

Python IntelHex Library User Manual

Contents:

	Introduction
	About
	Motivation

	License

	Installation
	Installing with pip

	Download sources

	Get source code with git

	Install from sources

	Note for Windows users

	Python 3 compatibility
	Which Python version should you use?

	Basic API and usage
	Initializing the class

	Reading data

	Basic data inspection

	More data inspection
	Summarizing the data chunks

	Writing out data
	Data converters

	Writing data in chunks

	Merging two hex files

	Creating Intel Hex files from scratch

	Handling errors

	Convenience Scripts
	Script hex2bin.py

	Script bin2hex.py

	Script hex2dump.py

	Script hexmerge.py

	Script hexdiff.py

	Script hexinfo.py

	Embedding into other projects

	Appendix A. IntelHex Errors Hierarchy

Indices and tables

	Index

	Module Index

	Search Page

Introduction

	About
	Motivation

	License

	Installation
	Installing with pip

	Download sources

	Get source code with git

	Install from sources

	Note for Windows users

	Python 3 compatibility
	Which Python version should you use?

About

The Intel HEX file format is widely used in microprocessors and microcontrollers
area as the de facto standard for code representation for microelectronic devices programming.

This work implements an intelhex Python library to read, write,
create from scratch and manipulate data from HEX (also known as Intel HEX)
file format. These operations are provided by IntelHex class.

The distribution package also includes several convenience Python scripts
to do basic tasks that utilize this library. The bin2hex.py script
converts binary data to HEX, and the hex2bin.py works the other direction.
hex2dump.py converts data from HEX to a hexdump which is useful for
inspecting data, and hexmerge.py merges multiple HEX files into one.
In addition you can try inspecting differences between two HEX files with
hexdiff.py utility which uses dump output similar to hex2dump.py.

You can find IntelHex library on PyPI:

https://pypi.python.org/pypi/IntelHex

on GitHub:

https://github.com/bialix/intelhex

Motivation

This work was partially inspired by SRecord [http://srecord.sourceforge.net/] software at the moment
when I stuck with its limitations and unintuitive behavior (for me personally).

So I’ve made this library and related tools which give me
full control over data and HEX file creation.
Not the best reason to start yet another project.
But, as you probably know, nothing is better than scratch our own itches,
especially if you want to re-implement something
in your favorite programming language.

Over the years it turned out that my small python library was very useful
to many people, and allowed them not only to create utilities to manipulate
with HEX files, but also to create custom bootloaders for their devices.

I started writing this library in 2005, and now more than 10 years later
it’s still alive and useful to other developers.
That keeps me working on improving the code,
even though I don’t work on embedding systems for some time.

If you find IntelHex library useful, please send me email
and tell a bit about how you’re using it and in which projects/areas.
That will not only satisfy my curiosity but also will help me to keep working
on this project.

License

The code distributed under the BSD license.
See LICENSE.txt in sources archive.

Installation

Note: some commands below have sudo as first word.
It’s required only on Linux or Mac OS X.
Omit the prefix if you’re on Windows.

Installing with pip

If you just need IntelHex library installed as your system python library
then it’s better to use modern tool called pip
(http://www.pip-installer.org/en/latest/)
to install with the command:

sudo pip install intelhex

The latest versions of Python interpreter (like 2.7.9, or 3.4.x and later)
have pip in the standard installer/distribution.

The simplest way to check whether you have pip installed
is to check command (for Python 2.5+):

python -m pip list

If this does not work, you can install pip by downloading single file
from this page: https://pip.pypa.io/en/latest/installing.html#install-pip
and run it as

sudo python get-pip.py

Download sources

You can get archive with the latest released code, docs and other files
from PyPI:

https://pypi.python.org/pypi/IntelHex

You can get the archive with the released code from corresponding section
of GitHub project:

https://github.com/bialix/intelhex/releases

or even unreleased bleeding edge code from GitHub page:

https://github.com/bialix/intelhex

Use the corresponding menu item in the right-hand side bar on that page
(e.g. “Download ZIP”).

Get source code with git

git clone https://github.com/bialix/intelhex.git

Install from sources

IntelHex has got stadard setup.py installation script.
Assuming Python is properly installed on your platform,
installation should require just running of the following command
from the root directory of the sources:

sudo python setup.py install

This will install the intelhex package into your system’s site-packages
directory and place the helper scripts in your Python site-packages
binaries directory. Once it is done, any other Python scripts or modules
should be able to import the package using:

>>> from intelhex import IntelHex

The scripts should be in your PATH so that they could be called from anywhere
in the file system.

See the Python distutils website for more information, or try typing,
python setup.py --help from the root directory of the sources.

Note for Windows users

Please note that for historical reasons IntelHex library doesn’t use
setuptools for installation task, therefore we don’t create exe-wrappers
for helper scripts as hex2bin.py, bin2hex.py and other mentioned in this
documentation (see section Convenience Scripts).

You can find these scripts in your python Script directory
(usually C:\PythonXY\Scripts).
You need either to create batch file to run them, or use Python interpreter:

python C:\PythonXY\Scripts\hex2bin.py …

Python 3 compatibility

Intelhex library supports Python 2 (2.4-2.7) and Python 3 (3.2-3.6) without
external libraries or 2to3 tool. Enjoy.

I’ve successfully run unit tests of IntelHex against following versions of
Python:

2.4.4, 2.5.4, 2.6.6 (32/64 bits), 2.7.9 (32/64 bits),
3.2.5 (32/64 bits), 3.3.5 (32/64 bits), 3.4.3 (32/64 bits),
3.5.0a3 (32/64 bits),
and also PyPy 2.5.1 (which is Python 2.7.9)

Which Python version should you use?

If you don’t really know which version of Python (2 or 3) you should use with
IntelHex then please check following pre-requisites:

	Are you already have some Python installed on your computer and that
version is supported by IntelHex (see above)?

	Should you use another third-party libraries? If so, check their
requirements.

	Python 2.7 is the safest choice so far, but if you have a chance
then try latest stable Python 3 version.

	Updated by January 2018 - Python 3 is highly recommended.

Basic API and usage

	Initializing the class

	Reading data

	Basic data inspection

	More data inspection
	Summarizing the data chunks

	Writing out data
	Data converters

	Writing data in chunks

	Merging two hex files

	Creating Intel Hex files from scratch

	Handling errors

Initializing the class

Example of typical initialization of IntelHex class:

>>> from intelhex import IntelHex
>>> ih = IntelHex("foo.hex")

In the second line we are creating an instance of the class.
The constructor optionally takes data to initialize the class.
This can be the name of the HEX file, a file-like object, a dictionary,
or another instance of IntelHex. If specified, this source is automatically
read and decoded. Because of the flexibility of file-like objects in Python,
objects like sys.stdin can be used.

If the source is another instance of IntelHex, the new object will become
a copy of the source. Finally, a Python dictionary may be specified.
This dictionary should have keys equal to memory locations and values equal
to the data stored in those locations. See the docstrings for more details.

Reading data

Once created, an IntelHex object can be loaded with data.
This is only necessary if “source” was unspecified in the constructor.
You can also load data several times (but if addresses in those files overlap
you get exception AddressOverlapError). This error is only raised when
reading from hex files. When reading from other formats, without explicitly
calling merge, the data will be overwritten. E.g.:

>>> from intelhex import IntelHex
>>> ih = IntelHex() # create empty object
>>> ih.loadhex('foo.hex') # load from hex
>>> ih.loadfile('bar.hex',format='hex') # also load from hex
>>> ih.fromfile('bar.hex',format='hex') # also load from hex

NOTE: using IntelHex.fromfile is recommended way.

All of the above examples will read from HEX files.
IntelHex also supports reading straight binary files. For example:

>>> from intelhex import IntelHex
>>> ih = IntelHex() # create empty object
>>> ih.loadbin('foo.bin') # load from bin
>>> ih.fromfile('bar.bin',format='bin') # also load from bin
>>> ih.loadbin('baz.bin',offset=0x1000) # load binary data and place them
>>> # starting with specified offset

Finally, data can be loaded from an appropriate Python dictionary.
This will permit you to store the data in an IntelHex object
to a builtin dictionary and restore the object at a later time.
For example:

>>> from intelhex import IntelHex
>>> ih = IntelHex('foo.hex') # create empty object
>>> pydict = ih.todict() # dump contents to pydict

…do something with the dictionary…

>>> newIH = IntelHex(pydict) # recreate object with dict
>>> another = IntelHex() # make a blank instance
>>> another.fromdict(pydict) # now another is the same as newIH

Basic data inspection

You can get or modify some data by address in the usual way:
via Python indexing operations:

>>> print ih[0] # read data from address 0

When you need to work with 16-bit data stored in 8-bit Intel HEX files
you need to use class IntelHex16bit. This class is derived from IntelHex
and has all its methods. Some of methods have been modified to implement
16-bit behaviour.

NOTE: IntelHex16bit class despite its name can’t handle real HEX16
files. Initially IntelHex16bit has been created as helper class to work with
HEX files for Microchip’s PIC16 family firmware. It may or may not work for
your purpose.

This class assumes the data is in Little Endian byte order.
The data can be accessed exactly like above, except that data returned will be
16 bits, and the addresses should be word addresses.

Another useful inspection tool is the dump command. This will output
the entire contents of the hex file to stdout or to a specified file object
like so:

>>> ih.dump() # dump contents of ih to stdout in tabular hexdump format

>>> f = open('hexdump.txt', 'w') # open file for writing
>>> ih.dump(f) # dump to file object
>>> f.close() # close file

More data inspection

IntelHex provides some metadata about the hex file it contains.
To obtain address limits use methods .minaddr() and .maxaddr().
These are computed based on the lowest and highest used memory spaces
respectively.

Some linkers write to produced HEX file information about start address
(either record 03 or 05). IntelHex is able correctly read such records
and store information internally in start_addr attribute that itself
is either None or a dictionary with the address value(s).

When input HEX file contains record type 03 (Start Segment Address Record),
start_addr takes value:

{'CS': XXX, 'IP': YYY}

Here:

	XXX is value of CS register

	YYY is value of IP register

To obtain or change CS or IP value you need to use their names as keys
for start_addr dictionary:

>>> ih = IntelHex('file_with_03.hex')
>>> print ih.start_addr['CS']
>>> print ih.start_addr['IP']

When input HEX file contains record type 05 (Start Linear Address Record),
start_addr takes value:

{'EIP': ZZZ}

Here ZZZ is value of EIP register.

Example:

>>> ih = IntelHex('file_with_05.hex')
>>> print ih.start_addr['EIP']

You can manually set required start address:

>>> ih.start_addr = {'CS': 0x1234, 'IP': 0x5678}
>>> ih.start_addr = {'EIP': 0x12345678}

To delete start address info give value None or empty dictionary:

>>> ih.start_addr = None
>>> ih.start_addr = {}

When you write data to HEX file you can disable writing start address
with additional argument write_start_addr:

>>> ih.write_hex_file('out.hex') # by default writing start address
>>> ih.write_hex_file('out.hex', True) # as above
>>> ih.write_hex_file('out.hex', False) # don't write start address

When start_addr is None or an empty dictionary nothing will be written
regardless of write_start_addr argument value.

For more information about start address, please see the Intel Hex file format
specification.

Because Intel Hex files do not specify every location in memory,
it is necessary to have a padding byte defined. Whenever a read is attempted
from an address that is unspecified, the padding byte is returned.
This default data is set via attribute .padding of class instance.
This defaults to ‘0xFF’, but it can be changed by the user like so:

>>> print ih[0] # prints 0xFF because this location is blank
>>> ih.padding = 0x00 # change padding byte
>>> print ih[0] # prints 0x00 because this location is blank

Summarizing the data chunks

One of the more useful properties of HEX files is that they can specify data
in discontinuous segments. There are two main methods to summarize which
data addresses are occupied:

>>> ih.addresses()
>>> ih.segments()

The first will return a list of occupied data addresses in sorted order. The
second will return a list of 2-tuples objects, in sorted order, representing
start and stop addresses of contiguous segment chunks of occupied data.
Those 2-tuples are suitable to be used as start and stop
arguments of standard range function.

Writing out data

Data contained in IntelHex can be written out in a few different formats,
including HEX, bin, or python dictionaries.

You can write out HEX data contained in object by method .write_hex_file(f).
Parameter f should be filename or file-like object.
Note that this can include builtins like sys.stdout.
Also you can use the universal tofile.

To convert data of IntelHex object to HEX8 file format without actually saving it
to disk you can use the builtin StringIO file-like object, e.g.:

>>> from cStringIO import StringIO
>>> from intelhex import IntelHex
>>> ih = IntelHex()
>>> ih[0] = 0x55
>>> sio = StringIO()
>>> ih.write_hex_file(sio)
>>> hexstr = sio.getvalue()
>>> sio.close()

Variable hexstr will contain a string with the content of a HEX8 file.

You can customize hex file output with following optional arguments
to write_hex_file call:

	write_start_addr - you can disable start address record in new hex file;

	eolstyle - you can force CRLF line endings in new hex file.

	byte_count - you can control how many bytes should be written to each
data record.

Data converters

To write data as a hex file with default settings you also can use
universal method tofile:

the code below is the same as "ih.write_hex_file(sio)"
>>> ih.tofile(sio, format='hex')

Class IntelHex has several methods for converting data of IntelHex objects
into binary form:

	tobinarray (returns array of unsigned char bytes);

	tobinstr (returns string of bytes);

	tobinfile (convert content to binary form and write to file).

Example:

>>> from intelhex import IntelHex
>>> ih = IntelHex("foo.hex")
>>> ih.tobinfile("foo.bin")

Also you can use universal method tofile to write data as binary file:

>>> ih.tofile("foo.bin", format='bin')

Writing data in chunks

If you need to get binary data from IntelHex as series of chunks then you can
pass to tobinarray/tobinstr methods either start/end addresses
or start address and required size of the chunk. This could be useful if
you’re creating Eeprom/Flash IC programmer or bootloader.

EEPROM_SIZE = 8192 # 8K bytes
BLOCK_SIZE = 128 # 128 bytes
for addr in range(0, EEPROM_SIZE, BLOCK_SIZE):
 eeprom.i2c_write(addr, ih.tobinarray(start=addr, size=BLOCK_SIZE))

Merging two hex files

IntelHex supports merging two different hex files into one.
This is done by initializing one IntelHex object with data
and calling its merge method:

>>> original = IntelHex("foo.hex")
>>> new = IntelHex("bar.hex")
>>> original.merge(new, overlap='replace')

Now original will contain foo.hex merged with bar.hex.
The overlap parameter specifies what should be done when memory
locations in the original object overlap with locations in the new object.
It can take three options:

	error - stop and raise an exception (default)

	ignore - keep data from the original that contains data at overlapped address

	replace - use data from the new object that contains data at overlapped address

You can merge only part of other hex file by using slice index notation:

>>> original = IntelHex("foo.hex")
>>> new = IntelHex("bar.hex")
>>> original.merge(new[0x0F:0x3F])

Creating Intel Hex files from scratch

Some facilities are provided for synthesizing Intel Hex files from scratch.
These can also be used to modify a hex file in place.
Just as you can use indexed reads to retrieve data, you can use indexed writes
to modify the file, e.g.:

>>> ih[1] = 0x55 # modify data at address 1

A common usage would be to read a hex file with IntelHex, use the above syntax
to modify it, and then write out the modified file. The above command can be used
on an empty IntelHex object to synthesize a hex file from scratch.

Another important feature helps work with C strings via putsz/getsz, e.g.:

>>> ih.putsz(0x100,"A string")

This places “A string” followed by a terminating NULL character in address 0x100.
The getsz method similarly retrieves a null terminated string from a specified address like so:

>>> ih.getsz(0x100)

This should retrieve the “A string” we stored earlier.

Additionally, puts/gets can be used to retrieve strings of specific length
from the hex file like so:

>>> ih.puts(0x100,"data")
>>> ih.gets(0x100,4)

The second command should retrieve the characters ‘d’,’a’,’t’,’a’.
These methods do not use terminating NULLs, so the data need not be interpreted as a string.
One usage of these commands comes from the Python struct module.
This module allows the programmer to specify a C struct, and it will allow conversion
between the variables and a packed string representation for use with
puts/gets.
For example, suppose we need to deal with a struct containing a char, a short, and a float:

>>> import struct
>>> formatstring = 'chf' # see Python docs for full list of valid struct formats
>>> ih.puts(0x10, struct.pack(formatstring,'a',24,18.6)) # put data in hex file
>>> (mychar,myshort,myfloat) = struct.unpack(formatstring, ih.gets(0x10,7)

Now mychar, myshort, and myfloat should contain the original data
(assuming sizeof(float) = 4 on this platform, otherwise the size may be
wrong).

Handling errors

Many of the methods in IntelHex throw Python exceptions during error conditions.
These can be caught and handled using try…except blocks like so:

>>> try:
... mystring = ih.gets(0x20,20)
>>> except intelhex.NotEnoughDataError:
... print "There is not enough data at that location"

See the API docs for information about errors raised by IntelHex.
They are all subclasses of IntelHexError, so the except block above could be used
to catch all of them. If your application has a way to gracefully handle these
exceptions, they should be caught. Otherwise, Python will exit with a descriptive
error message about the uncaught exception.

See Appendix A for error classes hierarchy.

Convenience Scripts

When IntelHex is installed and added to the system path,
some scripts are available for usage.
Each one is meant to be operated from the command line.
They provide help if called incorrectly.

	Script hex2bin.py

	Script bin2hex.py

	Script hex2dump.py

	Script hexmerge.py

	Script hexdiff.py

	Script hexinfo.py

Script hex2bin.py

You can use hex2bin.py as handy hex-to-bin converter.
This script is just a frontend for function hex2bin from intelhex package.

Usage:
 python hex2bin.py [options] INFILE [OUTFILE]

Arguments:
 INFILE name of hex file for processing.
 OUTFILE name of output file. If omitted then output
 will be writing to stdout.

Options:
 -h, --help this help message.
 -p, --pad=FF pad byte for empty spaces (hex value).
 -r, --range=START:END specify address range for writing output
 (hex value).
 Range can be in form 'START:' or ':END'.
 -l, --length=NNNN,
 -s, --size=NNNN size of output (decimal value).

Per example, converting content of foo.hex to foo.bin addresses from 0 to FF:

$ python hex2bin.py -r 0000:00FF foo.hex

Or (equivalent):

$ python hex2bin.py -r 0000: -s 256 foo.hex

Script bin2hex.py

You can use bin2hex.py as simple bin-to-hex convertor. This script is
just a frontend for function bin2hex from intelhex package.

Usage:
 python bin2hex.py [options] INFILE [OUTFILE]

Arguments:
 INFILE name of bin file for processing.
 Use '-' for reading from stdin.

 OUTFILE name of output file. If omitted then output
 will be writing to stdout.

Options:
 -h, --help this help message.
 --offset=N offset for loading bin file (default: 0).

Script hex2dump.py

This is a script to dump a hex file to a hexdump format. It is a frontend for
dump function in IntelHex class.

Usage:
 python hex2dump.py [options] HEXFILE

Options:
 -h, --help this help message.
 -r, --range=START:END specify address range for dumping
 (ascii hex value).
 Range can be in form 'START:' or ':END'.

Arguments:
 HEXFILE name of hex file for processing (use '-' to read
 from stdin)

Script hexmerge.py

This is a script to merge two different hex files. It is a frontend for the
merge function in IntelHex class.

Usage:
 python hexmerge.py [options] FILES...

Options:
 -h, --help this help message.
 -o, --output=FILENAME output file name (emit output to stdout
 if option is not specified)
 -r, --range=START:END specify address range for output
 (ascii hex value).
 Range can be in form 'START:' or ':END'.
 --no-start-addr Don't write start addr to output file.
 --overlap=METHOD What to do when data in files overlapped.
 Supported variants:
 * error -- stop and show error message (default)
 * ignore -- keep data from first file that
 contains data at overlapped address
 * replace -- use data from last file that
 contains data at overlapped address

Arguments:
 FILES list of hex files for merging
 (use '-' to read content from stdin)

You can specify address range for each file in the form:

 filename:START:END

See description of range option above.

You can omit START or END, so supported variants are:

 filename:START: read filename and use data starting from START addr
 filename::END read filename and use data till END addr

Use entire file content:

 filename
or
 filename::

Script hexdiff.py

This is a script to diff context of two hex files.

To create human-readable diff this utility converts
both hex files to hex dumps first,
and then utility compares those hex dumps and
produces unified diff output for changes.

hexdiff: diff dumps of 2 hex files.

Usage:
 python hexdiff.py [options] FILE1 FILE2

Options:
 -h, --help this help message.
 -v, --version version info.

Script hexinfo.py

This is a script to summarize a hex file’s contents.

This utility creates a YAML-formatted, human-readable
summary of a set of HEX files. It includes the file name,
execution start address (if any), and the address ranges
covered by the data (if any).

hexinfo: summarize a hex file's contents.

Usage:
 python hexinfo.py [options] FILE [FILE ...]

Options:
 -h, --help this help message.
 -v, --version version info.

Embedding into other projects

IntelHex should be easy to embed in other projects.
The directory intelhex containing __init__.py can be directly placed
in a depending project and used directly. From that project the same import
statements described above can be used to make the library work.
From other projects the import statement would change to:

>>> from myproject.intelhex import IntelHex

Alternatively, the IntelHex package can be installed into the site-packages
directory and used as a system package.

In either case, IntelHex is distributed with a BSD-style license.
This permits you to use it in any way you see fit, provided that the package
is appropriately credited.

If you’re using IntelHex library in your open-source project, or your company
created freely available set of tools, utilities or sdk based on IntelHex
library - please, send me email (to alexander belchenko at gmail com)
and tell something about your project.
I’d like to add name of your project/company to page “Who Uses IntelHex”.

Appendix A. IntelHex Errors Hierarchy

	IntelHexError - base error

	HexReaderError - general hex reader error

	AddressOverlapError - data for the same address overlap

	HexRecordError - hex record decoder base error

	RecordLengthError - record has invalid length

	RecordTypeError - record has invalid type (RECTYP)

	RecordChecksumError - record checksum mismatch

	EOFRecordError - invalid EOF record (type 01)

	ExtendedAddressRecordError - extended address record base error

	ExtendedSegmentAddressRecordError - invalid extended segment address record (type 02)

	ExtendedLinearAddressRecordError - invalid extended linear address record (type 04)

	StartAddressRecordError - start address record base error

	StartSegmentAddressRecordError - invalid start segment address record (type 03)

	StartLinearAddressRecordError - invalid start linear address record (type 05)

	DuplicateStartAddressRecordError - start address record appears twice

	InvalidStartAddressValueError - invalid value of start addr record

	BadAccess16bit - not enough data to read 16 bit value

	NotEnoughDataError - not enough data to read N contiguous bytes

	EmptyIntelHexError - requested operation cannot be performed with empty object

Index

 _static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Python IntelHex Library User Manual

 		
 Introduction

 		
 About

 		
 Motivation

 		
 License

 		
 Installation

 		
 Installing with pip

 		
 Download sources

 		
 Get source code with git

 		
 Install from sources

 		
 Note for Windows users

 		
 Python 3 compatibility

 		
 Which Python version should you use?

 		
 Basic API and usage

 		
 Initializing the class

 		
 Reading data

 		
 Basic data inspection

 		
 More data inspection

 		
 Summarizing the data chunks

 		
 Writing out data

 		
 Data converters

 		
 Writing data in chunks

 		
 Merging two hex files

 		
 Creating Intel Hex files from scratch

 		
 Handling errors

 		
 Convenience Scripts

 		
 Script hex2bin.py

 		
 Script bin2hex.py

 		
 Script hex2dump.py

 		
 Script hexmerge.py

 		
 Script hexdiff.py

 		
 Script hexinfo.py

 		
 Embedding into other projects

 		
 Appendix A. IntelHex Errors Hierarchy

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

