

Welcome to pySerial’s documentation

This module encapsulates the access for the serial port. It provides backends
for Python [http://python.org/] running on Windows, OSX, Linux, BSD (possibly any POSIX compliant
system) and IronPython. The module named “serial” automatically selects the
appropriate backend.

Other pages (online)

	project page on GitHub [https://github.com/pyserial/]

	Download Page [http://pypi.python.org/pypi/pyserial] with releases

	This page, when viewed online is at https://pyserial.readthedocs.io/en/latest/ or
http://pythonhosted.org/pyserial/ .

Contents:

	pySerial
	Overview

	Features

	Requirements

	Installation

	References

	Older Versions

	Short introduction
	Opening serial ports

	Configuring ports later

	Readline

	Testing ports

	pySerial API
	Classes

	Exceptions

	Constants

	Module functions and attributes

	Threading

	asyncio

	Tools
	serial.tools.list_ports

	serial.tools.miniterm

	URL Handlers
	Overview

	rfc2217://

	socket://

	loop://

	hwgrep://

	spy://

	alt://

	cp2110://

	Examples

	Examples
	Miniterm

	TCP/IP - serial bridge

	Single-port TCP/IP - serial bridge (RFC 2217)

	Multi-port TCP/IP - serial bridge (RFC 2217)

	wxPython examples

	Unit tests

	Appendix
	How To

	FAQ

	Related software

	License

Indices and tables

	Index

	Module Index

	Search Page

pySerial

Overview

This module encapsulates the access for the serial port. It provides backends
for Python [http://python.org/] running on Windows, OSX, Linux, BSD (possibly any POSIX compliant
system) and IronPython. The module named “serial” automatically selects the
appropriate backend.

It is released under a free software license, see LICENSE for more
details.

Copyright (C) 2001-2020 Chris Liechti <cliechti(at)gmx.net>

Other pages (online)

	project page on GitHub [https://github.com/pyserial/pyserial/]

	Download Page [http://pypi.python.org/pypi/pyserial] with releases (PyPi)

	This page, when viewed online is at https://pyserial.readthedocs.io/en/latest/ or
http://pythonhosted.org/pyserial/ .

Features

	Same class based interface on all supported platforms.

	Access to the port settings through Python properties.

	Support for different byte sizes, stop bits, parity and flow control with
RTS/CTS and/or Xon/Xoff.

	Working with or without receive timeout.

	File like API with “read” and “write” (“readline” etc. also supported).

	The files in this package are 100% pure Python.

	The port is set up for binary transmission. No NULL byte stripping, CR-LF
translation etc. (which are many times enabled for POSIX.) This makes this
module universally useful.

	Compatible with io [https://docs.python.org/3/library/io.html#module-io] library

	RFC 2217 client (experimental), server provided in the examples.

Requirements

	Python 2.7 or Python 3.4 and newer

	If running on Windows: Windows 7 or newer

	If running on Jython: “Java Communications” (JavaComm) or compatible
extension for Java

For older installations (older Python versions or older operating systems), see
older versions below.

Installation

This installs a package that can be used from Python (import serial).

To install for all users on the system, administrator rights (root)
may be required.

From PyPI

pySerial can be installed from PyPI:

python -m pip install pyserial

Using the python/python3 executable of the desired version (2.7/3.x).

Developers also may be interested to get the source archive, because it
contains examples, tests and the this documentation.

From Conda

pySerial can be installed from Conda:

conda install pyserial

or

conda install -c conda-forge pyserial

Currently the default conda channel will provide version 3.4 whereas the
conda-forge channel provides the current 3.x version.

Conda: https://www.continuum.io/downloads

From source (zip/tar.gz or checkout)

Download the archive from http://pypi.python.org/pypi/pyserial or
https://github.com/pyserial/pyserial/releases.
Unpack the archive, enter the pyserial-x.y directory and run:

python setup.py install

Using the python/python3 executable of the desired version (2.7/3.x).

Packages

There are also packaged versions for some Linux distributions:

	Debian/Ubuntu: “python-serial”, “python3-serial”

	Fedora / RHEL / CentOS / EPEL: “pyserial”

	Arch Linux: “python-pyserial”

	Gentoo: “dev-python/pyserial”

Note that some distributions may package an older version of pySerial.
These packages are created and maintained by developers working on
these distributions.

References

	Python: http://www.python.org/

	Jython: http://www.jython.org/

	IronPython: http://www.codeplex.com/IronPython

Older Versions

Older versions are still available on the current download [https://pypi.python.org/simple/pyserial/] page or the old
download [https://sourceforge.net/projects/pyserial/files/pyserial/] page. The last version of pySerial’s 2.x series was 2.7 [https://pypi.python.org/pypi/pyserial/2.7],
compatible with Python 2.3 and newer and partially with early Python 3.x
versions.

pySerial 1.21 [https://sourceforge.net/projects/pyserial/files/pyserial/1.21/pyserial-1.21.zip/download] is compatible with Python 2.0 on Windows, Linux and several
un*x like systems, MacOSX and Jython.

On Windows, releases older than 2.5 will depend on pywin32 [http://pypi.python.org/pypi/pywin32] (previously known as
win32all). WinXP is supported up to 3.0.1.

Short introduction

Opening serial ports

Open port at “9600,8,N,1”, no timeout:

>>> import serial
>>> ser = serial.Serial('/dev/ttyUSB0') # open serial port
>>> print(ser.name) # check which port was really used
>>> ser.write(b'hello') # write a string
>>> ser.close() # close port

Open named port at “19200,8,N,1”, 1s timeout:

>>> with serial.Serial('/dev/ttyS1', 19200, timeout=1) as ser:
... x = ser.read() # read one byte
... s = ser.read(10) # read up to ten bytes (timeout)
... line = ser.readline() # read a '\n' terminated line

Open port at “38400,8,E,1”, non blocking HW handshaking:

>>> ser = serial.Serial('COM3', 38400, timeout=0,
... parity=serial.PARITY_EVEN, rtscts=1)
>>> s = ser.read(100) # read up to one hundred bytes
... # or as much is in the buffer

Configuring ports later

Get a Serial instance and configure/open it later:

>>> ser = serial.Serial()
>>> ser.baudrate = 19200
>>> ser.port = 'COM1'
>>> ser
Serial<id=0xa81c10, open=False>(port='COM1', baudrate=19200, bytesize=8, parity='N', stopbits=1, timeout=None, xonxoff=0, rtscts=0)
>>> ser.open()
>>> ser.is_open
True
>>> ser.close()
>>> ser.is_open
False

Also supported with context manager:

with serial.Serial() as ser:
 ser.baudrate = 19200
 ser.port = 'COM1'
 ser.open()
 ser.write(b'hello')

Readline

readline() reads up to one line, including the \n at the end.
Be careful when using readline(). Do specify a timeout when opening the
serial port otherwise it could block forever if no newline character is
received. If the \n is missing in the return value, it returned on timeout.

readlines() tries to read “all” lines which is not well defined for a
serial port that is still open. Therefore readlines() depends on having
a timeout on the port and interprets that as EOF (end of file). It raises an
exception if the port is not opened correctly. The returned list of lines do
not include the \n.

Both functions call read() to get their data and the serial port timeout
is acting on this function. Therefore the effective timeout, especially for
readlines(), can be much larger.

Do also have a look at the example files in the examples directory in the
source distribution or online.

Note

The eol parameter for readline() is no longer supported when
pySerial is run with newer Python versions (V2.6+) where the module
io [https://docs.python.org/3/library/io.html#module-io] is available.

 pySerial API

pySerial API

Classes

Native ports

	
class serial.Serial

	
	
__init__(port=None, baudrate=9600, bytesize=EIGHTBITS, parity=PARITY_NONE, stopbits=STOPBITS_ONE, timeout=None, xonxoff=False, rtscts=False, write_timeout=None, dsrdtr=False, inter_byte_timeout=None, exclusive=None)

	
	Parameters:

	
	port – Device name or None.

	baudrate (int [https://docs.python.org/3/library/functions.html#int]) – Baud rate such as 9600 or 115200 etc.

	bytesize – Number of data bits. Possible values:
FIVEBITS, SIXBITS, SEVENBITS,
EIGHTBITS

	parity – Enable parity checking. Possible values:
PARITY_NONE, PARITY_EVEN, PARITY_ODD
PARITY_MARK, PARITY_SPACE

	stopbits – Number of stop bits. Possible values:
STOPBITS_ONE, STOPBITS_ONE_POINT_FIVE,
STOPBITS_TWO

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Set a read timeout value in seconds.

	xonxoff (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable software flow control.

	rtscts (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable hardware (RTS/CTS) flow control.

	dsrdtr (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable hardware (DSR/DTR) flow control.

	write_timeout (float [https://docs.python.org/3/library/functions.html#float]) – Set a write timeout value in seconds.

	inter_byte_timeout (float [https://docs.python.org/3/library/functions.html#float]) – Inter-character timeout, None to disable (default).

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Set exclusive access mode (POSIX only). A port cannot be opened in
exclusive access mode if it is already open in exclusive access mode.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Will be raised when parameter are out of range, e.g. baud rate, data bits.

	SerialException – In case the device can not be found or can not be configured.

The port is immediately opened on object creation, when a port is
given. It is not opened when port is None and a successive call
to open() is required.

port is a device name: depending on operating system. e.g.
/dev/ttyUSB0 on GNU/Linux or COM3 on Windows.

The parameter baudrate can be one of the standard values:
50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200.
These are well supported on all platforms.

Standard values above 115200, such as: 230400, 460800, 500000, 576000,
921600, 1000000, 1152000, 1500000, 2000000, 2500000, 3000000, 3500000,
4000000 also work on many platforms and devices.

Non-standard values are also supported on some platforms (GNU/Linux, MAC
OSX >= Tiger, Windows). Though, even on these platforms some serial
ports may reject non-standard values.

Possible values for the parameter timeout which controls the behavior
of read():

	timeout = None: wait forever / until requested number of bytes
are received

	timeout = 0: non-blocking mode, return immediately in any case,
returning zero or more, up to the requested number of bytes

	timeout = x: set timeout to x seconds (float allowed)
returns immediately when the requested number of bytes are available,
otherwise wait until the timeout expires and return all bytes that
were received until then.

write() is blocking by default, unless write_timeout is set.
For possible values refer to the list for timeout above.

Note that enabling both flow control methods (xonxoff and rtscts)
together may not be supported. It is common to use one of the methods
at once, not both.

dsrdtr is not supported by all platforms (silently ignored). Setting
it to None has the effect that its state follows rtscts.

Also consider using the function serial_for_url() instead of
creating Serial instances directly.

Changed in version 2.5: dsrdtr now defaults to False (instead of None)

Changed in version 3.0: numbers as port argument are no longer supported

New in version 3.3: exclusive flag

	
open()

	Open port. The state of rts and dtr is applied.

Note

Some OS and/or drivers may activate RTS and or DTR automatically,
as soon as the port is opened. There may be a glitch on RTS/DTR
when rts or dtr are set differently from their
default value (True / active).

 Tools

Tools

serial.tools.list_ports

This module can be executed to get a list of ports (python -m
serial.tools.list_ports). It also contains the following functions.

	
serial.tools.list_ports.comports(include_links=False)

	
	Parameters:

	include_links (bool [https://docs.python.org/3/library/functions.html#bool]) – include symlinks under /dev when they point
to a serial port

	Returns:

	a list containing ListPortInfo objects.

The function returns a list of ListPortInfo objects.

Items are returned in no particular order. It may make sense to sort the
items. Also note that the reported strings are different across platforms
and operating systems, even for the same device.

Note

Support is limited to a number of operating systems. On some
systems description and hardware ID will not be available
(None).

 URL Handlers

URL Handlers

Overview

The function serial_for_url() accepts the following types of URLs:

	rfc2217://<host>:<port>[?<option>[&<option>...]]

	socket://<host>:<port>[?logging={debug|info|warning|error}]

	loop://[?logging={debug|info|warning|error}]

	hwgrep://<regexp>[&skip_busy][&n=N]

	spy://port[?option[=value][&option[=value]]]

	alt://port?class=<classname>

	cp2110://<bus>:<dev>:<if>

Changed in version 3.0: Options are specified with ? and & instead of /

Device names are also supported, e.g.:

	/dev/ttyUSB0 (Linux)

	COM3 (Windows)

Future releases of pySerial might add more types. Since pySerial 2.6 it is also
possible for the user to add protocol handlers using
protocol_handler_packages.

rfc2217://

Used to connect to RFC 2217 [https://tools.ietf.org/html/rfc2217.html] compatible servers. All serial port
functions are supported. Implemented by rfc2217.Serial.

Supported options in the URL are:

	ign_set_control does not wait for acknowledges to SET_CONTROL. This
option can be used for non compliant servers (i.e. when getting an
remote rejected value for option 'control' error when connecting).

	poll_modem: The client issues NOTIFY_MODEMSTATE requests when status
lines are read (CTS/DTR/RI/CD). Without this option it relies on the server
sending the notifications automatically (that’s what the RFC suggests and
most servers do). Enable this option when cts does not work as
expected, i.e. for servers that do not send notifications.

	timeout=<value>: Change network timeout (default 3 seconds). This is
useful when the server takes a little more time to send its answers. The
timeout applies to the initial Telnet / RFC 2217 [https://tools.ietf.org/html/rfc2217.html] negotiation as well
as changing port settings or control line change commands.

	logging={debug|info|warning|error}: Prints diagnostic messages (not
useful for end users). It uses the logging module and a logger called
pySerial.rfc2217 so that the application can setup up logging
handlers etc. It will call logging.basicConfig() which initializes
for output on sys.stderr (if no logging was set up already).

Warning

The connection is not encrypted and no authentication is
supported! Only use it in trusted environments.

 Examples

Examples

Miniterm

Miniterm is now available as module instead of example.
see serial.tools.miniterm for details.

	miniterm.py [https://github.com/pyserial/pyserial/blob/master/serial/tools/miniterm.py]

	The miniterm program.

	setup-miniterm-py2exe.py [https://github.com/pyserial/pyserial/blob/master/examples/setup-miniterm-py2exe.py]

	This is a py2exe setup script for Windows. It can be used to create a
standalone miniterm.exe.

TCP/IP - serial bridge

This program opens a TCP/IP port. When a connection is made to that port (e.g.
with telnet) it forwards all data to the serial port and vice versa.

This example only exports a raw socket connection. The next example
below gives the client much more control over the remote serial port.

	The serial port settings are set on the command line when starting the
program.

	There is no possibility to change settings from remote.

	All data is passed through as-is.

usage: tcp_serial_redirect.py [-h] [-q] [--parity {N,E,O,S,M}] [--rtscts]
 [--xonxoff] [--rts RTS] [--dtr DTR]
 [-P LOCALPORT]
 SERIALPORT [BAUDRATE]

Simple Serial to Network (TCP/IP) redirector.

positional arguments:
 SERIALPORT serial port name
 BAUDRATE set baud rate, default: 9600

optional arguments:
 -h, --help show this help message and exit
 -q, --quiet suppress non error messages

serial port:
 --parity {N,E,O,S,M} set parity, one of {N E O S M}, default: N
 --rtscts enable RTS/CTS flow control (default off)
 --xonxoff enable software flow control (default off)
 --rts RTS set initial RTS line state (possible values: 0, 1)
 --dtr DTR set initial DTR line state (possible values: 0, 1)

network settings:
 -P LOCALPORT, --localport LOCALPORT
 local TCP port

NOTE: no security measures are implemented. Anyone can remotely connect to
this service over the network. Only one connection at once is supported. When
the connection is terminated it waits for the next connect.

	tcp_serial_redirect.py [https://github.com/pyserial/pyserial/blob/master/examples/tcp_serial_redirect.py]

	Main program.

Single-port TCP/IP - serial bridge (RFC 2217)

Simple cross platform RFC 2217 [https://tools.ietf.org/html/rfc2217.html] serial port server. It uses threads and is
portable (runs on POSIX, Windows, etc).

	The port settings and control lines (RTS/DTR) can be changed at any time
using RFC 2217 [https://tools.ietf.org/html/rfc2217.html] requests. The status lines (DSR/CTS/RI/CD) are polled every
second and notifications are sent to the client.

	Telnet character IAC (0xff) needs to be doubled in data stream. IAC followed
by another value is interpreted as Telnet command sequence.

	Telnet negotiation commands are sent when connecting to the server.

	RTS/DTR are activated on client connect and deactivated on disconnect.

	Default port settings are set again when client disconnects.

usage: rfc2217_server.py [-h] [-p TCPPORT] [-v] SERIALPORT

RFC 2217 Serial to Network (TCP/IP) redirector.

positional arguments:
 SERIALPORT

optional arguments:
 -h, --help show this help message and exit
 -p TCPPORT, --localport TCPPORT
 local TCP port, default: 2217
 -v, --verbose print more diagnostic messages (option can be given
 multiple times)

NOTE: no security measures are implemented. Anyone can remotely connect to
this service over the network. Only one connection at once is supported. When
the connection is terminated it waits for the next connect.

New in version 2.5.

	rfc2217_server.py [https://github.com/pyserial/pyserial/blob/master/examples/rfc2217_server.py]

	Main program.

	setup-rfc2217_server-py2exe.py [https://github.com/pyserial/pyserial/blob/master/examples/setup-rfc2217_server-py2exe.py]

	This is a py2exe setup script for Windows. It can be used to create a
standalone rfc2217_server.exe.

Multi-port TCP/IP - serial bridge (RFC 2217)

This example implements a TCP/IP to serial port service that works with
multiple ports at once. It uses select, no threads, for the serial ports and
the network sockets and therefore runs on POSIX systems only.

	Full control over the serial port with RFC 2217 [https://tools.ietf.org/html/rfc2217.html].

	Check existence of /tty/USB0...8. This is done every 5 seconds using
os.path.exists.

	Send zeroconf announcements when port appears or disappears (uses
python-avahi and dbus). Service name: _serial_port._tcp.

	Each serial port becomes available as one TCP/IP server. e.g.
/dev/ttyUSB0 is reachable at <host>:7000.

	Single process for all ports and sockets (not per port).

	The script can be started as daemon.

	Logging to stdout or when run as daemon to syslog.

	Default port settings are set again when client disconnects.

	modem status lines (CTS/DSR/RI/CD) are not polled periodically and the server
therefore does not send NOTIFY_MODEMSTATE on its own. However it responds to
request from the client (i.e. use the poll_modem option in the URL when
using a pySerial client.)

usage: port_publisher.py [options]

Announce the existence of devices using zeroconf and provide
a TCP/IP <-> serial port gateway (implements RFC 2217).

If running as daemon, write to syslog. Otherwise write to stdout.

optional arguments:
 -h, --help show this help message and exit

serial port settings:
 --ports-regex REGEX specify a regex to search against the serial devices
 and their descriptions (default: /dev/ttyUSB[0-9]+)

network settings:
 --tcp-port PORT specify lowest TCP port number (default: 7000)

daemon:
 -d, --daemon start as daemon
 --pidfile FILE specify a name for the PID file

diagnostics:
 -o FILE, --logfile FILE
 write messages file instead of stdout
 -q, --quiet suppress most diagnostic messages
 -v, --verbose increase diagnostic messages

NOTE: no security measures are implemented. Anyone can remotely connect to
this service over the network. Only one connection at once, per port, is
supported. When the connection is terminated, it waits for the next connect.

Requirements:

	Python (>= 2.4)

	python-avahi

	python-dbus

	python-serial (>= 2.5)

Installation as daemon:

	Copy the script port_publisher.py to /usr/local/bin.

	Copy the script port_publisher.sh to /etc/init.d.

	Add links to the runlevels using update-rc.d port_publisher.sh defaults 99

	That’s it :-) the service will be started on next reboot. Alternatively run
invoke-rc.d port_publisher.sh start as root.

New in version 2.5: new example

	port_publisher.py [https://github.com/pyserial/pyserial/blob/master/examples/port_publisher.py]

	Multi-port TCP/IP-serial converter (RFC 2217) for POSIX environments.

	port_publisher.sh [https://github.com/pyserial/pyserial/blob/master/examples/port_publisher.sh]

	Example init.d script.

wxPython examples

A simple terminal application for wxPython and a flexible serial port
configuration dialog are shown here.

	wxTerminal.py [https://github.com/pyserial/pyserial/blob/master/examples/wxTerminal.py]

	A simple terminal application. Note that the length of the buffer is
limited by wx and it may suddenly stop displaying new input.

	wxTerminal.wxg [https://github.com/pyserial/pyserial/blob/master/examples/wxTerminal.wxg]

	A wxGlade design file for the terminal application.

	wxSerialConfigDialog.py [https://github.com/pyserial/pyserial/blob/master/examples/wxSerialConfigDialog.py]

	A flexible serial port configuration dialog.

	wxSerialConfigDialog.wxg [https://github.com/pyserial/pyserial/blob/master/examples/wxSerialConfigDialog.wxg]

	The wxGlade design file for the configuration dialog.

	setup-wxTerminal-py2exe.py [https://github.com/pyserial/pyserial/blob/master/examples/setup-wxTerminal-py2exe.py]

	A py2exe setup script to package the terminal application.

Unit tests

The project uses a number of unit test to verify the functionality. They all
need a loop back connector. The scripts itself contain more information. All
test scripts are contained in the directory test.

The unit tests are performed on port loop:// unless a different device
name or URL is given on the command line (sys.argv[1]). e.g. to run the
test on an attached USB-serial converter hwgrep://USB could be used or
the actual name such as /dev/ttyUSB0 or COM1 (depending on platform).

	run_all_tests.py [https://github.com/pyserial/pyserial/blob/master/test/run_all_tests.py]

	Collect all tests from all test* files and run them. By default, the
loop:// device is used.

	test.py [https://github.com/pyserial/pyserial/blob/master/test/test.py]

	Basic tests (binary capabilities, timeout, control lines).

	test_advanced.py [https://github.com/pyserial/pyserial/blob/master/test/test_advanced.py]

	Test more advanced features (properties).

	test_high_load.py [https://github.com/pyserial/pyserial/blob/master/test/test_high_load.py]

	Tests involving sending a lot of data.

	test_readline.py [https://github.com/pyserial/pyserial/blob/master/test/test_readline.py]

	Tests involving readline.

	test_iolib.py [https://github.com/pyserial/pyserial/blob/master/test/test_iolib.py]

	Tests involving the io [https://docs.python.org/3/library/io.html#module-io] library. Only available for Python 2.6 and
newer.

	test_url.py [https://github.com/pyserial/pyserial/blob/master/test/test_url.py]

	Tests involving the URL feature.

 Appendix

Appendix

How To

	Enable RFC 2217 [https://tools.ietf.org/html/rfc2217.html] (and other URL handlers) in programs using pySerial.

	Patch the code where the serial.Serial is instantiated.
E.g. replace:

s = serial.Serial(...)

it with:

s = serial.serial_for_url(...)

or for backwards compatibility to old pySerial installations:

try:
 s = serial.serial_for_url(...)
except AttributeError:
 s = serial.Serial(...)

Assuming the application already stores port names as strings that’s all
that is required. The user just needs a way to change the port setting of
your application to an rfc2217:// URL (e.g. by editing a
configuration file, GUI dialog etc.).

Please note that this enables all URL types supported by
pySerial and that those involving the network are unencrypted and not
protected against eavesdropping.

	Test your setup.

	Is the device not working as expected? Maybe it’s time to check the
connection before proceeding. serial.tools.miniterm from the Examples
can be used to open the serial port and do some basic tests.

To test cables, connecting RX to TX (loop back) and typing some characters
in serial.tools.miniterm is a simple test. When the characters are displayed
on the screen, then at least RX and TX work (they still could be swapped
though).

There is also a spy::// URL handler. It prints all calls (read/write,
control lines) to the serial port to a file or stderr. See spy://
for details.

FAQ

	Example works in serial.tools.miniterm but not in script.

	The RTS and DTR lines are switched when the port is opened. This may cause
some processing or reset on the connected device. In such a cases an
immediately following call to write() may not be received by the
device.

A delay after opening the port, before the first write(), is
recommended in this situation. E.g. a time.sleep(1)

	Application works when .py file is run, but fails when packaged (py2exe etc.)

	py2exe and similar packaging programs scan the sources for import
statements and create a list of modules that they package. pySerial may
create two issues with that:

	implementations for other modules are found. On Windows, it’s safe to
exclude ‘serialposix’, ‘serialjava’ and ‘serialcli’ as these are not
used.

	serial.serial_for_url() does a dynamic lookup of protocol handlers
at runtime. If this function is used, the desired handlers have to be
included manually (e.g. ‘serial.urlhandler.protocol_socket’,
‘serial.urlhandler.protocol_rfc2217’, etc.). This can be done either with
the “includes” option in setup.py or by a dummy import in one of the
packaged modules.

	User supplied URL handlers

	serial.serial_for_url() can be used to access “virtual” serial ports
identified by an URL scheme. E.g. for the RFC 2217 [https://tools.ietf.org/html/rfc2217.html]:
rfc2217://.

Custom URL handlers can be added by extending the module
search path in serial.protocol_handler_packages. This is possible
starting from pySerial V2.6.

	Permission denied errors

	On POSIX based systems, the user usually needs to be in a special group to
have access to serial ports.

On Debian based systems, serial ports are usually in the group dialout,
so running sudo adduser $USER dialout (and logging-out and -in) enables
the user to access the port.

	Parity on Raspberry Pi

	The Raspi has one full UART and a restricted one. On devices with built
in wireless (WIFI/BT) use the restricted one on the GPIO header pins.
If enhanced features are required, it is possible to swap UARTs, see
https://www.raspberrypi.org/documentation/configuration/uart.md

	Support for Python 2.6 or earlier

	Support for older Python releases than 2.7 will not return to pySerial 3.x.
Python 2.7 is now many years old (released 2010). If you insist on using
Python 2.6 or earlier, it is recommend to use pySerial 2.7 [https://pypi.python.org/pypi/pyserial/2.7]
(or any 2.x version).

Related software

	com0com - http://com0com.sourceforge.net/

	Provides virtual serial ports for Windows.

License

Copyright (c) 2001-2020 Chris Liechti <cliechti@gmx.net>
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 serial	

 	
 	
 serial.threaded	

 	
 	
 serial.tools.list_ports	

 	
 	
 serial.tools.miniterm	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X

_

 	
 	__del__() (serial.Serial method)

 	__enter__() (serial.Serial method)

 	(serial.threaded.ReaderThread method)

 	__exit__() (serial.Serial method)

 	(serial.threaded.ReaderThread method)

 	
 	__init__() (serial.rfc2217.PortManager method)

 	(serial.Serial method)

 	(serial.threaded.Packetizer method)

 	(serial.threaded.ReaderThread method)

A

 	
 	apply_settings() (serial.Serial method)

 	
 	applySettingsDict() (serial.Serial method)

B

 	
 	baudrate (serial.Serial attribute)

 	BAUDRATES (serial.Serial attribute)

 	
 	break_condition (serial.Serial attribute)

 	bytesize (serial.Serial attribute)

 	BYTESIZES (serial.Serial attribute)

C

 	
 	cancel_read() (serial.Serial method)

 	cancel_write() (serial.Serial method)

 	cd (serial.Serial attribute)

 	check_modem_lines() (serial.rfc2217.PortManager method)

 	close() (serial.Serial method)

 	(serial.threaded.ReaderThread method)

 	
 	comports() (in module serial.tools.list_ports)

 	connect() (serial.threaded.ReaderThread method)

 	connection_lost() (serial.threaded.Packetizer method)

 	(serial.threaded.Protocol method)

 	connection_made() (serial.threaded.Packetizer method)

 	(serial.threaded.Protocol method)

 	cts (serial.Serial attribute)

D

 	
 	data_received() (serial.threaded.Packetizer method)

 	(serial.threaded.Protocol method)

 	delay_before_rx (serial.rs485.RS485Settings attribute)

 	delay_before_tx (serial.rs485.RS485Settings attribute)

 	description (serial.tools.list_ports.ListPortInfo attribute)

 	
 	device (serial.tools.list_ports.ListPortInfo attribute)

 	device() (in module serial)

 	dsr (serial.Serial attribute)

 	dsrdtr (serial.Serial attribute)

 	dtr (serial.Serial attribute)

E

 	
 	EIGHTBITS (in module serial)

 	
 	escape() (serial.rfc2217.PortManager method)

F

 	
 	fileno() (serial.Serial method)

 	filter() (serial.rfc2217.PortManager method)

 	FIVEBITS (in module serial)

 	
 	flowControlOut() (serial.Serial method)

 	flush() (serial.Serial method)

 	flushInput() (serial.Serial method)

 	flushOutput() (serial.Serial method)

G

 	
 	get_settings() (serial.Serial method)

 	getCD() (serial.Serial method)

 	getCTS() (serial.Serial method)

 	
 	getDSR() (serial.Serial method)

 	getRI() (serial.Serial method)

 	getSettingsDict() (serial.Serial method)

 	grep() (in module serial.tools.list_ports)

H

 	
 	handle_line() (serial.threaded.LineReader method)

 	handle_packet() (serial.threaded.LineReader method)

 	(serial.threaded.Packetizer method)

 	
 	hwid (serial.tools.list_ports.ListPortInfo attribute)

I

 	
 	in_waiting (serial.Serial attribute)

 	inter_byte_timeout (serial.Serial attribute)

 	interCharTimeout (serial.Serial attribute)

 	interface (serial.tools.list_ports.ListPortInfo attribute)

 	
 	inWaiting() (serial.Serial method)

 	is_open (serial.Serial attribute)

 	isOpen() (serial.Serial method)

 	iterbytes() (in module serial)

L

 	
 	LineReader (class in serial.threaded)

 	ListPortInfo (class in serial.tools.list_ports)

 	
 	location (serial.tools.list_ports.ListPortInfo attribute)

 	loopback (serial.rs485.RS485Settings attribute)

M

 	
 	manufacturer (serial.tools.list_ports.ListPortInfo attribute)

N

 	
 	name (serial.Serial attribute)

 	(serial.tools.list_ports.ListPortInfo attribute)

 	
 	nonblocking() (serial.Serial method)

O

 	
 	open() (serial.Serial method)

 	
 	out_waiting (serial.Serial attribute)

 	outWaiting() (serial.Serial method)

P

 	
 	Packetizer (class in serial.threaded)

 	PARITIES (serial.Serial attribute)

 	parity (serial.Serial attribute)

 	PARITY_EVEN (in module serial)

 	PARITY_MARK (in module serial)

 	PARITY_NONE (in module serial)

 	PARITY_ODD (in module serial)

 	
 	PARITY_SPACE (in module serial)

 	pid (serial.tools.list_ports.ListPortInfo attribute)

 	port (serial.Serial attribute)

 	portstr (serial.Serial attribute)

 	product (serial.tools.list_ports.ListPortInfo attribute)

 	Protocol (class in serial.threaded)

 	protocol_handler_packages (in module serial)

R

 	
 	read() (serial.Serial method)

 	read_until() (serial.Serial method)

 	readable() (serial.Serial method)

 	ReaderThread (class in serial.threaded)

 	readinto() (serial.Serial method)

 	readline() (serial.Serial method)

 	readlines() (serial.Serial method)

 	reset_input_buffer() (serial.Serial method)

 	reset_output_buffer() (serial.Serial method)

 	
 RFC

 	RFC 2217, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]

 	
 	rfc2217.PortManager (class in serial)

 	rfc2217.Serial (class in serial)

 	ri (serial.Serial attribute)

 	rs485.RS485 (class in serial)

 	rs485.RS485Settings (class in serial)

 	rs485_mode (serial.Serial attribute)

 	rts (serial.Serial attribute)

 	rts_level_for_rx (serial.rs485.RS485Settings attribute)

 	rts_level_for_tx (serial.rs485.RS485Settings attribute)

 	rtscts (serial.Serial attribute)

 	rtsToggle (serial.Serial attribute)

 	run() (serial.threaded.ReaderThread method)

S

 	
 	seekable() (serial.Serial method)

 	send_break() (serial.Serial method)

 	sendBreak() (serial.Serial method)

 	Serial (class in serial)

 	serial (module), [1], [2]

 	serial.threaded (module)

 	serial.tools.list_ports (module)

 	serial.tools.miniterm (module)

 	serial_for_url() (in module serial)

 	serial_number (serial.tools.list_ports.ListPortInfo attribute)

 	SerialException

 	SerialTimeoutException

 	set_input_flow_control() (serial.Serial method)

 	
 	set_output_flow_control() (serial.Serial method)

 	setBreak() (serial.Serial method)

 	setDTR() (serial.Serial method)

 	setRTS() (serial.Serial method)

 	setXON() (serial.Serial method)

 	SEVENBITS (in module serial)

 	SIXBITS (in module serial)

 	stop() (serial.threaded.ReaderThread method)

 	STOPBITS (serial.Serial attribute)

 	stopbits (serial.Serial attribute)

 	STOPBITS_ONE (in module serial)

 	STOPBITS_ONE_POINT_FIVE (in module serial)

 	STOPBITS_TWO (in module serial)

T

 	
 	timeout (serial.Serial attribute)

 	
 	to_bytes() (in module serial)

V

 	
 	VERSION (in module serial)

 	
 	vid (serial.tools.list_ports.ListPortInfo attribute)

W

 	
 	writable() (serial.Serial method)

 	write() (serial.Serial method)

 	(serial.threaded.ReaderThread method)

 	
 	write_line() (serial.threaded.LineReader method)

 	write_timeout (serial.Serial attribute)

 	writelines() (serial.Serial method)

 	writeTimeout (serial.Serial attribute)

X

 	
 	XOFF (in module serial)

 	
 	XON (in module serial)

 	xonxoff (serial.Serial attribute)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pySerial’s documentation

 		
 pySerial

 		
 Overview

 		
 Features

 		
 Requirements

 		
 Installation

 		
 From PyPI

 		
 From Conda

 		
 From source (zip/tar.gz or checkout)

 		
 Packages

 		
 References

 		
 Older Versions

 		
 Short introduction

 		
 Opening serial ports

 		
 Configuring ports later

 		
 Readline

 		
 EOL

 		
 Testing ports

 		
 Listing ports

 		
 Accessing ports

 		
 pySerial API

 		
 Classes

 		
 Native ports

 		
 RS485 support

 		
 RFC 2217 Network ports

 		
 Exceptions

 		
 Constants

 		
 Module functions and attributes

 		
 Threading

 		
 asyncio

 		
 Tools

 		
 serial.tools.list_ports

 		
 serial.tools.miniterm

 		
 URL Handlers

 		
 Overview

 		
 rfc2217://

 		
 socket://

 		
 loop://

 		
 hwgrep://

 		
 spy://

 		
 alt://

 		
 cp2110://

 		
 Examples

 		
 Examples

 		
 Miniterm

 		
 TCP/IP - serial bridge

 		
 Single-port TCP/IP - serial bridge (RFC 2217)

 		
 Multi-port TCP/IP - serial bridge (RFC 2217)

 		
 wxPython examples

 		
 Unit tests

 		
 Appendix

 		
 How To

 		
 FAQ

 		
 Related software

 		
 License

