
pysm Documentation
Release 0.3.8

Piotr Gularski

Mar 23, 2019

Contents

1 Module documentation 3

2 Installation 11

3 Examples 13
3.1 Simple state machine . 13
3.2 Complex hierarchical state machine . 14
3.3 Different ways to attach event handlers . 17
3.4 Reverse Polish notation calculator . 19

Python Module Index 23

i

ii

pysm Documentation, Release 0.3.8

Github | PyPI

The State Pattern solves many problems, untangles the code and saves one’s sanity. Yet.., it’s a bit rigid and doesn’t
scale. The goal of this library is to give you a close to the State Pattern simplicity with much more flexibility. And, if
needed, the full state machine functionality, including FSM, HSM, PDA and other tasty things.

Goals:

• Provide a State Pattern-like behavior with more flexibility

• Be explicit and don’t add any code to objects

• Handle directly any kind of event (not only strings) - parsing strings is cool again!

• Keep it simple, even for someone who’s not very familiar with the FSM terminology

Contents 1

https://github.com/pgularski/pysm/
https://pypi.python.org/pypi/pysm/
https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/UML_state_machine#Hierarchically_nested_states
https://en.wikipedia.org/wiki/Pushdown_automaton

pysm Documentation, Release 0.3.8

2 Contents

CHAPTER 1

Module documentation

Python State Machine

The goal of this library is to give you a close to the State Pattern simplicity with much more flexibility. And, if needed,
the full state machine functionality, including FSM, HSM, PDA and other tasty things.

Goals:

• Provide a State Pattern-like behavior with more flexibility

• Be explicit and don’t add any code to objects

• Handle directly any kind of event (not only strings) - parsing strings is cool again!

• Keep it simple, even for someone who’s not very familiar with the FSM terminology

class pysm.pysm.AnyEvent
Bases: object

hash(object()) doesn’t work in MicroPython therefore the need for this class.

class pysm.pysm.Event(name, input=None, **cargo)
Bases: object

Triggers actions and transition in StateMachine.

Events are also used to control the flow of data propagated to states within the states hierarchy.

Event objects have the following attributes set after an event has been dispatched:

Attributes:

state_machine
A StateMachine instance that is handling the event (the one whose pysm.pysm.
StateMachine.dispatch() method is called)

propagate
An event is propagated from a current leaf state up in the states hierarchy until it encounters a
handler that can handle the event. To propagate it further, it has to be set to True in a handler.

3

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/UML_state_machine#Hierarchically_nested_states
https://en.wikipedia.org/wiki/Pushdown_automaton
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pysm Documentation, Release 0.3.8

Parameters

• name (Hashable) – Name of an event. It may be anything as long as it’s hashable.

• input (Hashable) – Optional input. Anything hashable.

• **cargo – Keyword arguments for an event, used to transport data to handlers. It’s added
to an event as a cargo property of type dict. For enter and exit events, the original event that
triggered a transition is passed in cargo as source_event entry.

Example Usage:

state_machine.dispatch(Event('start'))
state_machine.dispatch(Event('start', key='value'))
state_machine.dispatch(Event('parse', input='#', entity=my_object))
state_machine.dispatch(Event('%'))
state_machine.dispatch(Event(frozenset([1, 2])))

class pysm.pysm.State(name)
Bases: object

Represents a state in a state machine.

enter and exit handlers are called whenever a state is entered or exited respectively. These action names are
reserved only for this purpose.

It is encouraged to extend this class to encapsulate a state behavior, similarly to the State Pattern.

Once it’s extended, the preferred way of adding an event handlers is through the register_handlers()
hook. Usually, there’s no need to create the __init__() in a subclass.

Parameters name (str) – Human readable state name

Example Usage:

Extending State to encapsulate state-related behavior. Similar to the
State Pattern.
class Running(State):

def on_enter(self, state, event):
print('Running state entered')

def on_jump(self, state, event):
print('Jumping')

def on_dollar(self, state, event):
print('Dollar found!')

def register_handlers(self):
self.handlers = {

'enter': self.on_enter,
'jump': self.on_jump,
'$': self.on_dollar

}

Different way of attaching handlers. A handler may be any function as
long as it takes `state` and `event` args.
def another_handler(state, event):

print('Another handler')

running = State('running')

(continues on next page)

4 Chapter 1. Module documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

pysm Documentation, Release 0.3.8

(continued from previous page)

running.handlers = {
'another_event': another_handler

}

is_substate(state)
Check whether the state is a substate of self.

Also self is considered a substate of self.

Parameters state (State) – State to verify

Returns True if state is a substate of self, False otherwise

Return type bool

register_handlers()
Hook method to register event handlers.

It is used to easily extend State class. The hook is called from within the base State.__init__().
Usually, the __init__() doesn’t have to be created in a subclass.

Event handlers are kept in a dict, with events’ names as keys, therefore registered events may be of any
hashable type.

Handlers take two arguments:

• state: The current state that is handling an event. The same handler function may be attached to
many states, therefore it is helpful to get the handling state’s instance.

• event: An event that triggered the handler call. If it is an enter or exit event, then the source event
(the one that triggered the transition) is passed in event’s cargo property as cargo.source_event.

Example Usage:

class On(State):
def handle_my_event(self, state, event):

print('Handling an event')

def register_handlers(self):
self.handlers = {

'my_event': self.handle_my_event,
'&': self.handle_my_event,
frozenset([1, 2]): self.handle_my_event

}

class pysm.pysm.StateMachine(name)
Bases: pysm.pysm.State

State machine controls actions and transitions.

To provide the State Pattern-like behavior, the formal state machine rules may be slightly broken, and instead of
creating an internal transition for every action that doesn’t require a state change, event handlers may be added
to states. These are handled first when an event occurs. After that the actual transition is called, calling enter/exit
actions and other transition actions. Nevertheless, internal transitions are also supported.

So the order of calls on an event is as follows:

1. State’s event handler

2. condition callback

3. before callback

5

https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/UML_state_machine#Internal_transitions

pysm Documentation, Release 0.3.8

4. exit handlers

5. action callback

6. enter handlers

7. after callback

If there’s no handler in states or transition for an event, it is silently ignored.

If using nested state machines, all events should be sent to the root state machine.

Attributes:

state
Current, local state (instance of State) in a state machine.

stack
Stack that can be used if the Pushdown Automaton (PDA) functionality is needed.

state_stack
Stack of previous local states in a state machine. With every transition, a previous state (instance
of State) is pushed to the state_stack. Only StateMachine.STACK_SIZE (32 by default)
are stored and old values are removed from the stack.

leaf_state_stack
Stack of previous leaf states in a state machine. With every transition, a previous leaf state
(instance of State) is pushed to the leaf_state_stack. Only StateMachine.STACK_SIZE
(32 by default) are stored and old values are removed from the stack.

leaf_state See the leaf_state property.

root_machine See the root_machine property.

Parameters name (str) – Human readable state machine name

Note: StateMachine extends State and therefore it is possible to always use a StateMachine instance
instead of the State. This wouldn’t be a good practice though, as the State class is designed to be as
small as possible memory-wise and thus it’s more memory efficient. It is valid to replace a State with a
StateMachine later on if there’s a need to extend a state with internal states.

Note: For the sake of speed thread safety isn’t guaranteed.

Example Usage:

state_machine = StateMachine('root_machine')
state_on = State('On')
state_off = State('Off')
state_machine.add_state('Off', initial=True)
state_machine.add_state('On')
state_machine.add_transition(state_on, state_off, events=['off'])
state_machine.add_transition(state_off, state_on, events=['on'])
state_machine.initialize()
state_machine.dispatch(Event('on'))

add_state(state, initial=False)
Add a state to a state machine.

6 Chapter 1. Module documentation

https://en.wikipedia.org/wiki/Pushdown_automaton
https://docs.python.org/3/library/stdtypes.html#str

pysm Documentation, Release 0.3.8

If states are added, one (and only one) of them has to be declared as initial.

Parameters

• state (State) – State to be added. It may be an another StateMachine

• initial (bool) – Declare a state as initial

add_states(*states)
Add states to the StateMachine.

To set the initial state use set_initial_state().

Parameters states (State) – A list of states to be added

add_transition(from_state, to_state, events, input=None, action=None, condition=None, be-
fore=None, after=None)

Add a transition to a state machine.

All callbacks take two arguments - state and event. See parameters description for details.

It is possible to create conditional if/elif/else-like logic for transitions. To do so, add many same transition
rules with different condition callbacks. First met condition will trigger a transition, if no condition is met,
no transition is performed.

Parameters

• from_state (State) – Source state

• to_state (State, None) – Target state. If None, then it’s an internal transition

• events (Iterable of Hashable) – List of events that trigger the transition

• input (None, Iterable of Hashable) – List of inputs that trigger the transition. A
transition event may be associated with a specific input. i.e.: An event may be parse and
an input associated with it may be $. May be None (default), then every matched event
name triggers a transition.

• action (Callable) – Action callback that is called during the transition after all states
have been left but before the new one is entered.

action callback takes two arguments:

– state: Leaf state before transition

– event: Event that triggered the transition

• condition (Callable) – Condition callback - if returns True transition may be initi-
ated.

condition callback takes two arguments:

– state: Leaf state before transition

– event: Event that triggered the transition

• before (Callable) – Action callback that is called right before the transition.

before callback takes two arguments:

– state: Leaf state before transition

– event: Event that triggered the transition

• after (Callable) – Action callback that is called just after the transition

after callback takes two arguments:

– state: Leaf state after transition

7

https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/UML_state_machine#Internal_transitions

pysm Documentation, Release 0.3.8

– event: Event that triggered the transition

dispatch(event)
Dispatch an event to a state machine.

If using nested state machines (HSM), it has to be called on a root state machine in the hierarchy.

Parameters event (Event) – Event to be dispatched

initial_state
Get the initial state in a state machine.

Returns Initial state in a state machine

Return type State

initialize()
Initialize states in the state machine.

After a state machine has been created and all states are added to it, initialize() has to be called.

If using nested state machines (HSM), initialize() has to be called on a root state machine in the
hierarchy.

is_substate(state)
Check whether the state is a substate of self.

Also self is considered a substate of self.

Parameters state (State) – State to verify

Returns True if state is a substate of self, False otherwise

Return type bool

leaf_state
Get the current leaf state.

The state property gives the current, local state in a state machine. The leaf_state goes to the bottom
in a hierarchy of states. In most cases, this is the property that should be used to get the current state in a
state machine, even in a flat FSM, to keep the consistency in the code and to avoid confusion.

Returns Leaf state in a hierarchical state machine

Return type State

register_handlers()
Hook method to register event handlers.

It is used to easily extend State class. The hook is called from within the base State.__init__().
Usually, the __init__() doesn’t have to be created in a subclass.

Event handlers are kept in a dict, with events’ names as keys, therefore registered events may be of any
hashable type.

Handlers take two arguments:

• state: The current state that is handling an event. The same handler function may be attached to
many states, therefore it is helpful to get the handling state’s instance.

• event: An event that triggered the handler call. If it is an enter or exit event, then the source event
(the one that triggered the transition) is passed in event’s cargo property as cargo.source_event.

Example Usage:

8 Chapter 1. Module documentation

https://docs.python.org/3/library/functions.html#bool

pysm Documentation, Release 0.3.8

class On(State):
def handle_my_event(self, state, event):

print('Handling an event')

def register_handlers(self):
self.handlers = {

'my_event': self.handle_my_event,
'&': self.handle_my_event,
frozenset([1, 2]): self.handle_my_event

}

revert_to_previous_leaf_state(event=None)
Similar to set_previous_leaf_state() but the current leaf_state is not saved on the stack of
states. It allows to perform transitions further in the history of states.

root_machine
Get the root state machine in a states hierarchy.

Returns Root state in the states hierarchy

Return type StateMachine

set_initial_state(state)
Set an initial state in a state machine.

Parameters state (State) – Set this state as initial in a state machine

set_previous_leaf_state(event=None)
Transition to a previous leaf state. This makes a dynamic transition to a historical state. The current
leaf_state is saved on the stack of historical leaf states when calling this method.

Parameters event (Event) – (Optional) event that is passed to states involved in the transition

exception pysm.pysm.StateMachineException
Bases: exceptions.Exception

All StateMachine exceptions are of this type.

9

pysm Documentation, Release 0.3.8

10 Chapter 1. Module documentation

CHAPTER 2

Installation

Install pysm from PyPI:

pip install pysm

or clone the Github pysm repository:

git clone https://github.com/pgularski/pysm
cd pysm
python setup.py install

11

https://pypi.python.org/pypi/pysm/
https://github.com/pgularski/pysm/

pysm Documentation, Release 0.3.8

12 Chapter 2. Installation

CHAPTER 3

Examples

• Simple state machine

• Complex hierarchical state machine

• Different ways to attach event handlers

• Reverse Polish notation calculator

3.1 Simple state machine

This is a simple state machine with only two states - on and off.

from pysm import State, StateMachine, Event

on = State('on')
off = State('off')

sm = StateMachine('sm')
sm.add_state(on, initial=True)
sm.add_state(off)

sm.add_transition(on, off, events=['off'])
sm.add_transition(off, on, events=['on'])

sm.initialize()

def test():
assert sm.state == on
sm.dispatch(Event('off'))
assert sm.state == off
sm.dispatch(Event('on'))

(continues on next page)

13

pysm Documentation, Release 0.3.8

(continued from previous page)

assert sm.state == on

if __name__ == '__main__':
test()

3.2 Complex hierarchical state machine

A Hierarchical state machine similar to the one from Miro Samek’s book1, page 95. It is a state machine that contains
all possible state transition topologies up to four levels of state nesting2

from pysm import State, StateMachine, Event

foo = True

def on_enter(state, event):
print('enter state {0}'.format(state.name))

def on_exit(state, event):
print('exit state {0}'.format(state.name))

def set_foo(state, event):

(continues on next page)

1 Miro Samek, Practical Statecharts in C/C++, CMP Books 2002.
2 http://www.embedded.com/print/4008251 (visited on 07.06.2016)

14 Chapter 3. Examples

http://www.amazon.com/Practical-Statecharts-Quantum-Programming-Embedded/dp/1578201101/ref=asap_bc?ie=UTF8
http://www.embedded.com/print/4008251

pysm Documentation, Release 0.3.8

(continued from previous page)

global foo
print('set foo')
foo = True

def unset_foo(state, event):
global foo
print('unset foo')
foo = False

def action_i(state, event):
print('action_i')

def action_j(state, event):
print('action_j')

def action_k(state, event):
print('action_k')

def action_l(state, event):
print('action_l')

def action_m(state, event):
print('action_m')

def action_n(state, event):
print('action_n')

def is_foo(state, event):
return foo is True

def is_not_foo(state, event):
return foo is False

m = StateMachine('m')
s0 = StateMachine('s0')
s1 = StateMachine('s1')
s2 = StateMachine('s2')
s11 = State('s11')
s21 = StateMachine('s21')
s211 = State('s211')

m.add_state(s0, initial=True)
s0.add_state(s1, initial=True)
s0.add_state(s2)
s1.add_state(s11, initial=True)
s2.add_state(s21, initial=True)
s21.add_state(s211, initial=True)

Internal transitions
m.add_transition(s0, None, events='i', action=action_i)
s0.add_transition(s1, None, events='j', action=action_j)
s0.add_transition(s2, None, events='k', action=action_k)
s1.add_transition(s11, None, events='h', condition=is_foo, action=unset_foo)
s1.add_transition(s11, None, events='n', action=action_n)
s21.add_transition(s211, None, events='m', action=action_m)
s2.add_transition(s21, None, events='l', condition=is_foo, action=action_l)

(continues on next page)

3.2. Complex hierarchical state machine 15

pysm Documentation, Release 0.3.8

(continued from previous page)

External transition
m.add_transition(s0, s211, events='e')
s0.add_transition(s1, s0, events='d')
s0.add_transition(s1, s11, events='b')
s0.add_transition(s1, s1, events='a')
s0.add_transition(s1, s211, events='f')
s0.add_transition(s1, s2, events='c')
s0.add_transition(s2, s11, events='f')
s0.add_transition(s2, s1, events='c')
s1.add_transition(s11, s211, events='g')
s21.add_transition(s211, s0, events='g')
s21.add_transition(s211, s21, events='d')
s2.add_transition(s21, s211, events='b')
s2.add_transition(s21, s21, events='h', condition=is_not_foo, action=set_foo)

Attach enter/exit handlers
states = [m, s0, s1, s11, s2, s21, s211]
for state in states:

state.handlers = {'enter': on_enter, 'exit': on_exit}

m.initialize()

def test():
assert m.leaf_state == s11
m.dispatch(Event('a'))
assert m.leaf_state == s11
This transition toggles state between s11 and s211
m.dispatch(Event('c'))
assert m.leaf_state == s211
m.dispatch(Event('b'))
assert m.leaf_state == s211
m.dispatch(Event('i'))
assert m.leaf_state == s211
m.dispatch(Event('c'))
assert m.leaf_state == s11
assert foo is True
m.dispatch(Event('h'))
assert foo is False
assert m.leaf_state == s11
Do nothing if foo is False
m.dispatch(Event('h'))
assert m.leaf_state == s11
This transition toggles state between s11 and s211
m.dispatch(Event('c'))
assert m.leaf_state == s211
assert foo is False
m.dispatch(Event('h'))
assert foo is True
assert m.leaf_state == s211
m.dispatch(Event('h'))
assert m.leaf_state == s211

if __name__ == '__main__':
test()

16 Chapter 3. Examples

pysm Documentation, Release 0.3.8

3.3 Different ways to attach event handlers

A state machine and states may be created in many ways. The code below mixes many styles to demonstrate it (In
production code you’d rather keep your code style consistent). One way is to subclass the State class and attach
event handlers to it. This resembles the State Pattern way of writing a state machine. But handlers may live anywhere,
really, and you can attach them however you want. You’re free to chose your own style of writing state machines with
pysm. Also in this example a transition to a historical state is used.

import threading
import time
from pysm import StateMachine, State, Event

It's possible to encapsulate all state related behaviour in a state class.
class HeatingState(StateMachine):

def on_enter(self, state, event):
oven = event.cargo['source_event'].cargo['oven']
if not oven.timer.is_alive():

oven.start_timer()
print('Heating on')

def on_exit(self, state, event):
print('Heating off')

def register_handlers(self):
self.handlers = {

'enter': self.on_enter,
'exit': self.on_exit,

}

class Oven(object):
TIMEOUT = 0.1

def __init__(self):
self.sm = self._get_state_machine()
self.timer = threading.Timer(Oven.TIMEOUT, self.on_timeout)

(continues on next page)

3.3. Different ways to attach event handlers 17

pysm Documentation, Release 0.3.8

(continued from previous page)

def _get_state_machine(self):
oven = StateMachine('Oven')
door_closed = StateMachine('Door closed')
door_open = State('Door open')
heating = HeatingState('Heating')
toasting = State('Toasting')
baking = State('Baking')
off = State('Off')

oven.add_state(door_closed, initial=True)
oven.add_state(door_open)
door_closed.add_state(off, initial=True)
door_closed.add_state(heating)
heating.add_state(baking, initial=True)
heating.add_state(toasting)

oven.add_transition(door_closed, toasting, events=['toast'])
oven.add_transition(door_closed, baking, events=['bake'])
oven.add_transition(door_closed, off, events=['off', 'timeout'])
oven.add_transition(door_closed, door_open, events=['open'])

This time, a state behaviour is handled by Oven's methods.
door_open.handlers = {

'enter': self.on_open_enter,
'exit': self.on_open_exit,
'close': self.on_door_close

}

oven.initialize()
return oven

@property
def state(self):

return self.sm.leaf_state.name

def light_on(self):
print('Light on')

def light_off(self):
print('Light off')

def start_timer(self):
self.timer.start()

def bake(self):
self.sm.dispatch(Event('bake', oven=self))

def toast(self):
self.sm.dispatch(Event('toast', oven=self))

def open_door(self):
self.sm.dispatch(Event('open', oven=self))

def close_door(self):
self.sm.dispatch(Event('close', oven=self))

def on_timeout(self):
(continues on next page)

18 Chapter 3. Examples

pysm Documentation, Release 0.3.8

(continued from previous page)

print('Timeout...')
self.sm.dispatch(Event('timeout', oven=self))
self.timer = threading.Timer(Oven.TIMEOUT, self.on_timeout)

def on_open_enter(self, state, event):
print('Opening door')
self.light_on()

def on_open_exit(self, state, event):
print('Closing door')
self.light_off()

def on_door_close(self, state, event):
Transition to a history state
self.sm.set_previous_leaf_state(event)

def test_oven():
oven = Oven()
print(oven.state)
assert oven.state == 'Off'
oven.bake()
print(oven.state)
assert oven.state == 'Baking'
oven.open_door()
print(oven.state)
assert oven.state == 'Door open'
oven.close_door()
print(oven.state)
assert oven.state == 'Baking'
time.sleep(0.2)
print(oven.state)
assert oven.state == 'Off'

if __name__ == '__main__':
test_oven()

3.4 Reverse Polish notation calculator

A state machine is used in the Reverse Polish notation (RPN) calculator as a parser. A single event name (parse) is
used along with specific inputs (See pysm.pysm.StateMachine.add_transition()).

This example also demonstrates how to use the stack of a state machine, so it behaves as a Pushdown Automaton
(PDA)

import string as py_string
from pysm import StateMachine, Event, State

class Calculator(object):
def __init__(self):

self.sm = self.get_state_machine()
self.result = None

(continues on next page)

3.4. Reverse Polish notation calculator 19

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton

pysm Documentation, Release 0.3.8

(continued from previous page)

def get_state_machine(self):
sm = StateMachine('sm')
initial = State('Initial')
number = State('BuildingNumber')
sm.add_state(initial, initial=True)
sm.add_state(number)
sm.add_transition(initial, number,

events=['parse'], input=py_string.digits,
action=self.start_building_number)

sm.add_transition(number, None,
events=['parse'], input=py_string.digits,
action=self.build_number)

sm.add_transition(number, initial,
events=['parse'], input=py_string.whitespace)

sm.add_transition(initial, None,
events=['parse'], input='+-*/',
action=self.do_operation)

sm.add_transition(initial, None,
events=['parse'], input='=',
action=self.do_equal)

sm.initialize()
return sm

def parse(self, string):
for char in string:

self.sm.dispatch(Event('parse', input=char))

def calculate(self, string):
self.parse(string)
return self.result

def start_building_number(self, state, event):
digit = event.input
self.sm.stack.push(int(digit))
return True

def build_number(self, state, event):
digit = event.input
number = str(self.sm.stack.pop())
number += digit
self.sm.stack.push(int(number))
return True

def do_operation(self, state, event):
operation = event.input
y = self.sm.stack.pop()
x = self.sm.stack.pop()
eval is evil
result = eval('float({0}) {1} float({2})'.format(x, operation, y))
self.sm.stack.push(result)
return True

def do_equal(self, state, event):
operation = event.input
number = self.sm.stack.pop()
self.result = number

(continues on next page)

20 Chapter 3. Examples

pysm Documentation, Release 0.3.8

(continued from previous page)

return True

def test_calc_callbacks():
calc = Calculator()
assert calc.calculate(' 167 3 2 2 * * * 1 - =') == 2003
assert calc.calculate(' 167 3 2 2 * * * 1 - 2 / =') == 1001.5
assert calc.calculate(' 3 5 6 + * =') == 33
assert calc.calculate(' 3 4 + =') == 7
assert calc.calculate('2 4 / 5 6 - * =') == -0.5

if __name__ == '__main__':
test_calc_callbacks()

3.4. Reverse Polish notation calculator 21

pysm Documentation, Release 0.3.8

22 Chapter 3. Examples

Python Module Index

p
pysm.pysm, 3

23

pysm Documentation, Release 0.3.8

24 Python Module Index

Index

A
add_state() (pysm.pysm.StateMachine method), 6
add_states() (pysm.pysm.StateMachine method), 7
add_transition() (pysm.pysm.StateMachine

method), 7
AnyEvent (class in pysm.pysm), 3

D
dispatch() (pysm.pysm.StateMachine method), 8

E
Event (class in pysm.pysm), 3

I
initial_state (pysm.pysm.StateMachine attribute),

8
initialize() (pysm.pysm.StateMachine method), 8
is_substate() (pysm.pysm.State method), 5
is_substate() (pysm.pysm.StateMachine method), 8

L
leaf_state (pysm.pysm.StateMachine attribute), 8
leaf_state_stack (pysm.pysm.StateMachine

attribute), 6

P
propagate (pysm.pysm.Event attribute), 3
pysm.pysm (module), 3

R
register_handlers() (pysm.pysm.State method), 5
register_handlers() (pysm.pysm.StateMachine

method), 8
revert_to_previous_leaf_state()

(pysm.pysm.StateMachine method), 9
root_machine (pysm.pysm.StateMachine attribute), 9

S
set_initial_state() (pysm.pysm.StateMachine

method), 9

set_previous_leaf_state()
(pysm.pysm.StateMachine method), 9

stack (pysm.pysm.StateMachine attribute), 6
State (class in pysm.pysm), 4
state (pysm.pysm.StateMachine attribute), 6
state_machine (pysm.pysm.Event attribute), 3
state_stack (pysm.pysm.StateMachine attribute), 6
StateMachine (class in pysm.pysm), 5
StateMachineException, 9

25

	Module documentation
	Installation
	Examples
	Simple state machine
	Complex hierarchical state machine
	Different ways to attach event handlers
	Reverse Polish notation calculator

	Python Module Index

