

Welcome to Python MySQL Replication’s documentation!

Pure Python Implementation of MySQL replication protocol build on top of PyMYSQL. This allow you to receive event like insert, update, delete with their datas and raw SQL queries.

Use cases

	MySQL to NoSQL database replication

	MySQL to search engine replication

	Invalidate cache when something change in database

	Audit

	Real time analytics

Contents

	Installation

	Limitations
	GEOMETRY

	binlog_row_image

	BOOLEAN and BOOL

	BinLogStreamReader

	Events
	Row events

	Examples
	Prerequisites

	Support

	Developement
	Contributions

	Tests

	Build the documentation

	Licence

Indices and tables

	Index

	Module Index

	Search Page

Installation

Python MySQL Replication is available on PyPi.
You can install it with:

pip install mysql-replication

Limitations

GEOMETRY

GEOMETRY field is not decoded you will get the raw data.

binlog_row_image

Only [binlog_row_image=full](http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image) is supported (it’s the default value).

BOOLEAN and BOOL

Boolean is returned as TINYINT(1) because it’s the reality.

http://dev.mysql.com/doc/refman/5.6/en/numeric-type-overview.html

Our discussion about it:
https://github.com/noplay/python-mysql-replication/pull/16

BinLogStreamReader

	
class pymysqlreplication.binlogstream.BinLogStreamReader(connection_settings, server_id, ctl_connection_settings=None, resume_stream=False, blocking=False, only_events=None, log_file=None, log_pos=None, filter_non_implemented_events=True, ignored_events=None, auto_position=None, only_tables=None, ignored_tables=None, only_schemas=None, ignored_schemas=None, freeze_schema=False, skip_to_timestamp=None, report_slave=None, slave_uuid=None, pymysql_wrapper=None, fail_on_table_metadata_unavailable=False, slave_heartbeat=None)

	Connect to replication stream and read event

	
class pymysqlreplication.binlogstream.ReportSlave(value)

	Represent the values that you may report when connecting as a slave
to a master. SHOW SLAVE HOSTS related

	
encoded(server_id, master_id=0)

	server_id: the slave server-id
master_id: usually 0. Appears as “master id” in SHOW SLAVE HOSTS

on the master. Unknown what else it impacts.

Events

	
class pymysqlreplication.event.BeginLoadQueryEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	
	Attributes:

	file_id
block-data

	
class pymysqlreplication.event.ExecuteLoadQueryEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	
	Attributes:

	slave_proxy_id
execution_time
schema_length
error_code
status_vars_length

file_id
start_pos
end_pos
dup_handling_flags

	
class pymysqlreplication.event.GtidEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	GTID change in binlog event

	
gtid

	GTID = source_id:transaction_id
Eg: 3E11FA47-71CA-11E1-9E33-C80AA9429562:23
See: http://dev.mysql.com/doc/refman/5.6/en/replication-gtids-concepts.html

	
class pymysqlreplication.event.HeartbeatLogEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	A Heartbeat event
Heartbeats are sent by the master only if there are no unsent events in the
binary log file for a period longer than the interval defined by
MASTER_HEARTBEAT_PERIOD connection setting.

A mysql server will also play those to the slave for each skipped
events in the log. I (baloo) believe the intention is to make the slave
bump its position so that if a disconnection occurs, the slave only
reconnects from the last skipped position (see Binlog_sender::send_events
in sql/rpl_binlog_sender.cc). That makes 106 bytes of data for skipped
event in the binlog. this is also the case with GTID replication. To
mitigate such behavior, you are expected to keep the binlog small (see
max_binlog_size, defaults to 1G).
In any case, the timestamp is 0 (as in 1970-01-01T00:00:00).

	Attributes:

	ident: Name of the current binlog

	
class pymysqlreplication.event.IntvarEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	
	Attributes:

	type
value

	
class pymysqlreplication.event.QueryEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	This evenement is trigger when a query is run of the database.
Only replicated queries are logged.

	
class pymysqlreplication.event.RotateEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	Change MySQL bin log file

	Attributes:

	position: Position inside next binlog
next_binlog: Name of next binlog file

	
class pymysqlreplication.event.XidEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	A COMMIT event

	Attributes:

	xid: Transaction ID for 2PC

Row events

This events are send by MySQL when data are modified.

	
class pymysqlreplication.row_event.DeleteRowsEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	This event is trigger when a row in the database is removed

For each row you have a hash with a single key: values which contain the data of the removed line.

	
class pymysqlreplication.row_event.TableMapEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	This evenement describe the structure of a table.
It’s sent before a change happens on a table.
An end user of the lib should have no usage of this

	
class pymysqlreplication.row_event.UpdateRowsEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	This event is triggered when a row in the database is changed

	For each row you got a hash with two keys:

	
	before_values

	after_values

Depending of your MySQL configuration the hash can contains the full row or only the changes:
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image

	
class pymysqlreplication.row_event.WriteRowsEvent(from_packet, event_size, table_map, ctl_connection, **kwargs)

	This event is triggered when a row in database is added

For each row you have a hash with a single key: values which contain the data of the new line.

Examples

You can found a list of working examples here: https://github.com/noplay/python-mysql-replication/tree/master/examples

Prerequisites

The user, you plan to use for the BinaryLogClient, must have REPLICATION SLAVE privilege. To get binlog filename and position, he must be granted at least one of REPLICATION CLIENT or SUPER as well. To get table info of mysql server, he also need SELECT privilege on information_schema.COLUMNS.
We suggest grant below privileges to the user:

GRANT REPLICATION SLAVE, REPLICATION CLIENT, SELECT ON *.* TO 'user'@'host'

Support

You can get support and discuss about new features on:
https://groups.google.com/d/forum/python-mysql-replication

You can browse and report issues on:
https://github.com/noplay/python-mysql-replication/issues

Developement

Contributions

You can report issues and contribute to the project on: https://github.com/noplay/python-mysql-replication

The standard way to contribute code to the project is to fork the Github
project and open a pull request with your changes:
https://github.com/noplay/python-mysql-replication

Don’t hesitate to open an issue with what you want to changes if
you want to discuss about it before coding.

Tests

When it’s possible we have an unit test.

pymysqlreplication/tests/ contains the test suite. The test suite
use the standard unittest Python module.

Be carefull tests will reset the binary log of your MySQL server.

Make sure you have the following configuration set in your mysql config file (usually my.cnf on development env):

log-bin=mysql-bin
server-id=1
binlog-format = row #Very important if you want to receive write, update and delete row events
gtid_mode=ON
log-slave_updates=true
enforce_gtid_consistency

Run tests with

py.test -k "not test_no_trailing_rotate_event"

This will skip the test_no_trailing_rotate_event which requires that the
user running the test have permission to alter the binary log files.

Running mysql in docker (main):

docker run --name python-mysql-replication-tests -e MYSQL_ALLOW_EMPTY_PASSWORD=true -p 3306:3306 --rm percona:latest --log-bin=mysql-bin.log --server-id 1 --binlog-format=row --gtid_mode=on --enforce-gtid-consistency=on --log_slave_updates

Running mysql in docker (for ctl server):

docker run --name python-mysql-replication-tests-ctl --expose=3307 -e MYSQL_ALLOW_EMPTY_PASSWORD=true -p 3307:3307 --rm percona:latest --log-bin=mysql-bin.log --server-id 1 --binlog-format=row --gtid_mode=on --enforce-gtid-consistency=on --log_slave-updates -P 3307

Each pull request is tested on Travis CI:
https://travis-ci.org/noplay/python-mysql-replication

Build the documentation

The documentation is available in docs folder. You can
build it using Sphinx:

cd docs
pip install sphinx
make html

Licence

Copyright 2012-2014 Julien Duponchelle

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymysqlreplication	

 	
 	
 pymysqlreplication.binlogstream	

 	
 	
 pymysqlreplication.event	

 	
 	
 pymysqlreplication.row_event	

Index

 B
 | D
 | E
 | G
 | H
 | I
 | P
 | Q
 | R
 | T
 | U
 | W
 | X

B

 	
 	BeginLoadQueryEvent (class in pymysqlreplication.event)

 	
 	BinLogStreamReader (class in pymysqlreplication.binlogstream)

D

 	
 	DeleteRowsEvent (class in pymysqlreplication.row_event)

E

 	
 	encoded() (pymysqlreplication.binlogstream.ReportSlave method)

 	
 	ExecuteLoadQueryEvent (class in pymysqlreplication.event)

G

 	
 	gtid (pymysqlreplication.event.GtidEvent attribute)

 	
 	GtidEvent (class in pymysqlreplication.event)

H

 	
 	HeartbeatLogEvent (class in pymysqlreplication.event)

I

 	
 	IntvarEvent (class in pymysqlreplication.event)

P

 	
 	pymysqlreplication.binlogstream (module)

 	
 	pymysqlreplication.event (module)

 	pymysqlreplication.row_event (module)

Q

 	
 	QueryEvent (class in pymysqlreplication.event)

R

 	
 	ReportSlave (class in pymysqlreplication.binlogstream)

 	
 	RotateEvent (class in pymysqlreplication.event)

T

 	
 	TableMapEvent (class in pymysqlreplication.row_event)

U

 	
 	UpdateRowsEvent (class in pymysqlreplication.row_event)

W

 	
 	WriteRowsEvent (class in pymysqlreplication.row_event)

X

 	
 	XidEvent (class in pymysqlreplication.event)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python MySQL Replication’s documentation!

 		
 Installation

 		
 Limitations

 		
 GEOMETRY

 		
 binlog_row_image

 		
 BOOLEAN and BOOL

 		
 BinLogStreamReader

 		
 Events

 		
 Row events

 		
 Examples

 		
 Prerequisites

 		
 Support

 		
 Developement

 		
 Contributions

 		
 Tests

 		
 Build the documentation

 		
 Licence

_static/up-pressed.png

_static/up.png

_static/plus.png

