

pytest-ethereum

Pytest library for ethereum projects.

Contents

	Overview
	Deployer

	Linker

	Log

	Release Notes
	v0.1.0-alpha.1

Indices and tables

	Index

	Module Index

Warning

Pytest-Ethereum is still under active development, and yet to reach a stable release. It should not be used in production yet.

Overview

This library is designed to make deploying and testing smart contracts simple, using Py-EthPM and pytest.

Deployer

This library exposes a Deployer fixture to help create contract instances for any contract types available in the manifest that generated the Deployer instance. To create a Deployer instance, you must provide a pathlib.Path object pointing towards a valid manifest according to the EthPM Specification [http://ethpm-spec.readthedocs.io].

To deploy any of the available contract types onto the default w3 instance, simply call deploy on the deployer and a newly created Package instance (which contains the newly created contract instance in its deployments) will be returned, along with the address of the newly deployed contract type.

from pathlib import Path
from ethpm import Package
from eth_utils import is_address

@pytest.fixture
def owned_deployer(deployer):
 owned_manifest_path = Path('to/owned/manifest.json')
 return deployer(owned_manifest_path)

def test_owned_contract(owned_deployer)
 owned_package = owned_deployer.deploy("owned")
 assert isinstance(owned_package, Package)
 owned_contract_instance = owned_package.deployments.get_deployment_instance("Owned")
 assert is_address(owned_contract_instance.address)

	
Deployer.deploy(contract_type)

	Returns a Package instance, containing a freshly deployed instance of the given contract_type (if sufficient data is present in the manifest). To add transaction kwargs (i.e. “from”), pass them in as a dict to the transaction keyword.

deploy("Contract", arg1, transaction={"from": web3.eth.accounts[1]})

	
Deployer.register_strategy(contract_type, strategy)

	If a contract_type requires linking, then you must register a valid strategy constructed with the Linker before you can deploy an instance of the contract_type.

Linker

If a contract factory requires linking, you must register a “strategy” for a particular contract factory with the deployer. It is up to you to design an appropriate strategy for a contract factory.

Three linker functions are made available:

	
deploy(contract_name, *args=None)

	To deploy an instance of contract_name. If the contract constructor requires arguments, they must also be passed in.

	
link(contract_name, linked_type)

	Links a contract_name to a linked_type. The linked_type must have already been deployed.

	
run_python(callback_fn)

	Calls any user-defined callback_fn on the contracts available in the active Package. This can be used to call specific functions on a contract if they are part of the setup. Returns the original, unmodified Package that was passed in.

For example, the Escrow contract factory requires linking to an instance of the SafeSendLib before an Escrow contract instance can be deployed. This is how you would set up a strategy for Escrow

@pytest.fixture
def escrow_deployer(deployer, manifest_dir):
 escrow_manifest_path = manifest_dir / "escrow_manifest.json"
 return deployer(escrow_manifest_path)

@pytest.fixture
def escrow_contract_instance(escrow_deployer, w3):
 escrow_strategy = linker(
 deploy("SafeSendLib"),
 link("Escrow", "SafeSendLib"),
 deploy("Escrow", w3.eth.accounts[0]),
)
 escrow_deployer.register_strategy("Escrow", escrow_strategy)
 linked_escrow_package, _ = escrow_deployer.deploy("Escrow")
 return linked_escrow_package.deployments.get_deployment("Escrow")

Log

The Log class is available to help with testing for contract events, and the contents of the emitted logs.

tests/fixtures/ping.vy

Ping: event({first: indexed(bytes32), second: bytes32})

@public
def __init__():
 pass

@public
def ping(_first: bytes32, _second: bytes32):
 log.Ping(_first, _second)

SETUP
ping_package = deployer.deploy("ping")
ping_instance = ping_package.deployments.get_contract_instance("ping")
tx_hash = ping_instance.functions.ping(b"one", b"two")
receipt = w3.eth.waitForTransactionReceipt(tx_hash)

Release Notes

v0.1.0-alpha.1

	Launched repository, claimed names for pip, RTD, github, etc

Index

 D
 | L
 | R

D

 	
 	deploy()

 	(Deployer method)

L

 	
 	link()

R

 	
 	register_strategy() (Deployer method)

 	
 	run_python()

 nav.xhtml

 Table of Contents

 		
 pytest-ethereum

 		
 Overview

 		
 Deployer

 		
 Linker

 		
 Log

 		
 Release Notes

 		
 v0.1.0-alpha.1

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

