PySM Documentation
Release 2.0

Ben Thorne, David Alonso, Jo Dunkley, Sigurd Naess

Nov 07, 2019

Contents:

Introduction

1.1 Dependencies
1.2 Installation

Summary of Models

21 Dust.
22 Synchrotron
23 AME ...
24 Freefree
25 CMB e

3.1 Skyobject
3.2 Instrumentobject
3.3 Addinganewmodel

Ho to use PySM
Documentation for the Code

4.1 PYSMLPYSIN « . v v e e e e e e e e e e e e e e
4.2 pysm.components
43 pysSm.common

Indices and tables

~N O\ L A bbb wWWwWwWw —

O O O &

CHAPTER 1

Introduction

This code generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB exper-
iments. The components simulated are: thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with
an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam.

There is scope for a few options for the model for each component, attempting to be consistent with current data. The
current v-1.0 version has typically two-three options for each component.

Currently much of the available data is limited in resolution at degree-scale. We therefore make efforts to provide
reasonable small-scale simulations to extend the data to higher multipoles. The details of the procedures developed
can be found in the accompanying paper.

This code is based on the large-scale Galactic part of Planck Sky Model (Delabrouille 2012) code and uses some of
its inputs.

1.1 Dependencies

PySM is written in Python and uses the healpy, numpy, scipy, and astropy packages. It is known to work with:
* python 2.7.6
* healpy 1.10.3
e numpy 1.12.1
* scipy 0.19.0

1.2 Installation

Clone the GitHub repository and run:

[sudo] python setup.py install [--user]

After this you can run the provided unit tests from the same directory:

http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.html
https://arxiv.org/abs/1207.3675
https://github.com/bthorne93/PySM_public

PySM Documentation, Release 2.0

’nosetests

Then you may import PySM in the standard way in a Python environment:

’import pPysm

2 Chapter 1. Introduction

CHAPTER 2

Summary of Models

2.1 Dust

* d1: Thermal dust is modelled as a single-component modified black body (mbb). We use dust templates for
emission at 545 GHz in intensity and 353 GHz in polarisation from the Planck-2015 analysis, and scale these to
different frequencies with a mbb spectrum using the spatially varying temperature and spectral index obtained
from the Planck data using the Commander code (Planck Collaboration 2015, arXiv:1502.01588). Note that it
therefore assumes the same spectral index for polarization as for intensity. The input intensity template at 545
GHz is simply the available 2048 product degraded to nside 512. The polarization templates have been smoothed
with a Gaussian kernel of FWHM 2.6 degrees, and had small scales added via the procedure described in the
accompanying paper.

e d2 (d3): emissivity that varies spatially on degree scales, drawn from a Gaussian with beta=1.59 pm 0.2 (0.3).
A Gaussian variation is not physically motivated, but amount of variation consistent with Planck.

* d4: a generalization of model 1 to multiple dust populations. It has been found that a two component model is
still a good fit to the Planck data. This option uses the two component model from Finkbeiner, D. P., Davis, M.,
& Schlegel, D. J. 1999, Astrophysical Journal, 524, 867.

* dS: implementation of the dust model described in Hensley and Draine 2017.

* d6: implementation of the frequency decorrelation of dust, modelling the impact of averaging over spatially
varying dust spectral indices both unresolved and along the line of sight. We take an analytic frequency covari-
ance (Vansyngel 2016 arXiv:1611.02577) to calculate the resulting frequency dependence. The user specifies a
single parameter, the correlation length. The smaller the correlation length, the larger the decorrelation. This
parameter is constant across the sky.

2.2 Synchrotron

 s1: A power law scaling is used for the synchrotron emission, with a spatially varying spectral index. The emis-
sion templates are the Haslam 408 MHz, 57’ resolution data reprocessed by Remazeilles et al 2015 MNRAS
451, 4311, and the WMAP 9-year 23 GHz Q/U maps (Bennett, C.L., et.al., 2014, ApJS, 208, 20B). The polar-
ization maps have been smoothed with a Gaussian kernel of FWHM 5 degrees and had small scales added. The

PySM Documentation, Release 2.0

intensity template has had small scales added straight to the template. The details of the small scale procedure is
outlined in the accompanying paper. The spectral index map was derived using a combination of the Haslam 408
MHz data and WMAP 23 GHz 7-year data (Miville-Deschenes, M.-A. et al., 2008, A& A, 490, 1093). The same
scaling is used for intensity and polarization. This is the same prescription as used in the Planck Sky Model’s
v1.7.8 ‘power law’ option (Delabrouille et al. A&A 553, A96, 2013), but with the Haslam map updated to the
Remazeilles version. A ‘curved power law’ model is also supported with a single isotropic curvature index. The
amplitude of this curvature is taken from Kogut, A. 2012, ApJ, 753, 110.

* s2: synchrotron index steepens off the Galactic plane, from -3.0 in the plane to -3.3 off the plane. Consistent
with WMAP.

* s3: a power law with a curved index. The model uses the same index map as the nominal model, plus a curvature
term. We use the best-fit curvature amplitude of -0.052 found in Kogut, A. 2012, ApJ, 753, 110, pivoted at 23
GHz.

2.3 AME

e al: We model the AME as a sum of two spinning dust populations based on the Commander code (Planck
Collaboration 2015, arXiv:1502.01588). A component is defined by a degree-scale emission template at a ref-
erence frequency and a peak frequency of the emission law. Both populations have a spatially varying emission
template, one population has a spatially varying peak frequency, and the other population has a spatially con-
stant peak frequency. The emission law is generated using the SpDust2 code (Ali-Haimoud 2008). The nominal
model is unpolarized. We add small scales to the emission maps, the method is outlined in the accompanying

paper.

* a2: AME has 2% polarization fraction. Polarized maps simulated with thermal dust angles and nominal AME
intensity scaled globally by polarization fraction. Within WMAP/Planck bounds.

2.4 Free-free

* f1: We model the free-free emission using the analytic model assumed in the Commander fit to the Planck
2015 data (Draine 2011 ‘Physics of the Interstellar and Intergalactic Medium’) to produce a degree-scale map
of free-free emission at 30 GHz. We add small scales to this using a procedure outlined in the accompanying
paper. This map is then scaled in frequency by applying a spatially constant power law index of -2.14.

2.5 CMB

e cl: A lensed CMB realisation is computed using Taylens, a code to compute a lensed CMB realisation us-
ing nearest-neighbour Taylor interpolation (taylens; Naess, S. K. and Louis, T. JCAP 09 001, 2013, astro-
ph/1307.0719). This code takes, as an input, a set of unlensed CI’s generated using CAMB. The params.ini is in
the Ancillary directory. There is a pre-computed CMB map provided at Nside 512.

4 Chapter 2. Summary of Models

https://github.com/amaurea/taylens
http://www.camb.info/

CHAPTER 3

Ho to use PySM

3.1 Sky object

The central object of PySM is the pysm. pysm. Sky object. This is initialised using a dictionary in which we specify
the required models:

import pysm
from pysm.nominal import models

sky_config = {

'dust' [dust_pop_1, dust_pop_2, ...],
'synchrotron' [synch_pop_1, synch_pop_2, ...],
'ame' [ame_pop_1, ame_pop_2, ...],

'freefree' [ff_pop_1, ff_pop_2, ...1,

'cmb! [cmb],

}

The keys specify which components are present, and the items are lists of dictionaries which will be used to instan-
tiate the relevant component class (pysm.components.Dust, pysm.components.Synchrotron etc). The
number of dictionaries supplied for each component corresponds to the number of populations desired. An individual
component dictionary contains all the information specifying the emission model for that population of that compo-
nent, e.g.:

dust_pop_1 = {

'model’ 'modified_black_body',

'nu_0_T' 545.,

'nu_0_P' 353.,

'A_T! read_map (template ('dust_t_new.fits'), nside, field = 0),

'A_Q! read_map (template ('dust_g new.fits'), nside, field = 0),

'A_U" read_map (template ('dust_u_new.fits'), nside, field = 0),

'spectral_index' read_map (template ('dust_beta.fits'), nside = nside, field = 0),
'temp' read_map (template ('dust_temp.fits'), nside, field = 0),

'add_decorrelation'

}

False,

PySM Documentation, Release 2.0

PySM comes with many models pre-specified. The may be accessed by importing the relevant module:

d5_config = models ("d5", nside)

s3_config = models("s3", nside)

sky_config = {'dust' : d5_config, 'synchrotron' : s3_config}
sky = pysm.Sky(sky_config)

One can then calculate the total emission, and individual component emission, at a single frequency or vector of
frequencies:

nu = np.array([10., 100., 500.7)

total_signal = sky.signal () (nu)
dust_signal = sky.dust (nu)
synchrotron_signal = sky.synchrotron (nu)

import healpy
import matplotlib.pyplot as plt

hp.mollview(dust_signal[l, 0, :], title = "Dust T @ 100 GHz")
hp.mollview(total_signal[O, 1, :], title = "Total O @ 10 GHz")
plt.show ()

3.2 Instrument object

Once a pysm.pysm. Sky object has been instantiated we may then want to add instrumental effects. Currently PySM
allows the integration of the signal over an arbitrary bandpass, smoothing with a Gaussian beam, and the addition of
Gaussian white noise. These are all done using the pysm.pysm. Instrument object:

instrument = pysm.Instrument (instrument_config)

instrument_config is aconfiguration dictionary specifying the instrument characteristics, for example:

N_fregs = 20
instrument_config = {
'nside' : nside,
'frequencies' : np.logspace(l., 3., N_freqgs), #Expected in GHz
'use_smoothing' : True,
'beams' : np.ones (N_freqgs) » 70., #Expected in arcmin
'add_noise' : True,
'sens_I' : np.ones(N_freqgs), #Expected in units uK_RJ
'sens_P' : np.ones (N_freqgs),
'noise_seed' : 1234,
'use_bandpass' : False,
'output_units' : 'uK_RJ',
'output_directory' : './',
'output_prefix' : 'test',

instrument = pysm.Instrument (instrument_config)

We then use the pysm.pysm.Instrument.observe () method to observe the Sky we have already defined:

instrument.observe (Sky)

This will write maps of (T, Q, U) as observed at the given frequencies with the given instrumental effects.

6 Chapter 3. Ho to use PySM

PySM Documentation, Release 2.0

3.3 Adding a new model

PySM has been designed to make adding models as easy as possible. For example, say we have a new model that
takes into account flattening of the synchrotron spectrum. We would need to edit only one part of the code, the
pysm.components.Synchrotron class. First we would write a function to represent our model:

def model (nu) :
"""Function to calculate synchrotron (T, Q, U)
in flattening model.

mmn

Do model calculations
return np.array ([T, Q, U])

Where nu is assumed to be a float, and np.array ([T, Q, U]) will have shape (3, Npix). We then insert this
model into the Synchrotron class in components.py:

class Synchrotron (object):

"""Note the name of the function returning our new model
will be the name specified in the configuration
dictionary.
o
def flattening(self):

"""Do any set up required for the model."""

@Add_Decorrelation(self)
@FloatOrArray
def model (nu) :
Do model calculations
return np.array ([T, Q, U])

return model

Where we have added the pysm.common.FloatOrArray () decorator to allow model input to be either
a float or array, and we have added the option of frequency decorrelation through the pysm.components.
Add_Decorrelation() decorator. If this model also requires some new parameter to be specified,
flattening_parameter, we must also add this as a property to the Synchrotron class:

class Synchrotron (object) :

@property
def Flattening_ Parameter (self):
try:
return self._flattening_parameter

except AttributeError:
print ("Synchrotron attribute 'Flattening Parameter' not set.")
sys.exit (1)

The final thing to do is to write a configuration dictionary for the new model:

3.3. Adding a new model 7

PySM Documentation, Release 2.0

synch_flattening_conf = {

'model' : 'flattening',

'nu_0_I' : 0.408,

'nu_0_P' : 23.,

'A_T" : read_map (template('synch_t_new.fits'), nside,
'A_Q'" : read_map (template('synch_g new.fits'), nside,
'"A_U" : read_map (template('synch_ u new.fits'), nside,
'flattening_parameter' : 0.4,

'add_decorrelation' : True,

field = 0),
field = 0),
field 0),

And then we can start using the new model in PySM:

from pysm.nominal import models
from new.models import synch_flattening_conf
import pysm

sky_config = {'dust' : models("dl", nside), 'synchrotron' [synch_flattening_conf]}
sky = pysm.Sky (sky_confiqg)

signal = sky.signal()

8 Chapter 3. Ho to use PySM

CHAPTER 4

Documentation for the Code

4.1 pysm.pysm
4.2 pysm.components

4.3 pysm.common

PySM Documentation, Release 2.0

10 Chapter 4. Documentation for the Code

CHAPTER B

Indices and tables

* genindex
* modindex

e search

11

	Introduction
	Dependencies
	Installation

	Summary of Models
	Dust
	Synchrotron
	AME
	Free-free
	CMB

	Ho to use PySM
	Sky object
	Instrument object
	Adding a new model

	Documentation for the Code
	pysm.pysm
	pysm.components
	pysm.common

	Indices and tables

