
doublex
Release 1.8.1

David Villa Alises

May 03, 2022

Contents

1 a trivial example 3

2 Features 5
2.1 Debian . 5

3 related 7

4 User’s Guide 9
4.1 Install . 9
4.2 Doubles . 9
4.3 Reference . 13
4.4 Ad-hoc stub methods . 20
4.5 Properties . 20
4.6 Stub delegates . 22
4.7 Stub observers . 22
4.8 Mimic doubles . 23
4.9 Asynchronous spies . 23
4.10 Inline stubbing and mocking . 25
4.11 calls: low-level access to invocation records . 25
4.12 API . 26
4.13 pyDoubles . 29
4.14 Release notes / Changelog . 30

5 Indices and tables 33

Index 35

i

ii

doublex, Release 1.8.1

Powerful test doubles framework for Python

[install | docs | changelog | sources | issues | PyPI | github clone | travis]

Contents 1

http://pypi.python.org/pypi/doublex
http://pypi.python.org/pypi/doublex
https://github.com/DavidVilla/python-doublex
http://python-doublex.readthedocs.org/en/latest/install.html
http://python-doublex.readthedocs.org/
http://python-doublex.readthedocs.org/en/latest/release-notes.html
https://bitbucket.org/DavidVilla/python-doublex
https://bitbucket.org/DavidVilla/python-doublex/issues
http://pypi.python.org/pypi/doublex
https://github.com/davidvilla/python-doublex
https://travis-ci.org/davidvilla/python-doublex

doublex, Release 1.8.1

2 Contents

CHAPTER 1

a trivial example

import unittest
from doublex import Spy, assert_that, called

class SpyUseExample(unittest.TestCase):
def test_spy_example(self):

given
spy = Spy(SomeCollaboratorClass)
cut = YourClassUnderTest(spy)

when
cut.a_method_that_call_the_collaborator()

then
assert_that(spy.some_method, called())

See more about doublex doubles.

3

http://python-doublex.readthedocs.org/en/latest/reference.html#doubles

doublex, Release 1.8.1

4 Chapter 1. a trivial example

CHAPTER 2

Features

• doubles have not public API framework methods. It could cause silent misspelling.

• doubles do not require collaborator instances, just classes, and it never instantiate them.

• assert_that() is used for ALL assertions.

• mock invocation order is relevant by default.

• supports old and new style classes.

• supports Python versions: 3.6, 3.7, 3.8, 3.9, 3.10

2.1 Debian

• amateur repository: deb https://uclm-arco.github.io/debian sid main (always updated)

• official package (may be outdated)

• official ubuntu package

• debian dir: svn://svn.debian.org/svn/python-modules/packages/doublex/trunk

5

http://packages.debian.org/source/sid/doublex
https://launchpad.net/ubuntu/+source/doublex

doublex, Release 1.8.1

6 Chapter 2. Features

CHAPTER 3

related

• slides

• pyDoubles

• doublex-expects

• crate

• other doubles

• ludibrio

• doubles

7

http://arco.esi.uclm.es/~david.villa/python-doublex/slides
http://python-doublex.readthedocs.org/en/latest/pyDoubles.html
https://pypi.python.org/pypi/doublex-expects
https://crate.io/packages/doublex/
http://garybernhardt.github.io/python-mock-comparison/
https://pypi.python.org/pypi/ludibrio
https://github.com/uber/doubles

doublex, Release 1.8.1

8 Chapter 3. related

CHAPTER 4

User’s Guide

4.1 Install

The simplest install method is to use pip:

$ sudo pip install doublex

Or you can download the last release tarball, available in the PyPI project:

$ gunzip doublex-X.X.tar.gz
$ tar xvf doublex-X.X.tar
$ cd doublex-X.X/

To install:

$ sudo python setup.py install

Or use pip:

$ sudo pip install doubles-X.X.tar.gz

Note: doublex depends on PyHamcrest, but if you use pip it is automatically installed too.

Also it is available as Debian and Ubuntu official packages, although may be outdated:

$ sudo apt-get install python-doublex

4.2 Doubles

Some very basic examples are shown below. Remember that test doubles are created to be invoked by your SUT, and
a RealWorld™ test never directly invokes doubles. Here we do it that way, but just for simplicity.

9

http://pypi.python.org/pypi/doublex
http://en.wikipedia.org/wiki/System_under_test

doublex, Release 1.8.1

4.2.1 Stub

Hint: Stubs tell you what you wanna hear.

A Stub is a double object that may be programmed to return specified values depending on method invocations and
their arguments. You must use a context (the with keyword) for that.

Invocations over the Stub must meet the collaborator interface:

from doublex import Stub, ANY_ARG, assert_that, is_

class Collaborator:
def hello(self):

return "hello"

def add(self, a, b):
return a + b

with Stub(Collaborator) as stub:
stub.hello().raises(SomeException)
stub.add(ANY_ARG).returns(4)

assert_that(stub.add(2,3), is_(4))

If you call an nonexistent method you will get an AttributeError exception.

>>> with Stub(Collaborator) as stub:
... stub.foo().returns(True)
Traceback (most recent call last):
...
AttributeError: 'Collaborator' object has no attribute 'foo'

Wrong argument number:

>>> with Stub(Collaborator) as stub:
... stub.hello(1).returns(2) # interface mismatch exception
Traceback (most recent call last):
...
TypeError: Collaborator.hello() takes exactly 1 argument (2 given)

“free” Stub

This allows you to invoke any method you want because it is not restricted to an interface.

from doublex import Stub, assert_that, is_

given
with Stub() as stub:

stub.foo('hi').returns(10)

when
result = stub.foo('hi')

then
assert_that(result, is_(10))

10 Chapter 4. User’s Guide

doublex, Release 1.8.1

4.2.2 Spy

Hint: Spies remember everything that happens to them.

Spy extends the Stub functionality allowing you to assert on the invocation it receives since its creation.

Invocations over the Spy must meet the collaborator interface.

from hamcrest import contains_string
from doublex import Spy, assert_that, called

class Sender:
def say(self):

return "hi"

def send_mail(self, address, force=True):
pass # [some amazing code]

sender = Spy(Sender)

sender.send_mail("john.doe@example.net") # right, Sender.send_mail interface support
→˓this

assert_that(sender.send_mail, called())
assert_that(sender.send_mail, called().with_args("john.doe@example.net"))
assert_that(sender.send_mail, called().with_args(contains_string("@example.net")))

sender.bar() # interface mismatch exception

Traceback (most recent call last):
...
AttributeError: 'Sender' object has no attribute 'bar'

>>> sender = Spy(Sender)
>>> sender.send_mail()
Traceback (most recent call last):
...
TypeError: Sender.send_mail() takes at least 2 arguments (1 given)

>>> sender = Spy(Sender)
>>> sender.send_mail(wrong=1)
Traceback (most recent call last):
...
TypeError: Sender.send_mail() got an unexpected keyword argument 'wrong'

>>> sender = Spy(Sender)
>>> sender.send_mail('foo', wrong=1)
Traceback (most recent call last):
...
TypeError: Sender.send_mail() got an unexpected keyword argument 'wrong'

“free” Spy

As the “free” Stub, this is a spy not restricted by a collaborator interface.

4.2. Doubles 11

doublex, Release 1.8.1

from doublex import Stub, assert_that

given
with Spy() as sender:

sender.helo().returns("OK")

when
sender.send_mail('hi')
sender.send_mail('foo@bar.net')

then
assert_that(sender.helo(), is_("OK"))
assert_that(sender.send_mail, called())
assert_that(sender.send_mail, called().times(2))
assert_that(sender.send_mail, called().with_args('foo@bar.net'))

ProxySpy

Hint: Proxy spies forward invocations to its actual instance.

The ProxySpy extends the Spy invoking the actual instance when the corresponding spy method is called

Warning: Note the ProxySpy breaks isolation. It is not really a double. Therefore is always the worst double
and the last resource.

from doublex import ProxySpy, assert_that

sender = ProxySpy(Sender()) # NOTE: It takes an instance (not class)

assert_that(sender.say(), is_("hi"))
assert_that(sender.say, called())

sender.say('boo!') # interface mismatch exception

Traceback (most recent call last):
...
TypeError: Sender.say() takes exactly 1 argument (2 given)

4.2.3 Mock

Hint: Mock forces the predefined script.

Mock objects may be programmed with a sequence of method calls. Later, the double must receive exactly the same
sequence of invocations (including argument values). If the sequence does not match, an AssertionError is raised.
“free” mocks are provided too:

from doublex import Mock, assert_that, verify

with Mock() as smtp:
smtp.helo()
smtp.mail(ANY_ARG)
smtp.rcpt("bill@apple.com")

(continues on next page)

12 Chapter 4. User’s Guide

doublex, Release 1.8.1

(continued from previous page)

smtp.data(ANY_ARG).returns(True).times(2)

smtp.helo()
smtp.mail("poormen@home.net")
smtp.rcpt("bill@apple.com")
smtp.data("somebody there?")
smtp.data("I am afraid..")

assert_that(smtp, verify())

verify() asserts invocation order. If your test does not require strict invocation order just use
any_order_verify() matcher instead:

from doublex import Mock, assert_that, any_order_verify

with Mock() as mock:
mock.foo()
mock.bar()

mock.bar()
mock.foo()

assert_that(mock, any_order_verify())

Programmed invocation sequence also may specify stubbed return values:

from doublex import Mock, assert_that

with Mock() as mock:
mock.foo().returns(10)

assert_that(mock.foo(), is_(10))
assert_that(mock, verify())

4.3 Reference

4.3.1 assert_that()

assert() evaluates a boolean expression, but assert_that() takes an arbitrary object and a matcher, that is applied
over the former. This way makes possible to build up complex assertions by means of matcher composition.

CAUTION: Be ware about hamcrest.assert_that()

Note the hamcrest.assert_that() function has two different behavior depending of its arguments:

• assert_that(actual, matcher, [reason]) In this form the matcher is applied to the actual
object. If the matcher fails, it raises AssertionError showing the optional reason.

• assert_that(value, [reason]) If the boolean interpretation of value is False, it raises Assertion-
Error showing the optional reason.

It implies that something like:

4.3. Reference 13

http://docs.python.org/2/reference/simple_stmts.html#the-assert-statement
http://pythonhosted.org/PyHamcrest/tutorial.html
https://github.com/hamcrest/PyHamcrest/blob/master/hamcrest/core/assert_that.py#L39

doublex, Release 1.8.1

from hamcrest import assert_that

assert_that(foo, bar)

If bar is not a matcher, the assertion is satisfied for any non-false foo, independently of the value of bar. A more
obvious example:

from hamcrest import assert_that

assert_that(2 + 2, 5) # OMG! that assertion IS satisfied!

For this reason, when you need compare values (equivalent to the unit assertEquals) you must always use a
matcher, like is_ or equal_to:

assert_that(2 + 2, is_(5)) # that assertion is NOT satisfied!
assert_that(2 + 2, equal_to(5)) # that assertion is NOT satisfied!

Prefer doublex.assert_that

New in version 1.7: - (thanks to Eduardo Ferro)

To avoid the issues described in the previous section, doublex provides an alternative assert_that() implemen-
tation that enforces a matcher as second argument.

>>> from doublex import assert_that
>>> assert_that(1, 1)
Traceback (most recent call last):
...
MatcherRequiredError: 1 should be a hamcrest Matcher

4.3.2 Stubbing

The stub provides all methods in the collaborator interface. When the collaborator is not given (a free stub), the stub
seems to have any method you invoke on it. The default behavior for non stubbed methods is to return None, although
it can be changed (see Changing default stub behavior).

>>> from doublex import Stub
>>> stub = Stub()
>>> stub.method()

This behavior may be customized in each test using the Python context manager facility:

from doublex import Stub

with Stub() as stub:
stub.method(<args>).returns(<value>)

Hamcrest matchers may be used to define amazing stub conditions:

from hamcrest import all_of, has_length, greater_than, less_than
from doublex import Stub, assert_that, is_

with Stub() as stub:
stub.foo(has_length(less_than(4))).returns('<4')

(continues on next page)

14 Chapter 4. User’s Guide

https://bitbucket.org/DavidVilla/python-doublex/pull-request/5/assert_that-raises
https://code.google.com/p/hamcrest/wiki/TutorialPython

doublex, Release 1.8.1

(continued from previous page)

stub.foo(has_length(4)).returns('four')
stub.foo(has_length(

all_of(greater_than(4),
less_than(8)))).returns('4<x<8')

stub.foo(has_length(greater_than(8))).returns('>8')

assert_that(stub.foo((1, 2)), is_('<4'))
assert_that(stub.foo('abcd'), is_('four'))
assert_that(stub.foo('abcde'), is_('4<x<8'))
assert_that(stub.foo([0] * 9), is_('>8'))

Stubs returning input

from doublex import Stub, assert_that

def test_returns_input(self):
with Stub() as stub:

stub.foo(1).returns_input()

assert_that(stub.foo(1), is_(1))

Stubs raising exceptions

from doublex import Stub

def test_raises(self):
with Stub() as stub:

stub.foo(2).raises(SomeException)

with self.assertRaises(SomeException):
stub.foo(2)

Changing default stub behavior

New in version 1.7: - (thanks to Eduardo Ferro)

Any non-stubbed method returns None. But this behavior can be changed by means of
set_default_behavior() function. It can be applied to any double class: Stub, Spy, ProxySpy or
Mock.

from doublex import Stub, assert_that
from doublex import set_default_behavior, method_returning

set_default_behavior(Stub, method_returning(20))
stub = Stub()
assert_that(stub.unknown(), is_(20))

Or to a specific instance:

from doublex import Stub, assert_that, is_
from doublex import set_default_behavior, method_returning

(continues on next page)

4.3. Reference 15

https://bitbucket.org/DavidVilla/python-doublex/pull-request/4/stub-configuration-for-raise-an-error-when

doublex, Release 1.8.1

(continued from previous page)

stub = Stub()
set_default_behavior(stub, method_returning(20))
assert_that(stub.unknown(), is_(20))

Also, it is possible to raise some exception:

>>> from doublex import Stub, set_default_behavior, method_raising
>>> stub = Stub()
>>> set_default_behavior(stub, method_raising(SomeException))
>>> stub.unknown()
Traceback (most recent call last):
...
SomeException

4.3.3 Asserting method calls

To assert method invocations you need a Spy and the called() matcher.

called()

called() matches method invocation (argument values are not relevant):

from doublex import Spy, assert_that, called

spy = Spy()

spy.m1()
spy.m2(None)
spy.m3("hi", 3.0)
spy.m4([1, 2])

assert_that(spy.m1, called())
assert_that(spy.m2, called())
assert_that(spy.m3, called())
assert_that(spy.m4, called())

with_args(): asserting calling argument values

Match explicit argument values:

from hamcrest import contains_string, less_than, greater_than
from doublex import Spy, assert_that, called

spy = Spy()

spy.m1()
spy.m2(None)
spy.m3(2)
spy.m4("hi", 3.0)
spy.m5([1, 2])
spy.m6(name="john doe")

(continues on next page)

16 Chapter 4. User’s Guide

doublex, Release 1.8.1

(continued from previous page)

assert_that(spy.m1, called())
assert_that(spy.m2, called())

assert_that(spy.m1, called().with_args())
assert_that(spy.m2, called().with_args(None))
assert_that(spy.m3, called().with_args(2))
assert_that(spy.m4, called().with_args("hi", 3.0))
assert_that(spy.m5, called().with_args([1, 2]))
assert_that(spy.m6, called().with_args(name="john doe"))

Remember that hamcrest matchers matchers are fully supported:

assert_that(spy.m3, called().with_args(less_than(3)))
assert_that(spy.m3, called().with_args(greater_than(1)))
assert_that(spy.m6, called().with_args(name=contains_string("doe")))

Other example with a string argument and combining several matchers:

from hamcrest import has_length, greater_than, less_than
from doublex import Spy, assert_that, called, never

spy = Spy()

spy.foo("abcd")

assert_that(spy.foo, called().with_args(has_length(4)))
assert_that(spy.foo, called().with_args(has_length(greater_than(3))))
assert_that(spy.foo, called().with_args(has_length(less_than(5))))
assert_that(spy.foo, never(called().with_args(has_length(greater_than(5)))))

anything(): asserting wildcard values

The anything() hamcrest matcher may be used to match any single value. That is useful when only some argu-
ments are relevant:

from hamcrest import anything

spy.foo(1, 2, 20)
spy.bar(1, key=2)

assert_that(spy.foo, called().with_args(1, anything(), 20))
assert_that(spy.bar, called().with_args(1, key=anything()))

ANY_ARG: greedy argument value wildcard

ANY_ARG is a special value that matches any subsequent argument values, including no args. That is, ANY_ANG
means “any value for any argument from here”. If anything() is similar to the regular expression ?, ANY_ARG
would be equivalent to *.

For this reason, it has no sense to give other values or matchers after an ANY_ARG. It is also applicable to keyword
arguments due they have no order. In summary, ANY_ARG:

• it must be the last positional argument value.

4.3. Reference 17

https://code.google.com/p/hamcrest/wiki/TutorialPython

doublex, Release 1.8.1

• it can not be given as keyword value.

• it can not be given together keyword arguments.

Since version 1.7 a WrongAPI exception is raised if that situations (see issue 9).

An example:

from doublex import ANY_ARG

spy.arg0()
spy.arg1(1)
spy.arg3(1, 2, 3)
spy.arg_karg(1, key1='a')

assert_that(spy.arg0, called())
assert_that(spy.arg0, called().with_args(ANY_ARG)) # equivalent to previous

assert_that(spy.arg1, called())
assert_that(spy.arg1, called().with_args(ANY_ARG)) # equivalent to previous

assert_that(spy.arg3, called().with_args(1, ANY_ARG))
assert_that(spy.arg_karg, called().with_args(1, ANY_ARG))

Also for stubs:

from doublex import Stub, assert_that, ANY_ARG, is_

with Stub() as stub:
stub.foo(ANY_ARG).returns(True)
stub.bar(1, ANY_ARG).returns(True)

assert_that(stub.foo(), is_(True))
assert_that(stub.foo(1), is_(True))
assert_that(stub.foo(key1='a'), is_(True))
assert_that(stub.foo(1, 2, 3, key1='a', key2='b'), is_(True))

assert_that(stub.foo(1, 2, 3), is_(True))
assert_that(stub.foo(1, key1='a'), is_(True))

with_some_args(): asserting just relevant arguments

New in version 1.7.

When a method has several arguments and you need to assert an invocation giving a specific value just for some of
them, you may use the anything() matcher for the rest of them. That works but the resulting code is a bit dirty:

from hamcrest import anything
from doublex import Spy, assert_that, ANY_ARG

class Foo:
def five_args_method(self, a, b, c, d, e=None):

return 4

spy = Spy(Foo)
spy.five_args_method(1, 2, 'bob', 4)

only the 'c' argument is important in the test

(continues on next page)

18 Chapter 4. User’s Guide

https://bitbucket.org/DavidVilla/python-doublex/issue/9/called-with-named-params-and-any_arg-does

doublex, Release 1.8.1

(continued from previous page)

assert_that(spy.five_args_method,
called().with_args(anything(), anything(), 'bob', anything()))

assert only 'b' argument
assert_that(spy.five_args_method,

called().with_args(anything(), 2, ANY_ARG))

The with_some_args() allows to specify just some arguments, assuming all other can take any value. The same
example using with_some_arg():

from doublex import Spy, assert_that, called

class Foo:
def five_args_method(self, a, b, c, d, e=None):

return 4

spy = Spy(Foo)
spy.five_args_method(1, 2, 'bob', 4)

only the 'c' argument is important in the test
assert_that(spy.five_args_method,

called().with_some_args(c='bob'))
assert only 'b' argument
assert_that(spy.five_args_method,

called().with_some_args(b=2))

This method may be used with both keyword and non-keyword arguments.

Warning: Formal argument name is mandatory, so this is only applicable to restricted spies (those that are
instantiated giving a collaborator).

never()

Convenient replacement for hamcrest.is_not():

from hamcrest import is_not
from doublex import Spy, assert_that, called, never

spy = Spy()

assert_that(spy.m5, is_not(called())) # is_not() works
assert_that(spy.m5, never(called())) # but prefer never() due to better error
→˓report messages

times(): asserting number of calls

from hamcrest import anything, all_of, greater_than, less_than
from doublex import Spy, assert_that, called, ANY_ARG, never

spy = Spy()

spy.foo()

(continues on next page)

4.3. Reference 19

doublex, Release 1.8.1

(continued from previous page)

spy.foo(1)
spy.foo(1)
spy.foo(2)

assert_that(spy.unknown, never(called())) # = 0 times
assert_that(spy.foo, called()) # > 0
assert_that(spy.foo, called().times(greater_than(0))) # > 0 (same)
assert_that(spy.foo, called().times(4)) # = 4
assert_that(spy.foo, called().times(greater_than(2))) # > 2
assert_that(spy.foo, called().times(less_than(6))) # < 6

assert_that(spy.foo, never(called().with_args(5))) # = 0 times
assert_that(spy.foo, called().with_args().times(1)) # = 1
assert_that(spy.foo, called().with_args(anything())) # > 0
assert_that(spy.foo, called().with_args(ANY_ARG).times(4)) # = 4
assert_that(spy.foo, called().with_args(1).times(2)) # = 2
assert_that(spy.foo, called().with_args(1).times(greater_than(1))) # > 1
assert_that(spy.foo, called().with_args(1).times(less_than(5))) # < 5
assert_that(spy.foo, called().with_args(1).times(

all_of(greater_than(1), less_than(8)))) # 1 < times < 8

4.4 Ad-hoc stub methods

Create a standalone stub method directly over any instance (even no doubles), with method_returning() and
method_raising():

from doublex import method_returning, method_raising, assert_that

collaborator = Collaborator()
collaborator.foo = method_returning("bye")
assert_that(collaborator.foo(), is_("bye"))

collaborator.foo = method_raising(SomeException)
collaborator.foo() # raises SomeException

Traceback (most recent call last):
...
SomeException

4.5 Properties

doublex supports stub and spy properties in a pretty easy way in relation to other frameworks like python-mock.

That requires two constraints:

• It does not support “free” doubles. ie: you must give a collaborator in the constructor.

• collaborator must be a new-style class. See the next example.

20 Chapter 4. User’s Guide

doublex, Release 1.8.1

4.5.1 Stubbing properties

from doublex import Spy, assert_that, is_

with Spy(Collaborator) as spy:
spy.prop = 2 # stubbing 'prop' value

assert_that(spy.prop, is_(2)) # double property getter invoked

4.5.2 Spying properties

Continuing previous example:

from doublex import Spy, assert_that, never
from doublex import property_got, property_set

class Collaborator(object):
@property
def prop(self):

return 1

@prop.setter
def prop(self, value):

pass

spy = Spy(Collaborator)
value = spy.prop

assert_that(spy, property_got('prop')) # property 'prop' was read.

spy.prop = 4
spy.prop = 5
spy.prop = 5

assert_that(spy, property_set('prop')) # was set to any value
assert_that(spy, property_set('prop').to(4))
assert_that(spy, property_set('prop').to(5).times(2))
assert_that(spy, never(property_set('prop').to(6)))

4.5.3 Mocking properties

Getting property:

from doublex import Mock, assert_that, verify

with Mock(Collaborator) as mock:
mock.prop

mock.prop

assert_that(mock, verify())

Setting property:

4.5. Properties 21

doublex, Release 1.8.1

from doublex import Mock, assert_that, verify

with Mock(Collaborator) as mock:
mock.prop = 5

mock.prop = 5

assert_that(mock, verify())

Using matchers:

from hamcrest import all_of, greater_than, less_than
from doublex import Mock, assert_that, verify

with Mock(Collaborator) as mock:
mock.prop = all_of(greater_than(8), less_than(12))

mock.prop = 10

assert_that(mock, verify())

4.6 Stub delegates

The value returned by the stub may be delegated from a function, method or other callable. . .

def get_user():
return "Freddy"

with Stub() as stub:
stub.user().delegates(get_user)
stub.foo().delegates(lambda: "hello")

assert_that(stub.user(), is_("Freddy"))
assert_that(stub.foo(), is_("hello"))

It may be delegated from iterables or generators too!:

with Stub() as stub:
stub.foo().delegates([1, 2, 3])

assert_that(stub.foo(), is_(1))
assert_that(stub.foo(), is_(2))
assert_that(stub.foo(), is_(3))

4.7 Stub observers

Stub observers allow you to execute extra code (similar to python-mock “side effects”, but easier):

class Observer(object):
def __init__(self):

self.state = None

(continues on next page)

22 Chapter 4. User’s Guide

doublex, Release 1.8.1

(continued from previous page)

def notify(self, *args, **kargs):
self.state = args[0]

observer = Observer()
stub = Stub()
stub.foo.attach(observer.notify)
stub.foo(2)

assert_that(observer.state, is_(2))

4.8 Mimic doubles

Usually double instances behave as collaborator surrogates, but they do not expose the same class hierarchy, and
usually this is pretty enough when the code uses “duck typing”:

class A(object):
pass

class B(A):
pass

>>> from doublex import Spy
>>> spy = Spy(B())
>>> isinstance(spy, Spy)
True
>>> isinstance(spy, B)
False

But some third party library DOES strict type checking using isinstance(). That invalidates our doubles. For
these cases you can use Mimic’s. Mimic class decorates any double class to achieve full replacement instances (Liskov
principle):

>>> from doublex import Stub, Mimic
>>> spy = Mimic(Spy, B)
>>> isinstance(spy, B)
True
>>> isinstance(spy, A)
True
>>> isinstance(spy, Spy)
True
>>> isinstance(spy, Stub)
True
>>> isinstance(spy, object)
True

4.9 Asynchronous spies

New in version 1.5.1.

Sometimes interaction among your SUT class and their collaborators does not meet a synchronous behavior. That may
happen when the SUT performs collaborator invocations in a different thread, or when the invocation pass across a
message queue, publish/subscribe service, etc.

4.8. Mimic doubles 23

doublex, Release 1.8.1

Something like that:

class Collaborator(object):
def write(self, data):

print "your code here"

class SUT(object):
def __init__(self, collaborator):

self.collaborator = collaborator

def some_method(self):
thread.start_new_thread(self.collaborator.write, ("something",))

If you try to test your collaborator is called using a Spy, you will get a wrong behavior:

THE WRONG WAY
class AsyncTests(unittest.TestCase):

def test_wrong_try_to_test_an_async_invocation(self):
given
spy = Spy(Collaborator)
sut = SUT(spy)

when
sut.some_method()

then
assert_that(spy.write, called())

due to the called() assertion may happen before the write() invocation, although not always. . .

You may be tempted to put a sleep before the assertion, but this is a bad solution. A right way to solve that issue is to
use something like a barrier. The threading.Event may be used as a barrier. See this new test version:

THE DIRTY WAY
class AsyncTests(unittest.TestCase):

def test_an_async_invocation_with_barrier(self):
given
barrier = threading.Event()
with Spy(Collaborator) as spy:

spy.write.attach(lambda *args: barrier.set)

sut = SUT(spy)

when
sut.some_method()
barrier.wait(1)

then
assert_that(spy.write, called())

The spy.write.attach() is part of the doublex stub-observer mechanism, a way to run arbitrary code when
stubbed methods are called.

That works because the called() assertion is performed only when the spy releases the barrier. If the write()
invocation never happens, the barrier.wait() continues after 1 second but the test fails, as must do. When all is
right, the barrier waits just the required time.

Well, this mechanism is a doublex builtin (the async_modematcher) since release 1.5.1 providing the same behavior
in a clearer way. The next is functionally equivalent to the listing just above:

24 Chapter 4. User’s Guide

http://docs.python.org/2/library/threading.html#event-objects
http://python-doublex.readthedocs.org/en/latest/reference.html#stub-observers

doublex, Release 1.8.1

THE DOUBLEX WAY
class AsyncTests(unittest.TestCase):

def test_test_an_async_invocation_with_doublex_async(self):
given
spy = Spy(Collaborator)
sut = SUT(spy)

when
sut.some_method()

then
assert_that(spy.write, called().async_mode(timeout=1))

4.10 Inline stubbing and mocking

New in version 1.8: - Proposed by Carlos Ble

Several pyDoubles users ask for an alternative to set stubbing and mocking in a way similar to pyDoubles API, that is,
instead of use the double context manager:

with Stub() as stub:
stub.foo(1).returns(100)

with Mock() as mock:
mock.bar(2).returns(50)

You may invoke the when() and expect_call() functions to get the same setup.

stub = Stub()
when(stub).foo(1).returns(100)

mock = Mock()
expect_call(mock).bar(2).returns(50)

Note that when() and expect_call() internally provide almost the same functionality. Two functions are pro-
vided only for test readability purposes. when() is intented for stubs, spies and proxyspies, and expect_call()
is intented for mocks.

4.11 calls: low-level access to invocation records

New in version 1.6.3.

Invocation over spy methods are available in the calls attribute. You may use that to get invocation argument values
and perform complex assertions (i.e: check invocations arguments were specific instances). However, you should
prefer called() matcher assertions over this. An example:

from doublex import Spy, assert_that, ANY_ARG, is_

class TheCollaborator(object):
def method(self, *args, **kargs):

pass

with Spy(TheCollaborator) as spy:

(continues on next page)

4.10. Inline stubbing and mocking 25

https://bitbucket.org/carlosble

doublex, Release 1.8.1

(continued from previous page)

spy.method(ANY_ARG).returns(100)

spy.method(1, 2, 3)
spy.method(key=2, val=5)

assert_that(spy.method.calls[0].args, is_((1, 2, 3)))
assert_that(spy.method.calls[1].kargs, is_(dict(key=2, val=5)))
assert_that(spy.method.calls[1].retval, is_(100))

4.12 API

4.12.1 Double classes

class Stub([collaborator])
class Spy([collaborator])
class ProxySpy([collaborator])
class Mock([collaborator])
class Mimic(double, collaborator)

4.12.2 Stubbing

Method.raises(exception)
Stub method will raise the given exception when invoked. Method parameters are relevant, and they may be
literal values or hamcrest matchers:

with Stub() as stub:
stub.method().raises(ValueError)

See Stubs raising exceptions.

Method.returns(value)
Stub method will return the given value when invoked:

with Stub() as stub:
stub.method().returns(100)

See Stub.

Method.returns_input()
Stub method will return input parameters when invoked:

with Stub() as stub:
stub.method().returns_input()

See Stubs returning input.

Method.delegates(delegate)
Stub method will return values generated by the delegate, that may be a function, generator or iterable object:

26 Chapter 4. User’s Guide

doublex, Release 1.8.1

with Stub() as stub:
stub.method().delegates([1, 2, 4, 8])

See Stub delegates.

Method.attach(callable)
Stub methods are observable. You may attach arbitrary callable that will be invoked any time the stub method
does:

counter = itertools.count()
stub.method.attach(counter.next)

See Stub observers.

4.12.3 Matchers

class never(matcher)
Just a cosmetic alias to the hamcrest matcher is_not(). See never().

for Spy methods

class called
Asserts a spy method was called:

assert_that(spy.method, called())

See called().

called.async_mode(timeout)
The called assertion waits the corresponding invocation a maximum of timeout seconds.

Parameters timeout (int) – how many second wait before assume assertion fails.

assert_that(spy.method, called().async_mode(1))

See async_mode.

called.times(value)
The spy method must be invoked value times to consider the assertion right. The value parameter may an integer
or hamcrest matcher as well.

Parameters value (int or hamcrest Matcher) – how many times the method should be
called.

assert_that(spy.method, called().times(less_that(3)))

See times(): asserting number of calls.

called.with_args(*args, **kargs)
The spy method must be invoked with the given positional or/and named parameters. All of them may be literal
values and hamcrest matchers.

assert_that(spy.method, called().with_args("mary", greater_that(4)))

See with_args(): asserting calling argument values.

4.12. API 27

doublex, Release 1.8.1

called.with_some_args(**kargs)
The spy method must be invoked with AT LEAST the given parameter values. It supports literal values and
hamcrest matchers.

assert_that(spy.method, called().with_some_args(name="mary"))

See with_some_args(): asserting just relevant arguments.

for properties

class property_got

class property_set

property_set.to(value)

See Properties.

for mocks

class verify
Checks the given mock meets the given expectations.

assert_that(mock, verify())

See Mock.

class any_order_verify
Checks the given mock meets the given expectations even when the invocation sequence has a different order to
the expectations.

assert_that(mock, any_order_verify())

See Mock.

4.12.4 Module level functions

assert_that(item, matcher)
A convenient replace for the hamcrest assert_that method. See assert_that().

wait_that(item, matcher, reason=”, delta=1, timeout=5)
It test the matcher over item until it matches or fails after timemout seconds, polling the matcher each delta
seconds.

method_returning(value)
Creates an independent Stub method that returns the given value. It may be added to any object:

some.method = method_returning(20)

See Ad-hoc stub methods.

method_raising()
Creates an independent Stub method that raises the given exception. It may be added to any object:

some.method = method_raising(ValueError)

See Ad-hoc stub methods.

28 Chapter 4. User’s Guide

doublex, Release 1.8.1

set_default_behavior()
Set the default behavior for undefined Stub methods. The built-in behavior is to return None. See Changing
default stub behavior.

4.13 pyDoubles

IMPORTANT: pyDoubles support is removed since version 1.9.

doublex started as a attempt to improve and simplify the codebase and API of the pyDoubles framework (by Carlos
Ble).

Respect to pyDoubles, doublex has these features:

• Just hamcrest matchers (for all features).

• Only ProxySpy requires an instance. Other doubles accept a class too, but they never instantiate it.

• Properties may be stubbed and spied.

• Stub observers: Notify arbitrary hooks when methods are invoked. Useful to add “side effects”.

• Stub delegates: Use callables, iterables or generators to create stub return values.

• Mimic doubles: doubles that inherit the same collaborator subclasses. This provides full LSP for code that make
strict type checking.

doublex solves all the issues and supports all the feature requests notified in the pyDoubles issue tracker:

• assert keyword argument values

• assert that a method is called exactly one

• mocks impose invocation order

• doubles have framework public API

• stubs support keyword positional arguments

And some other features requested in the user group:

• doubles for properties

• creating doubles without instantiating real class

• using hamcrest with kwargs

doublex provides the pyDoubles API as a wrapper for easy transition to doublex for pyDoubles users. However,
there are small differences. The bigger diference is that pyDoubles matchers are not supported anymore, although
you may get the same feature using standard hamcrest matchers. Anyway, formally provided pyDoubles matchers are
available as hamcrest aliases.

doublex supports all the pyDoubles features and some more that can not be easily backported. If you are a pyDoubles
user you can run your tests using doublex.pyDoubles module. However, we recommed the native doublex API for your
new developments.

In most cases the only required change in your code is the import sentence, that change from:

import pyDoubles.framework.*

to:

from doublex.pyDoubles import *

4.13. pyDoubles 29

https://bitbucket.org/carlosble/pydoubles
http://wikipedia.org/wiki/Liskov_substitution_principle
https://bitbucket.org/carlosble/pydoubles/issue/4/check-kwargs-keys-on-expect_calls
https://bitbucket.org/carlosble/pydoubles/issue/2/check-if-method-was-called-only-once
https://bitbucket.org/carlosble/pydoubles/issue/3/strictordermock
https://bitbucket.org/carlosble/pydoubles/issue/5/protection-agains-incorrect-usage
https://bitbucket.org/carlosble/pydoubles/issue/6/keyworded-positional-arguments-on-stubs
https://groups.google.com/d/topic/pydoubles/Mbca-oPhz90/discussion
https://groups.google.com/d/topic/pydoubles/rQSLluR-MgA/discussion
https://groups.google.com/d/topic/pydoubles/J3CmxkE6D6E/discussion
http://python-doublex.readthedocs.org/en/latest/reference.html#reference/

doublex, Release 1.8.1

See the old pyDoubles documentation at http://pydoubles.readthedocs.org (that was formerly available in the pydou-
bles.org site).

4.14 Release notes / Changelog

4.14.1 doublex 1.8.3

• Fixed issue 25 Python 3.5 type hints support. See test.

• Fixed issue 23 Several tests failing because hamcrest.core.string_description.StringDescription is not a string
anymore.

4.14.2 doublex 1.8.2

• Fixed issue 12. returns_input() now may manage several parameters. See test.

• Fixed issue 21. method_returning() and method_raising() are now spies. See test.

• Fixed issue 22. See test.

• delegates() now accepts dictionaries. See test.

4.14.3 doublex 1.8

• NEW inline stubbing and mocking with when() and expect_call(). See doc and tests.

• Added support for mocking properties. See doc and tests.

• Testing with tox for Python 2.6, 2.7, 3.2 and 3.3.

• Documentation now at http://python-doublex.readthedocs.org

4.14.4 doublex 1.7.2

• Added support for varargs methods (*args, **kargs). Fixes issue 14.

• NEW tracer mechanism to log double invocations. See test.

• NEW module level wait_that() function.

4.14.5 doublex 1.7

• NEW with_some_args() matcher to specify just relevant argument values in spy assertions. See doc and
tests.

• NEW module level set_default_behavior() function to define behavior for non stubbed methods.
Thanks to Eduardo Ferro. See doc and tests.

4.14.6 doublex 1.6.6

• bug fix update: Fixes issue 11.

30 Chapter 4. User’s Guide

http://pydoubles.readthedocs.org
https://bitbucket.org/DavidVilla/python-doublex/issues/25/support-from-python-35-type-hints-when
https://bitbucket.org/DavidVilla/python-doublex/src/4b78564c9b3a8cc3fba170594c738ebbc9156996/doublex/test3/unit_tests.py?at=default&fileviewer=file-view-default#unit_tests.py-8
https://bitbucket.org/DavidVilla/python-doublex/issues/23/doubles-test-failing
https://bitbucket.org/DavidVilla/python-doublex/issue/12
https://bitbucket.org/DavidVilla/python-doublex/src/283adb2abef49be5f87bf58ccb83b3a313849c33/doublex/test/unit_tests.py?at=default#cl-116
https://bitbucket.org/DavidVilla/python-doublex/issue/21
https://bitbucket.org/DavidVilla/python-doublex/src/ace1edccb3fadbcf0992b5bf63f4e729ff877abd/doublex/test/unit_tests.py?at=default#cl-1461
https://bitbucket.org/DavidVilla/python-doublex/issue/22
https://bitbucket.org/DavidVilla/python-doublex/src/283adb2abef49be5f87bf58ccb83b3a313849c33/doublex/test/unit_tests.py?at=default#cl-1514
https://bitbucket.org/DavidVilla/python-doublex/src/283adb2abef49be5f87bf58ccb83b3a313849c33/doublex/test/unit_tests.py?at=default#cl-1023
http://python-doublex.readthedocs.org/en/latest/inline-setup.html
https://bitbucket.org/DavidVilla/python-doublex/src/7b22f6d23455712b3e8894e40ae6272fc852762e/doublex/test/unit_tests.py?at=default#cl-1482
http://python-doublex.readthedocs.org/en/latest/properties.html#mocking-properties
https://bitbucket.org/DavidVilla/python-doublex/src/7b22f6d23455712b3e8894e40ae6272fc852762e/doublex/test/unit_tests.py?at=default#cl-1204
http://python-doublex.readthedocs.org
https://bitbucket.org/DavidVilla/python-doublex/issue/14/problem-spying-a-method-with-a-decorator
https://bitbucket.org/DavidVilla/python-doublex/src/df2b3bda0eef64b5ddc6d6b3cc5a6380fb98e132/doublex/test/unit_tests.py?at=default#cl-1414
http://python-doublex.readthedocs.org/en/latest/reference.html#with-some-args-asserting-just-relevant-arguments
https://bitbucket.org/DavidVilla/python-doublex/src/147de5e7a52efae3c871c3065c082794b7272819/doublex/test/unit_tests.py?at=default#cl-1218
https://bitbucket.org/eferro
http://python-doublex.readthedocs.org/en/latest/reference.html#changing-default-stub-behavior
https://bitbucket.org/DavidVilla/python-doublex/src/147de5e7a52efae3c871c3065c082794b7272819/doublex/test/unit_tests.py?at=default#cl-1243
https://bitbucket.org/DavidVilla/python-doublex/issue/11/there-are-no-stub-empy_stub-in-the

doublex, Release 1.8.1

4.14.7 doublex 1.6.5

• bug fix update: Fixes issue 10.

4.14.8 doublex 1.6.4

• Asynchronous spy assertion race condition bug fixed.

• Reading double attributes returns collaborator.class attribute values by default.

4.14.9 doublex 1.6.2

• Invocation stubbed return value is now stored.

• New low level spy API: double “calls” property provides access to invocations and their argument values. Each
‘call’ has an “args” sequence and “kargs dictionary”. This provides support to perform individual assertions and
direct access to invocation argument values. (see test and doc).

4.14.10 doublex 1.6

• First release supporting Python 3 (up to Python 3.2) [fixes issue 7].

• Ad-hoc stub attributes (see test).

• Partial support for non native Python functions.

• ProxySpy propagated stubbed invocations too (see test).

4.14.11 doublex 1.5.1

This release includes support for asynchronous spy assertions. See this blog post for the time being, soon in the official
documentation.

4.14.12 doublex/pyDoubles 1.5

Since this release, doublex supports the pyDoubles API by means a wrapper. See pyDoubles for details.

In most cases the only required change in your code is the import sentence, that change from:

import pyDoubles.framework.*

to:

from doublex.pyDoubles import *

If you have problems migrating to the 1.5 release or migrating from pyDoubles to doublex, please ask for help in the
discussion forum or in the issue tracker.

4.14. Release notes / Changelog 31

https://bitbucket.org/DavidVilla/python-doublex/issue/10/any_order_verify-fails-when-method-are
https://bitbucket.org/DavidVilla/python-doublex/src/ce8cdff71b8e3528380c305bf7d9ca75a64f6460/doublex/test/unit_tests.py?at=v1.6.2#cl-271
http://python-doublex.readthedocs.org/en/latest/reference.html#calls-low-level-access-to-invocation-records
https://bitbucket.org/DavidVilla/python-doublex/issue/7
https://bitbucket.org/DavidVilla/python-doublex/src/cb8ba0df2e024d602fed236bb5ed5a7ceee91b20/doublex/test/unit_tests.py?at=v1.6#cl-146
https://bitbucket.org/DavidVilla/python-doublex/src/cb8ba0df2e024d602fed236bb5ed5a7ceee91b20/doublex/test/unit_tests.py?at=v1.6#cl-340
http://crysol.org/es/node/1688
http://python-doublex.readthedocs.org/en/latest/pyDoubles.html
https://groups.google.com/forum/?fromgroups#!forum/pydoubles
https://bitbucket.org/DavidVilla/python-doublex/issues

doublex, Release 1.8.1

32 Chapter 4. User’s Guide

CHAPTER 5

Indices and tables

• genindex

33

doublex, Release 1.8.1

34 Chapter 5. Indices and tables

Index

A
ANY_ARG, 17
any_order_verify (built-in class), 28
assert_that(), 13, 14
assert_that() (built-in function), 28
async_mode() (called method), 27
attach() (Method method), 27

C
called (built-in class), 27
called(), 16

D
delegates() (Method method), 26

H
hamcrest

anything(), 17

M
method_raising() (built-in function), 28
method_returning() (built-in function), 28
Mimic (built-in class), 26
Mimic doubles, 23
Mock, 12
Mock (built-in class), 26

N
never (built-in class), 27
never(), 19

P
Properties, 20
property_got (built-in class), 28
property_set (built-in class), 28
ProxySpy, 12
ProxySpy (built-in class), 26

R
raises() (Method method), 26

returns() (Method method), 26
returns_input() (Method method), 26

S
set_default_behavior() (built-in function), 28
Spy, 10
Spy (built-in class), 26
Stub, 9, 14
Stub (built-in class), 26
Stub delegates, 22
Stub observers, 22

T
times(), 19
times() (called method), 27
to() (property_set method), 28

V
verify (built-in class), 28

W
wait_that() (built-in function), 28
with_args(), 16
with_args() (called method), 27
with_some_args(), 18
with_some_args() (called method), 27

35

	a trivial example
	Features
	Debian

	related
	User’s Guide
	Install
	Doubles
	Reference
	Ad-hoc stub methods
	Properties
	Stub delegates
	Stub observers
	Mimic doubles
	Asynchronous spies
	Inline stubbing and mocking
	calls: low-level access to invocation records
	API
	pyDoubles
	Release notes / Changelog

	Indices and tables
	Index

