

    
      
          
            
  
pytc

Open source python software for extracting thermodynamic information from
Isothermal Titration Calorimetry experiments.


	We welcome bug reports, patches, and new thermodynamic models. See the
contributing page for how to get involved.


	If you find pytc useful, please star and/or fork the project on
github [https://github.com/harmslab/pytc].


	Citation: Duvvuri H, Wheeler LC, Harms MJ. (2018) “pytc: Open-Source Python
Software for Global Analyses of Isothermal Titration Calorimetry Data” Biochemistry.
doi://10.1021/acs.biochem.7b01264 [https://pubs.acs.org/doi/abs/10.1021/acs.biochem.7b01264]





Download

Windows GUI [https://github.com/harmslab/pytc-gui/releases/download/1.2.2/pytc-gui_v1.2.2_setup.exe] | Mac GUI [https://github.com/harmslab/pytc-gui/releases/download/1.2.2/pytc-gui_v1.2.2.dmg] | Linux GUI [https://pytc-gui.readthedocs.io/en/latest/installation.html] | API | Source code [https://github.com/harmslab/pytc]




Philosophy



	Open source and cross platform. The full source code should be available.
The program should not require proprietary software to run.


	Rigorous. Program should use best practices and current algorithms for
performing fits and assessing fit quality.


	Ease of use. Fitting basic models should be easy.  Implementing completely
new thermodynamic models should be straightforward.


	Accessible for users and programmers.  It should have both a graphical
user interface and a well-designed API.










Features



	Simple, cross-platform graphical user interface.


	Clean, pythonic API


	New models can be defined using a few lines of python code


	Easy integration with jupyter [https://jupyter.org/] notebooks for
writing custom fitting scripts










Documentation



	Installation


	Fitting models using the GUI [https://pytc-gui.readthedocs.io/en/latest/how_to_img.html]


	Fitting models using the API


	
	Reference:

	
	Thermodynamic models for individual experiments


	Global fits


	Fit strategies


	Fit statistics


	Defining new models


	Contributing to the project
















Warning

pytc will fit all sorts of complicated models to your data. It is up to
you to make sure the fit is justified by the data.  See the
Fitting and statistics section to see what pytc
reports to help in this decision making.






GUI Demo

An animated gif showing the GUI in action.

[image: _images/pytc-gui-animation.gif]



API Demo

Fit a single-site binding model to a \(Ca^{2+}/EDTA\) binding experiment.

import pytc

# Load in integrated heats from an ITC experiment
e = pytc.ITCExperiment("demos/ca-edta/tris-01.DH",
                       pytc.indiv_models.SingleSite)

# Create the global fitter, add the experiment
g = pytc.GlobalFit()
g.add_experiment(e)

# Do the fit
g.fit()

# Print the results out
g.plot()
print(g.fit_as_csv)








Implementation


Our implementation is built on python3 [https://www.python.org/] extended with  numpy [http://www.numpy.org/],
scipy [https://www.scipy.org/], matplotlib [http://matplotlib.org/] and
emcee [http://dan.iel.fm/emcee/current/].  The GUI is built on
pytq5 [http://pyqt.sourceforge.net/Docs/PyQt5/installation.html].





Contents:


	pytc package
	Subpackages

	Submodules

	pytc.fit_param module

	pytc.global_fit module

	Module contents












Indices and tables


	Index


	Module Index


	Search Page










          

      

      

    

  

    
      
          
            
  
pytc package


Subpackages



	pytc.experiments package
	Submodules

	pytc.experiments.base module

	Module contents





	pytc.global_connectors package
	Submodules

	pytc.global_connectors.base module

	pytc.global_connectors.num_protons module

	pytc.global_connectors.vant_hoff module

	pytc.global_connectors.vant_hoff_extended module

	Module contents





	pytc.indiv_models package
	Submodules

	pytc.indiv_models.base module

	pytc.indiv_models.binding_polynomial module

	pytc.indiv_models.blank module

	pytc.indiv_models.single_site module

	pytc.indiv_models.single_site_competitor module

	Module contents





	pytc.util package
	Submodules

	pytc.util.util module

	Module contents












Submodules




pytc.fit_param module




pytc.global_fit module




Module contents







          

      

      

    

  

    
      
          
            
  
pytc.experiments package


Submodules




pytc.experiments.base module




Module contents







          

      

      

    

  

    
      
          
            
  
pytc.global_connectors package


Submodules




pytc.global_connectors.base module




pytc.global_connectors.num_protons module




pytc.global_connectors.vant_hoff module




pytc.global_connectors.vant_hoff_extended module




Module contents







          

      

      

    

  

    
      
          
            
  
pytc.indiv_models package


Submodules




pytc.indiv_models.base module




pytc.indiv_models.binding_polynomial module




pytc.indiv_models.blank module




pytc.indiv_models.single_site module




pytc.indiv_models.single_site_competitor module




Module contents







          

      

      

    

  

    
      
          
            
  
pytc.util package


Submodules




pytc.util.util module




Module contents







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Fitting with the API


Workflow


	Integrate raw power curves using Origin or NITPIC [http://biophysics.swmed.edu/MBR/software.html],
creating files containing heats per shot.  A collection of demo heat files
are available on github [https://github.com/harmslab/pytc-demos].


	Load heat files.


	Choose model describing experiment.


	Choose the fitter [https://pytc.readthedocs.io/en/latest/fitters.html].


	Link individual fit parameters to global parameters [https://pytc.readthedocs.io/en/latest/global_models.html].


	Fit the model to the data.


	Evaluate the fit statistics [https://pytc.readthedocs.io/en/latest/statistics.html].


	Export the results, which will save a csv file and pdf files showing the fit and corner plot.







API demos

We have posted a collection of Jupyter notebooks that demonstrate working with
the API: https://github.com/harmslab/pytc-demos.  The topics covered are
listed below.


Fitter choice


	Using maximum likelihood to fit a model. 00_fit-single-site.ipynb [https://github.com/harmslab/pytc-demos/blob/master/00_fit-single-site.ipynb].


	Using a Bayesian sampler. 01_single-site-Bayesian.ipynb [https://github.com/harmslab/pytc-demos/blob/master/01_single-site-Bayesian.ipynb].


	Comparision of maximum likelihood, bootstrap, or Bayesian methods. 04_ml-v-bootstrap-v-bayesian.ipynb [https://github.com/harmslab/pytc-demos/blob/master/03_fit-competitor-model.ipynb].







Model choice


	Fit a single-site model. 00_fit-single-site.ipynb [https://github.com/harmslab/pytc-demos/blob/master/00_fit-single-site.ipynb].


	Fit a binding polynomial. 02_fit-binding-polynomial.ipynb [https://github.com/harmslab/pytc-demos/blob/master/02_fit-binding-polynomial.ipynb].


	Fit a competitor binding model. 03_fit-competitor-model.ipynb [https://github.com/harmslab/pytc-demos/blob/master/03_fit-competitor-model.ipynb].







Fitting options


	Change fit guesses or fix parameters. 05_change-param-guess-fix.ipynb [https://github.com/harmslab/pytc-demos/blob/master/05_change-param-guess-fix.ipynb].


	Choose the best model using AIC. 11_use-aic-choose-model.ipynb [https://github.com/harmslab/pytc-demos/blob/master/11_use-aic-choose-model.ipynb].







Global fits


	Global fit of a single site model to a blank and experimental titration. 07_simultaneous-fit-blank-experiment.ipynb [https://github.com/harmslab/pytc-demos/blob/master/07_simultaneous-fit-blank-experiment.ipynb].


	Global fit of a single site model to a blank and three replicate experimental titrations 06_global-fit-three-replicates-and-blank.ipynb [https://github.com/harmslab/pytc-demos/blob/master/06_global-fit-three-replicates-and-blank.ipynb].


	Global connector: fit the same binding reaction measured in different buffers to extract ionization enthalpy and num protons 08_global-fit-with-NumProtons-connector.ipynb [https://github.com/harmslab/pytc-demos/blob/master/08_global-fit-with-NumProtons-connector.ipynb].


	Global connector: fit the same binding reaction measured at different temperatures to extract van’t Hoff enthalpy 09_global-fit-for-vant-hoff-enthalpy.ipynb [https://github.com/harmslab/pytc-demos/blob/master/09_global-fit-for-vant-hoff-enthalpy.ipynb].


	Global connector: implement a custom global connector 10_implement-custom-global-connector.ipynb [https://github.com/harmslab/pytc-demos/blob/master/10_implement-custom-global-connector.ipynb].












          

      

      

    

  

    
      
          
            
  
Contributing


I found a bug!

Please let us know and we’ll fix it.  To ensure we can understand the problem,
please follow this quick guide [https://testlio.com/blog/the-ideal-bug-report/]
to writing useful bug reports.  Go to https://github.com/harmslab/pytc/issues
and create a new issue. If you want to take a crack at fixing the bug yourself,
see the next section.




I fixed a bug/implemented a new feature.

Great! We love new contributions! Please follow
this workflow [https://github.com/Zsailer/guide-to-working-as-team-on-github]
to contribute code to the project.  This workflow alllows you to get credit for
your work, while allowing us to maintain a clean codebase.  After you make a pull
request, we’ll review it and start a conversation with you about incorporating
the change.

Some other important notes:


	Code should follow the PEP8 Style Guide [https://www.python.org/dev/peps/pep-0008/].


	Docstrings should follow the numpy style guide [https://numpydoc.readthedocs.io/en/latest/format.html].







I implemented a new thermodynamic model.

Wonderful!  First, make sure you’re following the coding guidelines described
above for the code itself.  Second, write up a description of your model.  All
pytc documentation is written in
restructed text [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].
The repository contains template .rst files that can be modified for new models


	pytc/docs/source/indiv_models/template.rst


	pytc/docs/source/global_connectors/template.rst




Create a new .rst file describing your model from one of these templates.

Once you have implemented the code and written up the model description, create
a pull request containing both changes and we’ll work on incorporating the
model.







          

      

      

    

  

    
      
          
            
  
Fitting Strategies

pytc implements a variety of fitting strategies:


	BayesianFitter uses Markov-Chain Monte Carlo to estimate posterior
probability distributions for all fit parameters. (Recommended)


	BootstrapFitter samples from uncertainty in each heat and then fits the model
to pseudoreplicates using unweighted least-squares regression.


	MLFitter fits the model to the data using least-squares regression
weighted by the uncertainty in each heat. (Default)




These are implemented as subclasses of the
pytc.fitters.Fitter [https://github.com/harmslab/pytc/blob/master/pytc/fitters/base.py].
base class.


Bayesian

pytc.fitters.BayesianFitter [https://github.com/harmslab/pytc/blob/master/pytc/fitters/bayesian.py].

Uses Markov-Chain Monte Carlo (MCMC) to sample from the posterior probability
distributions of fit parameters. pytc uses the package emcee [http://dan.iel.fm/emcee/current/] to do the
sampling.  The log likelihood function is:


\[ln(L) = -0.5 \sum_{i=0}^{i < N} \Big [ \frac{(q_{obs,i} - q_{calc,i}(\vec{\theta}))^{2}}{\sigma_{i}^{2}} + ln(\sigma_{i}^{2}) \Big ]\]

where \(q_{obs,i}\) is an observed heat for a shot, \(q_{calc,i}\) is
the heat calculated for that shot by the model, and \(\sigma_{i}\) is the
experimental uncertainty on that heat.

The prior distribution is uniform within the specified parameter bounds.  If
any parameter is outside of its bounds, the prior is \(-\infty\).
Otherwise, the prior is 0.0 (uniform).

The posterior probability is given by the sum of the log prior and log
likelihood functions.


\[ln(P) = ln(L) + ln(prior)\]


Parameter estimates

Parameter estimates are the means of posterior probability distributions.




Parameter uncertainty

Parameter uncertainties are estimated by numerically integrating the posterior
probability distributions.




Options


	num_walkers: number of MCMC walkers


	initial_walker_spread: how much to spread out the inital walkers


	ml_guess: whether or not to start the sampler from the ML guess


	num_steps: number of steps each walker should take


	burn_in: fraction of initial samples to discard from the sampler


	num_threads: number of threads to use (not yet implemented)









Bootstrap

pytc.fitters.BootstrapFitter [https://github.com/harmslab/pytc/blob/master/pytc/fitters/bootstrap.py].

Samples from experimental uncertainty in each heat and then peforms unweighted
least-squares regression on each pseudoreplicate using scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.optimize.least_squares.html].
The residuals function is:


\[\vec{r} = \vec{q}_{obs} - \vec{q}_{calc}(\vec{\theta})\]

where \(\vec{q}_{obs}\) is a vector of the observed heats and
\(\vec{q}_{calc}(\vec{\theta})\) is a vector of heats observed with fit
paramters \(\vec{\theta}\).

This uses the robust Trust Region Reflective [https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/]
method for the nonlinear regression.


Parameter estimates

Parameter estimates are the means of bootstrap pseudoreplicate distributions.




Parameter uncertainty

Parameter uncertainties are estimated by numerically integrating the bootstrap
pseudoreplicate distributions.




Options


	num_bootstrap: number of bootstrap replicates


	perturb_size: how much to perturb each heat for random sampling


	exp_err: use experimental estimates of heat uncertainty.  (overrides
perturb_size.


	verbose: how verbose to be during the fit









Least-squares regression

pytc.fitters.MLFitter [https://github.com/harmslab/pytc/blob/master/pytc/fitters/ml.py].

Weighted least-squares regression using scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.optimize.least_squares.html].  The
residuals function is:


\[\vec{r} = \frac{\vec{q}_{obs} - \vec{q}_{calc}(\vec{\theta})}{\vec{\sigma}_{obs}}\]

where \(\vec{q}_{obs}\) is a vector of the observed heats,
\(\vec{q}_{calc}(\vec{\theta})\) is a vector of heats observed with fit
paramters \(\vec{\theta}\), and \(\vec{\sigma}_{obs}\) are the uncertainties
on each fit.

This uses the robust Trust Region Reflective [https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/]
method for the nonlinear regression.


Parameter estimates

The parameter estimates are the maximum-likelihood parameters returned by
scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.optimize.least_squares.html].




Parameter uncertainty

We first approximate the covariance matrix \(\Sigma\) from the Jacobian
matrix \(J\) estimated by scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.optimize.least_squares.html]:


\[\Sigma \approx [2(J^{T} \cdot J)]^{-1}\]

We can then determine the standard deviation on the parameter estimates
\(\sigma\) by taking the square-root of the diagonal of \(\Sigma\):


\[\sigma = \sqrt(diag(\Sigma))\]

Ninety-five percent confidence intervals are estimated using the Z-score assuming
a normal parameter distribution with the mean and standard deviations determined
above.


Warning

Going from \(J\) to \(\Sigma\) is an approximation.
This is susceptible to numerical problems and may not always be reliable.
Use common sense on your fit errors or, better yet, do Bayesian integration!











          

      

      

    

  

    
      
          
            
  
Global Fitting


Simple global parameters

The first (and simplest) sort of global fit is to declare that parameters
from separate experiments should use the same, shared, fitting parameter.  The
following code takes two experimental replicates and fits them to a single
\(K\) and \(\Delta H\).  The code that actually does the linking is
highlighted with ***

import pytc

# Create fitter
g = pytc.GlobalFit()

# Load experiments
a = pytc.ITCExperiment("demos/ca-edta/hepes-01.DH",pytc.indiv_models.SingleSite,shot_start=2)
g.add_experiment(a)

b = pytc.ITCExperiment("demos/ca-edta/hepes-02.DH",pytc.indiv_models.SingleSite,shot_start=2)
g.add_experiment(b)

# **********************************
# Link global fitting parameters
g.link_to_global(a,"K","global_K")
g.link_to_global(b,"K","global_K")

g.link_to_global(a,"dH","global_dH")
g.link_to_global(b,"dH","global_dH")
# **********************************

# Fit and show results
g.fit()
print(g.fit_as_csv)





The new global parameters are simply assigned a name (global_K and
global_dH) that are individually fit.  The fitter takes care of the
rest. The output of this fit will look something like the following.  The
global parameters appear as global_K and global_dH.


type,name,dh_file,value,uncertainty,fixed,guess,lower_bound,upper_bound

global,global_K,NA,3.84168e+07,1.40582e-06,float,1.00000e+06,-inf,inf

global,global_dH,NA,-4.64104e+03,7.96280e-03,float,-4.00000e+03,-inf,inf

…






Global connectors

pytc also defines global connectors that link titrations to one
another.  For example, one might perform the same binding experiment at different
temperatures and use that information to perform a Van ‘t Hoff analysis.


Implemented connectors


	Proton-linked


	Van ‘t Hoff


	Extended Van ‘t Hoff







Example 1: van ‘t Hoff fit

The following code takes two experiments, done at \(5\ ^{\circ}C\) and
\(10\ ^{\circ}C\) and then uses them to extract the van’t Hoff enthalpy.
(In practice, this would require more than two temperatures, but it illustrates
the approach).  The code that actually does the linking is highlighted with
***

import pytc
from pytc import global_connectors

# Create fitter
g = pytc.GlobalFit()

# Load experiments
t5 = pytc.ITCExperiment("temp-dependence/5C.DH",
                        pytc.indiv_models.SingleSite,
                        shot_start=1)
g.add_experiment(t5)

t10 = pytc.ITCExperiment("temp-dependence/10C.DH",
                         pytc.indiv_models.SingleSite,
                         shot_start=1)
g.add_experiment(t10)

# **********************************
# Create a van't hoff GlobalConnector, assigning the prefix "vh" to each parameter
vh_conn = pytc.global_connectors.VantHoff("vh")

# Link 5 C experiment into connector
g.link_to_global(t5,"dH",vh_conn.dH)
g.link_to_global(t5,"K",vh_conn.K)

# Link 10 C experiment into connector
g.link_to_global(t10,"dH",vh_conn.dH)
g.link_to_global(t10,"K",vh_conn.K)
# **********************************

# Fit and show results
g.fit()
print(g.fit_as_csv)





The new global parameters are assigned the name “vh_K_ref” and
“vh_dH_vanthoff”.  The output of this fit will look something like the following.


type,name,exp_file,value,stdev,bot95,top95,fixed,guess,lower_bound,upper_bound

global,vh_K_ref,NA,9.06284e+03,2.66839e+02,8.53780e+03,9.64146e+03,False,1.00000e+00,-inf,inf

global,vh_dH_vanthoff,NA,-6.23127e+03,1.15980e+02,-6.46163e+03,-5.96134e+03,False,0.00000e+00,-inf,inf

…



Note the similarity to the simple global fit.  The main difference is that we have
defined a connector (vh_conn) that we link variables to as opposed to a
name: for example, vh_conn.K rather than "K_global".




Example 2:

The following code takes two experiments, one in Tris and another in Imidazole,
and uses them to extract the buffer-independent binding enthalpy and number of
protons released (or taken up) upon binding.  The code that actually does the
linking is highlighted with ***

import pytc
from pytc import global_connectors

# define buffer ionization enthalpies.
# goldberg et al (2002) Journal of Physical and Chemical Reference Data 31 231,  doi: 10.1063/1.1416902
TRIS_IONIZATION_DH = 47.45/4.184*1000
IMID_IONIZATION_DH = 36.64/4.184*1000

# Create fitter
g = pytc.GlobalFit()

# Load in an experiment done in tris buffer
tris = pytc.ITCExperiment("demos/ca-edta/tris-01.DH",
                          pytc.indiv_models.SingleSite,
                          shot_start=2)
tris.ionization_enthalpy = TRIS_IONIZATION_DH
g.add_experiment(tris)

# Imidazole buffer experiment
imid = pytc.ITCExperiment("demos/ca-edta/imid-01.DH",
                          pytc.indiv_models.SingleSite,
                          shot_start=2)
imid.ionization_enthalpy = IMID_IONIZATION_DH
g.add_experiment(imid)

# **********************************
# Create a NumProtons GlobalConnector, assigning the prefix "np" to each parameter
num_protons = global_connectors.NumProtons("np")
g.link_to_global(tris,"dH",num_protons.dH)
g.link_to_global(imid,"dH",num_protons.dH)
# **********************************

# Fit and show results
g.fit()
print(g.fit_as_csv)





This will spit out:


type,name,dh_file,value,uncertainty,fixed,guess,lower_bound,upper_bound

global,np_num_H,NA,-9.79065e-01,1.15256e+00,float,1.00000e-01,-inf,inf

global,np_dH_intrinsic,NA,-4.63537e+02,1.08227e-02,float,0.00000e+00,-inf,inf

…



The major difference between this code and the van’t Hoff analysis is the
line in which we assign the ionization enthalpy for each experiment (for example,
tris.ionization_enthalpy = TRIS_IONIZATION_DH). This provides the
information required by the NumProtons class do perform the fit.  If you
are using a different global connector, you could set different properties in
this way (pH, competitor concentration, etc.). Note: experiment.temperature
is always defined in ITC output, so it should never have to be set manually.









          

      

      

    

  

    
      
          
            
  
Fitting Models to Individual Experiments


Basic model pipeline

Under the hood, models of individual experiments do the following:


	Guess model parameters.


	Calculate the concentrations of all molecular species using guessed binding
constants (as well as the titration shot sizes and initial concentrations
in the cell and syringe).


	Calculate the heat change per shot using the guess reaction enthalpies and
species concentrations from (2).


	Compare the calculated and measured heat changes at each shot.


	Iterate through steps 2-4 using nonlinear regression to find parameter estimates.







Implemented Models


	Blank


	Single site


	Competitive ligand binding


	Binding polynomial


	Assembly autoinhibition







Example Fit

import pytc

# Create fitter
g = pytc.GlobalFit()

# Load experiments
a = pytc.ITCExperiment("demos/ca-edta/hepes-01.DH",pytc.indiv_models.SingleSite,shot_start=2)
g.add_experiment(a)

# Fit and show results
g.fit()
print(g.fit_as_csv)








Differences from other modeling approaches

pytc is implemented with the philosophy that one should model all processes
in the ITC experiment and include them in the fit.  These processes include not only
the binding reaction of interest, but also systematic errors in sample preparation
and heat arising from dilution.  The latter effects are captured with nuisance
parameters added to standard thermodynamic models of binding:


\[Q_{i,obs} = Q_{i}\alpha + D_{slope}[T]_{total} + D_{interecept} + \varepsilon\]

where \(Q_{i,obs}\) is the heat at injection \(i\) and \(Q_{i}\) is the
heat at injection \(i\) arising from the reaction of interest.  \(Q_{i,obs}\)
differs from \(Q_{i}\) because of systematic concentration errors (\(\alpha\))
and the heat arising from dilution (\(D_{slope}\) and \(D_{intercept}\)).
\(\varepsilon\) is the fit residual.

\(\alpha\) scales all heats, accounting for systematic errors in the relative
protein or ligand concentration. This could also be viewed as an apparent
stoichiometry but, following Freire et al. [https://www.sciencedirect.com/science/article/pii/S0076687908042055],
we interpret this as “the effective amount of active protein relative to the nominal
value entered as protein concentration.”  This term is referred to as the
fx_competent (fraction competent) in pytc output. Practically, this
value should be near 1.0. Large deviations from 1.0 may indicate that the model
used does not describe the stoichiometry of the protein or that there is a
problem with the experiment.

The other nuisance parameters, \(D_{slope}\) and \(D_{intercept}\), model
the heat of dilution as a linear function of titrant concentration.  This is
equivalent to fitting a straight line through a blank titration and then subtracting
that line from an experimental titration.  Rather than subtracting a blank, pytc
allows a user to incorporate a blank titration into the global fit: the user
fits the same \(D_{slope}\) and \(D_{intercept}\) across both an
experimental and blank titration, thus explicitly modeling the heat of dilution.

If a one sets the values of \(\alpha\) to 1.0, \(D_{slope}\) to 0.0, and
\(D_{intercept}\) to 0.0, and then does not allow them to vary during the
fit, one recovers only the thermodynamic model—as is done in software such as
Origin.







          

      

      

    

  

    
      
          
            
  
Installation


	These instructions are for installing the API.  If you want to install the graphical
user interface, please follow
these instructions [https://pytc-gui.readthedocs.io/en/latest/installation.html].


	If you do not already have a Python scientific computing environment set up, we recommend
you follow
these steps [https://python-for-scientists.readthedocs.io/en/latest/_pages/install_python.html]
to set it up.





Mac & Linux


	Open a terminal


	Type the following command:


pip3 install pytc-fitter















Windows


	Open the program Anaconda prompt


	In the prompt, type:


python -m pip install pytc-fitter















Installation from source (for developers)

git clone https://github.com/harmslab/pytc.git
cd pytc
python3 setup.py develop








Dependencies (should be installed automatically)



	python3 [https://www.python.org/downloads/release/python-3]


	numpy [http://www.numpy.org/]


	scipy [https://www.scipy.org/]


	matplotlib [http://matplotlib.org/]


	emcee [http://dan.iel.fm/emcee/current/]


	jupyter [https://jupyter.org/] (useful for fit scripting)













          

      

      

    

  

    
      
          
            
  
Statistics


Warning

pytc will fit all sorts of complicated models to your data. It is up to
you to make sure the fit is justified by the data.  You should always
follow best practices for selecting the your model (choosing the simplest
model, inspecting residuals, knowing the assumptions made, etc.)




Fit Results

After you have peformed the fit, there are a variety of ways to access and
assess your results.  These are available for all fit strategies.


Parameter estimates as csv

g.fit_as_csv





where g is a GlobalFit [https://github.com/harmsm/pytc/blob/master/pytc/global_fit.py]
instance. This will print something like:

# Fit successful? True
# 2017-05-13 09:27:25.177062
# Fit type: maximum likelihood
# AIC: -96.23759423779696
# AICc: -93.8028116291013
# BIC: -84.30368995841131
# F: 292708.2585218862
# Rsq: 0.9999672039142115
# Rsq_adjusted: 0.9999637876552752
# ln(L): 54.11879711889848
# num_obs: 54
# num_param: 5
# p: 1.1102230246251565e-16
type,name,exp_file,value,stdev,bot95,top95,fixed,guess,lower_bound,upper_bound
local,dilution_heat,ca-edta/tris-01.DH,1.15715e+03,4.65377e+02,2.21447e+02,2.09285e+03,False,0.00000e+00,-inf,inf
local,K,ca-edta/tris-01.DH,4.05476e+07,4.31258e+05,3.96805e+07,4.14147e+07,False,1.00000e+06,-inf,inf
local,dilution_intercept,ca-edta/tris-01.DH,-6.12671e-01,6.71064e-02,-7.47597e-01,-4.77744e-01,False,0.00000e+00,-inf,inf
local,dH,ca-edta/tris-01.DH,-1.15669e+04,1.00638e+01,-1.15872e+04,-1.15467e+04,False,-4.00000e+03,-inf,inf
local,fx_competent,ca-edta/tris-01.DH,9.73948e-01,8.86443e-05,9.73770e-01,9.74126e-01,False,1.00000e+00,-inf,inf





Lines starting with “#” are statistics and fit meta data.  The statistical output
is described in the statistics section below.  Rendered as a table, the comma-
separated output has the following form:
















	type

	name

	exp_file

	value

	stdev

	bot95

	top95

	fixed

	guess

	lower_bound

	upper_bound





	local

	dilution_heat

	ca-edta/tris-01.DH

	1.15715e+03

	4.65377e+02

	2.21447e+02

	2.09285e+03

	False

	0.00000e+00

	-inf

	inf



	local

	K

	ca-edta/tris-01.DH

	4.05476e+07

	4.31258e+05

	3.96805e+07

	4.14147e+07

	False

	1.00000e+06

	-inf

	inf



	local

	dilution_intercept

	ca-edta/tris-01.DH

	-6.12671e-01

	6.71064e-02

	-7.47597e-01

	-4.77744e-01

	False

	0.00000e+00

	-inf

	inf



	local

	dH

	ca-edta/tris-01.DH

	-1.15669e+04

	1.00638e+01

	-1.15872e+04

	-1.15467e+04

	False

	-4.00000e+03

	-inf

	inf



	local

	fx_competent

	ca-edta/tris-01.DH

	9.73948e-01

	8.86443e-05

	9.73770e-01

	9.74126e-01

	False

	1.00000e+00

	-inf

	inf







	type: “local” or “global”


	name: parameter name


	exp_file: name of experiment file


	value: estimate of the parameter


	stdev: standard deviation of parameter estimate


	bot95/top95: 95% confidence intervals of parameter estimate


	fixed: “True” or “False” depending on whether parameter was held to fixed value


	guess: parameter guess


	lower_bound/upper_bound: bounds set on the fit parameter during the fit







Fit and residuals plot

g.plot()





where g is a GlobalFit [https://github.com/harmsm/pytc/blob/master/pytc/global_fit.py]
instance. This will create something like:

[image: _images/itc-fit.png]
The fit residuals should be randomly distributed around zero, without systematic
deviations above or below.  Non-random residuals can indicate that the model
does not adequately describe the data, despite potentially having a small
residual standard error.




Corner plots

One powerful way to assess the fit results is through a corner plot, which
shows the confidence on each fit parameter, as well as covariation between
each parameter.  The quality of the histograms is also an indication of whether
you have adequate sampling when using the bootstrap or bayesian methods.

g.corner_plot()





where g is a GlobalFit [https://github.com/harmsm/pytc/blob/master/pytc/global_fit.py]
instance. This will create something like:

[image: _images/corner-plot.png]
The diagonal shows a histogram for that parameter.  The bottom-left cells show
a 2D histogram of covariation between those parameters.

g.plot_corner uses keywords to find and filter out nuisance parameters
like fx_competent or dilution_heat. To see these (or modify the
filtering) change the filter_params list passed to the function.




Statistics

g.fit_stats





where g is a GlobalFit [https://github.com/harmsm/pytc/blob/master/pytc/global_fit.py]
instance. This will return a dictionary of fit statistics with the following keys.


	AIC: Akaike Information Criterion


	AICc: Akaike Information Criterion corrected for finite sample size


	BIC: Bayesian Information Criterion


	df: degrees of freedom


	F: The F test statistic


	ln(L): log likelihood of the model


	num_obs: number of data points


	num_param: number of floating parameters fit


	Rsq: \(R^{2}\)


	Rsq_adjusted: \(R^{2}_{adjusted}\)


	Fit type: the type of fit (maxium likelihood, bootstrap, or bayesian)


	Keys like ”  bayesian: num_steps” provide information specific to a given
fit type.







Model comparison

Models with more parameters will generally fit the data better than models with
fewer parameters.  These extra parameters may or may not be meaningful.  (You
could, for example, fit \(N\) data points with \(N\) parameters.  This
would give a perfect fit – and very little insight into the system).  A
standard approach in model fittng is to choose the simplest model consistent
with the data.  A variety of statistics can be used to balance fitting the data
well against the addition of many parameters.  pytc returns four test
statistics that penalize models based on the number of free parameters: Akaike
Information, corrected Akaike Information, Bayesian Information, and the
F-statistic.

The pytc.util.compare_models function will conveniently compare a
collection of models, weighting them by AIC, AICc, and BIC.









          

      

      

    

  

    
      
          
            
  
Writing New ITC Models

There are two types of models in pytc: individual models and global connectors.
Individual models describe a single ITC experiment under a single set of
conditions.  Global connectors describe relationships between individual ITC
experiments. Individual models and global connectors are both appended to
instances of pytc.GlobalFit, which then simultaneously fits parameters
from all models.  See the individual models and
global connectors pages for more details.

The following sections describe how to write new individual models and global
connectors.


Individual models

These models describe a single ITC experiment.  They are passed to
pytc.ITCExperiment along with an appropriate ITC heats file to analyze that
individual experiment.

To define a new fitting model, create a new subcass of
pytc.indiv_models.ITCModel.  Place the class (and any accessory code) in
a single file in the pytc/indiv_models/ directory.  Then modify the
file pytc/indiv_models/__init__.py to import the new class.

from .new_model_file import NewModelClass





Here is a complete implementation of a
single-site binding model.

import pytc

class SingleSite(pytc.indiv_models.ITCModel):

    def param_definition(K=1e6,dH=-4000.0,fx_competent=1.0):
        pass

    @property
    def dQ(self):
        """
        Calculate the heats that would be observed across shots for a given set
        of enthalpies and binding constants for each reaction.
        """

        # ----- Determine mole fractions -----
        S_conc_corr = self._S_conc*self.param_values["fx_competent"]
        b = S_conc_corr + self._T_conc + 1/self.param_values["K"]
        ST = (b - np.sqrt((b)**2 - 4*S_conc_corr*self._T_conc))/2

        mol_fraction = ST/S_conc_corr

        # ---- Relate mole fractions to heat -----
        X = self.param_values["dH"]*(mol_fraction[1:] - mol_fraction[:-1])

        return self._cell_volume*S_conc_corr[1:]*X + self.dilution_heats






	The new class does two things:

	
	It defines a method called param_defintion that defines the
fittable parameters and reasonable guesses for those parameters as arguments
to the method.


	It defines a property called dQ which spits out the heat change for
for each shot. It access the parameters defined in param_definition
using self.param_values[PARAMETER_NAME].






	The requirements for an individual model are:

	
	It is a subclass of pytc.indiv_models.ITCModel


	It defines a param_definition method with all fittable parameters as
arguments.  Each paramter should have a default value that is a reasonable
guess for that parameter.


	Expose a dQ property that gives the heat change per shot.






	More complex models might require a few additional pieces of code:

	
	To pass information to the model that is not present in a .DH file,
define a new __init__ function that has new arguments.  For example,
one might define an __init__ function that takes the pH of the
solution.  After this information is recorded by the new __init__
function, it should then call super().__init__(...), where
... contains the normal arguments to ITCModel.__init__.
See pytc/indiv_models/single_site_competitor.py [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/single_site_competitor.py] as an example.


	To keep track of the concentration of something else in the cell besides the
titrant and stationary species, define a new __init__ function that
titrates this species.  See the __init__ function defined for
pytc/indiv_models/single_site_competitor.py [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/single_site_competitor.py] as an example.


	To construct a model with a variable number of parameters–say, a binding
polynomial with \(N\) sites–redefine _initialize_params.  See
the _initialize_params method defined for
pytc/indiv_models/binding_polynomial.py [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/binding_polynomial.py] as an example.











Global connectors

Global connectors describe how binding thermodynamics should change between
experiments.

A good example of this is a binding reaction that involves the gain or loss of
a proton.  The measured enthalpy will have a binding component and an ionization
component.  These can be separated by performing ITC experiments using buffers
with different ionization enthalpies. Mathematically, the observed enthalpy in
a buffer is:


\[\Delta H_{obs,buffer} = \Delta H_{intrinsic} + \Delta H_{ionization,buffer} \times n_{proton},\]

where \(\Delta H_{intrinsic}\) is the buffer-independent binding enthalpy,
\(\Delta H_{ionization,buffer}\) is the buffer ionization enthalpy, and
\(n_{proton}\) is the number of protons gained or lost.

One can encode this relationship using a subclass of
pytc.global_models.GlobalConnector.  Place the new class (and any
accessory code) in a single file in the pytc/global_connectors/`
directory.  Then modify the file pytc/global_connectors/__init__.py to
import the new class.

from .new_model_file import NewModelClass





The following class implements a GlobalConnector that describes the
relationship between buffer ionization enthalpy and observed enthalpy.

import pytc

class NumProtons(pytc.global_models.GlobalConnector):

    param_guesses = {"dH_intrinsic":0.1,"num_H",0.1}
    required_data = ["ionization_enthalpy"]

    def dH(self,experiment):

        return self.dH_intrinsic + self.num_H*experiment.ionization_enthalpy






	The new class does three things.

	
	It defines an attribute called param_guesses that defines the fittable
parameters and reasonable guesses for those parameters.


	It defines an attribute called required_data that defines attributes
of experiment that must be set for the connector to work.


	It defines a method called dH which spits out the enthalpy for a given
experiment.  Notice that dH uses both parameters defined in
param_guesses: self.dH_intrinsic and self.num_H.  It
gets the ionization enthalpy for a given experiment from the experiment
object it takes as an argument.






	The general requirements for these GlobalConnector requirements are:

	
	It must be a subclass of pytc.global_models.GlobalConnector.


	It must define param_guesses in the class namespace (i.e. at the
top of the class definition.)  This should have reasonable guesses for the
parameters.


	It must define required_data in the class namespace (i.e. at the
top of the class definition.)  These are strings that name the attributes of
experiment that are required to do the calculation.


	
	It must define output methods (like dH) that:

	
	take only self and experiment as arguments.


	use the parameters specified in param_guesses as attributes of
self (e.g. self.dH_intrinsic above).


	access any required information about the experiment from the
experiment object.










	There is no limit to the number of parameters, required data, or output
methods.






	More complex models might require a few additional pieces of code:

	
	To pass information to the model that does not vary across experiments,
define a new __init__ function that has new arguments.  For example,
one might define an __init__ function that takes the reference
temperature for an analysis. After this information is recorded by the new
__init__ function, it should then call super().__init__(name).
See pytc.global_connectors.VantHoff [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/vant_hoff.py] as an example.


	Models can implement multiple output functions.  For example
pytc.global_connectors.VantHoff [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/vant_hoff.py]
has both a dH and K output function.














          

      

      

    

  

    
      
          
            
  
pytc



	pytc package
	Subpackages
	pytc.experiments package
	Submodules

	pytc.experiments.base module

	Module contents





	pytc.global_connectors package
	Submodules

	pytc.global_connectors.base module

	pytc.global_connectors.num_protons module

	pytc.global_connectors.vant_hoff module

	pytc.global_connectors.vant_hoff_extended module

	Module contents





	pytc.indiv_models package
	Submodules

	pytc.indiv_models.base module

	pytc.indiv_models.binding_polynomial module

	pytc.indiv_models.blank module

	pytc.indiv_models.single_site module

	pytc.indiv_models.single_site_competitor module

	Module contents





	pytc.util package
	Submodules

	pytc.util.util module

	Module contents









	Submodules

	pytc.fit_param module

	pytc.global_fit module

	Module contents













          

      

      

    

  

    
      
          
            
  
Proton linked

This fits a global model to a collection of ITC experiments collected in buffers
of the same pH, but different ionization enthalpies.

global_connectors.NumProtons [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/num_protons.py]

This is useful for analyzing a binding reaction that involves the gain or loss of
a proton.  The measured enthalpy will have a binding component and an ionization
component.  These can be separated by performing ITC experiments using buffers
with different ionization enthalpies.


Scheme


\[\Delta H_{obs,buffer} = \Delta H_{intrinsic} + \Delta H_{ionization,buffer} \times n_{proton},\]

where \(\Delta H_{intrinsic}\) is the buffer-independent binding enthalpy,
\(\Delta H_{ionization,buffer}\) is the buffer ionization enthalpy, and
\(n_{proton}\) is the number of protons gained or lost.




Parameters









	parameter

	variable

	parameter name

	class





	association constant

	\(\Delta H_{intrinsic}\)

	dH_intrinsic

	thermodynamic



	binding enthalpy

	\(n_{proton}\)

	num_protons

	thermodynamic









Required data for each experiment








	data

	variable

	parameter name





	ioinzation enthalpy

	\(\Delta H_{ionization,buffer}\)

	ionization_enthalpy












          

      

      

    

  

    
      
          
            
  
The Name of the Model

DIRECTIONS: Update the name of the model and change the following


	A one sentence description of the model.


	Contributed by: Jane Doe, [email, url, other info you wish to provide]


	plain text, human-readable citation.


	global_connectors.NAME_OF_MODEL_CLASS [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/NAME_OF_MODEL_FILE]




A longer description of the model, if desired/needed.


Scheme

DIRECTIONS: Put a png image describing the scheme in the “docs/source/global_models” folder and link to it here.

[image: model scheme]
DIRECTIONS: Alternatively, write up your scheme in text/LaTex.


\[\Delta H(T) = \Delta H_{ref} + \Delta C_{p}(T - T_{ref})\]


\[K = K(T_{ref})exp \Big ( \frac{-\Delta H_{ref}}{R} \Big (\frac{1}{T} - \frac{1}{T_{ref}} \Big ) + \frac{\Delta C_{p}}{R} \Big ( ln(T/T_{re}) + T/T_{ref} - 1 \Big ) \Big )\]

By performing experiments at a minimum of two temperatures, one can extract the
heat capacity \(\Delta C_{p}\), the enthalpy at a reference temperture
\(\Delta H_{ref}\) and the binding constant at a reference temperature
\(K_{ref}\).




Parameters

DIRECTIONS: Update the table, using the description in the first data row.









	parameter

	variable

	parameter name

	class





	description of the parameter in
enough detail that we know what
it means

	name of variable in the
scheme (see below for
example)

	name of the variable in the
python code (see below for
example)

	whether the
variable is
nuisance or
thermodynamic



	association constant

	\(K_{ref}\)

	K

	thermodynamic



	binding enthalpy

	\(\Delta H_{ref}\)

	dH

	thermodynamic



	heat capacity

	\(\Delta C_{p}\)

	dCp

	thermodynamic









Required data for each experiment

DIRECTIONS: Update the table, using the description in the first data row.








	data

	variable

	parameter name





	type of data required for each
experiment in enough detail that
we know what it means.

	name of variable in the scheme (see
below for an example)

	name of parameter in
python code



	temperature (K)

	\(T\)

	temperature












          

      

      

    

  

    
      
          
            
  
Extended Van’t Hoff

An extended Van’t Hoff analysis that assumes constant heat capacity.

global_connectors.VantHoff [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/vant_hoff_extended.py]

Fits a collection of ITC experiments collected in identical buffer conditions, but
at different temperatures.  The temperature of each experiment is taken from the
heats file.  Allows extraction of the heat capacity, as well as the enthalpy and
binding constant at a reference temperature.


Scheme


\[\Delta H(T) = \Delta H_{ref} + \Delta C_{p}(T - T_{ref})\]


\[K = K(T_{ref})exp \Big ( \frac{-\Delta H_{ref}}{R} \Big (\frac{1}{T} - \frac{1}{T_{ref}} \Big ) + \frac{\Delta C_{p}}{R} \Big ( ln(T/T_{re}) + T/T_{ref} - 1 \Big ) \Big )\]

By performing experiments at a minimum of two temperatures, one can extract the
heat capacity \(\Delta C_{p}\), the enthalpy at a reference temperture
\(\Delta H_{ref}\) and the binding constant at a reference temperature
\(K_{ref}\).




Parameters









	parameter

	variable

	parameter name

	class





	association constant

	\(K_{ref}\)

	K

	thermodynamic



	binding enthalpy

	\(\Delta H_{ref}\)

	dH

	thermodynamic



	heat capacity

	\(\Delta C_{p}\)

	dCp

	thermodynamic









Required data for each experiment








	data

	variable

	parameter name





	temperature (K)

	\(T\)

	temperature












          

      

      

    

  

    
      
          
            
  
Van’t Hoff

A standard Van’t Hoff analysis assuming a constant enthalpy.

global_connectors.VantHoff [https://github.com/harmslab/pytc/blob/master/pytc/global_connectors/vant_hoff.py]

Fits a collection of ITC experiments collected in identical buffer conditions, but
at different temperatures.  The temperature of each experiment is taken from the
heats file.  Allows extraction of the Van’t Hoff enthalpy and binding constant
for the reaction at a defined reference temperature.


Scheme


\[\Delta H = \Delta H_{vh}\]


\[K = K(T_{ref})exp \Big ( \frac{-\Delta H_{vh}}{R} \Big (\frac{1}{T} - \frac{1}{T_{ref}} \Big ) \Big )\]

By performing experiments at a minimum of two temperatures, one can extract the
Van’t Hoff enthalpy \(\Delta H_{vh}\) and binding constant at the reference
temperature \(K(T_{ref})\).




Parameters









	parameter

	variable

	parameter name

	class





	association constant

	\(K_{ref}\)

	K

	thermodynamic



	binding enthalpy

	\(\Delta H_{vh}\)

	dH

	thermodynamic









Required data for each experiment








	data

	variable

	parameter name





	temperature (K)

	\(T\)

	temperature












          

      

      

    

  

    
      
          
            
  
Assembly Auto Inhibition


	Ligand binding that promotes protein oligomerization, which is auto-inhibited by saturation of ligand (related to the prozone effect).


	Model contributed by: Martin Rennie, PhD


	Rennie & Crowley (2019). ChemPhysChem (link) [https://onlinelibrary.wiley.com/doi/10.1002/cphc.201900153].


	indiv_models.AssemblyAutoInhibition [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/assembly_auto_inhibition.py]





Scheme

[image: model scheme]
Illustrated with \(m=2\), \(n_L=5\), \(n_P=4\).




Parameters









	parameter

	variable

	parameter name

	class





	macroscopic association constant
for binding of the first ligand
to the protein monomer
(M-1)

	\(K_{1}\)

	Klig1

	thermodynamic



	average* association constant
for binding of the remaining
ligands to the protein monomer
(M-1)

	\(K_{2}\)

	Klig2

	thermodynamic



	average* association constant
for formation of the protein
oligomer (M-1)

	\(K_{3}\)

	Kolig

	thermodynamic



	enthalpy change for
binding of the first ligand to
the protein monomer

	\(\Delta H_{1}\)

	dHlig1

	thermodynamic



	enthalpy change for
binding of the remaining ligands
to the protein monomer

	\(\Delta H_{2}\)

	dHlig2

	thermodynamic



	enthalpy change for formation
of the protein oligomer

	\(\Delta H_{3}\)

	dHolig

	thermodynamic



	stoichiometry of ligands in
the saturated protein monomer,
must be ≥2

	\(m\)

	m

	thermodynamic



	stoichiometry of ligands in
the protein oligomer

	\(n_{L}\)

	n_lig

	thermodynamic



	stoichiometry of proteins in
the protein oligomer

	\(n_{P}\)

	n_prot

	thermodynamic



	fraction competent protein

	—

	fx_prot_competent

	nuisance



	fraction competent ligand

	—

	fx_lig_competent

	nuisance



	slope of heat of dilution

	—

	dilution_heat

	nuisance



	intercept of heat of dilution

	—

	dilution_intercept

	nuisance






*equilibrium constants for the higher order equilibria are “averaged” using \(\sqrt[N]{K}\),
where \(N\) is the order of the equilibrium, such that the units are M-1
(see Rennie & Crowley (2019). ChemPhysChem (link) [https://onlinelibrary.wiley.com/doi/10.1002/cphc.201900153])




Species


\[[P_{T}]_{i} =   [P]_{i} + [PL]_{i} + [PL_{m}]_{i} + n_{P}[P_{olig}]_{i}\]


\[[L_{T}]_{i} = [L]_{i} + [PL]_{i} + m[PL_{m}]_{i} + n_{L}[P_{olig}]_{i}\]


\[[PL]_{i} = K_{1}[P]_{i}[L]_{i}\]


\[[PL_{2}]_{i} = K_{1}K_{2}^{m-1}[P]_{i}[L]_{i}^{m}\]


\[[P_{olig}]_{i} = K_{3}^{n_{L}+n_{P}-1}[P]_{i}^{n_{P}}[L]_{i}^{n_{L}}\]




Heat


\[\begin{split}q_{i} = V_{cell}\Big ( \Delta H_{1}^{\circ}([PL]_{i} - [PL]_{i-1}(1-v_{i}/V_{cell})) \\
                      + (\Delta H_{1}^{\circ} + \Delta H_{2}^{\circ})([PL_{2}]_{i} - [PL_{2}]_{i-1}(1 - v_{i}/V_{cell})) \\
                      +  \Delta H_{3}^{\circ}([P_{olig}]_{i} - [P_{olig}]_{i-1}(1 - v_{i}/V_{cell})) \Big ) + q_{dil}\end{split}\]

where: \([P_{T}]_{i}\) is the total cell concentration of protein at the \(i^\text{th}\) injection (independent variable);
\([L_{T}]_{i}\) is the total cell concentration of ligand at the \(i^\text{th}\) injection (independent variable);
\(V_{cell}\) is the volume of the cell;
\(v_{i}\) is the volume of the \(i^\text{th}\) injection;
\(q_{i}\) is the heat generated from the \(i^\text{th}\) injection;
\(q_{dil}\) is the heat of dilution.







          

      

      

    

  

    
      
          
            
  
Binding Polynomial


	Binding polynomial for binding at \(N\) sites.  Adair constants.


	Freire et al. (2009). Methods in Enzymology 455:127-155 (link) [http://www.sciencedirect.com/science/article/pii/S0076687908042055].


	indiv_models.BindingPolynomial [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/binding_polynomial.py]





Scheme

The scheme is:


\[S + iT \rightleftharpoons ST_{i}\]

where \(S\) is the stationary species and \(T\) is the titrant.  This is an overall binding polynomial, meaning that we account for the total loading of \(i\) molecules of \(T\) onto \(S\). The equilibrium constants (Adair constants) are:


\[\beta_{i} = \frac{[ST_{i}]}{[S][T]^{i}}\]

This model is entirely general (and therefore phenomenological), but is an appropriate starting point for analyzing a complex binding reaction.  The Adair constants can be related to a sequential binding model by:


\[S + T \rightleftharpoons ST\]


\[ST + T \rightleftharpoons ST_{2}\]


\[...\]


\[ST_{i-1} + T \rightleftharpoons ST_{i}\]


\[K_{i} = \frac{[ML_{i}]}{[ML_{i-1}][L]} = \frac{\beta_{i}}{\beta_{i-1}}\]




Parameters









	parameter

	variable

	parameter name

	class





	Adair constant for site 1

	\(\beta_{1}\)

	beta1

	thermodynamic



	binding enthalpy for site 1

	\(\Delta H_{1}\)

	dH1

	thermodynamic



	This will have as many \(\beta\) and \(\Delta H\) terms as sites defined in the model.



	fraction competent

	—

	fx_competent

	nuisance



	slope of heat of dilution

	—

	dilution_heat

	nuisance



	intercept of heat of dilution

	—

	dilution_intercept

	nuisance









Species

The first thing to note is that the binding polynomial \(P\) is a partition function:


\[P = \sum_{i=0}^{n}\frac{[ST_{i}]}{[S]} = \sum_{i=0}^{n} \beta_{i}[T]^{i}\]

This allows us to write equations for the average enthalphy and number of ligand molecules bound:


\[\langle \Delta H \rangle = \frac{\sum_{i=0}^{n} \Delta H_{i} \beta_{i}[T]^{i}} {\sum_{i=0}^{n} \beta_{i}[T]^{i}}\]

and


\[\langle n \rangle = \frac{\sum_{i=0}^{n} i \beta_{i}[T]^{i}} {\sum_{i=0}^{n} \beta_{i}[T]^{i}}\]

This means that obtaining the relative populations of species in solution is (relatively) simple:


\[[T]_{total} = [T]_{bound} + [T]_{free}\]


\[[T]_{total} = \langle n \rangle[S]_{total} + [T]_{free}\]


\[0 = \langle n \rangle[S]_{total} + [T]_{free} - [T]_{total}\]


\[0 = \frac{\sum_{i=0}^{n} i \beta_{i}[T]_{free}^{i}} {\sum_{i=0}^{n} \beta_{i}[T]_{free}^{i}}[S]_{total} + [T]_{free} - [T]_{total}\]

This can then be solved numerically for a value of \([T]_{free}\).




Heat

We can relate the heat at shot to the average enthalpies calculated using the value of \(T_{free}\) over the titration.  Recalling:


\[\langle \Delta H \rangle = \frac{\sum_{i=0}^{n} \Delta H_{i} \beta_{i}[T]_{free}^{i}} {\sum_{i=0}^{n} \beta_{i}[T]_{free}^{i}}\]

we can calculate the change in heat for shot \(j\) as:


\[q_{j} = V_{0} S_{total,j} (\langle \Delta H \rangle_{j} - \langle \Delta H \rangle_{j-1}) + q_{dilution,i}.\]







          

      

      

    

  

    
      
          
            
  
Blank


	Titration of titrant into a cell without a stationary component.


	indiv_models.Blank [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/blank.py]





Parameters









	parameter

	variable

	parameter name

	class





	slope of heat of dilution

	\(q_{slope}\)

	dilution_heat

	nuisance



	intercept of heat of dilution

	\(q_{intercept}\)

	dilution_intercept

	nuisance









Heat

The heat for each shot \(i\) (\(q_{i}\)) is:


\[ \begin{align}\begin{aligned}q_{dilution,i} = [T]_{i} \times q_{slope} + q_{intercept},\\q_{i} = q_{dilution,i},\end{aligned}\end{align} \]

where \([T]_{i}\) is the concentration of titrant at shot \(i\), \(q_{slope}\) is the slope of the heat of dilution (dilution_heat) and \(q_{intercept}\) is the intercept of the heat of dilution (dilution_intercept).







          

      

      

    

  

    
      
          
            
  
Competitive ligand binding


	Model binding where two molecules compete for binding to a single other molecule.


	Sigurskjold BW (2000) Analytical Biochemistry 277(2):260-266 (link) [http://dx.doi.org/10.1006/abio.1999.4402].


	indiv_models.SingleSiteCompetitor [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/single_site_competitor.py]





Scheme

Scheme is for competitive binding of \(A\) and \(B\) to protein \(P\):


\[A + P \rightleftharpoons PA\]


\[B + P \rightleftharpoons PB\]

To describe this, we use the following equilibrium constants:


\[K_{A} = \frac{[PA]}{[P]_{free}[A]_{free}}\]


\[K_{B} = \frac{[PB]}{[P]_{free}[B]_{free}}\]




Parameters









	parameter

	variable

	parameter name

	class





	association constant for A

	\(K_{A}\)

	K

	thermodynamic



	association constant for B

	\(K_{B}\)

	Kcompetitor

	thermodynamic



	binding enthalpy for A

	\(\Delta H_{A}\)

	dH

	thermodynamic



	binding enthalpy for B

	\(\Delta H_{B}\)

	dHcompetitor

	thermodynamic



	fraction competent

	—

	fx_competent

	nuisance



	slope of heat of dilution

	—

	dilution_heat

	nuisance



	intercept of heat of dilution

	—

	dilution_intercept

	nuisance









Species

We can only manipulate \([P]_{total}\), \([A]_{total}\) and \([B]_{total}\) experimentally, so our first goal is to determine the concentrations of species such as \([PA]\), which we cannot manipulate or directly observe.  Start by writing concentrations as mole fractions:


\[x_{P} = \frac{[P]_{free}}{[P]_{total}}\]


\[x_{PA} = \frac{[PA]}{[P]_{total}}\]


\[x_{PB} = \frac{[PB]}{[P]_{total}}\]


\[x_{P} + x_{PA} + x_{PB} = 1\]

A root of the binding polynomial has been found that describes \(x_{P}\) only in terms of \(K_{A}\), \(K_{B}\), \([A]_{total}\), \([B]_{total}\) and \([P]_{total}\).  Start with some convenient definitions:


\[c_{A} = K_{A}[P]_{total}\]


\[c_{B} = K_{B}[P]_{total}\]


\[r_{A} = \frac{[A]_{total}}{P_{total}}\]


\[r_{B} = \frac{[B]_{total}}{P_{total}}\]

The value of \(x_{P}\) is given by:


\[\alpha = \frac{1}{c_{A}} + \frac{1}{c_{B}} + r_{A} + r_{B} - 1\]


\[\beta = \frac{r_{A}-1}{c_{B}} + \frac{r_{B} - 1}{c_{A}} + \frac{1}{c_{A}c_{B}}\]


\[\gamma = -\frac{1}{c_{A}c_{B}}\]


\[\theta = arccos \Big ( \frac{-2\alpha^{3} + 9\alpha \beta -27\gamma}{2\sqrt{(\alpha^2 - 3 \beta)^3}} \Big)\]


\[x_{P} = \frac{2\sqrt{\alpha^2 - 3 \beta}\ cos(\theta/3) - \alpha}{3}\]

Once this is known \(x_{PA}\) and \(x_{PB}\) are uniquely determined by:


\[x_{PA} = \frac{r_{A} x_{P}}{1/C_{A} + x_{P}}\]


\[x_{PB} = \frac{r_{B} x_{P}}{1/C_{B} + x_{P}}\]




Heat

The heat for each shot \(i\) (\(q_{i}\)) is:


\[q_{i} = V_{0}P_{total}(\Delta H_{A}(x_{PA,i} - f_{i}x_{PA,i-1}) + \Delta H_{B}(x_{PB,i} - f_{i}x_{PB,i-1})) + q_{dilution},\]

where \(V_{0}\) is the volume of the cell, \(\Delta H_{A}\) is the enthalpy for binding ligand \(A\), \(\Delta H_{B}\) is the enthalpy for binding ligand \(B\). \(f_{i}\) is the dilution factor for each injection:


\[f_{i} = exp(-V_{i}/V_{0}),\]

where \(V_{0}\) is the volume of the cell and \(V_{i}\) is the volume of the \(i\)-th injection.

pytc calculates \(x_{PA,i}\) and friends for the entire titration, correcting for dilution.  This means the \(f_{i}\) term is superfluous.  Thus, heats are related by:


\[q_{i} = V_{0}P_{total,i}(\Delta H_{A}(x_{PA,i} - x_{PA,i-1}) + \Delta H_{B}(x_{PB,i} - x_{PB,i-1})) + q_{dilution}.\]

Note that \(V_{0}\) is held constant (it is the cell volume) as only that volume is detected, not the neck of the cell.







          

      

      

    

  

    
      
          
            
  
Single-Site Binding


	A basic, single-site binding model.


	indiv_models.SingleSite [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/single_site.py]





Scheme

Scheme is for binding of titrant \(T\) to a stationary species \(S\):


\[S + T \rightleftharpoons TS\]

To describe this, we use the following equilibrium constant:


\[K = \frac{[ST]}{[S]_{free}[T]_{free}}\]




Parameters









	parameter

	variable

	parameter name

	class





	association constant

	\(K\)

	K

	thermodynamic



	binding enthalpy

	\(\Delta H\)

	dH

	thermodynamic



	fraction competent

	—

	fx_competent

	nuisance



	slope of heat of dilution

	—

	dilution_heat

	nuisance



	intercept of heat of dilution

	—

	dilution_intercept

	nuisance









Species

We can only manipulate \([T]_{total}\) and \([S]_{total}\) experimentally, so our first goal is to determine the concentration of \([ST]\), which we cannot manipulate or directly observe.


\[K = \frac{[ST]}{([S]_{total} - [ST])([T]_{total}-[ST])},\]


\[K \Big ([S]_{total}[T]_{total} - [ST]([S]_{total} + [T]_{total}) + [ST]^2 \Big ) = [ST],\]


\[[S]_{total}[T]_{total} - [ST](S_{total} + T_{total}) + [ST]^{2} - [ST]/K = 0,\]


\[[S]_{total}[T]_{total} - [ST]([S]_{total} + [T]_{total} + 1/K) + [ST]^2 = 0.\]

The real root of this equation describes \([ST]\) in terms of \(K\) and the total concentrations of \([S]\) and \([T]\):


\[[ST] = \frac{[S]_{total}  + [T]_{total} + 1/K - \sqrt{([S]_{total} + [T]_{total} + 1/K)^2 -4[S]_{total}[T]_{total}}}{2}\]

The mole fraction \(ST\) is:


\[x_{ST} = \frac{[ST]}{[S]_{total}}\]




Heat

The heat for each shot \(i\) (\(q_{i}\)) is:


\[q_{i} = V_{0}[S]_{total,i}(\Delta H(x_{ST,i} - x_{ST,i-1})) + q_{dilution,i},\]

where \(V_{0}\) is the volume of the cell (fixed) and \(\Delta H\) is the enthalpy of binding. Note that we do not deal with dilution here, as pytc calculates \(x_{ST,i}\) for the entire titration, accouting for dilution at each step.  \(V_{0}\) is held constant as the total cell volume (not the volume of solution including the neck) as only the cell, not the neck, is detected in the signal.







          

      

      

    

  

    
      
          
            
  
The Name of the Model

DIRECTIONS: Update the name of the model and change the following.


	A one sentence description of the model.


	Contributed by: Jane Doe, [email, url, other info you wish to provide]


	plain text, human-readable citation.


	indiv_models.NAME_OF_MODEL_CLASS [https://github.com/harmslab/pytc/blob/master/pytc/indiv_models/NAME_OF_MODEL_FILE]




A longer description of the model, if desired/needed.


Scheme

DIRECTIONS: Put a png image describing the scheme in the “docs/source/indiv_models” folder and link to it here.

[image: model scheme]
DIRECTIONS: Alternatively, write up your scheme in text/LaTeX.

Scheme is for binding of titrant \(T\) to a stationary species \(S\):


\[S + T \rightleftharpoons TS\]

To describe this, we use the following equilibrium constant:


\[K = \frac{[ST]}{[S]_{free}[T]_{free}}\]




Parameters

DIRECTIONS: Update the table, using the description in the first data row.









	parameter

	variable

	parameter name

	class





	description of the parameter in
enough detail that we know what
it means

	name of variable in the
scheme (see below for
example)

	name of the variable in the
python code (see below for
example)

	whether the
variable is
nuisance or
thermodynamic



	example: association constant
for binding of the second
ligand to the protein (M)

	\(K_{2}\)

	Klig2

	thermodynamic



	fraction competent

	—

	fx_competent

	nuisance



	slope of heat of dilution

	—

	dilution_heat

	nuisance



	intercept of heat of dilution

	—

	dilution_intercept

	nuisance









Species

DIRECTIONS: Write mathematical description of the species in solution at shot “i”.  Use standard LaTeX for formatting.


\[[P_{T}]_{i} =   [P]_{i} + [PL]_{i} + [PL_{2}]_{i} + 4[P_{olig}]_{i}\]


\[[L_{T}]_{i} = [L]_{i} + [PL]_{i} + 2[PL_{2}]_{i} + n_{L}[P_{olig}]_{i}\]


\[[PL]_{i} = K_{1}[P]_{i}[L]_{i}\]


\[[PL_{2}]_{i} = K_{1}K_{2}[P]_{i}[L]_{i}^{2}\]


\[[P_{olig}]_{i} = K_{3}[P]_{i}^{4}[L]_{i}^{n_{L}}\]




Heat

DIRECTIONS: Write mathematical description the heat at shot “i”.  Use standard LaTeX for formatting.


\[\begin{split}q_{i} = V_{cell}\Big ( \Delta H_{1}^{\circ}([PL]_{i} - [PL]_{i-1}(1-v_{i}/V_{cell})) \\
                      + (\Delta H_{1}^{\circ} + \Delta H_{2}^{\circ})([PL_{2}]_{i} - [PL_{2}]_{i-1}(1 - v_{i}/V_{cell})) \\
                      +  \Delta H_{3}^{\circ}([P_{olig}]_{i} - [P_{olig}]_{i-1}(1 - v_{i}/V_{cell})) \Big ) + q_{dil}\end{split}\]







          

      

      

    

  _static/minus.png





_static/plus.png





_static/up.png





_static/up-pressed.png





_images/assembly-auto-inhibition_scheme.png





_images/assembly-auto-inhibition_scheme1.png
00 0" %.

protein

ligand






_images/corner-plot.png





_images/itc-fit.png
heat per shot (kcal/mol

residual

-10

05

10 15
molar ratio (titrant/stationary)

20





_images/pytc-gui-animation.gif
#15 Fitting Help
Add Experiment

W Export Results
Exit

Ctrl+Shift+N
Ctrl+S
Ctrl+W






nav.xhtml

    
      Table of Contents


      
        		
          pytc
        


        		
          pytc package
          
            		
              Subpackages
              
                		
                  pytc.experiments package
                


                		
                  pytc.global_connectors package
                


                		
                  pytc.indiv_models package
                


                		
                  pytc.util package
                


              


            


            		
              Submodules
            


            		
              pytc.fit_param module
            


            		
              pytc.global_fit module
            


            		
              Module contents
            


          


        


      


    
  

_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





