
PySME Documentation
Release 0.1

Jonathan Gross

June 08, 2016

Contents

1 Code documentation 3
1.1 system_builder . 3
1.2 gellmann . 5
1.3 gramschmidt . 6
1.4 integrate . 6
1.5 sde . 6
1.6 grid_conv . 9

2 Vectorization 11
2.1 Matrix representations of superoperators . 12
2.2 Nonlinear superoperator representation . 13

3 SME integration 15
3.1 Vector Milstein . 15
3.2 Order 1.5 Taylor scheme . 16

4 Testing 17
4.1 Longer stochastic increments . 17

5 Indices and tables 21

Python Module Index 23

i

ii

PySME Documentation, Release 0.1

Contents:

Contents 1

PySME Documentation, Release 0.1

2 Contents

CHAPTER 1

Code documentation

1.1 system_builder

system_builder.diffusion_op(dim, C_vector, triple_prods, basis_norms_sq, basis, **kwargs)
Return a matrix 𝐷 such that when 𝜌 is vectorized the expression

𝑑𝜌

𝑑𝑡
= 𝒟[𝑐]𝜌 = 𝑐𝜌𝑐† − 1

2
(𝑐†𝑐𝜌 + 𝜌𝑐†𝑐)

can be calculated by:

𝑑𝜌⃗

𝑑𝑡
= 𝐷𝜌⃗

Vectorization is done according to the order prescribed in basis, with the component proportional to identity in
the last place.

Parameters

• coupling_op (numpy.array) – The operator 𝑐 in matrix form

• basis (list(numpy.array)) – An almost complete (minus identity), Hermitian,
traceless, orthogonal basis for the operators (does not need to be normalized).

Returns The matrix 𝐷 operating on a vectorized density operator

Return type numpy.array

system_builder.double_comm_op(dim, C_vector, triple_prods, M_sq, basis_norms_sq, basis,
**kwargs)

Return a matrix 𝐸 such that when 𝜌 is vectorized the expression

𝑑𝜌

𝑑𝑡
=

(︂
𝑀*

2
[𝑐, [𝑐, 𝜌]] +

𝑀

2
[𝑐†, [𝑐†, 𝜌]]

)︂
can be calculated by:

𝑑𝜌⃗

𝑑𝑡
= 𝐸𝜌⃗

Vectorization is done according to the order prescribed in basis, with the component proportional to identity in
the last place.

Parameters

• coupling_op (numpy.array) – The operator 𝑐 in matrix form

3

PySME Documentation, Release 0.1

• M_sq (complex) – Complex squeezing parameter 𝑀 defined by ⟨𝑑𝐵(𝑡)𝑑𝐵(𝑡)⟩ = 𝑀𝑑𝑡.

• basis (list(numpy.array)) – An almost complete (minus identity), Hermitian,
traceless, orthogonal basis for the operators (does not need to be normalized).

Returns The matrix 𝐸 operating on a vectorized density operator

Return type numpy.array

system_builder.dualize(operator, basis)
Take an operator to its dual vectorized form in a particular operator basis.

Designed to work in conjunction with vectorize so that, given an orthogonal basis {Λ𝑚} where
Tr[Λ𝑚†Λ𝑛] ∝ 𝛿𝑚𝑛, the dual action of an operator 𝐴 on another operator 𝐵 interpreted as Tr[𝐴†𝐵] can be eas-
ily calculated by sum([a*b for a, b in zip(dualize(A), vectorize(B))] (in other words it
becomes an ordinaty dot product in this particular representation).

Parameters

• operator (numpy.array) – The operator to vectorize

• basis (list(numpy.array)) – The basis to vectorize the operator in

Returns The vector components

Return type numpy.array

system_builder.hamiltonian_op(dim, H_vector, double_prods, basis_norms_sq, basis, **kwargs)
Return a matrix 𝐹 such that when 𝜌 is vectorized the expression

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌]

can be calculated by:

𝑑𝜌⃗

𝑑𝑡
= 𝐹 𝜌⃗

Vectorization is done according to the order prescribed in basis, with the component proportional to identity in
the last place.

Parameters

• hamiltonian (numpy.array) – The Hamiltonian 𝐻 in matrix form

• basis (list(numpy.array)) – An almost complete (minus identity), Hermitian,
traceless, orthogonal basis for the operators (does not need to be normalized).

Returns The matrix 𝐹 operating on a vectorized density operator

Return type numpy.array

system_builder.norm_squared(operator)
Returns the square of the Frobenius norm of the operator.

Parameters operator (numpy.array) – The operator for which to calculate the squared norm

Returns The square of the norm of the operator

Return type Positive real

system_builder.op_calc_setup(coupling_op, M_sq, N, H, partial_basis)
Handle the repeated tasks performed every time a superoperator matrix is computed.

system_builder.recur_dot(mats)
Perform numpy.dot on a list in a right-associative manner.

4 Chapter 1. Code documentation

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

PySME Documentation, Release 0.1

system_builder.vectorize(operator, basis)
Vectorize an operator in a particular operator basis.

Parameters

• operator (numpy.array) – The operator to vectorize

• basis (list(numpy.array)) – The basis to vectorize the operator in

Returns The vector components

Return type numpy.array

system_builder.weiner_op(dim, C_vector, double_prods, basis_norms_sq, basis, **kwargs)
Return a the matrix-vector pair (𝐺, 𝑘⃗) such that when 𝜌 is vectorized the expression

𝑑𝜌 = 𝑑𝑊
(︀
𝑐𝜌 + 𝜌𝑐† − 𝜌Tr[(𝑐 + 𝑐†)𝜌]

)︀
can be calculated by:

𝑑𝜌⃗ = 𝑑𝑊 (𝐺 + 𝑘⃗ · 𝜌⃗)𝜌⃗

Vectorization is done according to the order prescribed in basis, with the component proportional to identity in
the last place.

Parameters

• coupling_op (numpy.array) – The operator 𝑐 in matrix form

• basis (list(numpy.array)) – An almost complete (minus identity), Hermitian,
traceless, orthogonal basis for the operators (does not need to be normalized).

Returns The matrix-vector pair (𝐺, 𝑘⃗) operating on a vectorized density operator (k is returned as a
row-vector)

Return type tuple(numpy.array)

1.2 gellmann

gellmann.gellmann(j, k, d)
Returns a generalized Gell-Mann matrix of dimension d. According to the convention in Bloch Vectors for
Qubits by Bertlmann and Krammer (2008), returns Λ𝑗 for 1 ≤ 𝑗 = 𝑘 ≤ 𝑑− 1, Λ𝑘𝑗

𝑠 for 1 ≤ 𝑘 < 𝑗 ≤ 𝑑, Λ𝑗𝑘
𝑎 for

1 ≤ 𝑗 < 𝑘 ≤ 𝑑, and 𝐼 for 𝑗 = 𝑘 = 𝑑.

Parameters

• j (positive integer) – First index for generalized Gell-Mann matrix

• k (positive integer) – Second index for generalized Gell-Mann matrix

• d (positive integer) – Dimension of the generalized Gell-Mann matrix

Returns A genereralized Gell-Mann matrix.

Return type numpy.array

gellmann.get_basis(d)
Return a basis of orthogonal Hermitian operators on a Hilbert space of dimension d, with the identity element
in the last place.

1.2. gellmann 5

PySME Documentation, Release 0.1

1.3 gramschmidt

gramschmidt.orthonormalize(A)
Return an orthonormal basis where A has support only on the first three elements. The first element is guaranteed
to be proportional to the identity.

1.4 integrate

1.5 sde

sde.euler(drift_fn, diffusion_fn, X0, ts, Us)
Integrate a system of ordinary stochastic differential equations subject to scalar noise:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗, 𝑡) 𝑑𝑡 + 𝑏⃗(𝑋⃗, 𝑡) 𝑑𝑊𝑡

Uses the Euler method:

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑎⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑊𝑖

where ∆𝑊𝑖 = 𝑈𝑖

√
∆𝑡, 𝑈 being a normally distributed random variable with mean 0 and variance 1.

Parameters

• drift_fn (callable(X, t)) – Computes the drift coefficient 𝑎⃗(𝑋⃗, 𝑡)

• diffusion_fn (callable(X, t)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗, 𝑡)

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• Us (array, shape=(len(t) - 1)) – Normalized Weiner increments for each time
step (i.e. samples from a Gaussian distribution with mean 0 and variance 1).

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(ts), len(X0))

sde.faulty_milstein(drift, diffusion, b_dx_b, X0, ts, Us)
Integrate a system of ordinary stochastic differential equations subject to scalar noise:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗, 𝑡) 𝑑𝑡 + 𝑏⃗(𝑋⃗, 𝑡) 𝑑𝑊𝑡

Uses a faulty Milstein method (i.e. missing the factor of 1/2 in the term added to Euler integration):

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑎⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑊𝑖 +
(︁
𝑏(𝑋⃗𝑖, 𝑡𝑖) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

where ∆𝑊𝑖 = 𝑈𝑖

√
∆𝑡, 𝑈 being a normally distributed random variable with mean 0 and variance 1.

Parameters

• drift (callable(X, t)) – Computes the drift coefficient 𝑎⃗(𝑋⃗, 𝑡)

• diffusion (callable(X, t)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗, 𝑡)

6 Chapter 1. Code documentation

PySME Documentation, Release 0.1

• b_dx_b (callable(X, t)) – Computes the correction coefficient(︁
𝑏(𝑋⃗, 𝑡) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗, 𝑡)

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• Us (array, shape=(len(t) - 1)) – Normalized Weiner increments for each time
step (i.e. samples from a Gaussian distribution with mean 0 and variance 1).

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(t), len(X0))

sde.meas_euler(drift_fn, diffusion_fn, dW_fn, X0, ts, dMs)
Integrate a system of ordinary stochastic differential equations conditioned on an incremental measurement
record:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗, 𝑡) 𝑑𝑡 + 𝑏⃗(𝑋⃗, 𝑡) 𝑑𝑊𝑡

Uses the Euler method:

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑎⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑊𝑖

where ∆𝑊𝑖 = 𝑓(∆𝑀𝑖, 𝑋⃗, 𝑡), ∆𝑀𝑖 being the incremental measurement record being used to drive the SDE.

Parameters

• drift_fn (callable(X, t)) – Computes the drift coefficient 𝑎⃗(𝑋⃗, 𝑡)

• diffusion_fn (callable(X, t)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗, 𝑡)

• dW_fn (callable(dM, dt, X, t)) – The function that converts the incremental
measurement and current state to the Wiener increment.

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• dMs (array, shape=(len(t) - 1)) – Incremental measurement outcomes used to
drive the SDE.

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(ts), len(X0))

sde.meas_milstein(drift_fn, diffusion_fn, b_dx_b_fn, dW_fn, X0, ts, dMs)
Integrate a system of ordinary stochastic differential equations conditioned on an incremental measurement
record:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗, 𝑡) 𝑑𝑡 + 𝑏⃗(𝑋⃗, 𝑡) 𝑑𝑊𝑡

Uses the Milstein method:

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑎⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑊𝑖 +
1

2

(︁
𝑏(𝑋⃗𝑖, 𝑡𝑖) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

where ∆𝑊𝑖 = 𝑓(∆𝑀𝑖, 𝑋⃗, 𝑡), ∆𝑀𝑖 being the incremental measurement record being used to drive the SDE.

Parameters

1.5. sde 7

PySME Documentation, Release 0.1

• drift_fn (callable(X, t)) – Computes the drift coefficient 𝑎⃗(𝑋⃗, 𝑡)

• diffusion_fn (callable(X, t)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗, 𝑡)

• b_dx_b_fn (callable(X, t)) – Computes the correction coefficient(︁
𝑏(𝑋⃗, 𝑡) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗, 𝑡)

• dW_fn (callable(dM, dt, X, t)) – The function that converts the incremental
measurement and current state to the Wiener increment.

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• dMs (array, shape=(len(t) - 1)) – Incremental measurement outcomes used to
drive the SDE.

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(ts), len(X0))

sde.milstein(drift, diffusion, b_dx_b, X0, ts, Us)
Integrate a system of ordinary stochastic differential equations subject to scalar noise:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗, 𝑡) 𝑑𝑡 + 𝑏⃗(𝑋⃗, 𝑡) 𝑑𝑊𝑡

Uses the Milstein method:

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑎⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)∆𝑊𝑖 +
1

2

(︁
𝑏(𝑋⃗𝑖, 𝑡𝑖) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗𝑖, 𝑡𝑖)

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

where ∆𝑊𝑖 = 𝑈𝑖

√
∆𝑡, 𝑈 being a normally distributed random variable with mean 0 and variance 1.

Parameters

• drift (callable(X, t)) – Computes the drift coefficient 𝑎⃗(𝑋⃗, 𝑡)

• diffusion (callable(X, t)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗, 𝑡)

• b_dx_b (callable(X, t)) – Computes the correction coefficient(︁
𝑏(𝑋⃗, 𝑡) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗, 𝑡)

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• Us (array, shape=(len(t) - 1)) – Normalized Weiner increments for each time
step (i.e. samples from a Gaussian distribution with mean 0 and variance 1).

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(ts), len(X0))

sde.time_ind_taylor_1_5(drift, diffusion, b_dx_b, b_dx_a, a_dx_b, a_dx_a, b_dx_b_dx_b,
b_b_dx_dx_b, b_b_dx_dx_a, X0, ts, U1s, U2s)

Integrate a system of ordinary stochastic differential equations with time-independent coefficients subject to
scalar noise:

𝑑𝑋⃗ = 𝑎⃗(𝑋⃗) 𝑑𝑡 + 𝑏⃗(𝑋⃗) 𝑑𝑊𝑡

8 Chapter 1. Code documentation

PySME Documentation, Release 0.1

Uses an order 1.5 Taylor method:

𝜌𝜇𝑖+1 = 𝜌𝜇𝑖 + 𝑎𝜇𝑖 ∆𝑡𝑖 + 𝑏𝜇𝑖 ∆𝑊𝑖 +
1

2
𝑏𝜈𝑖 𝜕𝜈𝑏

𝜇
𝑖

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

+ (1.1)

𝑏𝜈𝑖 𝜕𝜈𝑎
𝜇
𝑖 ∆𝑍𝑖 +

(︂
𝑎𝜈𝑖 𝜕𝜈 +

1

2
𝑏𝜈𝑖 𝑏

𝜎
𝑖 𝜕𝜈𝜕𝜎

)︂
𝑏𝜇𝑖 (∆𝑊𝑖∆𝑡𝑖 − ∆𝑍𝑖) +(1.2)

1

2

(︂
𝑎𝜈𝑖 𝜕𝜈 +

1

2
𝑏𝜈𝑖 𝑏

𝜎
𝑖 𝜕𝜈𝜕𝜎

)︂
𝑎𝜇𝑖 ∆𝑡2𝑖 +

1

2
𝑏𝜈𝑖 𝜕𝜈𝑏

𝜎
𝑖 𝜕𝜎𝑏

𝜇
𝑖

(︂
1

3
(∆𝑊𝑖)

2 − ∆𝑡𝑖

)︂
∆𝑊𝑖(1.3)

Parameters

• drift (callable(X)) – Computes the drift coefficient 𝑎⃗(𝑋⃗)

• diffusion (callable(X)) – Computes the diffusion coefficient 𝑏⃗(𝑋⃗)

• b_dx_b (callable(X)) – Computes the coefficient
(︁
𝑏(𝑋⃗) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗)

• b_dx_a (callable(X)) – Computes the coefficient
(︁
𝑏(𝑋⃗) · ∇⃗𝑋⃗

)︁
𝑎⃗(𝑋⃗)

• a_dx_b (callable(X)) – Computes the coefficient
(︁
𝑎⃗(𝑋⃗) · ∇⃗𝑋⃗

)︁
𝑏⃗(𝑋⃗)

• a_dx_a (callable(X)) – Computes the coefficient
(︁
𝑎⃗(𝑋⃗) · ∇⃗𝑋⃗

)︁
𝑎⃗(𝑋⃗)

• b_dx_b_dx_b (callable(X)) – Computes the coefficient
(︁
𝑏(𝑋⃗) · ∇⃗𝑋⃗

)︁2
𝑏⃗(𝑋⃗)

• b_b_dx_dx_b – Computes 𝑏𝜈𝑏𝜎𝜕𝜈𝜕𝜎𝑏𝜇𝑒𝜇.

• b_b_dx_dx_a – Computes 𝑏𝜈𝑏𝜎𝜕𝜈𝜕𝜎𝑎𝜇𝑒𝜇.

• X0 (array) – Initial condition on X

• ts (array) – A sequence of time points for which to solve for X. The initial value point
should be the first element of this sequence.

• U1s (array, shape=(len(t) - 1)) – Normalized Weiner increments for each time
step (i.e. samples from a Gaussian distribution with mean 0 and variance 1).

• U2s (array, shape=(len(t) - 1)) – Normalized Weiner increments for each time
step (i.e. samples from a Gaussian distribution with mean 0 and variance 1).

Returns Array containing the value of X for each desired time in t, with the initial value X0 in the
first row.

Return type numpy.array, shape=(len(t), len(X0))

1.6 grid_conv

Functions for testing convergence rates using grid convergence

grid_conv.calc_rate(integrator, rho_0, times, U1s=None, U2s=None)
Calculate the convergence rate for some integrator.

Parameters

• integrator – An Integrator object.

• rho_0 (numpy.array) – The initial state of the system

• times – Sequence of times (assumed to be evenly spaced, defining a number of increments
divisible by 4).

1.6. grid_conv 9

PySME Documentation, Release 0.1

• U1s (numpy.array(len(times) - 1)) – Samples from a standard-normal distribu-
tion used to construct Wiener increments ∆𝑊 for each time interval. If not provided will
be generated by the function.

• U2s (numpy.array(len(times) - 1)) – Samples from a standard-normal distribu-
tion used to construct multiple-Ito increments ∆𝑍 for each time interval. If not provided
will be generated by the function.

Returns The convergence rate as a power of ∆𝑡.

Return type float

grid_conv.double_increments(times, U1s, U2s=None)
Take a list of times (assumed to be evenly spaced) and standard-normal random variables used to define the Ito
integrals on the intervals and return the equivalent lists for doubled time intervals. The new standard-normal
random variables are defined in terms of the old ones by

Parameters

• times (numpy.array) – List of evenly spaced times defining an even number of time
intervals.

• U1s (numpy.array(N, len(times) - 1)) – Samples from a standard-normal dis-
tribution used to construct Wiener increments ∆𝑊 for each time interval. Multiple rows
may be included for independent trajectories.

• U2s (numpy.array(N, len(times) - 1)) – Samples from a standard-normal dis-
tribution used to construct multiple-Ito increments ∆𝑍 for each time interval. Multiple rows
may be included for independent trajectories.

Returns Times sampled at half the frequency and the modified standard-normal-random-variable
samples for the new intervals. If U2s=None, only new U1s are returned.

Return type (numpy.array(len(times)//2 + 1), numpy.array(len(times)//2)[,
numpy.array(len(times)//2]))

10 Chapter 1. Code documentation

CHAPTER 2

Vectorization

In this module, integration of ordinary and stochastic master equations is performed on density operators parametrized
by 𝑑2 real numbers, where 𝑑 is the dimension of the system Hilbert space. These are the components of the density
operator as a vector in a basis that is Hermitian and, excepting the identity, traceless. Since the ordinary and stochastic
master equations under consideration are trace preserving, one could neglect the basis element corresponding to the
identity, but as the module currently stands it is included to simplify some expressions and provide a simple test to
make sure calculations are proceeding as they ought to.

The preliminary basis having these properties that is used consists of the generalized Gell–Mann matrices:

Λ𝑗𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|𝑗⟩⟨𝑘| + |𝑘⟩⟨𝑗|, 1 ≤ 𝑘 < 𝑗 ≤ 𝑑

−𝑖|𝑗⟩⟨𝑘| + 𝑖|𝑘⟩⟨𝑗|, 1 ≤ 𝑗 < 𝑘 ≤ 𝑑

√︁
2

𝑘(𝑘+1)

(︁∑︀𝑘
𝑙=1 |𝑙⟩⟨𝑙| − |𝑘⟩⟨𝑘|

)︁
, 1 ≤ 𝑗 = 𝑘 < 𝑑

𝐼, 𝑗 = 𝑘 = 𝑑

I have toyed around with building a custom basis to make the coupling operator sparse by applying orthogonal trans-
formations to the normalized version of this basis, but since that appears to have little effect I believe I will simply use
this basis for the time being. This basis as I have written it is orthogonal, but not normalized:

Tr[Λ𝑗𝑘Λ𝑚𝑛] = 𝛿𝑗𝑚𝛿𝑘𝑛
(︀
2 + 𝛿𝑗𝑑𝛿𝑘𝑑(𝑑− 2)

)︀
The density operator and coupling operator are vectorized in the following manner:

𝜌 =
∑︁
𝑗,𝑘

𝜌𝑗𝑘Λ𝑗𝑘, 𝜌𝑗𝑘 ∈ R (2.1)

𝑐 =
∑︁
𝑗,𝑘

𝑐𝑗𝑘Λ𝑗𝑘, 𝑐𝑗𝑘 ∈ C(2.2)

11

PySME Documentation, Release 0.1

2.1 Matrix representations of superoperators

We can write the unconditional vacuum master equation 𝑑𝜌/𝑑𝑡 = 𝑐𝜌𝑐† − 1
2 (𝑐†𝑐𝜌 + 𝜌𝑐†𝑐) as a system of coupled

first-order ordinary differential equations:

Tr[Λ𝑗𝑘Λ𝑗𝑘]
d𝜌𝑗𝑘
d𝑡

=
∑︁
𝑝,𝑞

𝜌𝑝𝑞

(︃∑︁
𝑚,𝑛

|𝑐𝑚𝑛|2 Tr

[︂
Λ𝑗𝑘

(︂
Λ𝑚𝑛Λ𝑝𝑞Λ𝑚𝑛 − 1

2
(Λ𝑚𝑛Λ𝑚𝑛Λ𝑝𝑞 + Λ𝑝𝑞Λ𝑚𝑛Λ𝑚𝑛)

)︂]︂
+ (2.3)

∑︁
𝑑𝑚+𝑛<𝑑𝑟+𝑠

2ℜ
{︂
𝑐𝑚𝑛𝑐

*
𝑟𝑠 Tr

[︂
Λ𝑗𝑘

(︂
Λ𝑚𝑛Λ𝑝𝑞Λ𝑟𝑠 − 1

2
(Λ𝑟𝑠Λ𝑚𝑛Λ𝑝𝑞 + Λ𝑝𝑞Λ𝑟𝑠Λ𝑚𝑛)

)︂]︂}︂)︃
(2.4)

This means I can write the vectorized version of the equation, using single indices 𝑤 = 𝑑𝑟+𝑠, 𝑥 = 𝑑𝑗+𝑘, 𝑦 = 𝑑𝑝+𝑞,
and 𝑧 = 𝑑𝑚 + 𝑛 for 𝜌⃗:

𝑑𝜌⃗

𝑑𝑡
= 𝐷(𝑐⃗)𝜌⃗

The matrix 𝐷(𝑐⃗) has entries:

𝐷𝑥𝑦(𝑐⃗) = (Tr[Λ𝑥Λ𝑥])−1

(︃∑︁
𝑧

|𝑐𝑧|2 Tr[Λ𝑥(Λ𝑧Λ𝑦Λ𝑧 − 1

2
(Λ𝑧Λ𝑧Λ𝑦 + Λ𝑦Λ𝑧Λ𝑧))]+ (2.5)

∑︁
𝑧>𝑤

2ℜ
{︂
𝑐𝑧𝑐

*
𝑤 Tr[Λ𝑥(Λ𝑧Λ𝑦Λ𝑤 − 1

2
(Λ𝑤Λ𝑧Λ𝑦 + Λ𝑦Λ𝑤Λ𝑧))]

}︂)︃
(2.6)

In a similar way we can calculate:

𝜌′ =
𝑀

2
[𝑐, [𝑐, 𝜌]] +

𝑀*

2
[𝑐†, [𝑐†, 𝜌]]

in the vectorized form:

𝜌⃗′ = 𝐸(𝑀, 𝑐⃗)𝜌⃗

where 𝐸(𝑀, 𝑐⃗) has entries:

𝐸𝑥𝑦(𝑀, 𝑐⃗) = 2(Tr[Λ𝑥Λ𝑥])−1

(︃∑︁
𝑤<𝑧

ℜ{𝑀*𝑐𝑤𝑐𝑧}ℜ{Tr[Λ𝑥(Λ𝑤Λ𝑧Λ𝑦 + Λ𝑦Λ𝑤Λ𝑧) − 2Λ𝑥Λ𝑤Λ𝑦Λ𝑧]}+ (2.7)

∑︁
𝑤

ℜ{𝑀*𝑐2𝑤}(ℜ{Tr[Λ𝑥Λ𝑤Λ𝑤Λ𝑦]} − Tr[Λ𝑥Λ𝑤Λ𝑦Λ𝑤])

)︃
(2.8)

If I vectorize the plant Hamiltonian:

𝐻 =
∑︁
𝑧

ℎ𝑧Λ𝑧, ℎ𝑧 ∈ R (2.9)

I can then calculate:

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌]

in the vectorized form:

𝑑𝜌⃗

𝑑𝑡
= 𝐹 (⃗ℎ)𝜌⃗

where 𝐹 (⃗ℎ) has entries:

𝐹𝑥,𝑦 (⃗ℎ) = (Tr[Λ𝑥Λ𝑥])−1
∑︁
𝑧

ℎ𝑧 ℑ{Tr[Λ𝑥(Λ𝑧Λ𝑦 − Λ𝑦Λ𝑧)]}

12 Chapter 2. Vectorization

PySME Documentation, Release 0.1

2.2 Nonlinear superoperator representation

The stochastic expression:

𝑑𝜌 = 𝑑𝑊 (𝑐𝜌 + 𝜌𝑐† − 𝜌Tr[(𝑐 + 𝑐†)𝜌])

can be calculated:

𝑑𝜌⃗ = 𝑑𝑊 (𝐺 + 𝑘⃗ · 𝜌⃗)𝜌⃗

where we define:

𝐺𝑥,𝑦 = 2 (Tr[Λ𝑥Λ𝑥])
−1
∑︁
𝑧

ℜ{𝑐𝑧 Tr[Λ𝑥Λ𝑧Λ𝑦]} (2.10)

𝑘𝑥 = −2ℜ{𝑐𝑥}Tr[Λ𝑥Λ𝑥](2.11)

2.2. Nonlinear superoperator representation 13

PySME Documentation, Release 0.1

14 Chapter 2. Vectorization

CHAPTER 3

SME integration

In order to integrate a stochastic equation:

𝑑𝑋 = 𝑎(𝑋, 𝑡)𝑑𝑡 + 𝑏(𝑋, 𝑡)𝑑𝑊

if one wants to be more sophisticated than Euler integration, one can use Milstein integration:

𝑋𝑖+1 = 𝑋𝑖 + 𝑎(𝑋𝑖, 𝑡𝑖)∆𝑡𝑖 + 𝑏(𝑋𝑖, 𝑡𝑖)∆𝑊𝑖 +
1

2
𝑏(𝑋𝑖, 𝑡𝑖)

𝜕

𝜕𝑋
𝑏(𝑋𝑖, 𝑡𝑖)

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

3.1 Vector Milstein

What if we are interested in a vector-valued equation:

𝑑𝜌⃗ = 𝑎⃗(𝜌⃗, 𝑡)𝑑𝑡 + 𝑏⃗(𝜌⃗, 𝑡)𝑑𝑊

The way to generalize the Milstein scheme (while still restricting ourselves to a scalar-valued Wiener process) is

𝜌𝜇𝑖+1 = 𝜌𝜇𝑖 + 𝑎𝜇𝑖 ∆𝑡𝑖 + 𝑏𝜇𝑖 ∆𝑊𝑖 +
1

2
𝑏𝜈𝑖 𝜕𝜈𝑏

𝜇
𝑖

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀
,

where I have adopted an index convention for vectors such that

𝜌⃗ = 𝜌𝜇𝑒𝜇 (3.1)
𝑎𝜇𝑖 = 𝑎𝜇(𝜌⃗𝑖, 𝑡𝑖)(3.2)

𝜕𝜈 =
𝜕

𝜕𝜌𝜈
,(3.3)

and indices that appear in both upper and lower positions in the same term are implicitly summer over.

For 𝑏𝜇 = 𝐺𝜇
𝜈𝜌

𝜈 + 𝑘𝜈𝜌
𝜈𝜌𝜇 as defined in Vectorization we can write:

𝑏𝜈𝜕𝜈𝑏
𝜇 = (𝑘𝜈𝐺

𝜈
𝜎𝜌

𝜇 + 𝐺𝜇
𝜈𝐺

𝜈
𝜎 + 2𝑘𝜈𝜌

𝜈(𝐺𝜇
𝜎 + 𝑘𝜎𝜌

𝜇)) 𝜌𝜎 (3.4)

𝑏𝜈𝜕𝜈𝑏
𝜇𝑒𝜇 =

(︁(︁
𝑘⃗T𝐺𝜌⃗

)︁
+ 𝐺2 + 2(𝑘⃗ · 𝜌⃗)

(︁
𝐺 + 𝑘⃗ · 𝜌⃗

)︁)︁
𝜌⃗(3.5)

15

PySME Documentation, Release 0.1

3.2 Order 1.5 Taylor scheme

To get higher order convergence in time, we can use a more complicated update formula (restricting ourselves to 𝑎⃗ and
𝑏⃗ with no explicit time dependence, as we have in our problem):

𝜌𝜇𝑖+1 = 𝜌𝜇𝑖 + 𝑎𝜇𝑖 ∆𝑡𝑖 + 𝑏𝜇𝑖 ∆𝑊𝑖 +
1

2
𝑏𝜈𝑖 𝜕𝜈𝑏

𝜇
𝑖

(︀
(∆𝑊𝑖)

2 − ∆𝑡𝑖
)︀

+ (3.6)

𝑏𝜈𝑖 𝜕𝜈𝑎
𝜇
𝑖 ∆𝑍𝑖 +

(︂
𝑎𝜈𝑖 𝜕𝜈 +

1

2
𝑏𝜈𝑖 𝑏

𝜎
𝑖 𝜕𝜈𝜕𝜎

)︂
𝑏𝜇𝑖 (∆𝑊𝑖∆𝑡𝑖 − ∆𝑍𝑖) +(3.7)

1

2

(︂
𝑎𝜈𝑖 𝜕𝜈 +

1

2
𝑏𝜈𝑖 𝑏

𝜎
𝑖 𝜕𝜈𝜕𝜎

)︂
𝑎𝜇𝑖 ∆𝑡2𝑖 +

1

2
𝑏𝜈𝑖 𝜕𝜈𝑏

𝜎
𝑖 𝜕𝜎𝑏

𝜇
𝑖

(︂
1

3
(∆𝑊𝑖)

2 − ∆𝑡𝑖

)︂
∆𝑊𝑖(3.8)

Recall from Vectorization that:

𝑎⃗(𝜌⃗) = 𝑄𝜌⃗ (3.9)

𝑄 := (𝑁 + 1)𝐷(𝑐⃗) + 𝑁𝐷(𝑐⃗*) + 𝐸(𝑀, 𝑐⃗) + 𝐹 (⃗ℎ)(3.10)

∆𝑍 is a new random variable related to ∆𝑊 :

∆𝑊𝑖 = 𝑈1,𝑖

√︀
∆𝑡𝑖 (3.11)

∆𝑍𝑖 =
1

2

(︂
𝑈1,𝑖 +

1√
3
𝑈2,𝑖

)︂
∆𝑡

3/2
𝑖(3.12)

where 𝑈1, 𝑈2 are normally distributed random variables with mean 0 and variance 1.

The new terms in the higher-order update formula are given below:

𝑏𝜈𝜕𝜈𝑎
𝜇𝑒𝜇 = 𝑄𝐺𝜌⃗ + (𝑘⃗ · 𝜌⃗)𝑄𝜌⃗ (3.13)

𝑎𝜈𝜕𝜈𝑏
𝜇𝑒𝜇 = 𝐺𝑄𝜌⃗ + (𝑘⃗ · 𝜌⃗)𝑄𝜌⃗ +

(︁
𝑘⃗T𝑄𝜌⃗

)︁
𝜌⃗(3.14)

𝑎𝜈𝜕𝜈𝑎
𝜇𝑒𝜇 = 𝑄2𝜌⃗(3.15)

𝑏𝜈𝜕𝜈𝑏
𝜎𝜕𝜎𝑏

𝜇𝑒𝜇 = 𝐺3𝜌⃗ + 3(𝑘⃗ · 𝜌⃗)𝐺2𝜌⃗ + 3
(︁
𝑘⃗T𝐺𝜌⃗ + 2(𝑘⃗ · 𝜌⃗)2

)︁
𝐺𝜌⃗ +(3.16)(︁

𝑘⃗T𝐺2𝜌⃗ + 6(𝑘⃗ · 𝜌⃗)𝑘⃗T𝐺𝜌⃗ + 6(𝑘⃗ · 𝜌⃗)3
)︁
𝜌⃗(3.17)

𝑏𝜈𝑏𝜎𝜕𝜈𝜕𝜎𝑏
𝜇𝑒𝜇 = 2

(︁
𝑘⃗T𝐺𝜌⃗ + (𝑘⃗ · 𝜌⃗)2

)︁(︁
𝐺𝜌⃗ + (𝑘⃗ · 𝜌⃗)𝜌⃗

)︁
(3.18)

𝑏𝜈𝑏𝜎𝜕𝜈𝜕𝜎𝑎
𝜇𝑒𝜇 = 0(3.19)

We explore testing the convergence rates in Testing.

16 Chapter 3. SME integration

CHAPTER 4

Testing

To test the stochastic integrators, I am taking my cue from Ian Hawke and employing grid convergence. There are
two points that make using grid convergence checks on stochastic integration slightly less trivial than for ordinary
integration.

The first point is that the stochastic integration methods have convergence rates that are given as expectation values
of the convergence rates for each trajectory. For strong approximation techniques (which are supposed to converge
in trajectory), this means that I’ll need to calculate the convergence rates for an ensemble of trajectories and take the
average in order to compare to the expected convergence rate.

The second point is that I have to use consistent random increments ∆𝑊 and ∆𝑍 for each trajectory. I will do this
by calculating all my increments for the smallest timestep, and then using those values to construct the corresponding
increments for larger timesteps. My integrators also deal in standard-normal random variable 𝑈1 and 𝑈2, so the thing
I actually need to construct are the corresponding standard-normal random variables 𝑈̃1 and 𝑈̃2 for the larger time
increments.

4.1 Longer stochastic increments

Let’s write down what we want first:

∆̃ = 2∆ (4.1)

∆𝑊 = 𝑈1

√
∆(4.2)

∆𝑊̃ = 𝑈̃1

√︀
∆̃(4.3)

∆𝑍 =
1

2
∆3/2

(︂
𝑈1 +

1√
3
𝑈2

)︂
(4.4)

∆𝑍 =
1

2
∆̃3/2

(︂
𝑈̃1 +

1√
3
𝑈̃2

)︂
.(4.5)

17

http://nbviewer.ipython.org/github/IanHawke/close-enough-balloons/blob/master/00-Close-Enough-Post-Overall.ipynb

PySME Documentation, Release 0.1

Now we will write down how the increments are defined and work out what our new standard-normal random variables
are.

∆𝑛 :=

∫︁ 𝜏𝑛+1

𝜏𝑛

𝑑𝑠 (4.6)

∆̃𝑛 :=

∫︁ 𝜏𝑛+2

𝜏𝑛

𝑑𝑠(4.7)

=

∫︁ 𝜏𝑛+1

𝜏𝑛

𝑑𝑠 +

∫︁ 𝜏𝑛+2

𝜏𝑛+1

𝑑𝑠(4.8)

= ∆𝑛 + ∆𝑛+1(4.9)

∆𝑊𝑛 :=

∫︁ 𝜏𝑛+1

𝜏𝑛

𝑑𝑊𝑠(4.10)

∆𝑊̃𝑛 :=

∫︁ 𝜏𝑛+2

𝜏𝑛

𝑑𝑊𝑠(4.11)

=

∫︁ 𝜏𝑛+1

𝜏𝑛

𝑑𝑊𝑠 +

∫︁ 𝜏𝑛+2

𝜏𝑛+1

𝑑𝑊𝑠(4.12)

= ∆𝑊𝑛 + ∆𝑊𝑛+1(4.13)

∆𝑍𝑛 :=

∫︁ 𝜏𝑛+1

𝜏𝑛

∫︁ 𝑠2

𝜏𝑛

𝑑𝑊𝑠1𝑑𝑠2(4.14)

∆𝑍𝑛 :=

∫︁ 𝜏𝑛+2

𝜏𝑛

∫︁ 𝑠2

𝜏𝑛

𝑑𝑊𝑠1𝑑𝑠2(4.15)

=

∫︁ 𝜏𝑛+1

𝜏𝑛

∫︁ 𝑠2

𝜏𝑛

𝑑𝑊𝑠1𝑑𝑠2 +

∫︁ 𝜏𝑛+2

𝜏𝑛+1

∫︁ 𝑠2

𝜏𝑛

𝑑𝑊𝑠1𝑑𝑠2(4.16)

= ∆𝑍𝑛 +

∫︁ 𝜏𝑛+2

𝜏𝑛+1

∫︁ 𝜏𝑛+1

𝜏𝑛

𝑑𝑊𝑠1𝑑𝑠2 +

∫︁ 𝜏𝑛+2

𝜏𝑛+1

∫︁ 𝑠2

𝜏𝑛+1

𝑑𝑊𝑠1𝑑𝑠2(4.17)

= ∆𝑍𝑛 + ∆𝑛+1∆𝑊𝑛 + ∆𝑍𝑛+1 .(4.18)

We will assume equal time intervals, so ∆𝑛 = ∆. We start by assuming we are simulating ∆𝑊𝑛 and ∆𝑍𝑛 by the
independent standard-normal random variables 𝑈1,𝑛 and 𝑈2,𝑛 using the expressions

∆𝑊𝑛 = 𝑈1,𝑛

√
∆ (4.19)

∆𝑍𝑛 =
1

2
∆3/2

(︂
𝑈1,𝑛 +

1√
3
𝑈2,𝑛

)︂
.(4.20)

Now we want to derive expressions for the new independent standard-normal random variables 𝑈̃1,𝑛 and 𝑈̃2,𝑛. Start
by looking at ∆𝑊̃𝑛:

∆𝑊̃𝑛 = ∆𝑊𝑛 + ∆𝑊𝑛+1 (4.21)

= (𝑈1,𝑛 + 𝑈1,𝑛+1)
√

∆(4.22)

=
𝑈1,𝑛 + 𝑈1,𝑛+1√

2

√︀
∆̃ .(4.23)

This tells us

𝑈̃1,𝑛 =
𝑈1,𝑛 + 𝑈1,𝑛+1√

2
. (4.24)

It is easy to verify this is a standard-normal random variable.

18 Chapter 4. Testing

PySME Documentation, Release 0.1

Now look at ∆𝑍𝑛:

∆𝑍𝑛 = ∆𝑍𝑛 + ∆∆𝑊𝑛 + ∆𝑍𝑛+1 (4.25)

=
1

2
∆3/2

(︂
𝑈1,𝑛 +

1√
3
𝑈2,𝑛

)︂
+ ∆𝑈1,𝑛

√
∆ +

1

2
∆3/2

(︂
𝑈1,𝑛+1 +

1√
3
𝑈2,𝑛+1

)︂
(4.26)

=
1

2
∆3/2

(︂
3𝑈1,𝑛 + 𝑈1,𝑛+1 +

1√
3

(𝑈2,𝑛 + 𝑈2,𝑛+1)

)︂
(4.27)

=
1

2
∆̃3/2 1

2
√

2

(︂
2(𝑈1,𝑛 + 𝑈1,𝑛+1) + 𝑈1,𝑛 − 𝑈1,𝑛+1 +

1√
3

(𝑈2,𝑛 + 𝑈2,𝑛+1)

)︂
(4.28)

=
1

2
∆̃3/2

(︃
𝑈1,𝑛 + 𝑈1,𝑛+1√

2
+

1√
3

(︃√
3

2

𝑈1,𝑛 − 𝑈1,𝑛+1√
2

+
1

2

𝑈2,𝑛 + 𝑈2,𝑛+1√
2

)︃)︃
.(4.29)

This tells us

𝑈̃2,𝑛 =

√
3

2

𝑈1,𝑛 − 𝑈1,𝑛+1√
2

+
1

2

𝑈2,𝑛 + 𝑈2,𝑛+1√
2

. (4.30)

Again, it is relatively straightforward to verify that this is another standard-normal random variable and independent
of 𝑈̃1,𝑛.

4.1. Longer stochastic increments 19

PySME Documentation, Release 0.1

20 Chapter 4. Testing

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

21

PySME Documentation, Release 0.1

22 Chapter 5. Indices and tables

Python Module Index

g
gellmann, 5
gellmann.py, 5
gramschmidt, 6
grid_conv, 9

s
sde, 6
sde.py, 6
system_builder, 3
system_builder.py, 3

23

PySME Documentation, Release 0.1

24 Python Module Index

Index

C
calc_rate() (in module grid_conv), 9

D
diffusion_op() (in module system_builder), 3
double_comm_op() (in module system_builder), 3
double_increments() (in module grid_conv), 10
dualize() (in module system_builder), 4

E
euler() (in module sde), 6

F
faulty_milstein() (in module sde), 6

G
gellmann (module), 5
gellmann() (in module gellmann), 5
gellmann.py (module), 5
get_basis() (in module gellmann), 5
gramschmidt (module), 6
grid_conv (module), 9

H
hamiltonian_op() (in module system_builder), 4

M
meas_euler() (in module sde), 7
meas_milstein() (in module sde), 7
milstein() (in module sde), 8

N
norm_squared() (in module system_builder), 4

O
op_calc_setup() (in module system_builder), 4
orthonormalize() (in module gramschmidt), 6

R
recur_dot() (in module system_builder), 4

S
sde (module), 6
sde.py (module), 6
system_builder (module), 3
system_builder.py (module), 3

T
time_ind_taylor_1_5() (in module sde), 8

V
vectorize() (in module system_builder), 4

W
weiner_op() (in module system_builder), 5

25

	Code documentation
	system_builder
	gellmann
	gramschmidt
	integrate
	sde
	grid_conv

	Vectorization
	Matrix representations of superoperators
	Nonlinear superoperator representation

	SME integration
	Vector Milstein
	Order 1.5 Taylor scheme

	Testing
	Longer stochastic increments

	Indices and tables
	Python Module Index

