes

