
Python for atmospheric measurements
Documentation

Release 0.1

I.B.

Nov 15, 2017

Contents

1 Introduction 3

2 Installing python 5
2.1 Basic Python . 5
2.2 Scientific modules . 5

3 Python quick start - Part 1 7
3.1 Python as calculator . 7
3.2 Python and arrays . 8
3.3 Plotting . 9

4 Python quick start - Part 2 13
4.1 Reading files . 13
4.2 Array slicing . 14
4.3 More on Plotting . 15
4.4 Saving your results . 17
4.5 Getting help . 17

5 Calculating with arrays 19
5.1 Creating a simple numpy array . 19
5.2 Convenient ways to create numpy arrays . 20
5.3 Accessing specific elements of an array . 21
5.4 Process arrays using numpy functions . 21

6 Writing modules 23
6.1 Creating your first python file . 23
6.2 Importing the module . 23
6.3 Import search path . 24

7 Controling execution 25

8 Computing 27

9 Writing functions 29

10 Reading and writing files 31

11 Data plotting 33

i

12 Creating a command line tool 35
12.1 The difference with the command line . 35
12.2 Keeping some command only for the command line . 36
12.3 Reading user input . 36
12.4 Providing arguments for the command line . 37

13 Learning resources 39
13.1 Online tutorials . 39
13.2 Books . 39
13.3 Modules . 39

14 Appendix 1: The Mercurial version control system 41
14.1 Mercurial overview . 41
14.2 Setting up a repository . 42
14.3 Committing some changes . 42
14.4 Update to the previous version . 42
14.5 Working with a remote repository . 42

15 Indices and tables 43

ii

Python for atmospheric measurements Documentation, Release 0.1

Contents:

Contents 1

Python for atmospheric measurements Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

3

Python for atmospheric measurements Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Installing python

In order to use python for scientific computing you will need to install:

1. The python language

2. A set of modules that allow you to manipulate data, plot, etc.

2.1 Basic Python

If you are using Linux or Mac OS you most probably have python already installed. If you are using Windows you can
download python from http://www.python.org/getit/. From there download and run “Python 2.7.3 Windows Installer”.

Python has now two active versions, 2.7.3 and 3.2.3. While the 3.* versions are the future of python, right now most
modules support the 2.* version, so we will use that.

2.2 Scientific modules

There are various useful modules for scientific programming with python. Among other:

• Numpy - Allows fast N-dimensional array manipulation (http://numpy.scipy.org/)

• Scipy - A collection open-source software for mathematics, science, and engineering (http://www.scipy.org/)

• Matplotlib - A library for plotting data (http://matplotlib.sourceforge.net/)

While installing all these is relatively easy, it’s even easier to install a collection of these and many other useful modules
for scientific computing.

A very good collection is Anaconda. Anaconda can be installed in Windows, Linux, and MacOS X, and includes:

• The above mentioned modules

• Spyder - “a powerful interactive development environment for the Python language with advanced editing,
interactive testing, debugging and introspection features”

5

http://www.python.org/getit/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://continuum.io/downloads#27

Python for atmospheric measurements Documentation, Release 0.1

• ipython - “a powerful Python shells” suitable for interactive scientific computing.

• and hundreds of more modules that you (might) need.

After installing Anaconda you are ready to start using python!

6 Chapter 2. Installing python

CHAPTER 3

Python quick start - Part 1

The best way to understand python is to start using it. We will use here ipython, which is an advanced terminal that
has many interesting features for scientific computing.

To start ipython open a terminal (in windows go to Start -> Run and type cmd) and type:

ipython

3.1 Python as calculator

You can first start using python as a calculator. Try the following:

Simple addition
In [1]: 1+1
Out[1]: 2

Powers
In [2]: 2**10
Out[2]: 1024

Integer division. This will return only the quotient of the division
In [3]: 10/4
Out[3]: 2

If you divide an integer by a float (decimal) number (in this case 4.0)
you will get the full division.
In [4]: 10/4.0
Out[4]: 2.5

Numbers, and the results of your calculations can be stored in variables:

In [5]: a = 5

7

Python for atmospheric measurements Documentation, Release 0.1

In [6]: a**3
Out[6]: 125

Python handles also complex numbers:

In [7]: a = 1 + 4j

In [8]: b = 3 - 2j

In [9]: c = a*b

In [10]: c
Out[10]: (11+10j)

You can get the real and imaginary part of your results easily:

In [11]: c.real
Out[11]: 11

In [12]: c.imag
Out[12]: 10

Note: Using the dot after anything in python, like you did in c.real for example, lets you explore a subpart of that
thing, in a way, lets you look “inside” the thing you are using.

3.2 Python and arrays

Python’s mathematical capabilities are great, but there are a lot missing. To really use python for computations your
will need to import numpy:

>>> import numpy

Note: From now on, we will avoid writing the “In []:” part before input for brevity. We will put >>> in front of your
input.

Now you can use many useful functions that are included in numpy by typing numpy.<function_name>:

>>> numpy.exp(10)
22026.465794806718

>>> numpy.log10(100)
2.0

The core of numpy are numerical arrays that allow you to perform fast calculations:

You can create an array like this
>>> a = numpy.array([1,2,3])
>>> a
array([1, 2, 3])

Now a is array that can be manipulated:

8 Chapter 3. Python quick start - Part 1

Python for atmospheric measurements Documentation, Release 0.1

>>> a**3
array([1, 8, 27])

You can create a list of numbers faster using the arange function:

>>> b = numpy.arange(10.0)

You can do even more complex calculations like 𝑏3 − 10
𝑏+5 + 5

>>> c = b**3 - 10/(b + 5) + 5

3.3 Plotting

We can plot our arrays by using the matplotilb module. It is a very feature-full module that, lucky for us, has a set
of convenient commands that make plotting easy. We will use only this subset of commands to start using matplotlib
type:

from matplotlib import pyplot as plt

Don’t worry if you don’t understand this. In sort, inside matplotlib exists a submodule that is called pyplot. We import
this and give it the name “plt” for convenience.

Now try the following:

Create the plot based on c
>>> plt.plot(c)

Show it on screen
>>> plt.show()

This should put the values of the c array in the y axis. Let’s try something more interesting:

Get an array of numbers from -10 to 10
>>> x = numpy.arange(-10.0, 10.0)

Calculate a more complicated y
>>> y = numpy.sin(x) * x**3

Now plot y versus x
>>> plt.plot(x,y)

Show the results
>>> plt.show()

3.3. Plotting 9

Python for atmospheric measurements Documentation, Release 0.1

10 5 0 5 10
600

400

200

0

200

400

600

This should give you a plot, that looks very rough. This is because we are plotting only on integer numbers. We can
improve this by using the numpy command “linspace” that can give you linearly spaced numbers. Close the previous
plot and try:

Get an array of 1000 numbers from -10 to 10
>>> x = numpy.linspace(-10.0, 10.0, 1000)

Calculate a more complicated y
>>> y = numpy.sin(x) * x**3

Now plot y versus x
>>> plt.plot(x,y)

Show the results
>>> plt.show()

10 Chapter 3. Python quick start - Part 1

Python for atmospheric measurements Documentation, Release 0.1

10 5 0 5 10
600

400

200

0

200

400

600

This looks much better!

3.3. Plotting 11

Python for atmospheric measurements Documentation, Release 0.1

12 Chapter 3. Python quick start - Part 1

CHAPTER 4

Python quick start - Part 2

What we have seen in the first part of this quick start can be made easier. Ipython has the option to import when it starts
many useful packages for numerical and scientific computing so they are ready for you to use. To use this options you
need to start ipython with the command:

ipython --pylab

Using this option numpy as matplotlib are a already imported and ready to use.

4.1 Reading files

A common task when working with measurements is to read a file in order to process and visuallise some data. Lets
suppose that you need to open a text file (“measurements.txt”) that contains columns of numerical data:

1 23.4
2 43.8
3 55.1

You can read this file using the loadtxt command from numpy:

>>> m = loadtxt("measurements.txt")

Note: Remember that the loadtxt command is available to you, without importing numpy explicitly, because we are
using the –pylab option.

The variable m is now an array that contains the numerical data. You can see its contents by simply typing:

>>> print m
or
>>> m

13

Python for atmospheric measurements Documentation, Release 0.1

You can also check its shape by typing:

>>> m.shape
(3,2)

This means that array has three rows and two columns.

An common case is that your text file contains some column titles, for example:

No. Value

1 23.4
2 43.8
3 55.1

If you try to read such a file as before you will get an error as the loadtxt command expects to find only columns of
numbers. You can read this file by writing:

>>> m = loadtxt("measurements.txt", skiprows = 2)

This instructs python to skip the first two rows and start reading columnar data after that.

4.2 Array slicing

A very important feature of an array is that you can select the data that you need to access. The following commands
will return arrays that hold only the selected subsets of data.

Warning: You need to take care as the numbering of rows and columns starts from 0 and not from 1.

For example you can get these single-element arrays:

>>> a[0,0] # the first row and the first column
1
>>> a[2,1] # third row, second column
55.1

You can select more than one numbers at once using the following notation:

>>> a[0:2, 0]
array([1., 2.])

This returns the rows 0 and 1 from column 0.

You can select a complete axis by simply using ”:”:

>>> a[:,0] # This returns all elements of column 0
array([1., 2., 3.])
>>> a[1,:] # This returns all elements of row 1
array([2. , 43.8])

With these simple notation you can easily access the subset of your data that you need to use.

14 Chapter 4. Python quick start - Part 2

Python for atmospheric measurements Documentation, Release 0.1

4.3 More on Plotting

Now that we now how to access our data we can try to plot them:

>>> x = a[:,0]
>>> y = a[:,1]
>>> plot(x,y)

1.0 1.5 2.0 2.5 3.0
20

25

30

35

40

45

50

55

60

This needs some styling:

>>> xlabel("Measurement number") # add a label for the x axis
>>> ylabel("Value") # add a label for the y axis
>>> title("My first plot") # add also a title
>>> grid(True) # activate the grid

4.3. More on Plotting 15

Python for atmospheric measurements Documentation, Release 0.1

1.0 1.5 2.0 2.5 3.0
Measurement number

20

25

30

35

40

45

50

55

60
V

a
lu

e
My first plot

You can add another line in the same figure by calling the plot function again. Let’s plot a second line representing the
double of our values, i.e. 2*y. We will also change the style of this line in green dashes:

>>> plot(x,2*y, '--g')

16 Chapter 4. Python quick start - Part 2

Python for atmospheric measurements Documentation, Release 0.1

1.0 1.5 2.0 2.5 3.0
Measurement number

20

40

60

80

100

120
V

a
lu

e
My first plot

4.4 Saving your results

Let’s say now that you after you have read your measurements you have performed some (very useful) calculation and
you want to save the result, so you can use it in the future:

>>> result = 1/*y**2 - sin(y)

You can save an array in a text file by using the savetxt command:

>>> savetxt('output.txt', result)

This command will save the array result in a file named output.txt.

4.5 Getting help

It is certain that soon (or maybe now) you will forget the option you need to use with loadtxt, or you will forget the
order you need to provide the arguments for savetxt (was it the filename first or the array...).

A good way to remember is to use the help within ipython:

4.4. Saving your results 17

Python for atmospheric measurements Documentation, Release 0.1

>>> loadtxt ?
Load data from a text file.

Each row in the text file must have the same number of values.

Parameters

fname : file or str

File, filename, or generator to read. If the filename extension is
``.gz`` or ``.bz2``, the file is first decompressed. Note that
generators should return byte strings for Python 3k.

dtype : data-type, optional
Data-type of the resulting array; default: float. If this is a
record data-type, the resulting array will be 1-dimensional, and
each row will be interpreted as an element of the array. In this

In this way you can learn about a function options and details.

Note: You may need to press q in order to exit back to the normal ipython terminal.

An other useful way to learn about the python functions is (ofcourse) the Internet. Here are some links that can help
you read more about the functions that you learned in this part of the quick start guide:

• Plotting: http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

• Reading text files: http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

• Saving text files: http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html

18 Chapter 4. Python quick start - Part 2

http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html

CHAPTER 5

Calculating with arrays

Built-in python data types (lists, dictionaries, etc.) are fine for many applications. For mathematical operations,
however, these types are not so flexible and fast. This is why the numpy module was created, which is now the base
for most python scientific code.

The core of numpy is written in the low-level C programming language, so all computations are executed very fast.
Moreover, computations with numpy arrays look very similar to the usual mathematical notations and this makes them
very easy to read.

5.1 Creating a simple numpy array

To use numpy you first need to import it:

>>> import numpy as np

This means that in our code we will call the numpy module with the short name np.

We can now create a first array. One way to create the array is to define all its elements:

>>> a = np.array([1, 2, 3])

Several things happen in this one line:

• We define a elements of our array in a list i.e. [1, 2, 3];

• We convert this list to a numpy array using the array function of the numpy module i.e. np.array()

• We store the resulting array in a variable called a.

The variable a is now a numpy array, suitable for mathematical computations:

>>> print(a)
[1 2 3]

>>> print(2 * a) # Multiply by 2

19

Python for atmospheric measurements Documentation, Release 0.1

[2 4 6]

>>> print(a**2) # Square, element by element
[1 4 9]

We can, of course, store our results in a new array for further use:

>>> b = a**2
>>> print(b)
[1 4 9]

>>> print(a + b)
[2, 6, 12]

5.2 Convenient ways to create numpy arrays

The numpy module provides some functions that can create standard numpy arrays easily.

np.ones(<number of elements>) Creates an array of ones:

>>> a = np.ones(5)
>>> print(a)
[1. 1. 1. 1. 1.]

Note the dots after the numpy 1. This stands for 1.0 i.e. the elements are of type float not integers.

np.zeros(<number of elements>) Similarly, creates an array of zeros:

>>> a = np.zeros(5)
>>> print(a)
[0. 0. 0. 0. 0.]

np.arange(<stop number>) Creates an array with a sequence of numbers:

>>> a = np.arange(5)
>>> print(a)
[0 1 2 3 4]

You can also call the arange function with two arguments, defining both the start and stop number e.g.:

>>> a = np.arange(5, 10)
>>> print(a)
[5 6 7 8 9]

As with any python function, you can read the documentation of arange in ipython using the question mark:

>>> np.arange?
Type: builtin_function_or_method
String form: <built-in function arange>
Docstring:
arange([start,] stop[, step,], dtype=None)

Return evenly spaced values within a given interval.

Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).

20 Chapter 5. Calculating with arrays

Python for atmospheric measurements Documentation, Release 0.1

For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns an ndarray rather than a list.

[...]

Remember you need to type q to exit the documentation view.

5.3 Accessing specific elements of an array

You can access specific elements of an array by using brackets notation. Note, that the first element of an array is
called the element 0. For example:

>>> a = np.array([4, 5, 6, 7])
>>> print(a)
[4 5 6 7]

>>> print(a[0])
4

>>> print(a[2])
6

You can get a range of elements using the notation [<start index>:<stop index>]. The result is a new numpy array with
the specified elements:

>>> print(a[0:3])
[4 5 6]

>>> print(a[1:3])
[5 6]

Skipping the start means to start from the first element:

>>> print(a[:2]) # Equivalent to a[0:2]
[4 5]

Similarly, skipping the end index means to get all the elements until the last:

>>> print(a[2:])
[6 7]

5.4 Process arrays using numpy functions

The numpy module provides many convenient arrays to perform usual mathematical calculations.

You can find the average value of an array using the mean function:

>>> a = np.array([1, 2, 3, 4])
>>> a_mean = np.mean(a)
>>> print(a_mean)
2.5

5.3. Accessing specific elements of an array 21

Python for atmospheric measurements Documentation, Release 0.1

You can also calculate the minimum, maximum, and median value easily:

>>> a_min = np.min(a)
>>> print(a_min)
1

>>> a_max = np.max(a)
>>> print(a_max)
4

>>> a_median = np.max(a)
>>> print(a_median)
2.5

See also:

A more advanced introduction in numpy can be found in the tentative numpy tutorial.

Check the numpy list of array creating routines included in numpy.

Check the numpy list of statistical functions included in numpy.

If you are familiar with Matlab programming this comparison can help you understand the similarities and differences
of Matlab matrices and numpy arrays.

22 Chapter 5. Calculating with arrays

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.statistics.html
http://wiki.scipy.org/NumPy_for_Matlab_Users

CHAPTER 6

Writing modules

Up to now we have uses python in an interactive way, using ipython. It is useful, however, to put your code in a module
so you can use it again.

A module in python is nothing more than a collection of simple text files that contain python code. In the simplest
case a module is a single file.

6.1 Creating your first python file

We will create now your first module. First, create a folder that will contain all your future modules, e.g. mymodules.
Then, open a text editor (e.g. notepad, notepad++, gedit, ...) and write inside a python commands:

print "This is my first file"

Now, save the file with a name you choose, giving the extension .py, e.g. first_file.py. Save the file in the folder you
just created.

You can now open a command line (terminal) and run the file, using the command:

python first_file.py

All the command in the file will now be executed and you should see the message “This is my first file” appear in the
command line.

6.2 Importing the module

You can now use the same from ipython or even from within other python modules. To import the module, start
ipython and navigate to the folder where you stored the file for example:

cd /home/user/mymodules/

23

Python for atmospheric measurements Documentation, Release 0.1

using the path to your own folder.

You can now import the module using its name, without the .py extension:

>>> import first_file

When you import a file, all the commands that are in the file are executed. In our case, you should see the text “This is
my first file” appear. Admittedly, this is not yet very useful, as your file does not contain any code that you can reuse.
Your modules will become more useful when you start using functions, as we will see later.

6.3 Import search path

In the above case we had to navigate to the folder were the file was located to use it. This is not very convenient,
especially is you have modules located in different folders.

Every time you try to import a module Python will search at a number of locations to find a module with the required
name:

• the current directory

• a list of directories that are calls the python paths.

You can see which directories are in your python path by running the following commands in ipython:

>>> import sys
>>> print sys.path

The built-in sys module gives you access to a number of system specific variables, like the current version of python
and the system path. The second command should give you a list of directories that are currently in the search path of
python.

You can add modify the above list and add the folder with your own modules. In this way you don’t need to navigate
every time in the folder before importing a module:

>>> sys.path.append['/home/user/mymodules/']

changing again the above string to the location of your folder.

See also:

Detailed description of python modules in the official documentation.

The procedure for adding a python path permanently depends on your operating system (e.g. windows or linux and
Mac). You can find more information online.

24 Chapter 6. Writing modules

https://docs.python.org/2/tutorial/modules.html
http://superuser.com/a/143121
http://stackoverflow.com/a/3402176
http://stackoverflow.com/a/3402176
https://www.google.ro/search?q=permanently%20add%20to%20pythonpath

CHAPTER 7

Controling execution

25

Python for atmospheric measurements Documentation, Release 0.1

26 Chapter 7. Controling execution

CHAPTER 8

Computing

27

Python for atmospheric measurements Documentation, Release 0.1

28 Chapter 8. Computing

CHAPTER 9

Writing functions

29

Python for atmospheric measurements Documentation, Release 0.1

30 Chapter 9. Writing functions

CHAPTER 10

Reading and writing files

31

Python for atmospheric measurements Documentation, Release 0.1

32 Chapter 10. Reading and writing files

CHAPTER 11

Data plotting

33

Python for atmospheric measurements Documentation, Release 0.1

34 Chapter 11. Data plotting

CHAPTER 12

Creating a command line tool

Most of the examples we have seen up to know we using python using the interactive ipython environment. Many
times, however, it is useful to run your script form the command line. In this chapter we will see how you can write
python code that can be used both from the command line and the interactive interpreters.

12.1 The difference with the command line

Let examine for a minute the following file example.py:

filename: example.py
def simple_function():

print("This is inside the function.")

print("This is outside the function.")

Imagine you run the following script from the command line:

python example.py

The output will be:

This is outside the function.

When a python files are imported from the command line all the commands in the file are interpreted. In our case first
the function is declared, and then the print command is executed.

Specifically, imagine that you now want to interpret the simple_function from the command line:

>>> import example
This is outside the function.

>>> example.simple_function()
This is inside the function.

35

Python for atmospheric measurements Documentation, Release 0.1

What just happened? When we imported a file, all the code inside the file was executed, including the print function.

This is not perfect. Ideally, we should import and use a function from a file without executing any other command.

12.2 Keeping some command only for the command line

The way to keep some command only for the command line is to use the following code:

if __name__ == "__main__":
<your commands>

Each python module has the built-in property called __name__. When the module is the main program running (i.e. it
is run from the command line) the the variable __name__ gets the string value “__main__”.

Instead, when the module is imported the variable __name__ holds the name of the imported module.

You can check this with this very simple file:

filename: test_name.py
print "The __name__ variable is: " + __name__

Then try to run it both from the command line and importing it:

python test_name.py
The __name__ variable is: __main__

and:

>>> import test_name
The __name__ variable is test_name

We can now change the example.py file to print something only when run from the command line:

filename: example.py
def simple_function():

print("This is inside the function.")

if __name__ == "__main__":
print("This is outside the function.")

When we import this file nothing is printed. The variable __name__ is not equal to __main__ so the print command is
never run.

12.3 Reading user input

A way of making your script more flexible is to ask the user for some input parameters, to control the program
execution. This is done by the raw_input built-in function:

if __name__ == "__main__":
color = raw_input("What color is your car?")
print("Your car is %s" % color)

The raw_input command will just return a string, so if you are expecting a number you should do the conversion
yourself.

36 Chapter 12. Creating a command line tool

Python for atmospheric measurements Documentation, Release 0.1

12.4 Providing arguments for the command line

A command line tool can be extra useful when provide arguments from the command line to control their behavior.
Command line arguments can also be used to write batch scripts or when you use your script in a chain of commands,
a thing not possible when interactive user input is required.

We will see here how we can read the command line arguments in our script and change the behavior of our program
accordingly.

We will try to write a small program that will count the number of ‘.txt’ files in a directory. We start by writing a
function that will do just this and save it in a file. A simple implementation could be:

filename: count_txt.py
import os
import glob # Module to read the content of the directory

def count_txt(directory):
""" Count the number of txt files in the provided directory. """

Find the search path in a system-independent way
this will give e.g. /my/dir/*.txt
search_str = os.path.join(directory, '*.txt')

Get a list with all the files
files = glob.glob(search_str)

Count the files in the list
number_of_files = len(files)

return number_of_files

The above function will get a list of all the files with the .txt ending in a directory and will return their number. We
want now to provide the directory name in the command line e.g.:

python count_txt /my/dir/

One way to do it is to use the sys module. This module contains the sys.argv property that contains the command line
arguments. The name of the module is stored in the first position sys.argv[0], the first argument is at position 1 etc.
The simplest way to use this is:

filename: count_txt.py (cont.)
import sys # Add sys to read the command line arguments

if __name__ == "__main__":
directory = sys.argv[1] # Get the first command line argument
number_of_files = count_txt(directory)

print("The number of txt files are %s." % number_of_files)

You can now run the script from the command line (changing of course the path to a real directory):

python count_txt.py /home/user/mydir/
The number of txt files are 3.

12.4. Providing arguments for the command line 37

Python for atmospheric measurements Documentation, Release 0.1

38 Chapter 12. Creating a command line tool

CHAPTER 13

Learning resources

13.1 Online tutorials

• Python tutorial: http://docs.python.org/tutorial/

• Numpy tutorial: http://www.scipy.org/Tentative_NumPy_Tutorial

• Lecture notes for scientific python: http://scipy-lectures.github.com/index.html

13.2 Books

• A Primer on Scientific Programming with Python

http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642183654/

• Python Scripting for Computational Science

http://www.amazon.com/Python-Scripting-Computational-Science-Engineering/dp/3642093159/

13.3 Modules

• Numpy: http://numpy.scipy.org/

• Scipy: http://www.scipy.org/

• Matplotlib: http://matplotlib.sourceforge.net/index.html

39

http://docs.python.org/tutorial/
http://www.scipy.org/Tentative_NumPy_Tutorial
http://scipy-lectures.github.com/index.html
http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642183654/
http://www.amazon.com/Python-Scripting-Computational-Science-Engineering/dp/3642093159/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/index.html

Python for atmospheric measurements Documentation, Release 0.1

40 Chapter 13. Learning resources

CHAPTER 14

Appendix 1: The Mercurial version control system

Soon after you start writing your first code, you will face the problem of keeping track of all the versions of the file
you create. In the beginning, this will probably not be a major issue. For example, every time you want to reuse some
old file you could make a copy with a new name. However, this does not work well in the long run. You soon end up
with files name myfile.py, myfile_new.py, myfile_new_new.py, myfile_test.py, and so on. Does this sounds familiar? In
worst case, you forget to make a copy of the old version, and some of your old code sounds! If this sounds familiar,
you are not alone. This is a major problem of almost all most researchers.

Keeping track of your code is an important issue. Coding needs a lot of effort and patience, and loosing one of your
scripts can easily cost you several days of work. Equally importantly, your code is the best documentation of all your
processing steps. If you lose some of your old code, or if you make changes that you don’t keep track, you will not
be able to reproduce your research results in case a colleague, or reviewer, asks. Luckily, there are several established
systems, called version control systems, that will help you to keep track of your ever-evolving code. In this section,
we will briefly introduce one of the most popular such system call Mercurial.

Note: In this section we will focus on the Mercurial version control system, but this is by no means your only choice.
Git, for example, is a very popular and powerful version control system used by many open source projects.

You can find more information about git, in the following links:

https://git-scm.com/ All the information you need about git.

https://github.com/ A web-based Git repository hosting service.

https://try.github.io/levels/1/challenges/6 A hands-on course on git.

https://www.codecademy.com/learn/learn-git Another hands-on course.

14.1 Mercurial overview

Mercurial, often abbreviated as hg, is a software tool that can help you manage the version of your code, and also
collaborate with others. Mercurial can be used from the command line, but there are several graphical user interfaces

41

https://git-scm.com/
https://github.com/
https://try.github.io/levels/1/challenges/6
https://www.codecademy.com/learn/learn-git

Python for atmospheric measurements Documentation, Release 0.1

that can get you started. One excellent choice for beginners is EasyHg <http://easyhg.org/>_, that is designed to be
easy to use and understand.

[TBD]

14.2 Setting up a repository

14.3 Committing some changes

14.4 Update to the previous version

14.5 Working with a remote repository

See also:

Hg init An introduction to Mercurial.

EasyHg start video A short video showing you how to put your files in a repository using EasyHg.

Version control intro video A simple introduction to version control systems. Not for Mercurial, but highlight the
main concepts.

42 Chapter 14. Appendix 1: The Mercurial version control system

http://hginit.com/01.html
https://vimeo.com/29779641
https://www.youtube.com/watch?v=gY2JwRfin1M

CHAPTER 15

Indices and tables

• genindex

• search

43

	Introduction
	Installing python
	Basic Python
	Scientific modules

	Python quick start - Part 1
	Python as calculator
	Python and arrays
	Plotting

	Python quick start - Part 2
	Reading files
	Array slicing
	More on Plotting
	Saving your results
	Getting help

	Calculating with arrays
	Creating a simple numpy array
	Convenient ways to create numpy arrays
	Accessing specific elements of an array
	Process arrays using numpy functions

	Writing modules
	Creating your first python file
	Importing the module
	Import search path

	Controling execution
	Computing
	Writing functions
	Reading and writing files
	Data plotting
	Creating a command line tool
	The difference with the command line
	Keeping some command only for the command line
	Reading user input
	Providing arguments for the command line

	Learning resources
	Online tutorials
	Books
	Modules

	Appendix 1: The Mercurial version control system
	Mercurial overview
	Setting up a repository
	Committing some changes
	Update to the previous version
	Working with a remote repository

	Indices and tables

