
Python course documentation
Release 0.0

Python course teachers

November 21, 2016





Contents

1 Installation 1

2 Exercises day 1 3

3 Exercises day 2 9

i



ii



CHAPTER 1

Installation

You need a recent version of Python 3 installed as well as a couple of packages that we will use in the course (see
below). At the very least, version 3.3. Version 3.5 is recommended. You can check the version you have installed
with:

$ python3 --version

1.1 Option 1: Anaconda (good for beginners)

Go to https://www.continuum.io/downloads and download the Python 3.5 version for your system.

1.1.1 Windows

Install Python 3 using all of the defaults for installation but make sure to check “Make Anaconda the default Python”.

1.1.2 Mac OS X

Install Python 3 using the defaults for installation.

1.1.3 Linux

In your terminal run the installer that you just downloaded, e.g.:

$ bash Anaconda3-4.0.0-Linux-x86_64.sh

If you answer “yes” to the question “Do you wish the installer to prepend the Anaconda3 install location to PATH in
your /home/user/.bashrc ?” then this will make the Anaconda distribution the default Python. You can always undo
this by editing your .bashrc. Otherwise you go with the defaults.

1.2 Option 2: Virtual Environments (Linux or Mac OS X)

For this make sure that you have virtualenv installed. This also assumes that Python is installed on the system. See
also http://docs.python-guide.org/en/latest/dev/virtualenvs/.

Go to https://github.com/uit-no/python-course and download the repository as zip file (click on “Download ZIP” on
the right).

1

https://www.continuum.io/downloads
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/uit-no/python-course


Python course documentation, Release 0.0

Then extract the zip file and inside python-course-master you can install all requirements using:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements_course.txt

We recommend this approach to seasoned users. This because a possible pitfall with this approach is that some of
the pip packages need C compilation, which depends on a number of system packages that pip can’t install. If the
“pip install” step fails with compilation errors, then you likely don’t have some required C libraries installed on your
system.

1.3 Option 3: Vagrant

If you are familiar with Vagrant, then a Linux virtual machine with everything you need is just a “git clone” and a
“vagrant up” away.

First, download and unpack or clone the course repository from GitHub. Then, open a terminal, cd to the directory in
which you have unpacked or cloned the repository, and run:

$ vagrant up

In a couple of minutes, you’ll have a VM that has everything installed. Log in to the machine and look around like so:

$ vagrant ssh

Then, once you are logged in:

$ cd /vagrant
$ ls

One thing you will for sure like to do is to start jupyter, which we use in the course for some presentations and
exercises:

$ cd /vagrant
$ ./run_jupyter.sh

Now just point your browser to http://localhost:8888.

2 Chapter 1. Installation

https://www.vagrantup.com
https://github.com/uit-no/python-course
http://jupyter.org/
http://localhost:8888


CHAPTER 2

Exercises day 1

We will work on these exercises during the course. Do not worry about them before the course.

Below you find the source code for the exercises. Copy and paste them into a file called e.g. basics.py. It is OK
to copy all or just one or two exercises to start with. We give you the tests and you need to code the functions to make
the tests pass. It is OK to work in pairs and it is OK to use Google and Stack Overflow.

You can run the tests like this:

$ py.test -s -vv basics.py

You can also run a single test, e.g.:

$ py.test -s -vv -k test_reverse_list basics.py

2.1 Basics

Make the following tests green:

1 def reverse_list(l):
2 """
3 Reverses order of elements in list l.
4 """
5 return None
6

7

8 def test_reverse_list():
9 assert reverse_list([1, 2, 3, 4, 5]) == [5, 4, 3, 2, 1]

10

11

12 # ------------------------------------------------------------------------------
13

14 def reverse_string(s):
15 """
16 Reverses order of characters in string s.
17 """
18 return None
19

20

21 def test_reverse_string():
22 assert reverse_string("foobar") == "raboof"
23

3



Python course documentation, Release 0.0

24

25 # ------------------------------------------------------------------------------
26

27 def get_word_lengths(s):
28 """
29 Returns a list of integers representing
30 the word lengths in string s.
31 """
32 return None
33

34

35 def test_get_word_lengths():
36 text = "Three tomatoes are walking down the street"
37 assert get_word_lengths(text) == [5, 8, 3, 7, 4, 3, 6]
38

39

40 # ------------------------------------------------------------------------------
41

42 def find_longest_word(s):
43 """
44 Returns the longest word in string s.
45 In case there are several, return the first.
46 """
47 return None
48

49

50 def test_find_longest_word():
51 text = "Three tomatoes are walking down the street"
52 assert find_longest_word(text) == "tomatoes"
53 text = "foo foo1 foo2 foo3"
54 assert find_longest_word(text) == "foo1"
55

56

57 # ------------------------------------------------------------------------------
58

59 def remove_substring(substring, string):
60 """
61 Returns string with all occurrences of substring removed.
62 """
63 return None
64

65

66 def test_remove_substring():
67 assert remove_substring("don't", "I don't like cake") == "I like cake"
68 assert remove_substring("bada", "bada-bing-bada-bing") == "-bing--bing"
69

70

71 # ------------------------------------------------------------------------------
72

73 def read_column(file_name, column_number):
74 """
75 Reads column column_number from file file_name
76 and returns the values as floats in a list.
77 """
78 return None
79

80

81 def test_read_column():

4 Chapter 2. Exercises day 1



Python course documentation, Release 0.0

82

83 import tempfile
84 import os
85

86 text = """1 0.1 0.001
87 2 0.2 0.002
88 3 0.3 0.003
89 4 0.4 0.004
90 5 0.5 0.005
91 6 0.6 0.006"""
92

93 # we save this text to a temporary file
94 file_name = tempfile.mkstemp()[1]
95 with open(file_name, 'w') as f:
96 f.write(text)
97

98 # and now we pass the file name to the function which will read the column
99 assert read_column(file_name, 2) == [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

100

101 # we remove the temporary file
102 os.unlink(file_name)
103

104

105 # ------------------------------------------------------------------------------
106

107 def histogram(l):
108 """
109 Converts a list of tuples into a simple string histogram.
110 """
111 return None
112

113

114 def test_histogram():
115 assert histogram([('a', 2), ('b', 5), ('c', 1)]) == """a: ##
116 b: #####
117 c: #"""
118

119

120 # ------------------------------------------------------------------------------
121

122 def character_statistics(text):
123 """
124 Reads text from file file_name, then
125 lowercases the text, and then returns
126 a list of tuples (character, occurence)
127 sorted by occurence with most frequent
128 appearing first.
129 Use the isalpha() method to figure out
130 whether the character is in the alphabet.
131 """
132 return None
133

134

135 def test_character_statistics():
136

137 text = """
138 To be, or not to be: that is the question:
139 Whether 'tis nobler in the mind to suffer

2.1. Basics 5



Python course documentation, Release 0.0

140 The slings and arrows of outrageous fortune,
141 Or to take arms against a sea of troubles,
142 And by opposing end them? To die: to sleep;
143 No more; and by a sleep to say we end
144 The heart-ache and the thousand natural shocks
145 That flesh is heir to, 'tis a consummation
146 Devoutly to be wish'd. To die, to sleep;
147 To sleep: perchance to dream: ay, there's the rub;
148 For in that sleep of death what dreams may come
149 When we have shuffled off this mortal coil,
150 Must give us pause: there's the respect
151 That makes calamity of so long life;
152 For who would bear the whips and scorns of time,
153 The oppressor's wrong, the proud man's contumely,
154 The pangs of despised love, the law's delay,
155 The insolence of office and the spurns
156 That patient merit of the unworthy takes,
157 When he himself might his quietus make
158 With a bare bodkin? who would fardels bear,
159 To grunt and sweat under a weary life,
160 But that the dread of something after death,
161 The undiscover'd country from whose bourn
162 No traveller returns, puzzzles the will
163 And makes us rather bear those ills we have
164 Than fly to others that we know not of?
165 Thus conscience does make cowards of us all;
166 And thus the native hue of resolution
167 Is sicklied o'er with the pale cast of thought,
168 And enterprises of great pith and moment
169 With this regard their currents turn awry,
170 And lose the name of action.--Soft you now!
171 The fair Ophelia! Nymph, in thy orisons
172 Be all my sins remember'd."""
173

174 assert character_statistics(text) == [('e', 146), ('t', 120), ('o', 99), ('s', 88), ('a', 87),
175 ('h', 79), ('r', 71), ('n', 70), ('i', 57), ('l', 44),
176 ('d', 43), ('u', 41), ('f', 36), ('m', 32), ('w', 29),
177 ('p', 24), ('c', 23), ('y', 18), ('b', 17), ('g', 14),
178 ('k', 10), ('v', 8), ('z', 3), ('q', 2)]
179

180

181 # ------------------------------------------------------------------------------
182

183 def simple_zip(l1, l2):
184 """
185 Implement a simple zip function.
186 Do not use the built-in zip().
187 """
188 return None
189

190

191 def test_simple_zip():
192

193 assert simple_zip(['a', 'b', 'c'], [1, 2, 3]) == [('a', 1), ('b', 2), ('c', 3)]
194

195

196 # ------------------------------------------------------------------------------
197

6 Chapter 2. Exercises day 1



Python course documentation, Release 0.0

198 def password_good(password):
199 """
200 Implement a function that tests if the input string is a "good" password.
201

202 A "good" password should:
203

204 - Be at least 8 characters long
205 - Contain at least one upper-case letter [A-Z]
206 - Contain at least one lower-case letter [a-z]
207 - Contain at least one digit [0-9]
208 - Contain at least one special character [#%&]
209

210 The function should return True if the password is good, False otherwise.
211 """
212 return None
213

214

215 def test_password_good():
216

217 good_passwords = ['Aa0#abcd', 'Zz9&0000', 'ABrt#&%aabb00']
218

219 for pw in good_passwords:
220 assert password_good(pw)
221

222 bad_passwords = ['Aa0#', 'Zz9&000', 'ABrtaabb00', 'rt#&%aabb00',
223 'AB#&%001', 'ABrt#&%aabb']
224

225 for pw in bad_passwords:
226 assert not password_good(pw)
227

228

229 # ------------------------------------------------------------------------------
230

231 def generate_password():
232 """
233 Write a function that generates a random "good" password. The generated
234 password should return True if checked by password_good.
235

236 For easy to remember strong passwords see: https://xkcd.com/936/
237 """
238 return None
239

240

241 def test_generate_password():
242

243 # generate list of 10 random passwords
244 pw_list = []
245 for _ in range(10):
246 pw_list.append(generate_password())
247

248 # passwords should be random, test for duplicates
249 assert len(pw_list) == len(set(pw_list))
250

251 # test all passwords in list
252 for pw in pw_list:
253 assert password_good(pw)

2.1. Basics 7



Python course documentation, Release 0.0

8 Chapter 2. Exercises day 1



CHAPTER 3

Exercises day 2

3.1 Control Structures

Make the following tests green:

1 def simple_generator():
2 """
3 Also yield 'cow' and 'mouse'.
4 """
5 yield 'horse'
6

7

8 def test_simple_generator():
9 assert list(simple_generator()) == ['horse', 'cow', 'mouse']

10

11

12 # ------------------------------------------------------------------------
13

14

15 def simple_range(limit):
16 """Yield numbers from 0 up to but not including limit.
17 You can use a normal while loop."""
18 pass
19

20

21 def test_simple_range():
22 assert list(simple_range(0)) == []
23 assert list(simple_range(3)) == [0, 1, 2]
24

25

26 # ------------------------------------------------------------------------
27

28

29 def word_lengths(words):
30 """
31 Return a list of the length of each word.
32 (Use len(word).)
33 """
34 pass
35

36

37 def test_word_lengths():
38 words = ['lorem', 'ipsum', 'python', 'sit', 'amet']

9



Python course documentation, Release 0.0

39 lengths = [5, 5, 6, 3, 4]
40 assert word_lengths(words) == lengths
41

42

43 # ------------------------------------------------------------------------
44

45

46 def simple_filter(f, l):
47 """
48 Implement a simple filter function.
49 Do not use the built-in filter().
50 """
51 return None
52

53

54 def test_simple_filter():
55

56 def greater_than_ten(n):
57 return n > 10
58

59 assert simple_filter(greater_than_ten, [1, 20, 5, 13, 7, 25]) == [20, 13, 25]
60

61

62 # ------------------------------------------------------------------------
63

64

65 def simple_map(f, l):
66 """
67 Implement a simple map function.
68 Do not use the built-in map().
69 """
70 return None
71

72

73 def test_simple_map():
74

75 def square_me(x):
76 return x*x
77

78 assert simple_map(square_me, [1, 2, 3, 4, 5]) == [1, 4, 9, 16, 25]

3.2 Classes

Make the following tests green:

1 def make_dog_class():
2 """
3 Make a class `Dog` that satisfies the following conditions:
4 * a dog has an attribute `happiness` which is initially set to 100, and
5 which is decremented by 1 when time advances.
6 * when a dog meets another dog, both dogs' happiness is reset to 100.
7 * when a dog meets a fish, the dog feeds and the fish dies.
8 * Note: "when a dog meets a fish" need not have the same effect as "when
9 a fish meets a dog" - but extra kudos to you if you can make it so.

10 """
11

10 Chapter 3. Exercises day 2



Python course documentation, Release 0.0

12 # The classes Pet and Fish are taken from the talk, with the addition of
13 # '_advance_time_individual' in Pet.
14 class Pet:
15 population = set()
16

17 def __init__(self, name):
18 self.name = name
19 self.hunger = 0
20 self.age = 0
21 self.pets_met = set()
22 self.__class__.population.add(self)
23

24 def die(self):
25 print("{} dies :(".format(self.name))
26 self.__class__.population.remove(self)
27

28 def is_alive(self):
29 return self in self.__class__.population
30

31 @classmethod
32 def advance_time(cls):
33 for pet in cls.population:
34 pet._advance_time_individual()
35

36 def _advance_time_individual(self):
37 # the leading _ in an attribute name is a convention that indicates
38 # to users of a class that "this is an attribute that is used
39 # internally, I probably shouldn't call it myself"
40 self.age += 1
41 self.hunger += 1
42

43 def feed(self):
44 self.hunger = 0
45

46 def meet(self, other_pet):
47 print("{} meets {}".format(self.name, other_pet.name))
48 self.pets_met.add(other_pet)
49 other_pet.pets_met.add(self)
50

51 def print_stats(self):
52 print("{o.name}, age {o.age}, hunger {o.hunger}, met {n} others".
53 format(o = self, n = len(self.pets_met)))
54

55

56 class Fish(Pet):
57 def __init__(self, name, size):
58 self.size = size
59 super().__init__(name)
60

61 def meet(self, other_fish):
62 super().meet(other_fish)
63 if not isinstance(other_fish, Fish):
64 return
65 if self.size > other_fish.size:
66 self.feed()
67 other_fish.die()
68 elif self.size < other_fish.size:
69 other_fish.feed()

3.2. Classes 11



Python course documentation, Release 0.0

70 self.die()
71

72

73 Dog = None # make Dog class here
74

75 return Pet, Fish, Dog
76

77

78 def test_dog_class():
79 Pet, Fish, Dog = make_dog_class()
80 assert type(Dog) == type
81

82 attila = Dog("Attila")
83 assert hasattr(attila, "happiness")
84 assert attila.happiness == 100
85

86 tamerlan = Dog("Tamerlan")
87

88 Pet.advance_time()
89 assert attila.happiness == tamerlan.happiness == 99
90

91 attila.meet(tamerlan)
92 assert attila.happiness == tamerlan.happiness == 100
93 assert attila in tamerlan.pets_met
94 assert tamerlan in attila.pets_met
95

96 steve = Fish("Steve", 1)
97

98 assert attila.hunger > 0
99 attila.meet(steve)

100 assert attila.hunger == 0
101 assert not steve.is_alive()
102

103

104 ###############################################################################
105

106 def define_hungry():
107 """
108 Copy your classes from the first exercise, and make the following happen:
109 * all pets have an `is_hungry()` method which returns True if the animal is
110 hungry, and False if not. In general, pets are considered to be hungry
111 when their hunger is > 50. Dogs, however, are considered to be hungry
112 when their hunger is > 10.
113 * there is a classmethod `Pet.get_hungry_pets()` which returns the set of
114 pets that are currently hungry.
115 """
116 Pet = Fish = Dog = None
117

118 return Pet, Fish, Dog
119

120

121 def test_define_hungry():
122 Pet, Fish, Dog = define_hungry()
123

124 p = Pet("p")
125 f = Fish("f", 1)
126 d = Dog("d")
127 assert isinstance(Pet.get_hungry_pets(), set)

12 Chapter 3. Exercises day 2



Python course documentation, Release 0.0

128

129 for x, h in [(p, 51), (f, 51), (d, 11)]:
130 assert len(Pet.get_hungry_pets()) == 0
131 assert not x.is_hungry()
132 x.hunger = h
133 assert x.is_hungry()
134 assert Pet.get_hungry_pets() == {x}
135 x.hunger = 0

3.3 Containers

We revisit the “character statistics” exercise from yesterday. Implement a solution using collections.Counter:

1 def character_statistics(text):
2 """
3 Reads text from file file_name, then lowercases the text, and then returns
4 a list of tuples (character, occurence) sorted by occurence with most
5 frequent appearing first.
6

7 You can use the isalpha() method to figure out whether the character is in
8 the alphabet.
9

10 Use collections.Counter for counting.
11 """
12 return None
13

14

15 def test_character_statistics():
16

17 text = """
18 To be, or not to be: that is the question:
19 Whether 'tis nobler in the mind to suffer
20 The slings and arrows of outrageous fortune,
21 Or to take arms against a sea of troubles,
22 And by opposing end them? To die: to sleep;
23 No more; and by a sleep to say we end
24 The heart-ache and the thousand natural shocks
25 That flesh is heir to, 'tis a consummation
26 Devoutly to be wish'd. To die, to sleep;
27 To sleep: perchance to dream: ay, there's the rub;
28 For in that sleep of death what dreams may come
29 When we have shuffled off this mortal coil,
30 Must give us pause: there's the respect
31 That makes calamity of so long life;
32 For who would bear the whips and scorns of time,
33 The oppressor's wrong, the proud man's contumely,
34 The pangs of despised love, the law's delay,
35 The insolence of office and the spurns
36 That patient merit of the unworthy takes,
37 When he himself might his quietus make
38 With a bare bodkin? who would fardels bear,
39 To grunt and sweat under a weary life,
40 But that the dread of something after death,
41 The undiscover'd country from whose bourn
42 No traveller returns, puzzzles the will
43 And makes us rather bear those ills we have

3.3. Containers 13



Python course documentation, Release 0.0

44 Than fly to others that we know not of?
45 Thus conscience does make cowards of us all;
46 And thus the native hue of resolution
47 Is sicklied o'er with the pale cast of thought,
48 And enterprises of great pith and moment
49 With this regard their currents turn awry,
50 And lose the name of action.--Soft you now!
51 The fair Ophelia! Nymph, in thy orisons
52 Be all my sins remember'd."""
53

54 assert character_statistics(text) == [('e', 146), ('t', 120), ('o', 99), ('s', 88), ('a', 87),
55 ('h', 79), ('r', 71), ('n', 70), ('i', 57), ('l', 44),
56 ('d', 43), ('u', 41), ('f', 36), ('m', 32), ('w', 29),
57 ('p', 24), ('c', 23), ('y', 18), ('b', 17), ('g', 14),
58 ('k', 10), ('v', 8), ('z', 3), ('q', 2)]

14 Chapter 3. Exercises day 2


	Installation
	Exercises day 1
	Exercises day 2

