

Abstract

The goal of this PEP is to provide a standard layout and meta-data for Python
distributions, so that all tools creating and installing distributions are
inter-operable.

To achieve this goal this PEP proposes a new format for describing meta-data
and layout of the distribution archive.

Rationale

There are a number of problems currently in Python packaging.

	Lack of a standard cross tool layout for distributions.

	Multiple locations where the same meta-data is defined.

	Ability to build all types of projects.

Standard Layout

Right now there are a number of competing standards for what is contained inside
of a distribution archive. distutils and setuptools share an idiom of using a
setup.py, distutils2 uses a setup.cfg, and bento uses a bento.info.

This is further compounded by the fact that due to the executable nature of
the distutils/setuptools standard setup.py distutils2 and bento can bootstrap
themselves using code located inside of setup.py.

Meta-data

Currently meta-data can be located in one of a minimum of two locations. PKG-INFO
and setup.py. It can also be located inside of setup.cfg, bento.info,
and any other location that a packager might wish (again due to the executable
nature of setup.py).

Custom Compilation

A number of projects have had to work around or monkeypatch distutils because
of assumptions that distutils makes about how to compile a project were wrong.
This includes projects that want to cross compile [1] and
projects with complex compiler dependencies such as Numpy [2].

Further more there have been serious doubts raised by some that any generic
compilation step would be able to cover all needs [3] [4].

What this PEP proposes

	A new defined layout that any tool may create or consume

	A singular location to be used as the “one true source” for all meta-data

	New meta-data version to deal with new requirements.

Standard Layout

All Python distributions are gzip archived containing a dist.json file
as well as any source or binary files that should be included as part of the
distribution.

Source Distribution

A source distribution is defined as a distribution that does not include any
sort of precompiled files. A source distribution MUST contain a dist.json
and all source files, Python or otherwise, that this distribution contains.

Binary Distribution

A binary distribution is defined as package that does not require any sort of
compilation step to complete. A binary distribution MUST contain a dist.json
as well as one or more directories containing a compiled distribution.

Build Directories

Build directories are specially named directories that signify which Platform
and Python that particular build is for.

TODO: Specify the proper naming convention for build directories.

dist.json

dist.json is a JSON file containing all the meta-data for this distribution.
It must be a valid JSON file and cannot be a JavaScript object literal.

Fields

name

The most important things in your dist.json are the name and version fields. The
name and version together form an identifier that is assumed to be completely
unique. Changes to the distribution should come along with changes to the version.

The name is what your thing is called.

version

The most important things in your dist.json are the name and version fields. The
name and version together form an identifier that is assumed to be completely
unique. Changes to the distribution should come along with changes to the version.

The version must be in the format specified in PEP 386 [7]

summary

A one-line summary of what the distribution does.

description

A longer description of the distribution that can run to several paragraphs.
Software that deals with metadata should not assume any maximum size for this
field, though people shouldn’t include their instruction manual as the description.

The contents of this field can be written using reStructuredText markup [#rest].
For programs that work with the metadata, supporting markup is optional; programs
can also display the contents of the field as-is. This means that authors should
be conservative in the markup they use.

keywords

A list of additional keywords to be used to assist searching for the distribution
in a larger catalog. It should be a list of strings.

Example:

{
 "keywords": ["dog", "puppy", "voting election"],
}

author

A string, dictionary representing the author of the distribution, see
People Fields for more information.

maintainer

A string or dictionary representing the current maintainer of the distribution,
see People Fields for more information. This field SHOULD be omitted if it
is the same as the author.

contributors

A list of additional contributors for the distribution. Each item in the list
must either be a string or a dictionary, see People Fields for more
information.

uris

A dictionary of Label: URI for this project. Each label is limited to 32 characters
in length.

Example:

{
 "uris": {
 "Home Page": "http://python.org/",
 "Bug Tracker": "http://bugs.python.org/"
 }
}

license

Text indicating the license covering the distribution where the license is not
a selection from the “License” Trove classifiers. See classifiers below. This
field may also be used to specify a particular version of a license which is
named via the Classifier field, or to indicate a variation or exception to such
a license.

classifiers

A List of strings where each item represents a distinct classifier for this
distribution. Classifiers are described in PEP 301 [6].

Example:

{
 "classifiers": [
 "Development Status :: 4 - Beta",
 "Environment :: Console (Text Based)"
]
}

platform

A Platform specification describing an operating system supported by the
distribution which is not listed in the “Operating System” Trove classifiers.

requires_python

This field specifies the Python version(s) that the distribution is guaranteed
to be compatible with. Version numbers must be in the format specified in
Version Specifiers.

People Fields

The author, and maintainer fields, and the contributors field list
items each accept either a string or a dictionary. The dictionary is a mapping
of name, email, and url, like this:

{
 "name": "Monty Python",
 "email": "monty@python.org",
 "url": "http://python.org/"
}

Any of the fields may be omitted where they are unknown. Additionally they
may be specified using a string in the format of Name <email> (url). An
example:

Monty Python <monty@python.org> (http://python.org/)

Version Specifiers

Version specifiers are a series of conditional operators and version numbers,
separated by commas. Conditional operators must be one of “<”, “>”, “<=”, “>=”,
“==”, ”!=” and “~>”.

The “~>” is a special case which can be pronounced as “approximately greater
than”. When this is used it signifies that the the version should be greater
than or equal to the specified version within the same release series. For
example, if “~>2.5.2” is the specifier, then any version matching 2.5.x will
be accepted where x is >= 2.

Any number of conditional operators can be specified, e.g. the string
“>1.0, !=1.3.4, <2.0” is a legal version declaration. The comma (”,”) is
equivalent to the and operator.

Each version number must be in the format specified in PEP 386 [7].

Notice that some projects might omit the ”.0” prefix for the first release of
the “2.5.x” series:

	2.5

	2.5.1

	2.5.2

	etc.

In that case, “2.5.0” will have to be explicitly used to avoid any confusion
between the “2.5” notation that represents the full range. It is a recommended
practice to use schemes of the same length for a series to completely avoid this
problem.

References

	[1]	Cross-Compiling Python & C Extensions for Embedded Systems
(http://pyvideo.org/video/682/cross-compiling-python-c-extensions-for-embedde)

	[2]	Packaging (numpy.distutils)
(http://docs.scipy.org/doc/numpy/reference/distutils.html)

	[3]	Status of Packaging in 3.3
(http://mail.python.org/pipermail/python-dev/2012-June/120696.html)

	[4]	Status of Packaging in 3.3
(http://mail.python.org/pipermail/python-dev/2012-June/120591.html)

	[5]	reStructuredText Markup
(http://docutils.sourceforge.net/)

	[6]	PEP 301 - Package Index and Metadata for Distutils
(http://www.python.org/dev/peps/pep-0301/)

	[7]	(1, 2) PEP 386 - Changing the version comparison module in Distutils
(http://www.python.org/dev/peps/pep-0386)

Copyright

This document has been placed in the public domain.

Index

Abstract

This PEP provides a boilerplate or sample template for creating your
own reStructuredText PEPs. In conjunction with the content guidelines
in PEP 1 [1], this should make it easy for you to conform your own
PEPs to the format outlined below.

Note: if you are reading this PEP via the web, you should first grab
the text (reStructuredText) source of this PEP in order to complete
the steps below. DO NOT USE THE HTML FILE AS YOUR TEMPLATE!

To get the source this (or any) PEP, look at the top of the HTML page
and click on the date & time on the “Last-Modified” line. It is a
link to the source text in the Python repository.

If you would prefer not to use markup in your PEP, please see PEP 9,
“Sample Plaintext PEP Template” [2].

Rationale

PEP submissions come in a wide variety of forms, not all adhering
to the format guidelines set forth below. Use this template, in
conjunction with the format guidelines below, to ensure that your
PEP submission won’t get automatically rejected because of form.

ReStructuredText is offered as an alternative to plaintext PEPs, to
allow PEP authors more functionality and expressivity, while
maintaining easy readability in the source text. The processed HTML
form makes the functionality accessible to readers: live hyperlinks,
styled text, tables, images, and automatic tables of contents, among
other advantages. For an example of a PEP marked up with
reStructuredText, see PEP 287.

How to Use This Template

To use this template you must first decide whether your PEP is going
to be an Informational or Standards Track PEP. Most PEPs are
Standards Track because they propose a new feature for the Python
language or standard library. When in doubt, read PEP 1 for details
or contact the PEP editors <peps@python.org>.

Once you’ve decided which type of PEP yours is going to be, follow the
directions below.

	Make a copy of this file (.txt file, not HTML!) and perform
the following edits.

	Replace the “PEP: 12” header with “PEP: XXX” since you don’t yet have
a PEP number assignment.

	Change the Title header to the title of your PEP.

	Leave the Version and Last-Modified headers alone; we’ll take care
of those when we check your PEP into Python’s Subversion repository.
These headers consist of keywords (“Revision” and “Date” enclosed in
“$”-signs) which are automatically expanded by the repository.
Please do not edit the expanded date or revision text.

	Change the Author header to include your name, and optionally your
email address. Be sure to follow the format carefully: your name
must appear first, and it must not be contained in parentheses.
Your email address may appear second (or it can be omitted) and if
it appears, it must appear in angle brackets. It is okay to
obfuscate your email address.

	If there is a mailing list for discussion of your new feature, add a
Discussions-To header right after the Author header. You should not
add a Discussions-To header if the mailing list to be used is either
python-list@python.org or python-dev@python.org, or if discussions
should be sent to you directly. Most Informational PEPs don’t have
a Discussions-To header.

	Change the Status header to “Draft”.

	For Standards Track PEPs, change the Type header to “Standards
Track”.

	For Informational PEPs, change the Type header to “Informational”.

	For Standards Track PEPs, if your feature depends on the acceptance
of some other currently in-development PEP, add a Requires header
right after the Type header. The value should be the PEP number of
the PEP yours depends on. Don’t add this header if your dependent
feature is described in a Final PEP.

	Change the Created header to today’s date. Be sure to follow the
format carefully: it must be in dd-mmm-yyyy format, where the
mmm is the 3 English letter month abbreviation, i.e. one of Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec.

	For Standards Track PEPs, after the Created header, add a
Python-Version header and set the value to the next planned version
of Python, i.e. the one your new feature will hopefully make its
first appearance in. Do not use an alpha or beta release
designation here. Thus, if the last version of Python was 2.2 alpha
1 and you’re hoping to get your new feature into Python 2.2, set the
header to:

Python-Version: 2.2

	Leave Post-History alone for now; you’ll add dates to this header
each time you post your PEP to python-list@python.org or
python-dev@python.org. If you posted your PEP to the lists on
August 14, 2001 and September 3, 2001, the Post-History header would
look like:

Post-History: 14-Aug-2001, 03-Sept-2001

You must manually add new dates and check them in. If you don’t
have check-in privileges, send your changes to the PEP editors.

	Add a Replaces header if your PEP obsoletes an earlier PEP. The
value of this header is the number of the PEP that your new PEP is
replacing. Only add this header if the older PEP is in “final”
form, i.e. is either Accepted, Final, or Rejected. You aren’t
replacing an older open PEP if you’re submitting a competing idea.

	Now write your Abstract, Rationale, and other content for your PEP,
replacing all this gobbledygook with your own text. Be sure to
adhere to the format guidelines below, specifically on the
prohibition of tab characters and the indentation requirements.

	Update your References and Copyright section. Usually you’ll place
your PEP into the public domain, in which case just leave the
Copyright section alone. Alternatively, you can use the Open
Publication License [http://www.opencontent.org/openpub/], but public domain is still strongly
preferred.

	Leave the Emacs stanza at the end of this file alone, including the
formfeed character (“^L”, or \f).

	Send your PEP submission to the PEP editors at peps@python.org.

ReStructuredText PEP Formatting Requirements

The following is a PEP-specific summary of reStructuredText syntax.
For the sake of simplicity and brevity, much detail is omitted. For
more detail, see Resources below. Literal blocks (in which no
markup processing is done) are used for examples throughout, to
illustrate the plaintext markup.

General

You must adhere to the Emacs convention of adding two spaces at the
end of every sentence. You should fill your paragraphs to column 70,
but under no circumstances should your lines extend past column 79.
If your code samples spill over column 79, you should rewrite them.

Tab characters must never appear in the document at all. A PEP should
include the standard Emacs stanza included by example at the bottom of
this PEP.

Section Headings

PEP headings must begin in column zero and the initial letter of each
word must be capitalized as in book titles. Acronyms should be in all
capitals. Section titles must be adorned with an underline, a single
repeated punctuation character, which begins in column zero and must
extend at least as far as the right edge of the title text (4
characters minimum). First-level section titles are underlined with
“=” (equals signs), second-level section titles with “-” (hyphens),
and third-level section titles with “’” (single quotes or
apostrophes). For example:

First-Level Title
=================

Second-Level Title

Third-Level Title
'''''''''''''''''

If there are more than three levels of sections in your PEP, you may
insert overline/underline-adorned titles for the first and second
levels as follows:

============================
First-Level Title (optional)
============================

Second-Level Title (optional)

Third-Level Title
=================

Fourth-Level Title

Fifth-Level Title
'''''''''''''''''

You shouldn’t have more than five levels of sections in your PEP. If
you do, you should consider rewriting it.

You must use two blank lines between the last line of a section’s body
and the next section heading. If a subsection heading immediately
follows a section heading, a single blank line in-between is
sufficient.

The body of each section is not normally indented, although some
constructs do use indentation, as described below. Blank lines are
used to separate constructs.

Paragraphs

Paragraphs are left-aligned text blocks separated by blank lines.
Paragraphs are not indented unless they are part of an indented
construct (such as a block quote or a list item).

Inline Markup

Portions of text within paragraphs and other text blocks may be
styled. For example:

Text may be marked as *emphasized* (single asterisk markup,
typically shown in italics) or **strongly emphasized** (double
asterisks, typically boldface). ``Inline literals`` (using double
backquotes) are typically rendered in a monospaced typeface. No
further markup recognition is done within the double backquotes,
so they're safe for any kind of code snippets.

Block Quotes

Block quotes consist of indented body elements. For example:

This is a paragraph.

 This is a block quote.

 A block quote may contain many paragraphs.

Block quotes are used to quote extended passages from other sources.
Block quotes may be nested inside other body elements. Use 4 spaces
per indent level.

Literal Blocks

Literal blocks are used for code samples or preformatted ASCII art. To
indicate a literal block, preface the indented text block with
“::” (two colons). The literal block continues until the end of
the indentation. Indent the text block by 4 spaces. For example:

This is a typical paragraph. A literal block follows.

::

 for a in [5,4,3,2,1]: # this is program code, shown as-is
 print a
 print "it's..."
 # a literal block continues until the indentation ends

The paragraph containing only “::” will be completely removed from
the output; no empty paragraph will remain. “::” is also
recognized at the end of any paragraph. If immediately preceded by
whitespace, both colons will be removed from the output. When text
immediately precedes the “::”, one colon will be removed from
the output, leaving only one colon visible (i.e., “::” will be
replaced by “:”). For example, one colon will remain visible
here:

Paragraph::

 Literal block

Lists

Bullet list items begin with one of “-”, “*”, or “+” (hyphen,
asterisk, or plus sign), followed by whitespace and the list item
body. List item bodies must be left-aligned and indented relative to
the bullet; the text immediately after the bullet determines the
indentation. For example:

This paragraph is followed by a list.

* This is the first bullet list item. The blank line above the
 first list item is required; blank lines between list items
 (such as below this paragraph) are optional.

* This is the first paragraph in the second item in the list.

 This is the second paragraph in the second item in the list.
 The blank line above this paragraph is required. The left edge
 of this paragraph lines up with the paragraph above, both
 indented relative to the bullet.

 - This is a sublist. The bullet lines up with the left edge of
 the text blocks above. A sublist is a new list so requires a
 blank line above and below.

* This is the third item of the main list.

This paragraph is not part of the list.

Enumerated (numbered) list items are similar, but use an enumerator
instead of a bullet. Enumerators are numbers (1, 2, 3, ...), letters
(A, B, C, ...; uppercase or lowercase), or Roman numerals (i, ii, iii,
iv, ...; uppercase or lowercase), formatted with a period suffix
(“1.”, “2.”), parentheses (“(1)”, “(2)”), or a right-parenthesis
suffix (“1)”, “2)”). For example:

1. As with bullet list items, the left edge of paragraphs must
 align.

2. Each list item may contain multiple paragraphs, sublists, etc.

 This is the second paragraph of the second list item.

 a) Enumerated lists may be nested.
 b) Blank lines may be omitted between list items.

Definition lists are written like this:

what
 Definition lists associate a term with a definition.

how
 The term is a one-line phrase, and the definition is one
 or more paragraphs or body elements, indented relative to
 the term.

Tables

Simple tables are easy and compact:

===== ===== =======
 A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

There must be at least two columns in a table (to differentiate from
section titles). Column spans use underlines of hyphens (“Inputs”
spans the first two columns):

===== ===== ======
 Inputs Output
------------ ------
 A B A or B
===== ===== ======
False False False
True False True
False True True
True True True
===== ===== ======

Text in a first-column cell starts a new row. No text in the first
column indicates a continuation line; the rest of the cells may
consist of multiple lines. For example:

===== =========================
col 1 col 2
===== =========================
1 Second column of row 1.
2 Second column of row 2.
 Second line of paragraph.
3 - Second column of row 3.

 - Second item in bullet
 list (row 3, column 2).
===== =========================

Hyperlinks

When referencing an external web page in the body of a PEP, you should
include the title of the page in the text, with either an inline
hyperlink reference to the URL or a footnote reference (see
Footnotes below). Do not include the URL in the body text of the
PEP.

Hyperlink references use backquotes and a trailing underscore to mark
up the reference text; backquotes are optional if the reference text
is a single word. For example:

In this paragraph, we refer to the `Python web site`_.

An explicit target provides the URL. Put targets in a References
section at the end of the PEP, or immediately after the reference.
Hyperlink targets begin with two periods and a space (the “explicit
markup start”), followed by a leading underscore, the reference text,
a colon, and the URL (absolute or relative):

.. _Python web site: http://www.python.org/

The reference text and the target text must match (although the match
is case-insensitive and ignores differences in whitespace). Note that
the underscore trails the reference text but precedes the target text.
If you think of the underscore as a right-pointing arrow, it points
away from the reference and toward the target.

The same mechanism can be used for internal references. Every unique
section title implicitly defines an internal hyperlink target. We can
make a link to the Abstract section like this:

Here is a hyperlink reference to the `Abstract`_ section. The
backquotes are optional since the reference text is a single word;
we can also just write: Abstract_.

Footnotes containing the URLs from external targets will be generated
automatically at the end of the References section of the PEP, along
with footnote references linking the reference text to the footnotes.

Text of the form “PEP x” or “RFC x” (where “x” is a number) will be
linked automatically to the appropriate URLs.

Footnotes

Footnote references consist of a left square bracket, a number, a
right square bracket, and a trailing underscore:

This sentence ends with a footnote reference [1]_.

Whitespace must precede the footnote reference. Leave a space between
the footnote reference and the preceding word.

When referring to another PEP, include the PEP number in the body
text, such as “PEP 1”. The title may optionally appear. Add a
footnote reference following the title. For example:

Refer to PEP 1 [2]_ for more information.

Add a footnote that includes the PEP’s title and author. It may
optionally include the explicit URL on a separate line, but only in
the References section. Footnotes begin with ”.. ” (the explicit
markup start), followed by the footnote marker (no underscores),
followed by the footnote body. For example:

References
==========

.. [2] PEP 1, "PEP Purpose and Guidelines", Warsaw, Hylton
 (http://www.python.org/dev/peps/pep-0001)

If you decide to provide an explicit URL for a PEP, please use this as
the URL template:

http://www.python.org/dev/peps/pep-xxxx

PEP numbers in URLs must be padded with zeros from the left, so as to
be exactly 4 characters wide, however PEP numbers in the text are
never padded.

During the course of developing your PEP, you may have to add, remove,
and rearrange footnote references, possibly resulting in mismatched
references, obsolete footnotes, and confusion. Auto-numbered
footnotes allow more freedom. Instead of a number, use a label of the
form “#word”, where “word” is a mnemonic consisting of alphanumerics
plus internal hyphens, underscores, and periods (no whitespace or
other characters are allowed). For example:

Refer to PEP 1 [#PEP-1]_ for more information.

References
==========

.. [#PEP-1] PEP 1, "PEP Purpose and Guidelines", Warsaw, Hylton

 http://www.python.org/dev/peps/pep-0001

Footnotes and footnote references will be numbered automatically, and
the numbers will always match. Once a PEP is finalized, auto-numbered
labels should be replaced by numbers for simplicity.

Images

If your PEP contains a diagram, you may include it in the processed
output using the “image” directive:

.. image:: diagram.png

Any browser-friendly graphics format is possible: .png, .jpeg, .gif,
.tiff, etc.

Since this image will not be visible to readers of the PEP in source
text form, you should consider including a description or ASCII art
alternative, using a comment (below).

Comments

A comment block is an indented block of arbitrary text immediately
following an explicit markup start: two periods and whitespace. Leave
the ”..” on a line by itself to ensure that the comment is not
misinterpreted as another explicit markup construct. Comments are not
visible in the processed document. For the benefit of those reading
your PEP in source form, please consider including a descriptions of
or ASCII art alternatives to any images you include. For example:

.. image:: dataflow.png

..
 Data flows from the input module, through the "black box"
 module, and finally into (and through) the output module.

The Emacs stanza at the bottom of this document is inside a comment.

Escaping Mechanism

reStructuredText uses backslashes (“\”) to override the special
meaning given to markup characters and get the literal characters
themselves. To get a literal backslash, use an escaped backslash
(“\\”). There are two contexts in which backslashes have no
special meaning: literal blocks and inline literals (see Inline
Markup above). In these contexts, no markup recognition is done,
and a single backslash represents a literal backslash, without having
to double up.

If you find that you need to use a backslash in your text, consider
using inline literals or a literal block instead.

Habits to Avoid

Many programmers who are familiar with TeX often write quotation marks
like this:

`single-quoted' or ``double-quoted''

Backquotes are significant in reStructuredText, so this practice
should be avoided. For ordinary text, use ordinary ‘single-quotes’ or
“double-quotes”. For inline literal text (see Inline Markup
above), use double-backquotes:

``literal text: in here, anything goes!``

Resources

Many other constructs and variations are possible. For more details
about the reStructuredText markup, in increasing order of
thoroughness, please see:

	A ReStructuredText Primer [http://docutils.sourceforge.net/docs/rst/quickstart.html], a gentle introduction.

	Quick reStructuredText [http://docutils.sourceforge.net/docs/rst/quickref.html], a users’ quick reference.

	reStructuredText Markup Specification [http://docutils.sourceforge.net/spec/rst/reStructuredText.html], the final authority.

The processing of reStructuredText PEPs is done using Docutils [http://docutils.sourceforge.net/]. If
you have a question or require assistance with reStructuredText or
Docutils, please post a message to the Docutils-users mailing
list [http://docutils.sf.net/docs/user/mailing-lists.html#docutils-users]. The Docutils project web site [http://docutils.sourceforge.net/] has more information.

References

	[1]	PEP 1, PEP Purpose and Guidelines, Warsaw, Hylton
(http://www.python.org/dev/peps/pep-0001)

	[2]	PEP 9, Sample Plaintext PEP Template, Warsaw
(http://www.python.org/dev/peps/pep-0009)

Copyright

This document has been placed in the public domain.

 nav.xhtml

 Table of Contents

 		Abstract

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

