

Welcome to pytest-flask’s documentation!

Pytest-flask is a plugin for pytest [http://pytest.org] that provides
a set of useful tools to test Flask [http://flask.pocoo.org] applications
and extensions.

Quickstart

Install plugin via pip:

pip install pytest-flask

Define your application fixture in conftest.py:

from myapp import create_app

@pytest.fixture
def app():
 app = create_app()
 return app

Now you can use the app fixture in your test suite. You can run your tests
with:

pytest

User’s Guide

This part of the documentation will show you how to get started in using
pytest-flask with your application.

	Getting started
	Step 1. Install

	Step 2. Configure

	Step 3. Run your test suite

	What’s next?

	Feature reference
	Fixtures
	client - application test client

	client_class - application test client for class-based tests

	config - application config

	live_server - application live server
	--start-live-server - start live server automatically (default)

	--no-start-live-server - don’t start live server automatically

	--live-server-wait - the live server wait timeout (5 seconds)

	--live-server-port - use a fixed port

	request_ctx - request context (Deprecated)
	live_server_scope - set the scope of the live server

	HTTP Request

	Content negotiation
	accept_any - */* accept header

	accept_json - application/json accept header

	accept_jsonp - application/json-p accept header

	Markers
	pytest.mark.options - pass options to your application config

	How to contribute
	How to report issues

	Setting up your development environment

	Start Coding

	How to run tests

	Checking Test Coverage

	Changelog
	1.2.0 (2021-02-26)

	1.1.0 (2020-11-08)

	1.0.0 (2020-03-03)

	0.15.1 (2020-02-03)

	0.15.0 (2019-05-13)

	0.14.0 (2018-10-15)

	0.13.0 (2018-09-29)

	0.12.0 (2018-09-06)

	0.11.0 (compared to 0.10.0)

	0.10.0 (compared to 0.9.0)

	0.9.0 (compared to 0.8.1)

	0.8.1

	0.8.0

	0.7.5

	0.7.4

	0.7.3

	0.7.2

	0.7.1

	0.7.0

	0.6.3

	0.6.2

	0.6.1

	0.6.0

	0.5.0

	0.4.0

	0.3.4

	0.3.3

	0.3.2

	0.3.1

Getting started

Pytest is capable to pick up and run existing tests without any or little
configuration. This section describes how to get started quickly.

Step 1. Install

pytest-flask is available on PyPi [https://pypi.python.org/pypi/pytest-flask], and can be easily installed via
pip:

pip install pytest-flask

Step 2. Configure

Define your application fixture in conftest.py:

from myapp import create_app

@pytest.fixture
def app():
 app = create_app()
 return app

Step 3. Run your test suite

Use the pytest command to run your test suite:

pytest

Note

Test discovery.

Pytest discovers your tests [http://docs.pytest.org/en/latest/goodpractices.html#test-discovery] and has a built-in integration with other
testing tools (such as nose, unittest and doctest). More
comprehensive examples and use cases can be found in the official
documentation [http://pytest.org/latest/usage.html].

What’s next?

The Feature reference section gives a more detailed view of available features, as
well as test fixtures and markers.

Consult the pytest documentation [http://pytest.org/latest] for more
information about pytest itself.

If you want to contribute to the project, see the How to contribute section.

Feature reference

Extension provides some sugar for your tests, such as:

	Access to context bound objects (url_for, request, session)
without context managers:

def test_app(client):
 assert client.get(url_for('myview')).status_code == 200

	Easy access to JSON data in response:

@api.route('/ping')
def ping():
 return jsonify(ping='pong')

def test_api_ping(client):
 res = client.get(url_for('api.ping'))
 assert res.json == {'ping': 'pong'}

Note

User-defined json attribute/method in application response class will
not be overwritten. So you can define your own response deserialization method:

from flask import Response
from myapp import create_app

class MyResponse(Response):
 '''Implements custom deserialization method for response objects.'''
 @property
 def json(self):
 return 42

@pytest.fixture(scope="session")
def app():
 app = create_app()
 app.response_class = MyResponse
 return app

def test_my_json_response(client):
 res = client.get(url_for('api.ping'))
 assert res.json == 42

	Running tests in parallel with pytest-xdist [https://pypi.python.org/pypi/pytest-xdist]. This can lead to
significant speed improvements on multi core/multi CPU machines.

This requires the pytest-xdist plugin to be available, it can usually be
installed with:

pip install pytest-xdist

You can then run the tests by running:

pytest -n <number of processes>

Not enough pros? See the full list of available fixtures and markers
below.

Fixtures

pytest-flask provides a list of useful fixtures to simplify application
testing. More information on fixtures and their usage is available in the
pytest documentation [https://pytest.org/en/latest/fixture.html].

client - application test client

An instance of app.test_client. Typically refers to
flask.Flask.test_client [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client].

Hint

During test execution a request context will be automatically pushed
for you, so context-bound methods can be conveniently called (e.g.
url_for, session.

Example:

def test_myview(client):
 assert client.get(url_for('myview')).status_code == 200

client_class - application test client for class-based tests

Example:

@pytest.mark.usefixtures('client_class')
class TestSuite:

 def test_myview(self):
 assert self.client.get(url_for('myview')).status_code == 200

config - application config

An instance of app.config. Typically refers to flask.Config [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Config].

live_server - application live server

Run application in a separate process (useful for tests with Selenium [https://selenium-python.readthedocs.io/] and
other headless browsers).

Hint

The server’s URL can be retrieved using the url_for function.

from flask import url_for

@pytest.mark.usefixtures('live_server')
class TestLiveServer:

 def test_server_is_up_and_running(self):
 res = urllib2.urlopen(url_for('index', _external=True))
 assert b'OK' in res.read()
 assert res.code == 200

--start-live-server - start live server automatically (default)

--no-start-live-server - don’t start live server automatically

By default the server will start automatically whenever you reference
live_server fixture in your tests. But starting live server imposes some
high costs on tests that need it when they may not be ready yet. To prevent
that behaviour pass --no-start-live-server into your default options (for
example, in your project’s pytest.ini file):

[pytest]
addopts = --no-start-live-server

Note

You should manually start live server after you finish your application
configuration and define all required routes:

def test_add_endpoint_to_live_server(live_server):
 @live_server.app.route('/test-endpoint')
 def test_endpoint():
 return 'got it', 200

 live_server.start()

 res = urlopen(url_for('test_endpoint', _external=True))
 assert res.code == 200
 assert b'got it' in res.read()

--live-server-wait - the live server wait timeout (5 seconds)

The timeout after which test case is aborted if live server is not started.

--live-server-port - use a fixed port

By default the server uses a random port. In some cases it is desirable to run
the server with a fixed port. You can use --live-server-port (for example,
in your project’s pytest.ini file):

[pytest]
addopts = --live-server-port=5000

request_ctx - request context (Deprecated)

This fixture is deprecated and will be removed in the future.

The request context which contains all request relevant information.

Hint

The request context has been pushed implicitly any time the app
fixture is applied and is kept around during test execution, so it’s easy
to introspect the data:

from flask import request, url_for

def test_request_headers(client):
 res = client.get(url_for('ping'), headers=[('X-Something', '42')])
 assert request.headers['X-Something'] == '42'

live_server_scope - set the scope of the live server

By default, the server will be scoped to session for performance reasons, however
if your server has global state and you want better test isolation, you can use the
live_server_scope ini option to change the fixture scope:

[pytest]
live_server_scope = function

HTTP Request

Common request methods are available through the internals of the Flask API [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client].
Specifically, the API creates the default flask.Flask.test_client [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client] instance,
which works like a regular Werkzeug test client [https://werkzeug.palletsprojects.com/en/1.0.x/test/#werkzeug.test.Client].

Examples:

def test_post_request(client, live_server):
 @live_server.app.route('/load-data')
 def get_endpoint():
 return url_for('name.load', _external=True)

 live_server.start()

 res = client.post(
 get_endpoint(),
 headers={'Content-Type': 'application/json'},
 data={}
)

 assert res.status_code == 200

def test_get_request(client, live_server):
 @live_server.app.route('/load-data')
 def get_endpoint():
 return url_for('name.load', _external=True)

 live_server.start()

 res = client.get(get_endpoint())

 assert res.status_code == 200

Note

The notation name.load_data, corresponds to a endpoint='load'
attribute, within a route decorator. The following is a route decorator
using the blueprint [https://flask.palletsprojects.com/en/1.1.x/blueprints/] implementation:

from flask import Blueprint, request

local variables
blueprint = Blueprint(
 'name',
 __name__,
 template_folder='interface/templates',
 static_folder='interface/static'
)

@blueprint.route('/load-data', methods=['POST'], endpoint='load')
def load_data():
 if request.method == 'POST':
 if request.get_json():
 pass

Alternatively, the route function can be referenced directly from the
live_server implementation, rather than implementing an endpoint:

def test_load_data(live_server, client):
 @live_server.app.route('/load-data', methods=['POST'])
 def load_data():
 pass

 live_server.start()

 res = client.post(url_for('load_data'), data={})
 assert res.status_code == 200

Note

Remember to explicitly define which methods are supported when
registering the above route function.

Content negotiation

An important part of any REST
service is content negotiation. It allows you to implement behaviour such as
selecting a different serialization schemes for different media types.

HTTP has provisions for several mechanisms for “content negotiation” - the
process of selecting the best representation for a given response
when there are multiple representations available.

—RFC 2616#section-12 [https://tools.ietf.org/html/rfc2616.html#section-12]. Fielding, et al.

The most common way to select one of the multiple possible representation is
via Accept request header. The following series of accept_* fixtures
provides an easy way to test content negotiation in your application:

def test_api_endpoint(accept_json, client):
 res = client.get(url_for('api.endpoint'), headers=accept_json)
 assert res.mimetype == 'application/json'

accept_any - */* accept header

/ accept header suitable to use as parameter in client.

accept_json - application/json accept header

application/json accept header suitable to use as parameter in
client.

accept_jsonp - application/json-p accept header

application/json-p accept header suitable to use as parameter in
client.

Markers

pytest-flask registers the following markers. See the pytest documentation
on what markers are [https://pytest.org/en/latest/mark.html] and for notes on using them [https://pytest.org/en/latest/example/markers.html#marking-whole-classes-or-modules].

pytest.mark.options - pass options to your application config

	
pytest.mark.options(**kwargs)

	The mark used to pass options to your application config.

	Parameters

	kwargs (dict) – The dictionary used to extend application config.

Example usage:

@pytest.mark.options(debug=False)
def test_app(app):
 assert not app.debug, 'Ensure the app is not in debug mode'

How to contribute

All contributions are greatly appreciated!

How to report issues

Facilitating the work of potential contributors is recommended since it
increases the likelihood of your issue being solved quickly. The few extra
steps listed below will help clarify problems you might be facing:

	Include a minimal reproducible example [https://stackoverflow.com/help/minimal-reproducible-example] when possible.

	Describe the expected behaviour and what actually happened including a full
trace-back in case of exceptions.

	Make sure to list details about your environment, such as your platform,
versions of pytest, pytest-flask and python release.

Also, it’s important to check the current open issues for similar reports
in order to avoid duplicates.

Setting up your development environment

	Fork pytest-flask to your GitHub account by clicking the Fork [https://github.com/pytest-dev/pytest-flask/fork] button.

	Clone [https://help.github.com/en/articles/fork-a-repo#step-2-create-a-local-clone-of-your-fork] the main repository (not your fork) to your local machine.

$ git clone https://github.com/pytest-dev/pytest-flask
$ cd pytest-flask

	Add your fork as a remote to push your contributions.Replace
{username} with your username.

git remote add fork https://github.com/{username}/pytest-flask

	Using Tox [https://tox.readthedocs.io/en/latest/], create a virtual environment and install pytest-flask in editable mode with development dependencies.

$ tox -e dev
$ source venv/bin/activate

	Install pre-commit hooks

$ pre-commit install

Start Coding

	Create a new branch to identify what feature you are working on.

$ git fetch origin
$ git checkout -b your-branch-name origin/master

	Make your changes

	Include tests that cover any code changes you make and run them
as described below.

	Push your changes to your fork.
create a pull request [https://help.github.com/en/articles/creating-a-pull-request] describing your changes.

$ git push --set-upstream fork your-branch-name

How to run tests

You can run the test suite for the current environment with

$ pytest

To run the full test suite for all supported python versions

$ tox

Obs. CI will run tox when you submit your pull request, so this is optional.

Checking Test Coverage

To get a complete report of code sections not being touched by the
test suite run pytest using coverage.

$ coverage run -m pytest
$ coverage html

Open htmlcov/index.html in your browser.

More about converage here [https://coverage.readthedocs.io].

Changelog

1.2.0 (2021-02-26)

	Remove deprecated :meth:live_server.url

	fixture request_ctx is now deprecated
and will be removed in the future

	JSONReponse.json removed in favour of
Werkzeug.wrappers.Response.json

1.1.0 (2020-11-08)

	Speedup live server start time. Use socket instead of server
pulling (#58) to check server availability and add new
--live-server-wait option to set the live server wait timeout.
Thanks to @jadkik [https://github.com/jadkik].

1.0.0 (2020-03-03)

Important

	live_server is now session-scoped by default. This can be changed by using the live-server_scope option in your pytest.ini (#113 [https://github.com/pytest-dev/pytest-flask/pull/113]). Thanks @havok2063 [https://github.com/havok2063] for the initial patch and @TWood67 [https://github.com/TWood67] for finishing it up.

	pytest 5.2 or later is now required.

	Python 2.7 and 3.4 are no longer supported.

0.15.1 (2020-02-03)

	Fix ImportError with Werkzeug 1.0.0rc1 (#105 [https://github.com/pytest-dev/pytest-flask/pull/105]).

0.15.0 (2019-05-13)

	Properly register the options marker (#97 [https://github.com/pytest-dev/pytest-flask/pull/97]).

0.14.0 (2018-10-15)

	New --live-server-host command-line option to set the host name used by
the live_server fixture.

Thanks @o1da [https://github.com/o1da] for the PR (#90 [https://github.com/pytest-dev/pytest-flask/pull/90]).

0.13.0 (2018-09-29)

	JSONReponse now supports comparison directly with status codes:

assert client.get('invalid-route', headers=[('Accept', 'application/json')]) == 404

Thanks @dusktreader [https://github.com/dusktreader] for the PR (#86 [https://github.com/pytest-dev/pytest-flask/pull/86]).

0.12.0 (2018-09-06)

	pytest-flask now requires pytest>=3.6 (#84 [https://github.com/pytest-dev/pytest-flask/pull/84]).

	Add new --live-server-port option to select the port the live server will use (#82 [https://github.com/pytest-dev/pytest-flask/pull/82]).
Thanks @RazerM [https://github.com/RazerM] for the PR.

	Now live_server will try to stop the server cleanly by emitting a SIGINT signal and
waiting 5 seconds for the server to shutdown. If the server is still running after 5 seconds,
it will be forcefully terminated. This behavior can be changed by passing
--no-live-server-clean-stop in the command-line (#49 [https://github.com/pytest-dev/pytest-flask/issues/49]).
Thanks @jadkik [https://github.com/jadkik] for the PR.

	Internal fixes silence pytest warnings, more visible now with pytest-3.8.0 (#84 [https://github.com/pytest-dev/pytest-flask/pull/84]).

0.11.0 (compared to 0.10.0)

	Implement deployment using Travis, following in line with many other pytest plugins.

	Allow live server to handle concurrent requests (#56 [https://github.com/pytest-dev/pytest-flask/pull/56]), thanks to
@mattwbarry [https://github.com/mattwbarry] for the PR.

	Fix broken link to pytest documentation (#50 [https://github.com/pytest-dev/pytest-flask/pull/50]), thanks to
@jineshpaloor [https://github.com/jineshpaloor] for the PR.

	Tox support (#48 [https://github.com/pytest-dev/pytest-flask/pull/48]), thanks to @steenzout [https://github.com/steenzout] for the PR.

	Add LICENSE into distribution (#43 [https://github.com/vitalk/pytest-flask/issues/43]), thanks to @danstender [https://github.com/danstender].

	Minor typography improvements in documentation.

	Add changelog to documentation.

0.10.0 (compared to 0.9.0)

	Add --start-live-server/--no-start-live-server options to prevent
live server from starting automatically (#36 [https://github.com/vitalk/pytest-flask/issues/36]), thanks to @EliRibble [https://github.com/EliRibble].

	Fix title formatting in documentation.

0.9.0 (compared to 0.8.1)

	Rename marker used to pass options to application, e.g. pytest.mark.app
is now pytest.mark.options (#35 [https://github.com/vitalk/pytest-flask/issues/35]).

	Documentation badge points to the package documentation.

	Add Travis CI configuration to ensure the tests are passed in supported
environments (#32 [https://github.com/vitalk/pytest-flask/issues/32]).

0.8.1

	Minor changes in documentation.

0.8.0

	New request_ctx fixture which contains all request relevant
information (#29 [https://github.com/vitalk/pytest-flask/issues/29]).

0.7.5

	Use pytest monkeypath fixture to teardown application config (#27 [https://github.com/vitalk/pytest-flask/issues/27]).

0.7.4

	Better test coverage, e.g. tests for available fixtures and markers.

0.7.3

	Use retina-ready badges in documentation (#21 [https://github.com/vitalk/pytest-flask/issues/21]).

0.7.2

	Use pytest monkeypatch fixture to rewrite live server name.

0.7.1

	Single-sourcing package version (#24 [https://github.com/vitalk/pytest-flask/issues/24]), as per “Python Packaging User Guide” [https://packaging.python.org/en/latest/single_source_version.html#single-sourcing-the-version].

0.7.0

	Add package documentation (#20 [https://github.com/vitalk/pytest-flask/issues/20]).

0.6.3

	Better documentation in README with reST formatting (#18 [https://github.com/vitalk/pytest-flask/issues/18]), thanks
to @greedo [https://github.com/greedo].

0.6.2

	Release the random port before starting the application live server (#17 [https://github.com/vitalk/pytest-flask/issues/17]),
thanks to @davehunt [https://github.com/davehunt].

0.6.1

	Bind live server to a random port instead of 5000 or whatever is passed on
the command line, so it’s possible to execute tests in parallel via
pytest-dev/pytest-xdist (#15 [https://github.com/vitalk/pytest-flask/issues/15]). Thanks to @davehunt [https://github.com/davehunt].

	Remove --liveserver-port option.

0.6.0

	Fix typo in option help for --liveserver-port, thanks to @svenstaro [https://github.com/svenstaro].

0.5.0

	Add live_server fixture uses to run application in the background (#11 [https://github.com/vitalk/pytest-flask/issues/11]),
thanks to @svenstaro [https://github.com/svenstaro].

0.4.0

	Add client_class fixture for class-based tests.

0.3.4

	Include package requirements into distribution (#8 [https://github.com/vitalk/pytest-flask/issues/8]).

0.3.3

	Explicitly pin package dependencies and their versions.

0.3.2

	Use codecs module to open files to prevent possible errors on open
files which contains non-ascii characters.

0.3.1

First release on PyPI.

Index

 P
 | R

P

 	
 	pytest.mark.options() (built-in function)

R

 	
 	
 RFC

 	RFC 2616#section-12

 nav.xhtml

 Table of Contents

 		
 Welcome to pytest-flask’s documentation!

 		
 Getting started

 		
 Step 1. Install

 		
 Step 2. Configure

 		
 Step 3. Run your test suite

 		
 What’s next?

 		
 Feature reference

 		
 Fixtures

 		
 client - application test client

 		
 client_class - application test client for class-based tests

 		
 config - application config

 		
 live_server - application live server

 		
 request_ctx - request context (Deprecated)

 		
 HTTP Request

 		
 Content negotiation

 		
 Markers

 		
 pytest.mark.options - pass options to your application config

 		
 How to contribute

 		
 How to report issues

 		
 Setting up your development environment

 		
 Start Coding

 		
 How to run tests

 		
 Checking Test Coverage

 		
 Changelog

 		
 1.2.0 (2021-02-26)

 		
 1.1.0 (2020-11-08)

 		
 1.0.0 (2020-03-03)

 		
 0.15.1 (2020-02-03)

 		
 0.15.0 (2019-05-13)

 		
 0.14.0 (2018-10-15)

 		
 0.13.0 (2018-09-29)

 		
 0.12.0 (2018-09-06)

 		
 0.11.0 (compared to 0.10.0)

 		
 0.10.0 (compared to 0.9.0)

 		
 0.9.0 (compared to 0.8.1)

 		
 0.8.1

 		
 0.8.0

 		
 0.7.5

 		
 0.7.4

 		
 0.7.3

 		
 0.7.2

 		
 0.7.1

 		
 0.7.0

 		
 0.6.3

 		
 0.6.2

 		
 0.6.1

 		
 0.6.0

 		
 0.5.0

 		
 0.4.0

 		
 0.3.4

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

