

    
      
          
            
  
FiniteStateMachine - A finite state machine class using coroutines


FiniteStateMachine is a class representing a finite state machine. Each state is represented by an instance of the
State class. Each state also has a state handler function defined for it. The handler function is a co-routine that
excepts an event and performs an action based on it.

To define the state machine:


	define the states (e.g. STATE_A = State(‘STATE_A’))

	define the state handler functions. See below for the structure of a state handling function.

	create an instance of the state machine (e.g. fsm = Fsm())

	
	add states to the state machine, including exactly one state marked as the initial state. Each state also takes

	a sequence of states that it can be transitioned from (from_states).





	call the start function on the FSM (e.g. fsm.start())



For each event you will need to call the dispatch_event function (e.g. fsm.dispatch_event()) to route the event
to the co-routine. An event can be anything you want (e.g. a tuple with event_id and arguments). The main loops
generally looks like:


	try:

	
	while True:

	event = get_next_event()
fsm.dispatch_event(event)





	except ExpectedExit as e:

	pass



The basic structure of a state handler is:


	def state_handler_<state name>(fsm):

	# Enter the main loop for the co-routine
while True:


event = yield


	if event == ‘EVENT_1’:

	# Transition to another state
fsm.transition_to(STATE_X)

	elif event == ‘EVENT_2’:

	# Do some processing but stay in this state
print(‘Got EVENT_2’)

	elif event == ‘TERMINATING_EVENT’:

	raise FsmExit

	else:

	print(‘Unrecognized event (%s)’ % event)










A simple example of this is shown in the turnstile_test.py test case.

For convenience this can be wrapped with a @state_handler decorator. The decorator takes care of the co-routine
boiler plate and hands the handler function an fsm and event. This would look like:

@pystate.state_handler






	def state_locked_handler(event, fsm):

	
	if event == ‘EVENT_1’:

	# Transition to another state
fsm.transition_to(STATE_X)

	elif event == ‘EVENT_2’:

	# Do some processing but stay in this state
print(‘Got EVENT_2’)

	elif event == ‘TERMINATING_EVENT’:

	raise FsmExit

	else:

	print(‘Unrecognized event (%s)’ % event)







There are two ways to handle a state that needs to keep persistant data. You can create a callable clas (i.e. define
the __call__ dunder method to call as the state handler.) This allows you to use the state_handler decorator around
the __call__ method. Alternatively, you can set the state data above the while loop if you define the co-routine by
hand, however, this precludes using the decorator. See the callable_test.py test case for an example.
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PyState - A finite state machine class using coroutines

FiniteStateMachine is a class representing a finite state machine. Each state is represented by an instance of the
State class. Each state also has a state handler function defined for it. The handler function is a co-routine that
excepts an event and performs an action based on it.

To define the state machine:

1) define the states (e.g. STATE_A = State('STATE_A'))
2) define the state handler functions. See below for the structure of a state handling function.
3) create an instance of the state machine (e.g. fsm = Fsm())
4) add states to the state machine, including exactly one state marked as the initial state. Each state also takes
    a sequence of states that it can be transitioned from (from_states).
5) call the start function on the FSM (e.g. fsm.start())

For each event you will need to call the dispatch_event function (e.g. fsm.dispatch_event()) to route the event
to the co-routine. An event can be anything you want (e.g. a tuple with event_id and arguments). The main loops
generally looks like:

try:
    while True:
        event = get_next_event()
        fsm.dispatch_event(event)
except ExpectedExit as e:
    pass

The basic structure of a state handler is:

def state_handler_<state name>(fsm):
    # Enter the main loop for the co-routine
    while True:
        event = yield

        if event == 'EVENT_1':
            # Transition to another state
            fsm.transition_to(STATE_X)
        elif event == 'EVENT_2':
            # Do some processing but stay in this state
            print('Got EVENT_2')
        elif event == 'TERMINATING_EVENT':
            raise FsmExit
        else:
            print('Unrecognized event (%s)' % event)

A simple example of this is shown in the turnstile_test.py test case.

For convenience this can be wrapped with a @state_handler decorator. The decorator takes care of the co-routine
boiler plate and hands the handler function an fsm and event. This would look like:

@pystate.state_handler
def state_locked_handler(event, fsm):
    if event == 'EVENT_1':
        # Transition to another state
        fsm.transition_to(STATE_X)
    elif event == 'EVENT_2':
        # Do some processing but stay in this state
        print('Got EVENT_2')
    elif event == 'TERMINATING_EVENT':
        raise FsmExit
    else:
        print('Unrecognized event (%s)' % event)

There are two ways to handle a state that needs to keep persistant data. You can create a callable clas (i.e. define
the __call__ dunder method to call as the state handler.) This allows you to use the state_handler decorator around
the __call__ method. Alternatively, you can set the state data above the while loop if you define the co-routine by
hand, however, this precludes using the decorator. See the callable_test.py test case for an example.
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