

pysam: htslib interface for python

	Author:

	Andreas Heger, John Marshall, Kevin Jacobs, and contributors

	Date:

	Oct 20, 2023

	Version:

	0.22.0

Pysam is a python module for reading, manipulating and writing
genomic data sets.

Pysam is a wrapper of the htslib [http://www.htslib.org/] C-API and provides facilities to
read and write SAM/BAM/VCF/BCF/BED/GFF/GTF/FASTA/FASTQ files as well
as access to the command line functionality of the samtools [http://samtools.sourceforge.net/] and
bcftools [https://samtools.github.io/bcftools/bcftools.html] packages. The module supports compression and random access
through indexing.

This module provides a low-level wrapper around the htslib [http://www.htslib.org/] C-API as
using cython and a high-level, pythonic API for convenient access to
the data within genomic file formats.

The current version wraps htslib-1.18, samtools-1.18, and bcftools-1.18.

To install the latest release, type:

pip install pysam

See the Installation notes for details.

This module is unrelated to NREL-PySAM [https://nrel-pysam.readthedocs.io/], which wraps the National Renewable
Energy Laboratory’s System Advisor Model.

Contents

	Introduction

	API
	SAM/BAM/CRAM files

	Tabix files

	FASTA files

	FASTQ files

	VCF/BCF files

	HTSFile

	Working with BAM/CRAM/SAM-formatted files
	Opening a file

	Fetching reads mapped to a region

	Using the pileup-engine

	Creating BAM/CRAM/SAM files from scratch

	Using streams

	Using samtools commands within python

	Working with tabix-indexed files

	Working with VCF/BCF formatted files

	Extending pysam

	Installing pysam
	Conda installation

	Pypi installation

	Installation from repository

	Requirements

	FAQ
	How should I cite pysam

	Is pysam thread-safe?

	pysam coordinates are wrong

	Calling pysam.fetch() confuses existing iterators

	AlignmentFile.fetch does not show unmapped reads

	I can’t call AlignmentFile.fetch on a file without an index

	BAM files with a large number of reference sequences are slow

	Weirdness with spliced reads in samfile.pileup(chr,start,end) given spliced alignments from an RNA-seq bam file

	I can’t edit quality scores in place

	Why is there no SNPCaller class anymore?

	I get an error ‘PileupProxy accessed after iterator finished’

	Pysam won’t compile

	ImportError: cannot import name csamtools

	Developer’s guide
	Code organization

	Importing new versions of htslib and samtools

	Unit testing

	Benchmarking

	Contributors

	Release notes
	Release 0.22.0

	Release 0.21.0

	Release 0.20.0

	Release 0.19.1

	Release 0.19.0

	Release 0.18.0

	Release 0.17.0

	Release 0.16.0

	Release 0.15.4

	Release 0.15.3

	Release 0.15.2

	Release 0.15.1

	Release 0.15.0

	Release 0.14.1

	Release 0.14.0

	Release 0.13.0

	Release 0.12.0.1

	Release 0.12.0

	Release 0.11.2.2

	Release 0.11.2.1

	Release 0.11.2

	Release 0.11.1

	Release 0.11.0

	Release 0.10.0

	Release 0.9.1

	Release 0.9.0

	Release 0.8.4

	Release 0.8.3

	Release 0.8.2.1

	Release 0.8.2

	Release 0.8.1

	Release 0.8.0

	Release 0.7.8

	Release 0.7.7

	Release 0.7.6

	Release 0.7.5

	Release 0.7.4

	Release 0.7.3

	Release 0.7.2

	Release 0.7.1

	Release 0.7

	Release 0.6

	Release 0.5

	Release 0.4

	Release 0.3

	Benchmarking

	Glossary

Indices and tables

Contents:

	Index

	Module Index

	Search Page

References

[Li.2009]
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup.
Bioinformatics. 2009 Aug 15;25(16):2078-9.
Epub 2009 Jun 8 btp352 [https://doi.org/10.1093/bioinformatics/btp352].
PMID: 19505943 [https://pubmed.ncbi.nlm.nih.gov/19505943].

[Bonfield.2021]
HTSlib: C library for reading/writing high-throughput sequencing data.
Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, Keane T, Davies RM.
GigaScience (2021) 10(2) giab007 [https://doi.org/10.1093/gigascience/giab007].
PMID: 33594436 [https://pubmed.ncbi.nlm.nih.gov/33594436].

[Danecek.2021]
Twelve years of SAMtools and BCFtools.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H.
GigaScience (2021) 10(2) giab008 [https://doi.org/10.1093/gigascience/giab008].
PMID: 33590861 [https://pubmed.ncbi.nlm.nih.gov/33590861].

See also

	Information about htslib
	http://www.htslib.org

	The samtools homepage
	http://samtools.sourceforge.net

	The cython C-extensions for python
	https://cython.org/

	The python language
	https://www.python.org

Introduction

Pysam is a python module that makes it easy to read and manipulate
mapped short read sequence data stored in SAM/BAM files. It is a
lightweight wrapper of the htslib [http://www.htslib.org/] C-API.

This page provides a quick introduction in using pysam followed by the
API. See Working with BAM/CRAM/SAM-formatted files for more detailed usage instructions.

To use the module to read a file in BAM format, create a
AlignmentFile object:

import pysam
samfile = pysam.AlignmentFile("ex1.bam", "rb")

Once a file is opened you can iterate over all of the read mapping to
a specified region using fetch(). Each
iteration returns a AlignedSegment object which
represents a single read along with its fields and optional tags:

for read in samfile.fetch('chr1', 100, 120):
 print(read)

samfile.close()

To give:

EAS56_57:6:190:289:82 0 99 <<<7<<<;<<<<<<<<8;;<7;4<;<;;;;;94<; 69 CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA 0 192 1
EAS56_57:6:190:289:82 0 99 <<<<<<;<<<<<<<<<<;<<;<<<<;8<6;9;;2; 137 AGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC 73 64 1
EAS51_64:3:190:727:308 0 102 <<<<<<<<<<<<<<<<<<<<<<<<<<<::<<<844 99 GGTGCAGAGCCGAGTCACGGGGTTGCCAGCACAGG 99 18 1
...

You can also write to a AlignmentFile:

import pysam
samfile = pysam.AlignmentFile("ex1.bam", "rb")
pairedreads = pysam.AlignmentFile("allpaired.bam", "wb", template=samfile)
for read in samfile.fetch():
 if read.is_paired:
 pairedreads.write(read)

pairedreads.close()
samfile.close()

An alternative way of accessing the data in a SAM file is by iterating
over each base of a specified region using the
pileup() method. Each iteration returns a
PileupColumn which represents all the reads in the SAM
file that map to a single base in the reference sequence. The list of
reads are represented as PileupRead objects in the
PileupColumn.pileups property:

import pysam
samfile = pysam.AlignmentFile("ex1.bam", "rb")
for pileupcolumn in samfile.pileup("chr1", 100, 120):
 print("\ncoverage at base %s = %s" % (pileupcolumn.pos, pileupcolumn.n))
 for pileupread in pileupcolumn.pileups:
 if not pileupread.is_del and not pileupread.is_refskip:
 # query position is None if is_del or is_refskip is set.
 print('\tbase in read %s = %s' %
 (pileupread.alignment.query_name,
 pileupread.alignment.query_sequence[pileupread.query_position]))

samfile.close()

The above code outputs:

coverage at base 99 = 1
 base in read EAS56_57:6:190:289:82 = A

coverage at base 100 = 1
 base in read EAS56_57:6:190:289:82 = G

coverage at base 101 = 1
 base in read EAS56_57:6:190:289:82 = G

coverage at base 102 = 2
 base in read EAS56_57:6:190:289:82 = G
 base in read EAS51_64:3:190:727:308 = G
...

Commands available in samtools [http://samtools.sourceforge.net/] are available as simple
function calls. For example:

pysam.sort("-o", "output.bam", "ex1.bam")

corresponds to the command line:

samtools sort -o output.bam ex1.bam

Analogous to AlignmentFile, a
TabixFile allows fast random access to compressed and
tabix indexed tab-separated file formats with genomic data:

import pysam
tabixfile = pysam.TabixFile("example.gtf.gz")

for gtf in tabixfile.fetch("chr1", 1000, 2000):
 print(gtf.contig, gtf.start, gtf.end, gtf.gene_id)

TabixFile implements lazy parsing in order to iterate
over large tables efficiently.

More detailed usage instructions is at Working with BAM/CRAM/SAM-formatted files.

Note

Coordinates in pysam are always 0-based (following the python
convention). SAM text files use 1-based coordinates.

Note

	The above examples can be run in the tests directory of the
	installation directory. Type ‘make’ before running them.

See also

https://github.com/pysam-developers/pysam

The pysam code repository, containing source code and download
instructions

http://pysam.readthedocs.org/en/latest/

The pysam website containing documentation

API

SAM/BAM/CRAM files

Objects of type AlignmentFile allow working with
BAM/SAM formatted files.

	
class pysam.AlignmentFile

	AlignmentFile(filepath_or_object, mode=None, template=None,
reference_names=None, reference_lengths=None, text=NULL,
header=None, add_sq_text=False, check_header=True, check_sq=True,
reference_filename=None, filename=None, index_filename=None,
filepath_index=None, require_index=False, duplicate_filehandle=True,
ignore_truncation=False, threads=1)

A SAM/BAM/CRAM formatted file.

If filepath_or_object is a string, the file is automatically
opened. If filepath_or_object is a python File object, the
already opened file will be used.

If the file is opened for reading and an index exists (if file is BAM, a
.bai file or if CRAM a .crai file), it will be opened automatically.
index_filename may be specified explicitly. If the index is not named
in the standard manner, not located in the same directory as the
BAM/CRAM file, or is remote. Without an index, random access via
fetch() and pileup()
is disabled.

For writing, the header of a SAM file/BAM file can
be constituted from several sources (see also the samtools format
specification):

	If template is given, the header is copied from another
AlignmentFile (template must be a
AlignmentFile).

	If header is given, the header is built from a
multi-level dictionary.

	If text is given, new header text is copied from raw
text.

	The names (reference_names) and lengths
(reference_lengths) are supplied directly as lists.

When reading or writing a CRAM file, the filename of a FASTA-formatted
reference can be specified with reference_filename.

By default, if a file is opened in mode ‘r’, it is checked
for a valid header (check_header = True) and a definition of
chromosome names (check_sq = True).

	Parameters:

	
	mode (string) – mode should be r for reading or w for writing. The
default is text mode (SAM). For binary (BAM)
I/O you should append b for compressed or u for
uncompressed BAM output. Use h to output header
information in text (TAM) mode. Use c for
CRAM formatted files.

If b is present, it must immediately follow r or
w. Valid modes are r, w, wh, rb, wb,
wbu, wb0, rc and wc. For instance, to open a
BAM formatted file for reading, type:

f = pysam.AlignmentFile('ex1.bam','rb')

If mode is not specified, the method will try to auto-detect
in the order ‘rb’, ‘r’, thus both the following should work:

f1 = pysam.AlignmentFile('ex1.bam')
f2 = pysam.AlignmentFile('ex1.sam')

	template (AlignmentFile) – when writing, copy header from file template.

	header (dict [https://docs.python.org/3.11/library/stdtypes.html#dict] or AlignmentHeader) – when writing, build header from a multi-level dictionary. The
first level are the four types (‘HD’, ‘SQ’, …). The second
level are a list of lines, with each line being a list of
tag-value pairs. The header is constructed first from all the
defined fields, followed by user tags in alphabetical
order. Alternatively, an AlignmentHeader
object can be passed directly.

	text (string) – when writing, use the string provided as the header

	reference_names (list [https://docs.python.org/3.11/library/stdtypes.html#list]) – see reference_lengths

	reference_lengths (list [https://docs.python.org/3.11/library/stdtypes.html#list]) – when writing or opening a SAM file without header build header
from list of chromosome names and lengths. By default, ‘SQ’
and ‘LN’ tags will be added to the header text. This option
can be changed by unsetting the flag add_sq_text.

	add_sq_text (bool [https://docs.python.org/3.11/library/functions.html#bool]) – do not add ‘SQ’ and ‘LN’ tags to header. This option permits
construction SAM formatted files without a header.

	add_sam_header (bool [https://docs.python.org/3.11/library/functions.html#bool]) – when outputting SAM the default is to output a header. This is
equivalent to opening the file in ‘wh’ mode. If this option is
set to False, no header will be output. To read such a file,
set check_header=False.

	check_header (bool [https://docs.python.org/3.11/library/functions.html#bool]) – obsolete: when reading a SAM file, check if header is present
(default=True)

	check_sq (bool [https://docs.python.org/3.11/library/functions.html#bool]) – when reading, check if SQ entries are present in header
(default=True)

	reference_filename (string) – Path to a FASTA-formatted reference file. Valid only for CRAM files.
When reading a CRAM file, this overrides both $REF_PATH and the URL
specified in the header (UR tag), which are normally used to find
the reference.

	index_filename (string) – Explicit path to the index file. Only needed if the index is not
named in the standard manner, not located in the same directory as
the BAM/CRAM file, or is remote. An IOError is raised if the index
cannot be found or is invalid.

	filepath_index (string) – Alias for index_filename.

	require_index (bool [https://docs.python.org/3.11/library/functions.html#bool]) – When reading, require that an index file is present and is valid or
raise an IOError. (default=False)

	filename (string) – Alternative to filepath_or_object. Filename of the file
to be opened.

	duplicate_filehandle (bool [https://docs.python.org/3.11/library/functions.html#bool]) – By default, file handles passed either directly or through
File-like objects will be duplicated before passing them to
htslib. The duplication prevents issues where the same stream
will be closed by htslib and through destruction of the
high-level python object. Set to False to turn off
duplication.

	ignore_truncation (bool [https://docs.python.org/3.11/library/functions.html#bool]) – Issue a warning, instead of raising an error if the current file
appears to be truncated due to a missing EOF marker. Only applies
to bgzipped formats. (Default=False)

	format_options (list [https://docs.python.org/3.11/library/stdtypes.html#list]) – A list of key=value strings, as accepted by –input-fmt-option and
–output-fmt-option in samtools.

	threads (integer) – Number of threads to use for compressing/decompressing BAM/CRAM files.
Setting threads to > 1 cannot be combined with ignore_truncation.
(Default=1)

	
check_index(self)

	return True if index is present.

	Raises:

	
	AttributeError [https://docs.python.org/3.11/library/exceptions.html#AttributeError] – if htsfile is SAM formatted and thus has no index.

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if htsfile is closed or index could not be opened.

	
close(self)

	closes the pysam.AlignmentFile.

	
count(self, contig=None, start=None, stop=None, region=None, until_eof=False, read_callback='nofilter', reference=None, end=None)

	count the number of reads in region

The region is specified by contig, start and stop.
reference and end are also accepted for backward
compatibility as synonyms for contig and stop,
respectively. Alternatively, a samtools [http://samtools.sourceforge.net/] region
string can be supplied.

A SAM file does not allow random access and if
region or contig are given, an exception is raised.

	Parameters:

	
	contig (string) – reference_name of the genomic region (chromosome)

	start (int [https://docs.python.org/3.11/library/functions.html#int]) – start of the genomic region (0-based inclusive)

	stop (int [https://docs.python.org/3.11/library/functions.html#int]) – end of the genomic region (0-based exclusive)

	region (string) – a region string in samtools format.

	until_eof (bool [https://docs.python.org/3.11/library/functions.html#bool]) – count until the end of the file, possibly including
unmapped reads as well.

	read_callback (string or function) – select a call-back to ignore reads when counting. It can
be either a string with the following values:

	all
	skip reads in which any of the following
flags are set: BAM_FUNMAP, BAM_FSECONDARY, BAM_FQCFAIL,
BAM_FDUP

	nofilter
	uses every single read

Alternatively, read_callback can be a function
check_read(read) that should return True only for
those reads that shall be included in the counting.

	reference (string) – backward compatible synonym for contig

	end (int [https://docs.python.org/3.11/library/functions.html#int]) – backward compatible synonym for stop

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the genomic coordinates are out of range or invalid.

	
count_coverage(self, contig, start=None, stop=None, region=None, quality_threshold=15, read_callback='all', reference=None, end=None)

	count the coverage of genomic positions by reads in region.

The region is specified by contig, start and stop.
reference and end are also accepted for backward
compatibility as synonyms for contig and stop,
respectively. Alternatively, a samtools [http://samtools.sourceforge.net/] region
string can be supplied. The coverage is computed per-base [ACGT].

	Parameters:

	
	contig (string) – reference_name of the genomic region (chromosome)

	start (int [https://docs.python.org/3.11/library/functions.html#int]) – start of the genomic region (0-based inclusive). If not
given, count from the start of the chromosome.

	stop (int [https://docs.python.org/3.11/library/functions.html#int]) – end of the genomic region (0-based exclusive). If not given,
count to the end of the chromosome.

	region (string) – a region string.

	quality_threshold (int [https://docs.python.org/3.11/library/functions.html#int]) – quality_threshold is the minimum quality score (in phred) a
base has to reach to be counted.

	read_callback (string or function) – select a call-back to ignore reads when counting. It can
be either a string with the following values:

	all
	skip reads in which any of the following
flags are set: BAM_FUNMAP, BAM_FSECONDARY, BAM_FQCFAIL,
BAM_FDUP

	nofilter
	uses every single read

Alternatively, read_callback can be a function
check_read(read) that should return True only for
those reads that shall be included in the counting.

	reference (string) – backward compatible synonym for contig

	end (int [https://docs.python.org/3.11/library/functions.html#int]) – backward compatible synonym for stop

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the genomic coordinates are out of range or invalid.

	Returns:

	four array.arrays of the same length in order A C G T

	Return type:

	tuple [https://docs.python.org/3.11/library/stdtypes.html#tuple]

	
fetch(self, contig=None, start=None, stop=None, region=None, tid=None, until_eof=False, multiple_iterators=False, reference=None, end=None)

	fetch reads aligned in a region.

See parse_region() for more information
on how genomic regions can be specified. reference and
end are also accepted for backward compatibility as synonyms
for contig and stop, respectively.

Without a contig or region all mapped reads in the file
will be fetched. The reads will be returned ordered by reference
sequence, which will not necessarily be the order within the
file. This mode of iteration still requires an index. If there is
no index, use until_eof=True.

If only contig is set, all reads aligned to contig
will be fetched.

A SAM file does not allow random access. If region
or contig are given, an exception is raised.

	Parameters:

	
	until_eof (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If until_eof is True, all reads from the current file
position will be returned in order as they are within the
file. Using this option will also fetch unmapped reads.

	multiple_iterators (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If multiple_iterators is True, multiple
iterators on the same file can be used at the same time. The
iterator returned will receive its own copy of a filehandle to
the file effectively re-opening the file. Re-opening a file
creates some overhead, so beware.

	Returns:

	An iterator over a collection of reads.

	Return type:

	IteratorRow

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the genomic coordinates are out of range or invalid or the
 file does not permit random access to genomic coordinates.

	
find_introns(self, read_iterator)

	Return a dictionary {(start, stop): count}
Listing the intronic sites in the reads (identified by ‘N’ in the cigar strings),
and their support (= number of reads).

read_iterator can be the result of a .fetch(…) call.
Or it can be a generator filtering such reads. Example
samfile.find_introns((read for read in samfile.fetch(…) if read.is_reverse)

	
find_introns_slow(self, read_iterator)

	Return a dictionary {(start, stop): count}
Listing the intronic sites in the reads (identified by ‘N’ in the cigar strings),
and their support (= number of reads).

read_iterator can be the result of a .fetch(…) call.
Or it can be a generator filtering such reads. Example
samfile.find_introns((read for read in samfile.fetch(…) if read.is_reverse)

	
get_index_statistics(self)

	return statistics about mapped/unmapped reads per chromosome as
they are stored in the index, similarly to the statistics printed
by the samtools idxstats command.

CRAI indexes do not record these statistics, so for a CRAM file
with a .crai index the returned statistics will all be 0.

	Returns:

	a list of records for each chromosome. Each record has the
attributes ‘contig’, ‘mapped’, ‘unmapped’ and ‘total’.

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
get_reference_length(self, reference)

	return reference length corresponding to numerical tid

	
get_reference_name(self, tid)

	return reference name corresponding to numerical tid

	
get_tid(self, reference)

	return the numerical tid corresponding to
reference

returns -1 if reference is not known.

	
getrname(self, tid)

	deprecated, use get_reference_name() instead

	
gettid(self, reference)

	deprecated, use get_tid() instead

	
has_index(self)

	return true if htsfile has an existing (and opened) index.

	
head(self, n, multiple_iterators=True)

	return an iterator over the first n alignments.

This iterator is is useful for inspecting the bam-file.

	Parameters:

	multiple_iterators (bool [https://docs.python.org/3.11/library/functions.html#bool]) – is set to True by default in order to
avoid changing the current file position.

	Returns:

	an iterator over a collection of reads

	Return type:

	IteratorRowHead

	
is_valid_tid(self, int tid)

	return True if the numerical tid is valid; False otherwise.

Note that the unmapped tid code (-1) counts as an invalid.

	
lengths

	tuple of the lengths of the reference sequences. This is a
read-only attribute. The lengths are in the same order as
pysam.AlignmentFile.references

	
mapped

	int with total number of mapped alignments according to the
statistics recorded in the index. This is a read-only
attribute.
(This will be 0 for a CRAM file indexed by a .crai index, as that
index format does not record these statistics.)

	
mate(self, AlignedSegment read)

	return the mate of pysam.AlignedSegment read.

Note

Calling this method will change the file position.
This might interfere with any iterators that have
not re-opened the file.

Note

This method is too slow for high-throughput processing.
If a read needs to be processed with its mate, work
from a read name sorted file or, better, cache reads.

	Returns:

	the mate

	Return type:

	AlignedSegment

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the read is unpaired or the mate is unmapped

	
nocoordinate

	int with total number of reads without coordinates according to the
statistics recorded in the index, i.e., the statistic printed for “*”
by the samtools idxstats command. This is a read-only attribute.
(This will be 0 for a CRAM file indexed by a .crai index, as that
index format does not record these statistics.)

	
nreferences

	int with the number of reference sequences in the file.
This is a read-only attribute.

	
pileup(self, contig=None, start=None, stop=None, region=None, reference=None, end=None, **kwargs)

	perform a pileup within a region. The region is
specified by contig, start and stop (using
0-based indexing). reference and end are also accepted for
backward compatibility as synonyms for contig and stop,
respectively. Alternatively, a samtools ‘region’ string
can be supplied.

Without ‘contig’ or ‘region’ all reads will be used for the
pileup. The reads will be returned ordered by
contig sequence, which will not necessarily be the
order within the file.

Note that SAM formatted files do not allow random
access. In these files, if a ‘region’ or ‘contig’ are
given an exception is raised.

Note

‘all’ reads which overlap the region are returned. The
first base returned will be the first base of the first
read ‘not’ necessarily the first base of the region used
in the query.

	Parameters:

	
	truncate (bool [https://docs.python.org/3.11/library/functions.html#bool]) – By default, the samtools pileup engine outputs all reads
overlapping a region. If truncate is True and a region is
given, only columns in the exact region specified are
returned.

	max_depth (int [https://docs.python.org/3.11/library/functions.html#int]) – Maximum read depth permitted. The default limit is ‘8000’.

	stepper (string) – The stepper controls how the iterator advances.
Possible options for the stepper are

	all
	skip reads in which any of the following flags are set:
BAM_FUNMAP, BAM_FSECONDARY, BAM_FQCFAIL, BAM_FDUP

	nofilter
	uses every single read turning off any filtering.

	samtools
	same filter and read processing as in samtools
pileup. For full compatibility, this requires a
‘fastafile’ to be given. The following options all pertain
to filtering of the samtools stepper.

	fastafile (FastaFile object.) – This is required for some of the steppers.

	ignore_overlaps (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If set to True, detect if read pairs overlap and only take
the higher quality base. This is the default.

	flag_filter (int [https://docs.python.org/3.11/library/functions.html#int]) – ignore reads where any of the bits in the flag are set. The default is
BAM_FUNMAP | BAM_FSECONDARY | BAM_FQCFAIL | BAM_FDUP.

	flag_require (int [https://docs.python.org/3.11/library/functions.html#int]) – only use reads where certain flags are set. The default is 0.

	ignore_orphans (bool [https://docs.python.org/3.11/library/functions.html#bool]) – ignore orphans (paired reads that are not in a proper pair).
The default is to ignore orphans.

	min_base_quality (int [https://docs.python.org/3.11/library/functions.html#int]) – Minimum base quality. Bases below the minimum quality will
not be output. The default is 13.

	adjust_capq_threshold (int [https://docs.python.org/3.11/library/functions.html#int]) – adjust mapping quality. The default is 0 for no
adjustment. The recommended value for adjustment is 50.

	min_mapping_quality (int [https://docs.python.org/3.11/library/functions.html#int]) – only use reads above a minimum mapping quality. The default is 0.

	compute_baq (bool [https://docs.python.org/3.11/library/functions.html#bool]) – re-alignment computing per-Base Alignment Qualities (BAQ). The
default is to do re-alignment. Realignment requires a reference
sequence. If none is present, no realignment will be performed.

	redo_baq (bool [https://docs.python.org/3.11/library/functions.html#bool]) – recompute per-Base Alignment Quality on the fly ignoring
existing base qualities. The default is False (use existing
base qualities).

	Returns:

	an iterator over genomic positions.

	Return type:

	IteratorColumn

	
references

	tuple with the names of reference sequences. This is a
read-only attribute

	
text

	deprecated, use references and lengths instead

	
unmapped

	int with total number of unmapped reads according to the statistics
recorded in the index. This number of reads includes the number of reads
without coordinates. This is a read-only attribute.
(This will be 0 for a CRAM file indexed by a .crai index, as that
index format does not record these statistics.)

	
write(self, AlignedSegment read) → int [https://docs.python.org/3.11/library/functions.html#int]

	write a single pysam.AlignedSegment to disk.

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the writing failed

	Returns:

	the number of bytes written. If the file is closed,
this will be 0.

	Return type:

	int [https://docs.python.org/3.11/library/functions.html#int]

	
class pysam.AlignmentHeader

	header information for a AlignmentFile object

	Parameters:

	
	header_dict (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – build header from a multi-level dictionary. The
first level are the four types (‘HD’, ‘SQ’, …). The second
level are a list of lines, with each line being a list of
tag-value pairs. The header is constructed first from all the
defined fields, followed by user tags in alphabetical
order. Alternatively, an AlignmentHeader
object can be passed directly.

	text (string) – use the string provided as the header

	reference_names (list [https://docs.python.org/3.11/library/stdtypes.html#list]) – see reference_lengths

	reference_lengths (list [https://docs.python.org/3.11/library/stdtypes.html#list]) – build header from list of chromosome names and lengths. By
default, ‘SQ’ and ‘LN’ tags will be added to the header
text. This option can be changed by unsetting the flag
add_sq_text.

	add_sq_text (bool [https://docs.python.org/3.11/library/functions.html#bool]) – do not add ‘SQ’ and ‘LN’ tags to header. This option permits
construction SAM formatted files without a header.

	
as_dict(self)

	deprecated, use to_dict() instead

	
copy(self)

	

	
classmethod from_dict(cls, header_dict)

	

	
classmethod from_references(cls, reference_names, reference_lengths, text=None, add_sq_text=True)

	

	
classmethod from_text(cls, text)

	

	
get(self, *args)

	

	
get_reference_length(self, reference)

	

	
get_reference_name(self, tid)

	

	
get_tid(self, reference)

	return the numerical tid corresponding to
reference

returns -1 if reference is not known.

	
is_valid_tid(self, int tid)

	return True if the numerical tid is valid; False otherwise.

Note that the unmapped tid code (-1) counts as an invalid.

	
items(self)

	

	
iteritems(self)

	

	
keys(self)

	

	
lengths

	tuple of the lengths of the reference sequences. This is a
read-only attribute. The lengths are in the same order as
pysam.AlignmentFile.references

	
nreferences

	int with the number of reference sequences in the file.

This is a read-only attribute.

	
references

	tuple with the names of reference sequences. This is a
read-only attribute

	
to_dict(self)

	return two-level dictionary with header information from the file.

The first level contains the record (HD, SQ, etc) and
the second level contains the fields (VN, LN, etc).

The parser is validating and will raise an AssertionError if
if encounters any record or field tags that are not part of
the SAM specification. Use the
pysam.AlignmentFile.text attribute to get the unparsed
header.

The parsing follows the SAM format specification with the
exception of the CL field. This option will consume the
rest of a header line irrespective of any additional fields.
This behaviour has been added to accommodate command line
options that contain characters that are not valid field
separators.

If no @SQ entries are within the text section of the header,
this will be automatically added from the reference names and
lengths stored in the binary part of the header.

	
values(self)

	

An AlignedSegment represents an aligned segment within
a SAM/BAM file.

	
class pysam.AlignedSegment(AlignmentHeader header=None)

	Class representing an aligned segment.

This class stores a handle to the samtools C-structure representing
an aligned read. Member read access is forwarded to the C-structure
and converted into python objects. This implementation should be fast,
as only the data needed is converted.

For write access, the C-structure is updated in-place. This is
not the most efficient way to build BAM entries, as the variable
length data is concatenated and thus needs to be resized if
a field is updated. Furthermore, the BAM entry might be
in an inconsistent state.

One issue to look out for is that the sequence should always
be set before the quality scores. Setting the sequence will
also erase any quality scores that were set previously.

	Parameters:

	header – AlignmentHeader object to map numerical
identifiers to chromosome names. If not given, an empty
header is created.

	
aend

	deprecated, use reference_end instead.

	
alen

	deprecated, use reference_length instead.

	
aligned_pairs

	deprecated, use get_aligned_pairs() instead.

	
bin

	properties bin

	
blocks

	deprecated, use get_blocks() instead.

	
cigar

	deprecated, use cigarstring or cigartuples instead.

	
cigarstring

	the cigar alignment as a string.

The cigar string is a string of alternating integers
and characters denoting the length and the type of
an operation.

Note

The order length,operation is specified in the
SAM format. It is different from the order of
the cigar property.

Returns None if not present.

To unset the cigarstring, assign None or the
empty string.

	
cigartuples

	the cigar alignment. The alignment
is returned as a list of tuples of (operation, length).

If the alignment is not present, None is returned.

The operations are:

	M

	BAM_CMATCH

	0

	I

	BAM_CINS

	1

	D

	BAM_CDEL

	2

	N

	BAM_CREF_SKIP

	3

	S

	BAM_CSOFT_CLIP

	4

	H

	BAM_CHARD_CLIP

	5

	P

	BAM_CPAD

	6

	=

	BAM_CEQUAL

	7

	X

	BAM_CDIFF

	8

	B

	BAM_CBACK

	9

Note

The output is a list of (operation, length) tuples, such as
[(0, 30)].
This is different from the SAM specification and
the cigarstring property, which uses a
(length, operation) order, for example: 30M.

To unset the cigar property, assign an empty list
or None.

	
compare(self, AlignedSegment other)

	return -1,0,1, if contents in this are binary
<,=,> to other

	
flag

	properties flag

	
classmethod from_dict(cls, sam_dict, AlignmentHeader header)

	parses a dictionary representation of the aligned segment.

	Parameters:

	sam_dict – dictionary of alignment values, keys corresponding to output from
todict().

	
classmethod fromstring(cls, sam, AlignmentHeader header)

	parses a string representation of the aligned segment.

The input format should be valid SAM format.

	Parameters:

	sam – SAM formatted string

	
get_aligned_pairs(self, matches_only=False, with_seq=False)

	a list of aligned read (query) and reference positions.

Each item in the returned list is a tuple consisting of
the 0-based offset from the start of the read sequence
followed by the 0-based reference position.

For inserts, deletions, skipping either query or reference
position may be None.

For padding in the reference, the reference position will
always be None.

	Parameters:

	
	matches_only (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True, only matched bases are returned — no None on either
side.

	with_seq (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True, return a third element in the tuple containing the
reference sequence. For CIGAR ‘P’ (padding in the reference)
operations, the third tuple element will be None. Substitutions
are lower-case. This option requires an MD tag to be present.

	Returns:

	aligned_pairs

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list] of tuples

	
get_blocks(self)

	a list of start and end positions of
aligned gapless blocks.

The start and end positions are in genomic
coordinates.

Blocks are not normalized, i.e. two blocks
might be directly adjacent. This happens if
the two blocks are separated by an insertion
in the read.

	
get_cigar_stats(self)

	summary of operations in cigar string.

The output order in the array is “MIDNSHP=X” followed by a
field for the NM tag. If the NM tag is not present, this
field will always be 0.

	M

	BAM_CMATCH

	0

	I

	BAM_CINS

	1

	D

	BAM_CDEL

	2

	N

	BAM_CREF_SKIP

	3

	S

	BAM_CSOFT_CLIP

	4

	H

	BAM_CHARD_CLIP

	5

	P

	BAM_CPAD

	6

	=

	BAM_CEQUAL

	7

	X

	BAM_CDIFF

	8

	B

	BAM_CBACK

	9

	NM

	NM tag

	10

If no cigar string is present, empty arrays will be returned.

	Returns:

	two arrays. The first contains the nucleotide counts within
each cigar operation, the second contains the number of blocks
for each cigar operation.

	Return type:

	arrays

	
get_forward_qualities(self)

	return the original base qualities of the read sequence,
in the same format as the query_qualities property.

Reads mapped to the reverse strand have their base qualities stored
reversed in the BAM file. This method returns such reads’ base qualities
reversed back to their original orientation.

	
get_forward_sequence(self)

	return the original read sequence.

Reads mapped to the reverse strand are stored reverse complemented in
the BAM file. This method returns such reads reverse complemented back
to their original orientation.

Returns None if the record has no query sequence.

	
get_overlap(self, uint32_t start, uint32_t end)

	return number of aligned bases of read overlapping the interval
start and end on the reference sequence.

Return None if cigar alignment is not available.

	
get_reference_positions(self, full_length=False)

	a list of reference positions that this read aligns to.

By default, this method returns the (0-based) positions on the
reference that are within the read’s alignment, leaving gaps
corresponding to deletions and other reference skips.

When full_length is True, the returned list is the same length
as the read and additionally includes None values corresponding
to insertions or soft-clipping, i.e., to bases of the read that
are not aligned to a reference position.
(See also get_aligned_pairs() which additionally returns
the corresponding positions along the read.)

	
get_reference_sequence(self)

	return the reference sequence in the region that is covered by the
alignment of the read to the reference.

This method requires the MD tag to be set.

	
get_tag(self, tag, with_value_type=False)

	retrieves data from the optional alignment section
given a two-letter tag denoting the field.

The returned value is cast into an appropriate python type.

This method is the fastest way to access the optional
alignment section if only few tags need to be retrieved.

Possible value types are “AcCsSiIfZHB” (see BAM format
specification) as well as additional value type ‘d’ as
implemented in htslib.

	Parameters:

	
	tag – data tag.

	with_value_type – Optional[bool]
if set to True, the return value is a tuple of (tag value, type
code). (default False)

	Returns:

	A python object with the value of the tag. The type of the
object depends on the data type in the data record.

	Raises:

	KeyError [https://docs.python.org/3.11/library/exceptions.html#KeyError] – If tag is not present, a KeyError is raised.

	
get_tags(self, with_value_type=False)

	the fields in the optional alignment section.

Returns a list of all fields in the optional
alignment section. Values are converted to appropriate python
values. For example: [(NM, 2), (RG, "GJP00TM04")]

If with_value_type is set, the value type as encode in
the AlignedSegment record will be returned as well:

[(NM, 2, “i”), (RG, “GJP00TM04”, “Z”)]

This method will convert all values in the optional alignment
section. When getting only one or few tags, please see
get_tag() for a quicker way to achieve this.

	
has_tag(self, tag)

	returns true if the optional alignment section
contains a given tag.

	
infer_query_length(self, always=False)

	infer query length from CIGAR alignment.

This method deduces the query length from the CIGAR alignment
but does not include hard-clipped bases.

Returns None if CIGAR alignment is not present.

If always is set to True, infer_read_length is used instead.
This is deprecated and only present for backward compatibility.

	
infer_read_length(self)

	infer read length from CIGAR alignment.

This method deduces the read length from the CIGAR alignment
including hard-clipped bases.

Returns None if CIGAR alignment is not present.

	
inferred_length

	deprecated, use infer_query_length() instead.

	
is_duplicate

	true if optical or PCR duplicate

	
is_forward

	true if read is mapped to forward strand
(implemented in terms of is_reverse)

	
is_mapped

	true if read itself is mapped
(implemented in terms of is_unmapped)

	
is_paired

	true if read is paired in sequencing

	
is_proper_pair

	true if read is mapped in a proper pair

	
is_qcfail

	true if QC failure

	
is_read1

	true if this is read1

	
is_read2

	true if this is read2

	
is_reverse

	true if read is mapped to reverse strand

	
is_secondary

	true if not primary alignment

	
is_supplementary

	true if this is a supplementary alignment

	
is_unmapped

	true if read itself is unmapped

	
isize

	deprecated, use template_length instead.

	
mapping_quality

	mapping quality

	
mapq

	deprecated, use mapping_quality instead.

	
mate_is_forward

	true if the mate is mapped to forward strand
(implemented in terms of mate_is_reverse)

	
mate_is_mapped

	true if the mate is mapped
(implemented in terms of mate_is_unmapped)

	
mate_is_reverse

	true if the mate is mapped to reverse strand

	
mate_is_unmapped

	true if the mate is unmapped

	
modified_bases

	Modified bases annotations from Ml/Mm tags. The output is
Dict[(canonical base, strand, modification)] -> [(pos,qual), …]
with qual being (256*probability), or -1 if unknown.
Strand==0 for forward and 1 for reverse strand modification

	
modified_bases_forward

	Modified bases annotations from Ml/Mm tags. The output is
Dict[(canonical base, strand, modification)] -> [(pos,qual), …]
with qual being (256*probability), or -1 if unknown.
Strand==0 for forward and 1 for reverse strand modification.
The positions are with respect to the original sequence from get_forward_sequence()

	
mpos

	deprecated, use next_reference_start
instead.

	
mrnm

	deprecated, use next_reference_id instead.

	
next_reference_id

	the reference id of the mate/next read.

	
next_reference_name

	reference name of the mate/next read (None if no
AlignmentFile is associated)

	
next_reference_start

	the position of the mate/next read.

	
opt(self, tag)

	deprecated, use get_tag() instead.

	
overlap(self)

	deprecated, use get_overlap() instead.

	
pnext

	deprecated, use next_reference_start instead.

	
pos

	deprecated, use reference_start instead.

	
positions

	deprecated, use get_reference_positions() instead.

	
qend

	deprecated, use query_alignment_end instead.

	
qlen

	deprecated, use query_alignment_length
instead.

	
qname

	deprecated, use query_name instead.

	
qqual

	deprecated, use query_alignment_qualities
instead.

	
qstart

	deprecated, use query_alignment_start instead.

	
qual

	deprecated, use query_qualities instead.

	
query

	deprecated, use query_alignment_sequence
instead.

	
query_alignment_end

	end index of the aligned query portion of the sequence (0-based,
exclusive)

This the index just past the last base in query_sequence
that is not soft-clipped.

	
query_alignment_length

	length of the aligned query sequence.

This is equal to query_alignment_end -
query_alignment_start

	
query_alignment_qualities

	aligned query sequence quality values (None if not present). These
are the quality values that correspond to
query_alignment_sequence, that is, they exclude qualities of
soft clipped bases. This is equal to
query_qualities[query_alignment_start:query_alignment_end].

Quality scores are returned as a python array of unsigned
chars. Note that this is not the ASCII-encoded value typically
seen in FASTQ or SAM formatted files. Thus, no offset of 33
needs to be subtracted.

This property is read-only.

	
query_alignment_sequence

	aligned portion of the read.

This is a substring of query_sequence that excludes flanking
bases that were soft clipped (None if not present). It
is equal to query_sequence[query_alignment_start:query_alignment_end].

SAM/BAM files may include extra flanking bases that are not
part of the alignment. These bases may be the result of the
Smith-Waterman or other algorithms, which may not require
alignments that begin at the first residue or end at the last.
In addition, extra sequencing adapters, multiplex identifiers,
and low-quality bases that were not considered for alignment
may have been retained.

	
query_alignment_start

	start index of the aligned query portion of the sequence (0-based,
inclusive).

This the index of the first base in query_sequence
that is not soft-clipped.

	
query_length

	the length of the query/read.

This value corresponds to the length of the sequence supplied
in the BAM/SAM file. The length of a query is 0 if there is no
sequence in the BAM/SAM file. In those cases, the read length
can be inferred from the CIGAR alignment, see
pysam.AlignedSegment.infer_query_length().

The length includes soft-clipped bases and is equal to
len(query_sequence).

This property is read-only but is updated when a new query
sequence is assigned to this AlignedSegment.

Returns 0 if not available.

	
query_name

	the query template name (None if not present)

	
query_qualities

	read sequence base qualities, including soft clipped bases
(None if not present).

Quality scores are returned as a python array of unsigned
chars. Note that this is not the ASCII-encoded value typically
seen in FASTQ or SAM formatted files. Thus, no offset of 33
needs to be subtracted.

Note that to set quality scores the sequence has to be set
beforehand as this will determine the expected length of the
quality score array.

This method raises a ValueError if the length of the
quality scores and the sequence are not the same.

	
query_sequence

	read sequence bases, including soft clipped bases
(None if not present).

Assigning to this attribute will invalidate any quality scores.
Thus, to in-place edit the sequence and quality scores, copies of
the quality scores need to be taken. Consider trimming for example:

q = read.query_qualities
read.query_sequence = read.query_sequence[5:10]
read.query_qualities = q[5:10]

The sequence is returned as it is stored in the BAM file. (This will
be the reverse complement of the original read sequence if the mapper
has aligned the read to the reverse strand.)

	
reference_end

	aligned reference position of the read on the reference genome.

reference_end points to one past the last aligned residue.
Returns None if not available (read is unmapped or no cigar
alignment present).

	
reference_id

	reference ID

Note

This field contains the index of the reference sequence in
the sequence dictionary. To obtain the name of the
reference sequence, use get_reference_name()

	
reference_length

	aligned length of the read on the reference genome.

This is equal to reference_end - reference_start.
Returns None if not available.

	
reference_name

	reference name

	
reference_start

	0-based leftmost coordinate

	
rlen

	deprecated, use query_length instead.

	
rname

	deprecated, use reference_id instead.

	
rnext

	deprecated, use next_reference_id instead.

	
seq

	deprecated, use query_sequence instead.

	
setTag(self, tag, value, value_type=None, replace=True)

	deprecated, use set_tag() instead.

	
set_tag(self, tag, value, value_type=None, replace=True)

	sets a particular field tag to value in the optional alignment
section.

value_type describes the type of value that is to entered
into the alignment record. It can be set explicitly to one of
the valid one-letter type codes. If unset, an appropriate type
will be chosen automatically based on the python type of
value.

An existing value of the same tag will be overwritten unless
replace is set to False. This is usually not recommended as a
tag may only appear once in the optional alignment section.

If value is None, the tag will be deleted.

This method accepts valid SAM specification value types, which
are:

A: printable char
i: signed int
f: float
Z: printable string
H: Byte array in hex format
B: Integer or numeric array

Additionally, it will accept the integer BAM types (‘cCsSI’)

For htslib compatibility, ‘a’ is synonymous with ‘A’ and the
method accepts a ‘d’ type code for a double precision float.

When deducing the type code by the python type of value, the
following mapping is applied:

i: python int
f: python float
Z: python str or bytes
B: python array.array, list or tuple

Note that a single character string will be output as ‘Z’ and
not ‘A’ as the former is the more general type.

	
set_tags(self, tags)

	sets the fields in the optional alignment section with
a list of (tag, value) tuples.

The value type of the values is determined from the
python type. Optionally, a type may be given explicitly as
a third value in the tuple, For example:

x.set_tags([(NM, 2, “i”), (RG, “GJP00TM04”, “Z”)]

This method will not enforce the rule that the same tag may appear
only once in the optional alignment section.

	
tags

	deprecated, use get_tags() instead.

	
template_length

	the observed query template length

	
tid

	deprecated, use reference_id instead.

	
tlen

	deprecated, use template_length instead.

	
to_dict(self)

	returns a json representation of the aligned segment.

Field names are abbreviated versions of the class attributes.

	
to_string(self)

	returns a string representation of the aligned segment.

The output format is valid SAM format if a header is associated
with the AlignedSegment.

	
tostring(self, htsfile=None)

	deprecated, use to_string() instead.

	Parameters:

	htsfile – (deprecated) AlignmentFile object to map numerical
identifiers to chromosome names. This parameter is present
for backwards compatibility and ignored.

	
class pysam.PileupColumn

	A pileup of reads at a particular reference sequence position
(column). A pileup column contains all the reads that map
to a certain target base.

This class is a proxy for results returned by the samtools pileup
engine. If the underlying engine iterator advances, the results
of this column will change.

	
get_mapping_qualities(self)

	query mapping quality scores at pileup column position.

	Returns:

	a list of quality scores

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
get_num_aligned(self)

	return number of aligned bases at pileup column position.

This method applies a base quality filter and the number is
equal to the size of get_query_sequences(),
get_mapping_qualities(), etc.

	
get_query_names(self)

	query/read names aligned at pileup column position.

	Returns:

	a list of query names at pileup column position.

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
get_query_positions(self)

	positions in read at pileup column position.

	Returns:

	a list of read positions

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
get_query_qualities(self)

	query base quality scores at pileup column position.

	Returns:

	a list of quality scores

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
get_query_sequences(self, bool mark_matches=False, bool mark_ends=False, bool add_indels=False)

	query bases/sequences at pileup column position.

Optionally, the bases/sequences can be annotated according to the samtools
mpileup format. This is the format description from the samtools mpileup tool:

Information on match, mismatch, indel, strand, mapping
quality and start and end of a read are all encoded at the
read base column. At this column, a dot stands for a match
to the reference base on the forward strand, a comma for a
match on the reverse strand, a '>' or '<' for a reference
skip, `ACGTN' for a mismatch on the forward strand and
`acgtn' for a mismatch on the reverse strand. A pattern
`\+[0-9]+[ACGTNacgtn]+' indicates there is an insertion
between this reference position and the next reference
position. The length of the insertion is given by the
integer in the pattern, followed by the inserted
sequence. Similarly, a pattern `-[0-9]+[ACGTNacgtn]+'
represents a deletion from the reference. The deleted bases
will be presented as `*' in the following lines. Also at
the read base column, a symbol `^' marks the start of a
read. The ASCII of the character following `^' minus 33
gives the mapping quality. A symbol `$' marks the end of a
read segment

To reproduce samtools mpileup format, set all of mark_matches,
mark_ends and add_indels to True.

	Parameters:

	
	mark_matches (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True, output bases matching the reference as “.” or “,”
for forward and reverse strand, respectively. This mark
requires the reference sequence. If no reference is
present, this option is ignored.

	mark_ends (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True, add markers “^” and “$” for read start and end, respectively.

	add_indels (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True, add bases for bases inserted into or skipped from the
reference. The latter requires a reference sequence file to have
been given, e.g. via pileup(fastafile = …). If no reference
sequence is available, skipped bases are represented as ‘N’s.

	Returns:

	a list of bases/sequences per read at pileup column position.

	Return type:

	list [https://docs.python.org/3.11/library/stdtypes.html#list]

	
n

	deprecated, use nsegments instead.

	
nsegments

	number of reads mapping to this column.

Note that this number ignores the base quality filter.

	
pileups

	list of reads (pysam.PileupRead) aligned to this column

	
pos

	deprecated, use reference_pos instead.

	
reference_id

	the reference sequence number as defined in the header

	
reference_name

	reference name (None if no AlignmentFile is associated)

	
reference_pos

	the position in the reference sequence (0-based).

	
set_min_base_quality(self, min_base_quality)

	set the minimum base quality for this pileup column.

	
tid

	deprecated, use reference_id instead.

	
class pysam.PileupRead

	Representation of a read aligned to a particular position in the
reference sequence.

	
alignment

	a pysam.AlignedSegment object of the aligned read

	
indel

	indel length for the position following the current pileup site.

This quantity peeks ahead to the next cigar operation in this
alignment. If the next operation is an insertion, indel will
be positive. If the next operation is a deletion, it will be
negation. 0 if the next operation is not an indel.

	
is_del

	1 iff the base on the padded read is a deletion

	
is_head

	1 iff the base on the padded read is the left-most base.

	
is_refskip

	1 iff the base on the padded read is part of CIGAR N op.

	
is_tail

	1 iff the base on the padded read is the right-most base.

	
level

	the level of the read in the “viewer” mode. Note that this value
is currently not computed.

	
query_position

	position of the read base at the pileup site, 0-based.
None if is_del or is_refskip is set.

	
query_position_or_next

	position of the read base at the pileup site, 0-based.

If the current position is a deletion, returns the next
aligned base.

	
class pysam.IndexedReads(AlignmentFile samfile, int multiple_iterators=True)

	Index a Sam/BAM-file by query name while keeping the
original sort order intact.

The index is kept in memory and can be substantial.

By default, the file is re-opened to avoid conflicts if multiple
operators work on the same file. Set multiple_iterators = False
to not re-open samfile.

	Parameters:

	
	samfile (AlignmentFile) – File to be indexed.

	multiple_iterators (bool [https://docs.python.org/3.11/library/functions.html#bool]) – Flag indicating whether the file should be reopened. Reopening prevents
existing iterators being affected by the indexing.

	
build(self)

	build the index.

	
find(self, query_name)

	find query_name in index.

	Returns:

	Returns an iterator over all reads with query_name.

	Return type:

	IteratorRowSelection

	Raises:

	KeyError [https://docs.python.org/3.11/library/exceptions.html#KeyError] – if the query_name is not in the index.

Tabix files

TabixFile opens tabular files that have been
indexed with tabix [http://www.htslib.org/doc/tabix.html].

	
class pysam.TabixFile

	Random access to bgzf formatted files that
have been indexed by tabix.

The file is automatically opened. The index file of file
<filename> is expected to be called <filename>.tbi
by default (see parameter index).

	Parameters:

	
	filename (string) – Filename of bgzf file to be opened.

	index (string) – The filename of the index. If not set, the default is to
assume that the index is called filename.tbi

	mode (char) – The file opening mode. Currently, only r is permitted.

	parser (pysam.Parser) – sets the default parser for this tabix file. If parser
is None, the results are returned as an unparsed string.
Otherwise, parser is assumed to be a functor that will return
parsed data (see for example asTuple and
asGTF).

	encoding (string) – The encoding passed to the parser

	threads (integer) – Number of threads to use for decompressing Tabix files.
(Default=1)

	Raises:

	
	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if index file is missing.

	IOError [https://docs.python.org/3.11/library/exceptions.html#IOError] – if file could not be opened

	
close(self)

	closes the pysam.TabixFile.

	
contigs

	list of chromosome names

	
fetch(self, reference=None, start=None, end=None, region=None, parser=None, multiple_iterators=False)

	fetch one or more rows in a region using 0-based
indexing. The region is specified by reference,
start and end. Alternatively, a samtools region
string can be supplied.

Without reference or region all entries will be fetched.

If only reference is set, all reads matching on reference
will be fetched.

If parser is None, the default parser will be used for
parsing.

Set multiple_iterators to true if you will be using multiple
iterators on the same file at the same time. The iterator
returned will receive its own copy of a filehandle to the file
effectively re-opening the file. Re-opening a file creates
some overhead, so beware.

	
header

	the file header.

The file header consists of the lines at the beginning of a
file that are prefixed by the comment character #.

Note

The header is returned as an iterator presenting lines
without the newline character.

To iterate over tabix files, use tabix_iterator():

	
pysam.tabix_iterator(infile, parser)

	return an iterator over all entries in a file.

Results are returned parsed as specified by the parser. If
parser is None, the results are returned as an unparsed string.
Otherwise, parser is assumed to be a functor that will return
parsed data (see for example asTuple and
asGTF).

	
pysam.tabix_compress(filename_in, filename_out, force=False)

	compress filename_in writing the output to filename_out.

Raise an IOError if filename_out already exists, unless force
is set.

	
pysam.tabix_index(filename, force=False, seq_col=None, start_col=None, end_col=None, preset=None, meta_char=u'#', int line_skip=0, zerobased=False, int min_shift=-1, index=None, keep_original=False, csi=False)

	index tab-separated filename using tabix.

An existing index will not be overwritten unless force is set.

The index will be built from coordinates in columns seq_col,
start_col and end_col.

The contents of filename have to be sorted by contig and
position - the method does not check if the file is sorted.

Column indices are 0-based. Note that this is different from the
tabix command line utility where column indices start at 1.

Coordinates in the file are assumed to be 1-based unless
zerobased is set.

If preset is provided, the column coordinates are taken from a
preset. Valid values for preset are “gff”, “bed”, “sam”, “vcf”,
psltbl”, “pileup”.

Lines beginning with meta_char and the first line_skip lines
will be skipped.

If filename is not detected as a gzip file it will be automatically
compressed. The original file will be removed and only the compressed
file will be retained.

By default or when min_shift is 0, creates a TBI index. If min_shift
is greater than zero and/or csi is True, creates a CSI index with a
minimal interval size of 1<<min_shift (1<<14 if only csi is set).

index controls the filename which should be used for creating the index.
If not set, the default is to append .tbi to filename.

When automatically compressing files, if keep_original is set the
uncompressed file will not be deleted.

returns the filename of the compressed data

	
class pysam.asTuple

	converts a tabix row into a python tuple.

A field in a row is accessed by numeric index.

	
class pysam.asVCF

	converts a tabix row into a VCF record with
the following fields:

	Column

	Field

	Contents

	1

	contig

	chromosome

	2

	pos

	chromosomal position, zero-based

	3

	id

	id

	4

	ref

	reference allele

	5

	alt

	alternate alleles

	6

	qual

	quality

	7

	filter

	filter

	8

	info

	info

	9

	format

	format specifier.

Access to genotypes is via index:

contig = vcf.contig
first_sample_genotype = vcf[0]
second_sample_genotype = vcf[1]

	
class pysam.asBed

	converts a tabix row into a bed record
with the following fields:

	Column

	Field

	Contents

	1

	contig

	contig

	2

	start

	genomic start coordinate (zero-based)

	3

	end

	genomic end coordinate plus one
(zero-based)

	4

	name

	name of feature.

	5

	score

	score of feature

	6

	strand

	strand of feature

	7

	thickStart

	thickStart

	8

	thickEnd

	thickEnd

	9

	itemRGB

	itemRGB

	10

	blockCount

	number of bocks

	11

	blockSizes

	‘,’ separated string of block sizes

	12

	blockStarts

	‘,’ separated string of block genomic
start positions

Only the first three fields are required. Additional
fields are optional, but if one is defined, all the preceding
need to be defined as well.

	
class pysam.asGTF

	converts a tabix row into a GTF record with the following
fields:

	Column

	Name

	Content

	1

	contig

	the chromosome name

	2

	feature

	The feature type

	3

	source

	The feature source

	4

	start

	genomic start coordinate
(0-based)

	5

	end

	genomic end coordinate
(0-based)

	6

	score

	feature score

	7

	strand

	strand

	8

	frame

	frame

	9

	attributes

	the attribute field

GTF formatted entries also define the following fields that
are derived from the attributes field:

	Name

	Content

	gene_id

	the gene identifier

	transcript_id

	the transcript identifier

FASTA files

	
class pysam.FastaFile

	Random access to fasta formatted files that
have been indexed by faidx.

The file is automatically opened. The index file of file
<filename> is expected to be called <filename>.fai.

	Parameters:

	
	filename (string) – Filename of fasta file to be opened.

	filepath_index (string) – Optional, filename of the index. By default this is
the filename + “.fai”.

	filepath_index_compressed (string) – Optional, filename of the index if fasta file is. By default this is
the filename + “.gzi”.

	Raises:

	
	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if index file is missing

	IOError [https://docs.python.org/3.11/library/exceptions.html#IOError] – if file could not be opened

	
close(self)

	close the file.

	
closed

	bool indicating the current state of the file object.
This is a read-only attribute; the close() method changes the value.

	
fetch(self, reference=None, start=None, end=None, region=None)

	fetch sequences in a region.

A region can
either be specified by reference, start and
end. start and end denote 0-based, half-open
intervals.

Alternatively, a samtools region string can be
supplied.

If any of the coordinates are missing they will be replaced by the
minimum (start) or maximum (end) coordinate.

Note that region strings are 1-based, while start and end denote
an interval in python coordinates.
The region is specified by reference, start and end.

	Returns:

	string

	Return type:

	a string with the sequence specified by the region.

	Raises:

	
	IndexError [https://docs.python.org/3.11/library/exceptions.html#IndexError] – if the coordinates are out of range

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – if the region is invalid

	
filename

	filename associated with this object. This is a read-only attribute.

	
get_reference_length(self, reference)

	return the length of reference.

	
is_open(self)

	return true if samfile has been opened.

	
lengths

	tuple with the lengths of reference sequences.

	
nreferences

	int with the number of reference sequences in the file.
This is a read-only attribute.

	
references

	tuple with the names of reference sequences.

FASTQ files

	
class pysam.FastxFile

	Stream access to fasta or fastq formatted files.

The file is automatically opened.

Entries in the file can be both fastq or fasta formatted or even a
mixture of the two.

This file object permits iterating over all entries in the
file. Random access is not implemented. The iteration returns
objects of type FastqProxy

	Parameters:

	
	filename (string) – Filename of fasta/fastq file to be opened.

	persist (bool [https://docs.python.org/3.11/library/functions.html#bool]) – If True (default) make a copy of the entry in the file during
iteration. If set to False, no copy will be made. This will
permit much faster iteration, but an entry will not persist
when the iteration continues and an entry is read-only.

Notes

Prior to version 0.8.2, this class was called FastqFile.

	Raises:

	IOError [https://docs.python.org/3.11/library/exceptions.html#IOError] – if file could not be opened

Examples

>>> with pysam.FastxFile(filename) as fh:
... for entry in fh:
... print(entry.name)
... print(entry.sequence)
... print(entry.comment)
... print(entry.quality)
>>> with pysam.FastxFile(filename) as fin, open(out_filename, mode='w') as fout:
... for entry in fin:
... fout.write(str(entry) + '\n')

	
close(self)

	close the file.

	
closed

	bool indicating the current state of the file object.
This is a read-only attribute; the close() method changes the value.

	
filename

	string with the filename associated with this object.

	
is_open(self)

	return true if samfile has been opened.

	
class pysam.FastqProxy

	A single entry in a fastq file.

	
get_quality_array(self, int offset=33) → array

	return quality values as integer array after subtracting offset.

	
name

	The name of each entry in the fastq file.

	
quality

	The quality score of each entry in the fastq file, represented as a string.

	
sequence

	The sequence of each entry in the fastq file.

VCF/BCF files

	
class pysam.VariantFile(*args, **kwargs)

	(filename, mode=None, index_filename=None, header=None, drop_samples=False,
duplicate_filehandle=True, ignore_truncation=False, threads=1)

A VCF/BCF formatted file. The file is automatically
opened.

If an index for a variant file exists (.csi or .tbi), it will be
opened automatically. Without an index random access to records
via fetch() is disabled.

For writing, a VariantHeader object must be provided,
typically obtained from another VCF file/BCF
file.

	Parameters:

	
	mode (string) – mode should be r for reading or w for writing. The default is
text mode (VCF). For binary (BCF) I/O you should append
b for compressed or u for uncompressed BCF output.

If b is present, it must immediately follow r or w. Valid
modes are r, w, wh, rb, wb, wbu and wb0.
For instance, to open a BCF formatted file for reading, type:

f = pysam.VariantFile('ex1.bcf','r')

If mode is not specified, we will try to auto-detect the file type. All
of the following should work:

f1 = pysam.VariantFile('ex1.bcf')
f2 = pysam.VariantFile('ex1.vcf')
f3 = pysam.VariantFile('ex1.vcf.gz')

	index_filename (string) – Explicit path to an index file.

	header (VariantHeader) – VariantHeader object required for writing.

	drop_samples (bool [https://docs.python.org/3.11/library/functions.html#bool]) – Ignore sample information when reading.

	duplicate_filehandle (bool [https://docs.python.org/3.11/library/functions.html#bool]) – By default, file handles passed either directly or through
File-like objects will be duplicated before passing them to
htslib. The duplication prevents issues where the same stream
will be closed by htslib and through destruction of the
high-level python object. Set to False to turn off
duplication.

	ignore_truncation (bool [https://docs.python.org/3.11/library/functions.html#bool]) – Issue a warning, instead of raising an error if the current file
appears to be truncated due to a missing EOF marker. Only applies
to bgzipped formats. (Default=False)

	threads (integer) – Number of threads to use for compressing/decompressing VCF/BCF files.
Setting threads to > 1 cannot be combined with ignore_truncation.
(Default=1)

	
close(self)

	closes the pysam.VariantFile.

	
copy(self)

	

	
fetch(self, contig=None, start=None, stop=None, region=None, reopen=False, end=None, reference=None)

	fetch records in a region, specified either by
contig, start, and end (which are 0-based, half-open);
or alternatively by a samtools region string (which is
1-based inclusive).

Without contig or region all mapped records will be fetched. The
records will be returned ordered by contig, which will not necessarily
be the order within the file.

Set reopen to true if you will be using multiple iterators on the
same file at the same time. The iterator returned will receive its
own copy of a filehandle to the file effectively re-opening the
file. Re-opening a file incurrs some overhead, so use with care.

If only contig is set, all records on contig will be fetched.
If both region and contig are given, an exception is raised.

Note that a bgzipped VCF.gz file without a tabix/CSI index
(.tbi/.csi) or a BCF file without a CSI index can only be
read sequentially.

	
get_reference_name(self, tid)

	return reference name corresponding to numerical tid

	
get_tid(self, reference)

	return the numerical tid corresponding to
reference

returns -1 if reference is not known.

	
is_valid_tid(self, tid)

	return True if the numerical tid is valid; False otherwise.

returns -1 if reference is not known.

	
new_record(self, *args, **kwargs)

	Create a new empty VariantRecord.

See VariantHeader.new_record()

	
open(self, filename, mode=u'r', index_filename=None, VariantHeader header=None, drop_samples=False, duplicate_filehandle=True, ignore_truncation=False, threads=1)

	open a vcf/bcf file.

If open is called on an existing VariantFile, the current file will be
closed and a new file will be opened.

	
reset(self)

	reset file position to beginning of file just after the header.

	
subset_samples(self, include_samples)

	Read only a subset of samples to reduce processing time and memory.
Must be called prior to retrieving records.

	
write(self, VariantRecord record) → int [https://docs.python.org/3.11/library/functions.html#int]

	write a single pysam.VariantRecord to disk.

returns the number of bytes written.

	
class pysam.VariantHeader

	header information for a VariantFile object

	
add_line(self, line)

	Add a metadata line to this header

	
add_meta(self, key, value=None, items=None)

	Add metadata to this header

	
add_record(self, VariantHeaderRecord record)

	Add an existing VariantHeaderRecord to this header

	
add_sample(self, name)

	Add a new sample to this header

	
add_samples(self, *args)

	Add several new samples to this header.
This function takes multiple arguments, each of which may
be either a sample name or an iterable returning sample names
(e.g., a list of sample names).

	
alts

	alt metadata (dict [https://docs.python.org/3.11/library/stdtypes.html#dict] ID->record).

The data returned just a snapshot of alt records, is created
every time the property is requested, and modifications will
not be reflected in the header metadata and vice versa.

i.e. it is just a dict that reflects the state of alt records
at the time it is created.

	
contigs

	contig information (VariantHeaderContigs)

	
copy(self)

	

	
filters

	filter metadata (VariantHeaderMetadata)

	
formats

	format metadata (VariantHeaderMetadata)

	
info

	info metadata (VariantHeaderMetadata)

	
merge(self, VariantHeader header)

	

	
new_record(self, contig=None, start=0, stop=0, alleles=None, id=None, qual=None, filter=None, info=None, samples=None, **kwargs)

	Create a new empty VariantRecord.

Arguments are currently experimental. Use with caution and expect
changes in upcoming releases.

	
records

	header records (VariantHeaderRecords)

	
samples

	

	
version

	VCF version

	
class pysam.VariantRecord(*args, **kwargs)

	Variant record

	
alleles

	tuple of reference allele followed by alt alleles

	
alts

	tuple of alt alleles

	
chrom

	chromosome/contig name

	
contig

	chromosome/contig name

	
copy(self)

	return a copy of this VariantRecord object

	
filter

	filter information (see VariantRecordFilter)

	
format

	sample format metadata (see VariantRecordFormat)

	
id

	record identifier or None if not available

	
info

	info data (see VariantRecordInfo)

	
pos

	record start position on chrom/contig (1-based inclusive)

	
qual

	phred scaled quality score or None if not available

	
ref

	reference allele

	
rid

	internal reference id number

	
rlen

	record length on chrom/contig (aka rec.stop - rec.start)

	
samples

	sample data (see VariantRecordSamples)

	
start

	record start position on chrom/contig (0-based inclusive)

	
stop

	record stop position on chrom/contig (0-based exclusive)

	
translate(self, VariantHeader dst_header)

	

	
class pysam.VariantHeaderRecord(*args, **kwargs)

	header record from a VariantHeader object

	
attrs

	sequence of additional header attributes

	
get(self, key, default=None)

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items(self)

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems(self)

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys(self)

	
iterkeys() → an iterator over the keys of D

	

	
itervalues(self)

	
itervalues() → an iterator over the values of D

	

	
key

	header key (the part before ‘=’, in FILTER/INFO/FORMAT/contig/fileformat etc.)

	
keys(self)

	
keys() → list of D's keys

	

	
pop(self, key, default=_nothing)

	

	
remove(self)

	

	
type

	FILTER, INFO, FORMAT, CONTIG, STRUCTURED, or GENERIC

	Type:

	header type

	
update(self, items=None, **kwargs)

	
update([E,]**F) → None.

	Update D from dict/iterable E and F.

	
value

	header value. Set only for generic lines, None for FILTER/INFO, etc.

	
values(self)

	
values() → list of D's values

	

HTSFile

HTSFile is the base class for pysam.AlignmentFile and
pysam.VariantFile.

	
class pysam.HTSFile

	Base class for HTS file types

	
add_hts_options(self, format_options=None)

	Given a list of key=value format option strings, add them to an open htsFile

	
category

	General file format category. One of UNKNOWN, ALIGNMENTS,
VARIANTS, INDEX, REGIONS

	
check_truncation(self, ignore_truncation=False)

	Check if file is truncated.

	
close(self)

	

	
closed

	return True if HTSFile is closed.

	
compression

	File compression.

One of NONE, GZIP, BGZF, CUSTOM.

	
description

	Vaguely human readable description of the file format

	
format

	File format.

One of UNKNOWN, BINARY_FORMAT, TEXT_FORMAT, SAM, BAM,
BAI, CRAM, CRAI, VCF, BCF, CSI, GZI, TBI, BED.

	
get_reference_name(self, tid)

	return contig name corresponding to numerical tid

	
get_tid(self, contig)

	return the numerical tid corresponding to
contig

returns -1 if contig is not known.

	
is_bam

	return True if HTSFile is reading or writing a BAM alignment file

	
is_bcf

	return True if HTSFile is reading or writing a BCF variant file

	
is_closed

	return True if HTSFile is closed.

	
is_cram

	return True if HTSFile is reading or writing a BAM alignment file

	
is_open

	return True if HTSFile is open and in a valid state.

	
is_read

	return True if HTSFile is open for reading

	
is_sam

	return True if HTSFile is reading or writing a SAM alignment file

	
is_valid_reference_name(self, contig)

	return True if the contig name contig is valid; False otherwise.

	
is_valid_tid(self, tid)

	return True if the numerical tid is valid; False otherwise.

returns -1 if contig is not known.

	
is_vcf

	return True if HTSFile is reading or writing a VCF variant file

	
is_write

	return True if HTSFile is open for writing

	
parse_region(self, contig=None, start=None, stop=None, region=None, tid=None, reference=None, end=None)

	parse alternative ways to specify a genomic region. A region can
either be specified by contig, start and
stop. start and stop denote 0-based, half-open
intervals. reference and end are also accepted for
backward compatibility as synonyms for contig and
stop, respectively.

Alternatively, a samtools region string can be
supplied.

If any of the coordinates are missing they will be replaced by
the minimum (start) or maximum (stop) coordinate.

Note that region strings are 1-based inclusive, while start
and stop denote an interval in 0-based, half-open
coordinates (like BED files and Python slices).

If contig or region or are *, unmapped reads at the end
of a BAM file will be returned. Setting either to . will
iterate from the beginning of the file.

	Returns:

	a tuple of flag, tid, start and
stop. The flag indicates whether no coordinates were
supplied and the genomic region is the complete genomic space.

	Return type:

	tuple [https://docs.python.org/3.11/library/stdtypes.html#tuple]

	Raises:

	ValueError [https://docs.python.org/3.11/library/exceptions.html#ValueError] – for invalid or out of bounds regions.

	
reset(self)

	reset file position to beginning of file just after the header.

	Returns:

	The file position after moving the file pointer.

	Return type:

	pointer

	
seek(self, uint64_t offset, int whence=io.SEEK_SET)

	move file pointer to position offset, see pysam.HTSFile.tell().

	
tell(self)

	return current file position, see pysam.HTSFile.seek().

	
version

	Tuple of file format version numbers (major, minor)

Working with BAM/CRAM/SAM-formatted files

Opening a file

To begin with, import the pysam module and open a
pysam.AlignmentFile:

import pysam
samfile = pysam.AlignmentFile("ex1.bam", "rb")

The above command opens the file ex1.bam for reading.
The b qualifier indicates that this is a BAM file.
To open a SAM file, type:

import pysam
samfile = pysam.AlignmentFile("ex1.sam", "r")

CRAM files are identified by a c qualifier:

import pysam
samfile = pysam.AlignmentFile("ex1.cram", "rc")

Fetching reads mapped to a region

Reads are obtained through a call to the
pysam.AlignmentFile.fetch() method which returns an iterator.
Each call to the iterator will returns a pysam.AlignedSegment
object:

iter = samfile.fetch("seq1", 10, 20)
for x in iter:
 print(str(x))

pysam.AlignmentFile.fetch() returns all reads overlapping a
region sorted by the first aligned base in the reference
sequence. Note that it will also return reads that are only partially
overlapping with the region. Thus the reads returned might
span a region that is larger than the one queried.

Using the pileup-engine

In contrast to fetching, the pileup engine returns for
each base in the reference sequence the reads that map to that
particular position. In the typical view of reads stacking vertically
on top of the reference sequence similar to a multiple alignment,
fetching iterates over the rows of this implied multiple
alignment while a pileup iterates over the columns.

Calling pileup() will return an iterator
over each column (reference base) of a specified
region. Each call to the iterator returns an object of the
type pysam.PileupColumn that provides access to all the
reads aligned to that particular reference position as well as
some additional information:

iter = samfile.pileup('seq1', 10, 20)
for x in iter:
 print(str(x))

Creating BAM/CRAM/SAM files from scratch

The following example shows how a new BAM file is constructed
from scratch. The important part here is that the
pysam.AlignmentFile class needs to receive the sequence
identifiers. These can be given either as a dictionary in a header
structure, as lists of names and sizes, or from a template file.
Here, we use a header dictionary:

header = { 'HD': {'VN': '1.0'},
 'SQ': [{'LN': 1575, 'SN': 'chr1'},
 {'LN': 1584, 'SN': 'chr2'}] }

with pysam.AlignmentFile(tmpfilename, "wb", header=header) as outf:
 a = pysam.AlignedSegment()
 a.query_name = "read_28833_29006_6945"
 a.query_sequence="AGCTTAGCTAGCTACCTATATCTTGGTCTTGGCCG"
 a.flag = 99
 a.reference_id = 0
 a.reference_start = 32
 a.mapping_quality = 20
 a.cigar = ((0,10), (2,1), (0,25))
 a.next_reference_id = 0
 a.next_reference_start=199
 a.template_length=167
 a.query_qualities = pysam.qualitystring_to_array("<<<<<<<<<<<<<<<<<<<<<:<9/,&,22;;<<<")
 a.tags = (("NM", 1),
 ("RG", "L1"))
 outf.write(a)

Using streams

Pysam does not support reading and writing from true python file
objects, but it does support reading and writing from stdin and
stdout. The following example reads from stdin and writes to stdout:

infile = pysam.AlignmentFile("-", "r")
outfile = pysam.AlignmentFile("-", "w", template=infile)
for s in infile:
 outfile.write(s)

It will also work with BAM files. The following script
converts a BAM formatted file on stdin to a SAM
formatted file on stdout:

infile = pysam.AlignmentFile("-", "rb")
outfile = pysam.AlignmentFile("-", "w", template=infile)
for s in infile:
 outfile.write(s)

Note that the file open mode needs to changed from r to rb.

Using samtools commands within python

Commands available in samtools [http://samtools.sourceforge.net/] are available as simple
function calls. Command line options are provided as arguments. For
example:

pysam.sort("-o", "output.bam", "ex1.bam")

corresponds to the command line:

samtools sort -o output.bam ex1.bam

Or for example:

pysam.sort("-m", "1000000", "-o", "output.bam", "ex1.bam")

In order to get usage information, try:

print(pysam.sort.usage())

Argument errors raise a pysam.SamtoolsError:

pysam.sort()

Traceback (most recent call last):
File "x.py", line 12, in <module>
 pysam.sort()
File "/build/lib.linux-x86_64-2.6/pysam/__init__.py", line 37, in __call__
 if retval: raise SamtoolsError("\n".join(stderr))
pysam.SamtoolsError: 'Usage: samtools sort [-n] [-m <maxMem>] <in.bam> <out.prefix>\n'

Messages from samtools [http://samtools.sourceforge.net/] on stderr are captured and are
available using the getMessages() method:

pysam.sort.getMessage()

Note that only the output from the last invocation of a command is
stored.

In order for pysam to make the output of samtools commands accessible
the stdout stream needs to be redirected. This is the default
behaviour, but can cause problems in environments such as the ipython
notebook. A solution is to pass the catch_stdout keyword
argument:

pysam.sort(catch_stdout=False)

Note that this means that output from commands which produce output on
stdout will not be available. The only solution is to run samtools
commands through subprocess.

Working with tabix-indexed files

To open a tabular file that has been indexed with tabix [http://www.htslib.org/doc/tabix.html], use
TabixFile:

import pysam
tbx = pysam.TabixFile("example.bed.gz")

Similar to fetch, intervals within a
region can be retrieved by calling fetch():

for row in tbx.fetch("chr1", 1000, 2000):
 print(str(row))

This will return a tuple-like data structure in which columns can
be retrieved by numeric index:

for row in tbx.fetch("chr1", 1000, 2000):
 print("chromosome is", row[0])

By providing a parser to fetch
or TabixFile, the data will we presented in parsed
form:

for row in tbx.fetch("chr1", 1000, 2000, parser=pysam.asTuple()):
 print("chromosome is", row.contig)
 print("first field (chrom)=", row[0])

Pre-built parsers are available for bed
(asBed) formatted files and gtf
(asGTF) formatted files. Thus, additional fields
become available through named access, for example:

for row in tbx.fetch("chr1", 1000, 2000, parser=pysam.asBed()):
 print("name is", row.name)

Working with VCF/BCF formatted files

To iterate through a VCF/BCF formatted file use
VariantFile:

from pysam import VariantFile

bcf_in = VariantFile("test.bcf") # auto-detect input format
bcf_out = VariantFile('-', 'w', header=bcf_in.header)

for rec in bcf_in.fetch('chr1', 100000, 200000):
 bcf_out.write(rec)

_pysam.VariantFile.fetch() iterates over
VariantRecord objects which provides access to
simple variant attributes such as contig,
pos, ref:

for rec in bcf_in.fetch():
 print(rec.pos)

but also to complex attributes such as the contents to the
info, format
and genotype columns. These
complex attributes are views on the underlying htslib data structures
and provide dictionary-like access to the data:

for rec in bcf_in.fetch():
 print(rec.info)
 print(rec.info.keys())
 print(rec.info["DP"])

The header attribute
(VariantHeader) provides access information
stored in the vcf header. The complete header can be printed:

>>> print(bcf_in.header)
##fileformat=VCFv4.2
##FILTER=<ID=PASS,Description="All filters passed">
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples
With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build
129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
##contig=<ID=M>
##contig=<ID=17>
##contig=<ID=20>
##bcftools_viewVersion=1.3+htslib-1.3
##bcftools_viewCommand=view -O b -o example_vcf42.bcf
example_vcf42.vcf.gz
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA0000

Individual contents such as contigs, info fields, samples, formats can
be retrieved as attributes from header:

>>> print(bcf_in.header.contigs)
<pysam.cbcf.VariantHeaderContigs object at 0xf250f8>

To convert these views to native python types, iterate through the views:

>>> print(list((bcf_in.header.contigs)))
['M', '17', '20']
>>> print(list((bcf_in.header.filters)))
['PASS', 'q10', 's50']
>>> print(list((bcf_in.header.info)))
['NS', 'DP', 'AF', 'AA', 'DB', 'H2']
>>> print(list((bcf_in.header.samples)))
['NA00001', 'NA00002', 'NA00003']

Alternatively, it is possible to iterate through all records in the
header returning objects of type VariantHeaderRecord::

>>> for x in bcf_in.header.records:
>>> print(x)
>>> print(x.type, x.key)
GENERIC fileformat
FILTER FILTER
GENERIC fileDate
GENERIC source
GENERIC reference
GENERIC phasing
INFO INFO
INFO INFO
INFO INFO
INFO INFO
INFO INFO
INFO INFO
FILTER FILTER
FILTER FILTER
FORMAT FORMAT
FORMAT FORMAT
FORMAT FORMAT
FORMAT FORMAT
CONTIG contig
CONTIG contig
CONTIG contig
GENERIC bcftools_viewVersion
GENERIC bcftools_viewCommand

Extending pysam

Using pyximport [https://github.com/cython/cython/tree/master/pyximport], it is (relatively) straight-forward to access pysam
internals and the underlying samtools [http://samtools.sourceforge.net/] library. An example is provided
in the tests directory. The example emulates the samtools
flagstat command and consists of three files:

	The main script pysam_flagstat.py. The important lines in
this script are:

import pyximport
pyximport.install()
import _pysam_flagstat

...

flag_counts = _pysam_flagstat.count(pysam_in)

The first part imports, sets up pyximport [https://github.com/cython/cython/tree/master/pyximport] and imports the cython
module _pysam_flagstat. The second part calls the
count method in _pysam_flagstat.

	The cython implementation _pysam_flagstat.pyx. This script
imports the pysam API via:

from pysam.libcalignmentfile cimport AlignmentFile, AlignedSegment

This statement imports, amongst others, AlignedSegment
into the namespace. Speed can be gained from declaring
variables. For example, to efficiently iterate over a file, an
AlignedSegment object is declared:

loop over samfile
cdef AlignedSegment read
for read in samfile:
 ...

	A pyxbld providing pyximport [https://github.com/cython/cython/tree/master/pyximport] with build information.
Required are the locations of the samtools and pysam header
libraries of a source installation of pysam plus the
csamtools.so shared library. For example:

def make_ext(modname, pyxfilename):
 from distutils.extension import Extension
 import pysam
 return Extension(name=modname,
 sources=[pyxfilename],
 extra_link_args=pysam.get_libraries(),
 include_dirs=pysam.get_include(),
 define_macros=pysam.get_defines())

If the script pysam_flagstat.py is called the first time,
pyximport [https://github.com/cython/cython/tree/master/pyximport] will compile the cython [https://cython.org/] extension
_pysam_flagstat.pyx and make it available to the
script. Compilation requires a working compiler and cython [https://cython.org/]
installation. Each time _pysam_flagstat.pyx is modified, a
new compilation will take place.

pyximport [https://github.com/cython/cython/tree/master/pyximport] comes with cython [https://cython.org/].

Installing pysam

Pysam can be installed through conda [https://conda.io/docs/], pypi [https://pypi.org/] and from the repository.
The recommended way to install pysam is through conda/bioconda.

Conda installation

To install pysam in your current conda [https://conda.io/docs/] environment, type:

conda config --add channels r
conda config --add channels bioconda
conda install pysam

This will install pysam from the bioconda [https://bioconda.github.io/] channel and automatically
makes sure that dependencies are installed. Also, compilation flags
will be set automatically, which will potentially save a lot of
trouble on OS X.

Pypi installation

Pysam provides a python interface to the functionality contained
within the htslib [http://www.htslib.org/] C library. There are two ways that these two
can be combined, builtin and external.

Builtin

The typical installation will be through pypi [https://pypi.org/]:

pip install pysam

Generally you will have the wheel package installed and
this command will speedily install pysam from a pre-built wheel.
Otherwise, or if you use pip’s --no-binary option, this will
compile the builtin htslib source code within pysam and allow
the configuration facilities described below to be used.

htslib [http://www.htslib.org/] can be configured at compilation to turn on additional
features such support using encrypted configurations, enable plugins,
and more. See the htslib [http://www.htslib.org/] project for more information on these.

Pysam will attempt to configure htslib [http://www.htslib.org/] to turn on some advanced
features. If these fail, for example due to missing library
dependencies (libcurl, libcrypto), it will fall back to
conservative defaults.

Options can be passed to the configure script explicitly by
setting the environment variable HTSLIB_CONFIGURE_OPTIONS.
For example:

export HTSLIB_CONFIGURE_OPTIONS=--enable-plugins
pip install pysam

External

pysam can be combined with an externally installed htslib [http://www.htslib.org/]
library. This is a good way to avoid duplication of libraries. To link
against an externally installed library, set the environment variables
HTSLIB_LIBRARY_DIR and HTSLIB_INCLUDE_DIR before installing:

export HTSLIB_LIBRARY_DIR=/usr/local/lib
export HTSLIB_INCLUDE_DIR=/usr/local/include
pip install pysam

Note that the location of the file libhts.so needs to be known
to the linker once you run pysam, for example by setting the
environment-varirable LD_LIBRARY_PATH.

Note that generally the pysam and htslib version need to be
compatible. See the release notes for more information.

Installation from repository

pysam depends on cython [https://cython.org/] to provide the connectivity to the htslib [http://www.htslib.org/] C
library. The installation of the source tarball (.tar.gz)
contains pre-built C-files and cython needs not be present
during installation. However, when installing from the repository,
cython needs to be installed beforehand.

To install from repository, type:

python setup.py install

For compilation options, see the section on Pypi installation above.

Requirements

Depending on the installation method, requirements for building pysam differ.

When installing through conda [https://conda.io/docs/], dependencies will be resolved by the
package manager. The pip [https://pip.pypa.io/] installation and installation from source
require a C compiler and its standard libraries as well as all
requirements for building htslib. Htslib requirements are listed in
the htslib/INSTALL file.

Installing from the repository will require cython [https://cython.org/] to be installed.

FAQ

How should I cite pysam

Pysam has not been published in print. When referring to pysam, please
use the github URL: https://github.com/pysam-developers/pysam.
As pysam is a wrapper around htslib and the samtools package, I
suggest citing [Li.2009], [Bonfield.2021], and/or [Danecek.2021],
as appropriate.

Is pysam thread-safe?

Pysam is a mix of python and C code. Instructions within python are
generally made thread-safe through python’s global interpreter lock [https://en.wikipedia.org/wiki/Global_interpreter_lock]
(GIL). This ensures that python data structures will always be in a
consistent state.

If an external function outside python is called, the programmer has a
choice to keep the GIL in place or to release it. Keeping the GIL in
place will make sure that all python threads wait until the external
function has completed. This is a safe option and ensures
thread-safety.

Alternatively, the GIL can be released while the external function is
called. This will allow other threads to run concurrently. This can be
beneficial if the external function is expected to halt, for example
when waiting for data to read or write. However, to achieve
thread-safety, the external function needs to be implemented with
thread-safety in mind. This means that there can be no shared state
between threads, or if there is shared, it needs to be controlled to
prevent any access conflicts.

Pysam generally uses the latter option and aims to release the GIL for
I/O intensive tasks. This is generally fine, but thread-safety of all
parts have not been fully tested.

A related issue is when different threads read from the same file
object - or the same thread uses two iterators over a file. There is
only a single file-position for each opened file. To prevent this from
happening, use the option multiple_iterators=True when calling
a fetch() method. This will return an iterator on a newly opened
file.

pysam coordinates are wrong

pysam uses 0-based coordinates and the half-open notation for ranges
as does python. Coordinates and intervals reported from pysam always
follow that convention.

Confusion might arise as different file formats might have different
conventions. For example, the SAM format is 1-based while the BAM
format is 0-based. It is important to remember that pysam will always
conform to the python convention and translate to/from the file format
automatically.

The only exception is the region string in the
fetch() and
pileup() methods. This string follows the
convention of the samtools command line utilities. The same is true
for any coordinates passed to the samtools command utilities directly,
such as pysam.mpileup().

Calling pysam.fetch() confuses existing iterators

The following code will cause unexpected behaviour:

samfile = pysam.AlignmentFile("pysam_ex1.bam", "rb")

iter1 = samfile.fetch("chr1")
print(next(iter1).reference_id)
iter2 = samfile.fetch("chr2")
print(next(iter2).reference_id)
print(next(iter1).reference_id)

This will give the following output:

0
1
Traceback (most recent call last):
 File "xx.py", line 8, in <module>
 print(next(iter1).reference_id)
 File "libcalignmentfile.pyx", line 2103,
 in pysam.libcalignmentfile.IteratorRowRegion.__next__
StopIteration

Note how the second iterator stops as the file pointer has moved to
chr2. The correct way to work with multiple iterators is:

samfile = pysam.AlignmentFile("pysam_ex1.bam", "rb")

iter1 = samfile.fetch("chr1", multiple_iterators=True)
print(next(iter1).reference_id)
iter2 = samfile.fetch("chr2")
print(next(iter2).reference_id)
print(next(iter1).reference_id)

Here, the output is:

0
1
0

The reason for this behaviour is that every iterator needs to keep
track of its current position in the file. Within pysam, each opened
file can only keep track of one file position and hence there can only
be one iterator per file. Using the option multiple_iterators=True
will return an iterator within a newly opened file. This iterator will
not interfere with existing iterators as it has its own file handle
associated with it.

Note that re-opening files incurs a performance penalty which can
become severe when calling fetch() often.
Thus, multiple_iterators is set to False by default.

AlignmentFile.fetch does not show unmapped reads

fetch() will only iterate over alignments
in the SAM/BAM file. The following thus always works:

bf = pysam.AlignmentFile(fname, "rb")
for r in bf.fetch():
 assert not r.is_unmapped

If the SAM/BAM file contains unaligned reads, they can be included
in the iteration by adding the until_eof=True flag:

bf = pysam.AlignmentFile(fname, "rb")
for r in bf.fetch(until_eof=True):
 if r.is_unmapped:
 print("read is unmapped")

I can’t call AlignmentFile.fetch on a file without an index

fetch() requires an index when
iterating over a SAM/BAM file. To iterate over a file without an
index, use until_eof=True:

bf = pysam.AlignmentFile(fname, "rb")
for r in bf.fetch(until_eof=True):
 print(r)

BAM files with a large number of reference sequences are slow

If you have many reference sequences in a BAM file, the following
might be slow:

track = pysam.AlignmentFile(fname, "rb")
for aln in track.fetch():
 pass

The reason is that track.fetch() will iterate through the BAM file
for each reference sequence in the order as it is defined in the
header. This might require a lot of jumping around in the file. To
avoid this, use:

track = pysam.AlignmentFile(fname, "rb")
for aln in track.fetch(until_eof=True):
 pass

This will iterate through reads as they appear in the file.

Weirdness with spliced reads in samfile.pileup(chr,start,end) given spliced alignments from an RNA-seq bam file

Spliced reads are reported within samfile.pileup. To ignore these
in your analysis, test the flags is_del == True and indel == 0
in the PileupRead object.

I can’t edit quality scores in place

Editing reads in-place generally works, though there is one
quirk to be aware of. Assigning to AlignedSegment.query_sequence will invalidate
any quality scores in AlignedSegment.query_qualities. The reason is that samtools
manages the memory of the sequence and quality scores together
and thus requires them to always be of the same length or 0.

Thus, to in-place edit the sequence and quality scores, copies of
the quality scores need to be taken. Consider trimming for example:

quals = read.query_qualities
read.query_sequence = read.query_sequence[5:10]
read.query_qualities = quals[5:10]

Why is there no SNPCaller class anymore?

SNP calling is highly complex and heavily parameterized. There was a
danger that the pysam implementations might show different behaviour from the
samtools implementation, which would have caused a lot of confusion.

The best way to use samtools SNP calling from python is to use the
pysam.mpileup() command and parse the output directly.

I get an error ‘PileupProxy accessed after iterator finished’

Pysam works by providing proxy objects to objects defined within
the C-samtools package. Thus, some attention must be paid to the
lifetime of objects. The following to code snippets will cause an
error:

s = AlignmentFile('ex1.bam')
for p in s.pileup('chr1', 1000,1010):
 pass

for pp in p.pileups:
 print(pp)

The iteration has finished, thus the contents of p are invalid. Another
variation of this:

p = next(AlignmentFile('ex1.bam').pileup('chr1', 1000, 1010))
for pp in p.pileups:
 print(pp)

Again, the iteration finishes as the temporary iterator created
by pileup goes out of scope. The solution is to keep a handle
to the iterator that remains alive:

i = AlignmentFile('ex1.bam').pileup('chr1', 1000, 1010)
p = next(i)
for pp in p.pileups:
 print(pp)

Pysam won’t compile

Compiling pysam can be tricky as there are numerous variables that
differ between build environments such as OS, version, python version,
and compiler. It is difficult to build software that builds cleanly
on all systems and the process might fail. Please see the
pysam user group [https://groups.google.com/forum/#!forum/pysam-user-group]
for common issues.

If there is a build issue, read the generated output carefully -
generally the cause of the problem is among the first errors to be
reported. For example, you will need to have the development version
of python installed that includes the header files such as
Python.h. If that file is missing, the compiler will report
this at the very top of its error messages but will follow it
with any unknown function or variable definition it encounters later
on.

General advice is to always use the latest version on python [https://www.python.org/] and
cython [https://cython.org/] when building pysam. There are some known incompatibilities:

	Python 3.4 requires cython 0.20.2 or later (see here [https://github.com/pysam-developers/pysam/issues/37])

ImportError: cannot import name csamtools

In version 0.10.0 and onwards, all pysam extension modules contain a
lib-prefix. This facilates linking against pysam extension modules
with compilers that require to start with lib. As a consequence,
all code using pysam extension modules directly will need to be
adapted. For example,:

cimport pysam.csamtools

will become:

cimport pysam.libcsamtools

Developer’s guide

Code organization

The top level directory is organized in the following
directories:

	pysam
	Code specific to pysam.

	doc
	The documentation. To build the latest documentation, first install
Sphinx [https://www.sphinx-doc.org/en/master/usage/installation.html] and then type:

make -C doc html

	tests
	Code and data for testing and benchmarking.

	htslib
	Source code from htslib [http://www.htslib.org/] shipped with pysam. See
import.py about importing.

	samtools
	Source code from samtools [http://samtools.sourceforge.net/] shipped with pysam. See
import.py about importing.

	bcftools
	Source code from bcftools [https://samtools.github.io/bcftools/bcftools.html] shipped with pysam. See
import.py about importing.

Importing new versions of htslib and samtools

See instructions in import.py to import the latest
versions of htslib [http://www.htslib.org/], samtools [http://samtools.sourceforge.net/] and bcftools [https://samtools.github.io/bcftools/bcftools.html].

Unit testing

Unit tests are in the tests directory. To run all unit tests,
run:

pytest tests

Most tests use test data from the tests/*_data directories.
Some of these test data files are generated from other files in these
directories, which is done by running make in each directory:

make -C tests/pysam_data
etc

Alternatively if any tests/*_data/all.stamp file is not already
present, running the unit tests should generate that directory’s data
files automatically.

Benchmarking

To run the benchmarking suite, make sure that pytest-benchmark [https://github.com/ionelmc/pytest-benchmark] is installed. To run
all benchmarks, type:

pytest tests/*_bench.py

See Benchmarking for more on this topic.

Contributors

Please see Github for a list of all contributors:

https://github.com/pysam-developers/pysam/graphs/contributors

Many thanks to all contributors for helping in making pysam
useful.

Release notes

Release 0.22.0

5 October 2023

This pysam release wraps htslib/samtools/bcftools 1.18 (PR #1208 [https://github.com/pysam-developers/pysam/pull/1208]).

It has been tested with Python versions 3.6 through 3.12, and wheels are
available via pypi [https://pypi.org/] for all of those Python versions. Python versions 3.6
and 3.7 are end-of-life; particularly if you use pysam with either of
these versions, please vote in the version survey at issue #1230 [https://github.com/pysam-developers/pysam/issues/1230].

The final pysam release that supported Python 2.7 was v0.20.0.

Bugs fixed:

	Remove Cython from runtime dependencies (PR #1186 [https://github.com/pysam-developers/pysam/pull/1186], thanks to Nicola Soranzo,
also reported by Arya Massarat in PR #1194 [https://github.com/pysam-developers/pysam/pull/1194])

	Miscellaneous dependency improvements (PR #1216 [https://github.com/pysam-developers/pysam/pull/1216], #1217 [https://github.com/pysam-developers/pysam/issues/1217], PR #1218 [https://github.com/pysam-developers/pysam/pull/1218], PR #1219 [https://github.com/pysam-developers/pysam/pull/1219],
thanks to Martin Larralde and Arthur Vigil)

	Suppress spurious “Could not retrieve index file” message when opening an
AlignmentFile (#939 [https://github.com/pysam-developers/pysam/issues/939], #1214 [https://github.com/pysam-developers/pysam/issues/1214], reported by ChengYong Tham and Sebastian Röner)

	Propagate SAM parsing errors encounted in AlignedSegment.fromstring()
(#1196 [https://github.com/pysam-developers/pysam/issues/1196], reported by DV Klopfenstein)

	Accept invalid MD:A tagged fields produced by HTSeq instead of crashing
in AlignedSegment.get_aligned_pairs(with_seq=True) (#1226 [https://github.com/pysam-developers/pysam/issues/1226], reported by Isaac Vock)

	Fix multiarch macOS CI builds by removing brewed liblzma (#1205 [https://github.com/pysam-developers/pysam/issues/1205], reported
by Till Hartmann)

	Fix VariantRecordSample.alleles type hint (#1179 [https://github.com/pysam-developers/pysam/issues/1179], reported by
David Seifert)

New functionality:

	Add optional HTSFile.seek(..., whence) parameter
and clarify which functions use libc.SEEK_SET vs io.SEEK_SET
(#1185 [https://github.com/pysam-developers/pysam/issues/1185], requested by luyulin)

	File handling improvements in samtools & bcftools commands (should improve
#1193 [https://github.com/pysam-developers/pysam/issues/1193] and #1195 [https://github.com/pysam-developers/pysam/issues/1195], reported by Rob Bierman and Sam Chorlton)

	Improve FastxFile performance (PR #1227 [https://github.com/pysam-developers/pysam/pull/1227], thanks to Fabian Klötzl
and Valentyn Bezshapkin)

	Improve the accuracy of type hints for AlignmentFile iteration
(#1184 [https://github.com/pysam-developers/pysam/issues/1184], PR #1189 [https://github.com/pysam-developers/pysam/pull/1189], reported by @PikalaxALT)

Documentation improvements:

	Clarify that AlignedSegment.get_aligned_pairs() results are 0-based
(#1180 [https://github.com/pysam-developers/pysam/issues/1180], reported by Nick Semenkovich)

	Clarify AlignedSegment.get_reference_positions() documentation
(#836 [https://github.com/pysam-developers/pysam/issues/836], #838 [https://github.com/pysam-developers/pysam/issues/838], reported by Liang Ou and Nick Stoler)

	Clarify that installation via pip usually uses a wheel, and that configuring
the build via $HTSLIB_CONFIGURE_OPTIONS etc only applies when installing from
an sdist (#1086 [https://github.com/pysam-developers/pysam/issues/1086], reported by Layne Sadler)

A message from pysam’s founder, Andreas Heger:

As many of you will have noticed, John Marshall has been effectively
maintaining pysam and supporting users over the last few years.
I, Andreas, am very grateful for the countless hours he has contributed.
Unfortunately, I will not be able to contribute much in the near and
intermediate future. To keep pysam going, John has kindly agreed to
continue maintaining and supporting pysam as the principal developer
of pysam. I am very happy to know that pysam is in good hands and want
to thank again John and the wider pysam community for their suggestions,
bug reports, code contributions and general support.

Thank you Andreas for all your work over the years and the solid foundations
that pysam enjoys and the useful functionality it provides.

Release 0.21.0

2 April 2023

This release wraps htslib/samtools/bcftools version 1.17.

Pysam is now compatible with Python 3.11. We have removed Python 2.x
support. Pysam is tested with Python versions 3.6 to 3.11.

	[#1175 [https://github.com/pysam-developers/pysam/issues/1175]] VariantHeader.new_record: set start/stop before alleles

	[#1173 [https://github.com/pysam-developers/pysam/issues/1173]] Add multiple build improvements in htscodecs on multi-arch macOS

	[#1148 [https://github.com/pysam-developers/pysam/issues/1148]] Ignore CIGAR-less reads in find_introns.

	[#1172 [https://github.com/pysam-developers/pysam/issues/1172]] Add new samtools cram-size and samtools reset commands

	[#1169 [https://github.com/pysam-developers/pysam/issues/1169]] Fix CRAM index-related crash when using the musl C standard library.

	[#1168 [https://github.com/pysam-developers/pysam/issues/1168]] Add a minimal pyproject.toml for PEP517.

	[#1158 [https://github.com/pysam-developers/pysam/issues/1158]] Fix type hints and add FastqProxy type hints.

	[#1147 [https://github.com/pysam-developers/pysam/issues/1147]] Py3.11 compatibility, get shared object suffix from EXT_SUFFIX.

	[#1143 [https://github.com/pysam-developers/pysam/issues/1143]] Add mypy symbols for samtools and bcftools.

	[#1155 [https://github.com/pysam-developers/pysam/issues/1155]] Fix pysam.index() when using recent samtools index options.

	[#1151 [https://github.com/pysam-developers/pysam/issues/1151]] Test suite py3.11 compatibility, work around failing test case.

	[#1149 [https://github.com/pysam-developers/pysam/issues/1149]] MacOS universal build compatibility.

	[#1146 [https://github.com/pysam-developers/pysam/issues/1146]] Fix build when CFLAGS/etc environment variables are set.

Release 0.20.0

29 October 2022

This release wraps htslib/bcftools version 1.16 and samtools version 1.16.1.

	[#1113 [https://github.com/pysam-developers/pysam/issues/1113]] Full compatibility with setuptools v62.1.0’s build directory name changes

	[#1121 [https://github.com/pysam-developers/pysam/issues/1121]] Build-time symbol check portability improved

	[#1122 [https://github.com/pysam-developers/pysam/issues/1122]] Fix setting sample genotype using .alleles property

	[#1128 [https://github.com/pysam-developers/pysam/issues/1128]] Fix test suite failure when using a libdeflate-enabled samtools

Many additional type hints have been provided by the community,
thanks!

Release 0.19.1

27 May 2022

This release wraps htslib/samtools/bcftools version 1.15.1.

	[#1104 [https://github.com/pysam-developers/pysam/issues/1104]] add an add_samples() method to quickly add multiple samples
to VCF.

Release 0.19.0

30 March 2022

This release wraps htslib/samtools/bcftools version 1.15.

	[#1085 [https://github.com/pysam-developers/pysam/issues/1085]] Improve getopt()/getopt_long() resetting when running samtools/bcftools commands

	[#1078 [https://github.com/pysam-developers/pysam/issues/1078]] Support BAM_CPAD in get_aligned_pairs

	[#1063 [https://github.com/pysam-developers/pysam/issues/1063]] Run flake8 and fix some linting issues

	[#1088 [https://github.com/pysam-developers/pysam/issues/1088]] Add AlignedSegment is_mapped/mate_is_mapped/is_forward/mate_is_forward properties

	Write an absent AlignedSegment.qual as all-bytes-0xff

	Fix BGZFile.read() behaviour near or at EOF

	First API for the htslib modified bases interface

Release 0.18.0

17 November 2021

This release wraps htslib/samtools/bcftools version 1.14.

	[#1048 [https://github.com/pysam-developers/pysam/issues/1048]] and [#1060 [https://github.com/pysam-developers/pysam/issues/1060]], clarify documentation of index statistics with CRAM files

	Prevent “retval may be used uninitialised” warning.

	Add new “samples” subcommand to pysam/samtools.py

	Introduce TupleProxyIterator iterator object class

Release 0.17.0

30 September 2021

This release wraps htslib/samtools/bcftools version 1.13. Corresponding
to new samtools commands, pysam.samtools now has additional functions
ampliconclip, ampliconstats, fqimport, and version.

Bugs fixed:

	[#447 [https://github.com/pysam-developers/pysam/issues/447]] The maximum QNAME length is fully restored to 254

	[#506 [https://github.com/pysam-developers/pysam/issues/506], #958 [https://github.com/pysam-developers/pysam/issues/958], #1000 [https://github.com/pysam-developers/pysam/issues/1000]] Don’t crash the Python interpreter on pysam.bcftools.*() errors

	[#603 [https://github.com/pysam-developers/pysam/issues/603]] count_coverage: ignore reads that have no SEQ field

	[#928 [https://github.com/pysam-developers/pysam/issues/928]] Fix pysam.bcftools.mpileup() segmentation fault

	[#983 [https://github.com/pysam-developers/pysam/issues/983]] Add win32/*.[ch] to MANIFEST.in

	[#994 [https://github.com/pysam-developers/pysam/issues/994]] Raise exception in get_tid() if header could not be parsed

	[#995 [https://github.com/pysam-developers/pysam/issues/995]] Choose TBI/CSI in tabix_index() via both min_shift and csi

	[#996 [https://github.com/pysam-developers/pysam/issues/996]] AlignmentFile.fetch() now works with large chromosomes longer than 229 bases

	[#1019 [https://github.com/pysam-developers/pysam/issues/1019]] Fix Sphinx documentation generation by avoiding Python 2 ur'string' syntax

	[#1035 [https://github.com/pysam-developers/pysam/issues/1035]] Improved handling of file iteration errors

	[#1038 [https://github.com/pysam-developers/pysam/issues/1038]] tabix_index() no longer leaks file descriptors

	[#1040 [https://github.com/pysam-developers/pysam/issues/1040]] print(aligned_segment) now prints the correct TLEN value
(it also now prints RNAME/RNEXT more clearly and prints POS/PNEXT 1-based)

	setup.py longer uses setup(use_2to3) for compatibility with setuptools >= v58.0.0

New facilities:

	[PR #963 [https://github.com/pysam-developers/pysam/pull/963]] Additional VCF classes are exposed to pysam programmers

	[#998 [https://github.com/pysam-developers/pysam/issues/998], PR #1001 [https://github.com/pysam-developers/pysam/pull/1001]] Add get/set_encoding_error_handler() to control UTF-8 conversion

	[PR #1012 [https://github.com/pysam-developers/pysam/pull/1012]] Running python setup.py sdist now automatically runs cythonize

	Running tests with pytest now automatically runs make to generate test data

Documentation improvements:

	[#726 [https://github.com/pysam-developers/pysam/issues/726]] Clarify get_forward_sequence/get_forward_qualities documentation

	[#865 [https://github.com/pysam-developers/pysam/issues/865]] Improved example

	[#968 [https://github.com/pysam-developers/pysam/issues/968]] get_index_statstics parameters

	[#986 [https://github.com/pysam-developers/pysam/issues/986]] Clarify VariantFile.fetch start/stop region parameters are 0-based and half-open.

	[#990 [https://github.com/pysam-developers/pysam/issues/990]] Corrected PileupColumn.get_query_sequences documentation

	[#999 [https://github.com/pysam-developers/pysam/issues/999]] Fix documentation for AlignmentFile.get_reference_length()

	[#1002 [https://github.com/pysam-developers/pysam/issues/1002]] Document the default min_base_quality for pileup()

Release 0.16.0

8 June 2020

This release wraps htslib/bcftools version 1.10.2 and samtools version
1.10. The following bugs reported against pysam are fixed due to this:

	[#447 [https://github.com/pysam-developers/pysam/issues/447]] Writing out QNAME longer than 251 characters corrupts BAM

	[#640 [https://github.com/pysam-developers/pysam/issues/640], #734 [https://github.com/pysam-developers/pysam/issues/734], #843 [https://github.com/pysam-developers/pysam/issues/843]] Setting VariantRecord pos or stop raises error

	[#738 [https://github.com/pysam-developers/pysam/issues/738], #919 [https://github.com/pysam-developers/pysam/issues/919]] FastxFile truncates concatenated plain gzip compressed files

Additional bugfixes:

	[#840 [https://github.com/pysam-developers/pysam/issues/840]] Pileup doesn’t work on python3 when index_filename is used

	[#886 [https://github.com/pysam-developers/pysam/issues/886]] FastqProxy raises ValueError when instantiated from python

	[#904 [https://github.com/pysam-developers/pysam/issues/904]] VariantFile.fetch() throws ValueError on files with no records

	[#909 [https://github.com/pysam-developers/pysam/issues/909]] Fix incorrect quoting in VariantFile contig records

	[#915 [https://github.com/pysam-developers/pysam/issues/915], #916 [https://github.com/pysam-developers/pysam/issues/916]] Implement pileup() for unindexed files and/or SAM files

Backwards incompatible changes:

	The samtools import command was removed in samtools 1.10, so pysam
no longer exports a samimport function. Use pysam.view() instead.

Release 0.15.4

Bugfix release. Principal reason for release is to update cython
version in order to fix pip install pysam with python 3.8.

	[#879 [https://github.com/pysam-developers/pysam/issues/879]] Fix add_meta function in libcbcf.pyx, so meta-information
lines in header added with this function have double-quoting rules
in accordance to rules specified in VCF4.2 and VCF4.3 specifications

	[#863 [https://github.com/pysam-developers/pysam/issues/863]] Force arg to bytes to support non-ASCII encoding

	[#875 [https://github.com/pysam-developers/pysam/issues/875]] Bump minimum Cython version

	[#868 [https://github.com/pysam-developers/pysam/issues/868]] Prevent segfault on Python 2.7 AlignedSegment.compare(other=None)

	[#867 [https://github.com/pysam-developers/pysam/issues/867]] Fix wheel building on TravisCI

	[#863 [https://github.com/pysam-developers/pysam/issues/863]] Force arg to bytes to support non-ASCII encoding

	[#799 [https://github.com/pysam-developers/pysam/issues/799]] disambiguate interpretation of bcf_read return code

	[#841 [https://github.com/pysam-developers/pysam/issues/841]] Fix silent truncation of FASTQ with bad q strings

	[#846 [https://github.com/pysam-developers/pysam/issues/846]] Prevent segmentation fault on ID, when handling malformed records

	[#829 [https://github.com/pysam-developers/pysam/issues/829]] Run configure with the correct CC/CFLAGS/LDFLAGS env vars

Release 0.15.3

Bugfix release.

	[#824 [https://github.com/pysam-developers/pysam/issues/824]] allow reading of UTF-8 encoded text in VCF/BCF files.

	[#780 [https://github.com/pysam-developers/pysam/issues/780]] close all filehandles before opening new ones in pysam_dispatch

	[#773 [https://github.com/pysam-developers/pysam/issues/773]] do not cache VariantRecord.id to avoid memory leak

	[#781 [https://github.com/pysam-developers/pysam/issues/781]] default of multiple_iterators=True is changed to False for
CRAM files.

	[#825 [https://github.com/pysam-developers/pysam/issues/825]] fix collections.abc import

	[#825 [https://github.com/pysam-developers/pysam/issues/825]] use bcf_hdr_format instead of bcf_hdr_fmt_text, fix memcpy
bug when setting FORMAT fields.

	[#804 [https://github.com/pysam-developers/pysam/issues/804]] Use HTSlib’s kstring_t, which reallocates and enlarges its
memory as needed, rather than a fixed-size char buffer.

	[#814 [https://github.com/pysam-developers/pysam/issues/814]] Build wheels and upload them to PyPI

	[#755 [https://github.com/pysam-developers/pysam/issues/755]] Allow passing flags and arguments to index methods

	[#763 [https://github.com/pysam-developers/pysam/issues/763]] Strip 0 in header check

	[#761 [https://github.com/pysam-developers/pysam/issues/761]] Test Tabix index contents, not the compression

Release 0.15.2

Bugfix release.

	[#746 [https://github.com/pysam-developers/pysam/issues/746]] catch pileup itorator out-of-scope segfaults

	[#747 [https://github.com/pysam-developers/pysam/issues/747]] fix faixd fetch with region

	[#748 [https://github.com/pysam-developers/pysam/issues/748]] increase max_pos to (1<<31)-1

	[#645 [https://github.com/pysam-developers/pysam/issues/645]] Add missing macOS stub files in MANIFEST.in, @SoapZA

	[#737 [https://github.com/pysam-developers/pysam/issues/737]] Fix bug in get_aligned_pairs, @bkohrn

Release 0.15.1

Bugfix release.

	[#716 [https://github.com/pysam-developers/pysam/issues/716]] raise ValueError if tid is out of range when writing

	[#697 [https://github.com/pysam-developers/pysam/issues/697]] release version using cython 0.28.5 for python 3.7
compatibility

Release 0.15.0

This release wraps htslib/samtools/bcftools version 1.9.

	[#673 [https://github.com/pysam-developers/pysam/issues/673]] permit dash in chromosome name of region string

	[#656 [https://github.com/pysam-developers/pysam/issues/656]] Support text when opening a SAM file for writing

	[#658 [https://github.com/pysam-developers/pysam/issues/658]] return None in get_forward_sequence if sequence not in record

	[#683 [https://github.com/pysam-developers/pysam/issues/683]] allow lower case bases in MD tags

	Ensure that = and X CIGAR ops are treated the same as M

Release 0.14.1

This is mostly a bugfix release, though bcftools has now also been
upgraded to 1.7.0.

	[#621 [https://github.com/pysam-developers/pysam/issues/621]] Add a warning to count_coverage when an alignment has an
empty QUAL field

	[#635 [https://github.com/pysam-developers/pysam/issues/635]] Speed-up of AlignedSegment.find_intro()

	treat border case of all bases in pileup column below quality score

	[#634 [https://github.com/pysam-developers/pysam/issues/634]] Fix access to pileup reference_sequence

Release 0.14.0

This release wraps htslib/samtools versions 1.7.0.

	SAM/BAM/CRAM headers are now managed by a separate AlignmentHeader
class.

	AlignmentFile.header.as_dict() returns an ordered dictionary.

	Use “stop” instead of “end” to ensure consistency to
VariantFile. The end designations have been kept for backwards
compatibility.

	[#611 [https://github.com/pysam-developers/pysam/issues/611]] and [#293 [https://github.com/pysam-developers/pysam/issues/293]] CRAM repeated fetch now works, each iterator
reloads index if multiple_iterators=True

	[#608 [https://github.com/pysam-developers/pysam/issues/608]] pysam now wraps htslib 1.7 and samtools 1.7.

	[#580 [https://github.com/pysam-developers/pysam/issues/580]] reference_name and next_reference_name can now be set to “*”
(will be converted to None to indicate an unmapped location)

	[#302 [https://github.com/pysam-developers/pysam/issues/302]] providing no coordinate to count_coverage will not count from
start/end of contig.

	[#325 [https://github.com/pysam-developers/pysam/issues/325]] @SQ records will be automatically added to header if they are
absent from text section of header.

	[#529 [https://github.com/pysam-developers/pysam/issues/529]] add get_forward_sequence() and get_forward_qualities()
methods

	[#577 [https://github.com/pysam-developers/pysam/issues/577]] add from_string() and to_dict()/from_dict() methods to
AlignedSegment. Rename tostring() to to_string() throughout for
consistency

	[#589 [https://github.com/pysam-developers/pysam/issues/589]] return None from build_alignment_sequence if no MD tag is set

	[#528 [https://github.com/pysam-developers/pysam/issues/528]] add PileupColumn.__len__ method

Backwards incompatible changes:

	AlignmentFile.header now returns an AlignmentHeader object. Use
AlignmentFile.header.to_dict() to get the dictionary as
previously. Most dictionary accessor methods (keys(), values(),
__getitem__, …) have been implemented to ensure some level of
backwards compatibility when only reading.

The rationale for this change is to have consistency between
AlignmentFile and VariantFile.

	AlignmentFile and FastaFile now raise IOError instead of OSError

Medium term we plan to have a 1.0 release. The pysam
interface has grown over the years and the API is cluttered with
deprecated names (Samfile, getrname(), gettid(), …). To work towards
this, the next release (0.15.0) will yield DeprecationWarnings
for any parts of the API that are considered obsolete and will not be
in 1.0. Once 1.0 has been reached, we will use semantic versioning.

Release 0.13.0

This release wraps htslib/samtools/bcftools versions 1.6.0 and
contains a series of bugfixes.

	[#544 [https://github.com/pysam-developers/pysam/issues/544]] reading header from remote TabixFiles now works.

	[#531 [https://github.com/pysam-developers/pysam/issues/531]] add missing tag types H and A. A python float will now be
added as ‘f’ type instead of ‘d’ type.

	[#543 [https://github.com/pysam-developers/pysam/issues/543]] use FastaFile instead of Fastafile in pileup.

	[#546 [https://github.com/pysam-developers/pysam/issues/546]] set is_modified flag in setAttribute so updated attributes
are output.

	[#537 [https://github.com/pysam-developers/pysam/issues/537]] allow tabix index files to be created in a custom location.

	[#530 [https://github.com/pysam-developers/pysam/issues/530]] add get_index_statistics() method

Release 0.12.0.1

Bugfix release to solve compilation issue due to missinge
bcftools/config.h file.

Release 0.12.0

This release wraps htslib/samtools/bcftools versions 1.5.0 and
contains a series of bugfixes.

	[#473 [https://github.com/pysam-developers/pysam/issues/473]] A new FastxRecord class that can be instantiated from class and
modified in-place. Replaces PersistentFastqProxy.

	[#521 [https://github.com/pysam-developers/pysam/issues/521]] In AligmentFile, Simplify file detection logic and allow remote index files

	Removed attempts to guess data and index file names; this is magic left
to htslib.

	Removed file existence check prior to opening files with htslib

	Better error checking after opening files that raise the appropriate
error (IOError for when errno is set, ValueError otherwise for backward
compatibility).

	Report IO errors when loading an index by name.

	Allow remote indices (tested using S3 signed URLs).

	Document filepath_index and make it an alias for index_filename.

	Added a require_index parameter to AlignmentFile

	[#526 [https://github.com/pysam-developers/pysam/issues/526]] handle unset ref when creating new records

	[#513 [https://github.com/pysam-developers/pysam/issues/513]] fix bcf_translate to skip deleted FORMAT fields to avoid
segfaults

	[#516 [https://github.com/pysam-developers/pysam/issues/516]] expose IO errors via IOError exceptions

	[#487 [https://github.com/pysam-developers/pysam/issues/487]] add tabix line_skip, remove ‘pileup’ preset

	add FastxRecord, replaces PersistentFastqProxy (still present for
backwards compatibility)

	[#496 [https://github.com/pysam-developers/pysam/issues/496]] upgrade to htslib/samtools/bcftools versions 1.5

	add start/stop to AlignmentFile.fetch() to be consistent with
VariantFile.fetch(). “end” is kept for backwards compatibility.

	[#512 [https://github.com/pysam-developers/pysam/issues/512]] add get_index_statistics() method to AlignmentFile.

Upcoming changes:

In the next release we are plannig to separate the header information
from AlignmentFile into a separate class AlignmentHeader. This layout
is similar to VariantFile/VariantHeader. With this change we will
ensure that an AlignedSegment record will be linked to a header so
that chromosome names can be automatically translated from the numeric
representation. As a consequence, the way new AlignedSegment records
are created will need to change as the constructor requires a header:

header = pysam.AlignmentHeader(
 reference_names=["chr1", "chr2"],
 reference_lengths=[1000, 1000])

read = pysam.AlignedSegment(header)

This will affect all code that instantiates AlignedSegment objects
directly. We have not yet merged to allow users to provide feed-back.
The pull-request is here: https://github.com/pysam-developers/pysam/pull/518
Please comment on github.

Release 0.11.2.2

Bugfix release to address two issues:

	Changes in 0.11.2.1 broke the GTF/GFF3 parser. Corrected and
more tests have been added.

	[#479 [https://github.com/pysam-developers/pysam/issues/479]] Correct VariantRecord edge cases described in issue

Release 0.11.2.1

Release to fix release tar-ball containing 0.11.1 pre-compiled
C-files.

Release 0.11.2

This release wraps htslib/samtools/bcfools versions 1.4.1 in response
to a security fix in these libraries. Additionally the following
issues have been fixed:

	[#452 [https://github.com/pysam-developers/pysam/issues/452]] add GFF3 support for tabix parsers

	[#461 [https://github.com/pysam-developers/pysam/issues/461]] Multiple fixes related to VariantRecordInfo and handling of INFO/END

	[#447 [https://github.com/pysam-developers/pysam/issues/447]] limit query name to 251 characters (only partially addresses issue)

VariantFile and related object fixes

	Restore VariantFile.__dealloc__

	Correct handling of bcf_str_missing in bcf_array_to_object and
bcf_object_to_array

	Added update() and pop() methods to some dict-like proxy objects

	scalar INFO entries could not be set again after being deleted

	VariantRecordInfo.__delitem__ now allows unset flags to be deleted without
raising a KeyError

	Multiple other fixes for VariantRecordInfo methods

	INFO/END is now accessible only via VariantRecord.stop and
VariantRecord.rlen. Even if present behind the scenes, it is no longer
accessible via VariantRecordInfo.

	Add argument to issue a warning instead of an exception if input appears
to be truncated

Other features and fixes:

	Make AlignmentFile __dealloc__ and close more
stringent

	Add argument AlignmentFile to issue a warning instead of an
exception if input appears to be truncated

Release 0.11.1

Bugfix release

	[#440 [https://github.com/pysam-developers/pysam/issues/440]] add deprecated ‘always’ option to infer_query_length for backwards compatibility.

Release 0.11.0

This release wraps the latest versions of htslib/samtools/bcftools and
implements a few bugfixes.

	[#413 [https://github.com/pysam-developers/pysam/issues/413]] Wrap HTSlib/Samtools/BCFtools 1.4

	[#422 [https://github.com/pysam-developers/pysam/issues/422]] Fix missing pysam.sort.usage() message

	[#411 [https://github.com/pysam-developers/pysam/issues/411]] Fix BGZfile initialization bug

	[#412 [https://github.com/pysam-developers/pysam/issues/412]] Add seek support for BGZFile

	[#395 [https://github.com/pysam-developers/pysam/issues/395]] Make BGZfile iterable

	[#433 [https://github.com/pysam-developers/pysam/issues/433]] Correct getQueryEnd

	[#419 [https://github.com/pysam-developers/pysam/issues/419]] Export SAM enums such as pysam.CMATCH

	[#415 [https://github.com/pysam-developers/pysam/issues/415]] Fix access by tid in AlignmentFile.fetch()

	[#405 [https://github.com/pysam-developers/pysam/issues/405]] Writing SAM now outputs a header by default.

	[#332 [https://github.com/pysam-developers/pysam/issues/332]] split infer_query_length(always) into infer_query_length and infer_read_length

Release 0.10.0

This release implements further functionality in the VariantFile API
and includes several bugfixes:

	treat special case -c option in samtools view outputs to stdout even
if -o given, fixes #315 [https://github.com/pysam-developers/pysam/issues/315]

	permit reading BAM files with CSI index, closes #370 [https://github.com/pysam-developers/pysam/issues/370]

	raise Error if query name exceeds maximum length, fixes #373 [https://github.com/pysam-developers/pysam/issues/373]

	new method to compute hash value for AlignedSegment

	AlignmentFile, VariantFile and TabixFile all inherit from HTSFile

	Avoid segfault by detecting out of range reference_id and
next_reference in AlignedSegment.tostring

	Issue #355 [https://github.com/pysam-developers/pysam/issues/355]: Implement streams using file descriptors for VariantFile

	upgrade to htslib 1.3.2

	fix compilation with musl libc

	Issue #316 [https://github.com/pysam-developers/pysam/issues/316], #360 [https://github.com/pysam-developers/pysam/issues/360]: Rename all Cython modules to have lib as a prefix

	Issue #332 [https://github.com/pysam-developers/pysam/issues/332], hardclipped bases in cigar included by
pysam.AlignedSegment.infer_query_length()

	Added support for Python 3.6 filename encoding protocol

	Issue #371 [https://github.com/pysam-developers/pysam/issues/371], fix incorrect parsing of scalar INFO and FORMAT fields in VariantRecord

	Issue #331 [https://github.com/pysam-developers/pysam/issues/331], fix failure in VariantFile.reset() method

	Issue #314 [https://github.com/pysam-developers/pysam/issues/314], add VariantHeader.new_record(), VariantFile.new_record() and
VariantRecord.copy() methods to create new VariantRecord objects

	Added VariantRecordFilter.add() method to allow setting new VariantRecord filters

	Preliminary (potentially unsafe) support for removing and altering header metadata

	Many minor fixes and improvements to VariantFile and related objects

Please note that all internal cython extensions now have a lib prefix
to facilitate linking against pysam extension modules. Any user cython
extensions using cimport to import pysam definitions will need
changes, for example:

cimport pysam.csamtools

will become:

cimport pysam.libcsamtools

Release 0.9.1

This is a bugfix release addressing some installation problems
in pysam 0.9.0, in particular:

	patch included htslib to work with older libcurl versions, fixes #262 [https://github.com/pysam-developers/pysam/issues/262].

	do not require cython for python 3 install, fixes #260 [https://github.com/pysam-developers/pysam/issues/260]

	FastaFile does not accept filepath_index any more, see #270 [https://github.com/pysam-developers/pysam/issues/270]

	add AlignedSegment.get_cigar_stats method.

	py3 bugfix in VariantFile.subset_samples, fixes #272 [https://github.com/pysam-developers/pysam/issues/272]

	add missing sysconfig import, fixes #278 [https://github.com/pysam-developers/pysam/issues/278]

	do not redirect stdout, but instead write to a separately
created file. This should resolve issues when pysam is used
in notebooks or other environments that redirect stdout.

	wrap htslib-1.3.1, samtools-1.3.1 and bcftools-1.3.1

	use bgzf throughout instead of gzip

	allow specifying a fasta reference for CRAM file when opening
for both read and write, fixes #280 [https://github.com/pysam-developers/pysam/issues/280]

Release 0.9.0

Overview

The 0.9.0 release upgrades htslib to htslib 1.3 and numerous other
enhancements and bugfixes. See below for a detailed list.

Htslib 1.3 [https://github.com/samtools/htslib/releases/tag/1.3]
comes with additional capabilities for remote file access which depend
on the presence of optional system libraries. As a consequence, the
installation script setup.py has become more complex. For an
overview, see Installing pysam. We have tested installation on
linux and OS X, but could not capture all variations. It is possible
that a 0.9.1 release might follow soon addressing installation issues.

The VariantFile class provides access to
vcf and bcf formatted files. The class is certainly
usable and interface is reaching completion, but the API and the
functionality is subject to change.

Detailed release notes

	upgrade to htslib 1.3

	python 3 compatibility tested throughout.

	added a first set of bcftools commands in the pysam.bcftools
submodule.

	samtools commands are now in the pysam.samtools module. For
backwards compatibility they are still imported into the pysam
namespace.

	samtools/bcftools return stdout as a single (byte) string. As output
can be binary (VCF.gz, BAM) this is necessary to ensure py2/py3
compatibility. To replicate the previous behaviour in py2.7, use:

pysam.samtools.view(self.filename).splitlines(True)

	get_tags() returns the tag type as a character, not an integer (#214 [https://github.com/pysam-developers/pysam/issues/214])

	TabixFile now raises ValueError on indices created by tabix <1.0 (#206 [https://github.com/pysam-developers/pysam/issues/206])

	improve OSX installation and develop mode

	FastxIterator now handles empty sequences (#204 [https://github.com/pysam-developers/pysam/issues/204])

	TabixFile.isremote is not TabixFile.is_remote in line with AlignmentFile

	AlignmentFile.count() has extra optional argument read_callback

	
	setup.py has been changed to:
	
	install a single builtin htslib library. Previously, each pysam
module contained its own version. This reduces compilation time
and code bloat.

	run configure for the builtin htslib library in order to detect
optional libraries such as libcurl. Configure behaviour can be
controlled by setting the environment variable
HTSLIB_CONFIGURE_OPTIONS.

	get_reference_sequence() now returns the reference sequence and not
something looking like it. This bug had effects on
get_aligned_pairs(with_seq=True), see #225 [https://github.com/pysam-developers/pysam/issues/225]. If you have relied on on
get_aligned_pairs(with_seq=True) in pysam-0.8.4, please check your
results.

	improved autodetection of file formats in AlignmentFile and VariantFile.

Release 0.8.4

This release contains numerous bugfixes and a first implementation of
a pythonic interface to VCF/BCF files. Note that this code is still
incomplete and preliminary, but does offer a nearly complete immutable
Pythonic interface to VCF/BCF metadata and data with reading and
writing capability.

Potential isses when upgrading from v0.8.3:

	binary tags are now returned as python arrays

	renamed several methods for pep8 compatibility, old names still retained for
backwards compatibility, but should be considered deprecated.

	gettid() is now get_tid()

	getrname() is now get_reference_name()

	parseRegion() is now parse_region()

	some methods have changed for pep8 compatibility without the old
names being present:

	fromQualityString() is now qualitystring_to_array()

	toQualityString() is now qualities_to_qualitystring()

	faidx now returns strings and not binary strings in py3.

	The cython components have been broken up into smaller files with
more specific content. This will affect users using the cython
interfaces.

Edited list of commit log changes:

	fixes AlignmentFile.check_index to return True

	add RG/PM header tag - closes #179 [https://github.com/pysam-developers/pysam/issues/179]

	add with_seq option to get_aligned_pairs

	use char * inside reconsituteReferenceSequence

	add soft clipping for get_reference_sequence

	add get_reference_sequence

	queryEnd now computes length from cigar string if no sequence present, closes #176 [https://github.com/pysam-developers/pysam/issues/176]

	tolerate missing space at end of gtf files, closes #162 [https://github.com/pysam-developers/pysam/issues/162]

	do not raise Error when receiving output on stderr

	add docu about fetching without index, closes #170 [https://github.com/pysam-developers/pysam/issues/170]

	FastaFile and FastxFile now return strings in python3, closes #173 [https://github.com/pysam-developers/pysam/issues/173]

	py3 compat: relative -> absolute imports.

	add reference_name and next_reference_name attributes to AlignedSegment

	add function signatures to cvcf cython. Added note about other VCF code.

	add context manager functions to FastaFile

	add reference_name and next_reference_name attributes to AlignedSegment

	PileupColumn also gets a reference_name attribute.

	add context manager functions to FastaFile

	TabixFile.header for remote files raises AttributeError, fixes #157 [https://github.com/pysam-developers/pysam/issues/157]

	add context manager interface to TabixFile, closes #165 [https://github.com/pysam-developers/pysam/issues/165]

	change ctypedef enum to typedef enum for cython 0.23

	add function signatures to cvcf cython, also added note about other VCF code

	remove exception for custom upper-case header record tags.

	rename VALID_HEADER_FIELDS to KNOWN_HEADER_FIELDS

	fix header record tag parsing for custom tags.

	use cython.str in count_coverage, fixes #141 [https://github.com/pysam-developers/pysam/issues/141]

	avoid maketrans (issues with python3)

	refactoring: AlignedSegment now in separate module

	do not execute remote tests if URL not available

	fix the unmapped count, incl reads with no SQ group

	add raw output to tags

	added write access for binary tags

	bugfix in call to resize

	implemented writing of binary tags from arrays

	implemented convert_binary_tag to use arrays

	add special cases for reads that are unmapped or whose mates are unmapped.

	rename TabProxies to ctabixproxies

	remove underscores from utility functions

	move utility methods into cutils

	remove callback argument to fetch - closes #128 [https://github.com/pysam-developers/pysam/issues/128]

	avoid calling close in dealloc

	add unit tests for File object opening

	change AlignmentFile.open to filepath_or_object

	implement copy.copy, close #65 [https://github.com/pysam-developers/pysam/issues/65]

	add chaching of array attributes in AlignedSegment, closes #121 [https://github.com/pysam-developers/pysam/issues/121]

	add export of Fastafile

	remove superfluous pysam_dispatch

	use persist option in FastqFile

	get_tag: expose tag type if requested with with_value_type

	fix to allow reading vcf record info via tabix-based vcf reader

	add pFastqProxy and pFastqFile objects to make it possible to work with multiple fastq records per file handle, unlike FastqProxy/FastqFile.

	release GIL around htslib IO operations

	More work on read/write support, API improvements

	add phased property on VariantRecordSample

	add mutable properties to VariantRecord

	BCF fixes and start of read/write support

	VariantHeaderRecord objects now act like mappings for attributes.

	add VariantHeader.alts dict from alt ID->Record.

	Bug fix to strong representation of structured header records.

	VariantHeader is now mutable

Release 0.8.3

	samtools command now accept the “catch_stdout” option.

	get_aligned_pairs now works for soft-clipped reads.

	query_position is now None when a PileupRead is not aligned
to a particular position.

	AlignedSegments are now comparable and hashable.

Release 0.8.2.1

	Installation bugfix release.

Release 0.8.2

	Pysam now wraps htslib 1.2.1 and samtools version 1.2.

	Added CRAM file support to pysam.

	
	New alignment info interface.
	
	opt() and setTag are deprecated, use get_tag() and set_tag()
instead.

	added has_tag()

	tags is deprecated, use get_tags() and set_tags() instead.

	FastqFile is now FastxFile to reflect that the latter permits
iteration over both fastq- and fasta-formatted files.

	A Cython wrapper for htslib VCF/BCF reader/writer. The wrapper
provides a nearly complete Pythonic interface to VCF/BCF metadata
with reading and writing capability. However, the interface is still
incomplete and preliminary and lacks capability to mutate the
resulting data.

Release 0.8.1

	Pysam now wraps htslib and samtools versions 1.1.

	Bugfixes, most notable:

	issue #43 [https://github.com/pysam-developers/pysam/issues/43]: uncompressed BAM output

	issue #42 [https://github.com/pysam-developers/pysam/issues/42]: skip tests requiring network if none available

	issue #19 [https://github.com/pysam-developers/pysam/issues/19]: multiple iterators can now be made to work on the same tabix file

	issue #24 [https://github.com/pysam-developers/pysam/issues/24]: All strings returned from/passed to the pysam API are now unicode in python 3

	issue #5 [https://github.com/pysam-developers/pysam/issues/5]: type guessing for lists of integers fixed

	API changes for consistency. The old API is still present,
but deprecated.
In particular:

	Tabixfile -> TabixFile

	Fastafile -> FastaFile

	Fastqfile -> FastqFile

	Samfile -> AlignmentFile

	
	AlignedRead -> AlignedSegment
	
	qname -> query_name

	tid -> reference_id

	pos -> reference_start

	mapq -> mapping_quality

	rnext -> next_reference_id

	pnext -> next_reference_start

	cigar -> cigartuples

	cigarstring -> cigarstring

	tlen -> template_length

	seq -> query_sequence

	qual -> query_qualities, now returns array

	qqual -> query_alignment_qualities, now returns array

	tags -> tags

	alen -> reference_length, reference is always “alignment”, so removed

	aend -> reference_end

	rlen -> query_length

	query -> query_alignment_sequence

	qstart -> query_alignment_start

	qend -> query_alignment_end

	qlen -> query_alignment_length

	mrnm -> next_reference_id

	mpos -> next_reference_start

	rname -> reference_id

	isize -> template_length

	blocks -> get_blocks()

	aligned_pairs -> get_aligned_pairs()

	inferred_length -> infer_query_length()

	positions -> get_reference_positions()

	overlap() -> get_overlap()

	All strings are now passed to or received from the pysam API
as strings, no more bytes.

	Other changes:
	
	AlignmentFile.fetch(reopen) option is now multiple_iterators. The
default changed to not reopen a file unless requested by the user.

	FastaFile.getReferenceLength is now FastaFile.get_reference_length

Backwards incompatible changes

	Empty cigarstring now returns None (instead of ‘’)

	Empty cigar now returns None (instead of [])

	When using the extension classes in cython modules, AlignedRead
needs to be substituted with AlignedSegment.

	fancy_str() has been removed

	qual, qqual now return arrays

Release 0.8.0

	
	Disabled features
	
	IteratorColumn.setMask() disabled as htslib does not implement
this functionality?

	
	Not implemented yet:
	
	reading SAM files without header

Tabix files between version 0.7.8 and 0.8.0 are
not compatible and need to be re-indexed.

While version 0.7.8 and 0.8.0 should be mostly
compatible, there are some notable exceptions:

	tabix iterators will fail if there are comments
in the middle or the end of a file.

	tabix raises always ValueError for invalid intervals.
Previously, different types of errors were raised
(KeyError, IndexError, ValueError) depending on
the type of invalid intervals (missing chromosome,
out-of-range, malformatted interval).

Release 0.7.8

	added AlignedRead.setTag method

	added AlignedRead.blocks

	unsetting CIGAR strings is now possible

	empty CIGAR string returns empty list

	added reopen flag to Samfile.fetch()

	various bugfixes

Release 0.7.7

	added Fastafile.references, .nreferences and .lengths

	tabix_iterator now uses kseq.h for python 2.7

Release 0.7.6

	added inferred_length property

	issue 122: MACOSX getline missing, now it works?

	seq and qual can be set None

	added Fastqfile

Release 0.7.5

	switch to samtools 0.1.19

	issue 122: MACOSX getline missing

	issue 130: clean up tempfiles

	various other bugfixes

Release 0.7.4

	further bugfixes to setup.py and package layout

Release 0.7.3

	further bugfixes to setup.py

	upgraded distribute_setup.py to 0.6.34

Release 0.7.2

	bugfix in installer - failed when cython not present

	changed installation locations of shared libraries

Release 0.7.1

	bugfix: missing PP tag PG records in header

	added pre-built .c files to distribution

Release 0.7

	switch to tabix 0.2.6

	added cigarstring field

	python3 compatibility

	added B tag handling

	added check_sq and check_header options to Samfile.__init__

	added lazy GTF parsing to tabix

	reworked support for VCF format parsing

	bugfixes

Release 0.6

	switch to samtools 0.1.18

	various bugfixes

	removed references to deprecated ‘samtools pileup’ functionality

	AlignedRead.tags now returns an empty list if there are no tags.

	added pnext, rnext and tlen

Release 0.5

	switch to samtools 0.1.16 and tabix 0.2.5

	improved tabix parsing, added vcf support

	re-organized code to permit linking against pysam

	various bugfixes

	added Samfile.positions and Samfile.overlap

Release 0.4

	switch to samtools 0.1.12a and tabix 0.2.3

	added snp and indel calling.

	switch from pyrex to cython

	changed handling of samtools stderr

	various bugfixes

	added Samfile.count and Samfile.mate

	deprecated AlignedRead.rname, added AlignedRead.tid

Release 0.3

	switch to samtools 0.1.8

	added support for tabix files

	numerous bugfixes including

	permit simultaneous iterators on the same file

	working access to remote files

Benchmarking

Latest benchmarking results:

-- benchmark: 57 tests --
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations

test_set_binary_tag 93.8382 (1.0) 199.8786 (1.0) 96.1554 (1.0) 2.6241 (1.0) 95.7036 (1.0) 1.2442 (1.0) 276;303 10,399.8372 (1.0) 3170 1
test_fasta_iteration_long_sequences_without_persistence 145.3292 (1.55) 296.4940 (1.48) 176.5367 (1.84) 30.0896 (11.47) 167.2544 (1.75) 25.1532 (20.22) 840;579 5,664.5438 (0.54) 4972 1
test_fasta_iteration_long_sequences_as_file 149.0638 (1.59) 312.6319 (1.56) 177.2990 (1.84) 30.5218 (11.63) 168.6383 (1.76) 27.7516 (22.30) 669;510 5,640.1883 (0.54) 4493 1
test_fasta_iteration_long_sequences 150.3211 (1.60) 429.9153 (2.15) 176.7384 (1.84) 30.7021 (11.70) 167.5002 (1.75) 21.7482 (17.48) 682;647 5,658.0803 (0.54) 4845 1
test_fasta_iteration_short_sequences_as_file 190.6604 (2.03) 395.8736 (1.98) 216.6984 (2.25) 32.8710 (12.53) 208.9385 (2.18) 16.8057 (13.51) 291;326 4,614.7086 (0.44) 3205 1
test_read_python_uncompressed 214.1297 (2.28) 450.2051 (2.25) 234.6956 (2.44) 33.3642 (12.71) 223.4913 (2.34) 15.0129 (12.07) 140;221 4,260.8375 (0.41) 2043 1
test_fastq_iteration_short_sequences_as_file 217.5961 (2.32) 420.1643 (2.10) 238.0264 (2.48) 30.4469 (11.60) 228.8874 (2.39) 15.5573 (12.50) 209;235 4,201.2146 (0.40) 2877 1
test_iterate_file_uncompressed 225.5719 (2.40) 481.0989 (2.41) 249.7603 (2.60) 40.7266 (15.52) 239.5548 (2.50) 15.9908 (12.85) 209;327 4,003.8387 (0.38) 3627 1
test_iterate_file_compressed 257.5517 (2.74) 576.6843 (2.89) 287.2536 (2.99) 49.8803 (19.01) 277.4149 (2.90) 14.3824 (11.56) 126;248 3,481.2446 (0.33) 3023 1
test_iterate_generic_uncompressed 344.8855 (3.68) 712.5959 (3.57) 370.9369 (3.86) 46.2477 (17.62) 365.0384 (3.81) 15.7915 (12.69) 54;83 2,695.8763 (0.26) 2240 1
test_iterate_parsed_uncompressed 349.3819 (3.72) 765.3460 (3.83) 378.1446 (3.93) 54.2199 (20.66) 369.5488 (3.86) 15.4320 (12.40) 48;69 2,644.4910 (0.25) 1638 1
test_read_python_compressed 462.0645 (4.92) 836.2234 (4.18) 493.6158 (5.13) 51.2946 (19.55) 485.5469 (5.07) 11.4385 (9.19) 28;46 2,025.8670 (0.19) 906 1
test_iterate_parsed_compressed 586.5730 (6.25) 1,050.1631 (5.25) 632.5464 (6.58) 82.6438 (31.49) 608.1080 (6.35) 20.1799 (16.22) 115;143 1,580.9117 (0.15) 1474 1
test_iterate_generic_compressed 587.7707 (6.26) 1,093.4286 (5.47) 639.6830 (6.65) 85.2593 (32.49) 612.6408 (6.40) 19.9433 (16.03) 105;144 1,563.2743 (0.15) 1260 1
test_fasta_iteration_short_sequences_without_persistence 725.2563 (7.73) 1,091.6069 (5.46) 774.6549 (8.06) 53.0901 (20.23) 751.8455 (7.86) 45.0788 (36.23) 172;110 1,290.8974 (0.12) 1276 1
test_read_binary_tag 817.2598 (8.71) 1,232.0559 (6.16) 902.7002 (9.39) 87.7807 (33.45) 871.5261 (9.11) 17.4227 (14.00) 39;55 1,107.7875 (0.11) 331 1
test_fastq_iteration_short_sequences_without_persistence 840.3640 (8.96) 1,201.5756 (6.01) 870.9679 (9.06) 35.8709 (13.67) 866.1682 (9.05) 15.9768 (12.84) 53;85 1,148.1480 (0.11) 1124 1
test_count_number_lines_from_sam_with_pysam 2,755.6140 (29.37) 9,656.9806 (48.31) 2,963.2206 (30.82) 729.0077 (277.81) 2,814.3115 (29.41) 106.2388 (85.38) 8;14 337.4707 (0.03) 281 1
test_fasta_iteration_short_sequences 2,905.5942 (30.96) 3,674.1439 (18.38) 2,982.3892 (31.02) 90.9585 (34.66) 2,941.2108 (30.73) 96.1348 (77.26) 27;7 335.3016 (0.03) 302 1
test_fastq_iteration_short_sequences 3,601.3145 (38.38) 4,065.5769 (20.34) 3,671.8361 (38.19) 71.5348 (27.26) 3,635.1625 (37.98) 81.5415 (65.53) 43;10 272.3433 (0.03) 243 1
test_count_number_lines_from_bam_with_pysam 4,178.8872 (44.53) 12,063.5536 (60.35) 4,395.9713 (45.72) 794.3991 (302.73) 4,240.1757 (44.31) 67.0198 (53.86) 6;19 227.4810 (0.02) 205 1
test_build_depth_from_bam_with_pysam 6,290.2980 (67.03) 6,788.0806 (33.96) 6,420.3862 (66.77) 126.5447 (48.22) 6,357.6270 (66.43) 94.3104 (75.80) 35;29 155.7539 (0.01) 145 1
test_build_depth_with_filter_from_bam_with_pysam 6,935.8926 (73.91) 8,309.5767 (41.57) 7,085.6801 (73.69) 221.5069 (84.41) 7,005.6170 (73.20) 74.4388 (59.83) 14;27 141.1297 (0.01) 139 1
test_build_query_positions_from_bam_with_pysam 8,729.2437 (93.02) 16,836.6525 (84.23) 9,173.2902 (95.40) 1,057.4321 (402.97) 8,885.4395 (92.84) 264.7634 (212.79) 3;9 109.0121 (0.01) 103 1
test_build_mapping_qualities_from_bam_with_pysam 8,805.0570 (93.83) 15,829.8910 (79.20) 9,274.7475 (96.46) 964.6925 (367.63) 9,004.7438 (94.09) 354.9103 (285.24) 4;9 107.8196 (0.01) 106 1
test_build_query_qualities_from_bam_with_pysam 8,947.6798 (95.35) 16,756.8158 (83.83) 9,272.9117 (96.44) 1,008.7759 (384.43) 9,017.0493 (94.22) 217.2068 (174.57) 3;5 107.8410 (0.01) 94 1
test_build_query_bases_from_bam_with_samtoolspysam 9,149.0448 (97.50) 9,776.0092 (48.91) 9,208.3405 (95.77) 86.1889 (32.85) 9,190.2809 (96.03) 34.1963 (27.48) 5;7 108.5972 (0.01) 84 1
test_count_number_lines_from_bam_with_samtoolspipe 10,431.4052 (111.16) 13,431.7447 (67.20) 11,052.2360 (114.94) 445.8241 (169.90) 11,014.8042 (115.09) 492.6044 (395.91) 17;3 90.4794 (0.01) 90 1
test_count_number_lines_from_bam_with_samtools 12,057.8520 (128.50) 13,537.5429 (67.73) 12,595.0708 (130.99) 381.1799 (145.26) 12,499.5783 (130.61) 457.8107 (367.94) 25;1 79.3961 (0.01) 73 1
test_count_number_lines_from_sam_with_samtoolspipe 12,434.8756 (132.51) 14,234.1983 (71.21) 13,034.1032 (135.55) 371.0373 (141.40) 13,049.9089 (136.36) 464.8147 (373.57) 21;3 76.7218 (0.01) 72 1
test_build_query_bases_from_bam_with_pysam 12,811.6887 (136.53) 19,972.7099 (99.92) 13,268.7908 (137.99) 1,103.9459 (420.70) 13,023.1632 (136.08) 202.3596 (162.64) 4;6 75.3648 (0.01) 76 1
test_build_pileup_from_bam_with_samtoolspipe 13,480.7490 (143.66) 15,413.4836 (77.11) 13,968.3817 (145.27) 362.1282 (138.00) 13,917.4843 (145.42) 447.9736 (360.04) 12;3 71.5903 (0.01) 66 1
test_count_number_lines_from_sam_with_samtools 13,963.2300 (148.80) 15,936.2238 (79.73) 14,442.5627 (150.20) 340.4846 (129.75) 14,395.4996 (150.42) 339.3036 (272.70) 12;2 69.2398 (0.01) 59 1
test_build_pileup_from_bam_with_samtoolsshell 15,140.2969 (161.34) 16,469.8567 (82.40) 15,525.9034 (161.47) 256.0741 (97.59) 15,526.7641 (162.24) 318.5044 (255.98) 13;2 64.4085 (0.01) 51 1
test_build_depth_from_bam_with_samtoolsshell 15,291.4841 (162.96) 16,387.9916 (81.99) 15,656.5365 (162.83) 217.2420 (82.79) 15,609.9945 (163.11) 258.9412 (208.11) 16;2 63.8711 (0.01) 57 1
test_build_query_bases_from_bam_with_samtoolspipe 15,478.0652 (164.94) 17,068.8462 (85.40) 16,072.5749 (167.15) 327.6668 (124.87) 16,040.5049 (167.61) 428.1597 (344.11) 18;2 62.2178 (0.01) 60 1
test_build_query_bases_from_bam_with_samtoolsshell 15,765.5794 (168.01) 17,102.8059 (85.57) 16,305.4955 (169.57) 367.6865 (140.12) 16,256.2486 (169.86) 593.9230 (477.34) 20;0 61.3290 (0.01) 57 1
test_build_depth_from_bam_with_samtoolspipe 16,024.7944 (170.77) 25,804.2309 (129.10) 17,041.3497 (177.23) 1,522.0046 (580.01) 16,726.8887 (174.78) 767.1015 (616.52) 1;1 58.6808 (0.01) 40 1
test_build_query_qualities_from_bam_with_samtoolspipe 16,275.7467 (173.44) 18,501.0433 (92.56) 17,262.6517 (179.53) 642.2656 (244.76) 17,255.3696 (180.30) 1,060.3429 (852.20) 20;0 57.9285 (0.01) 51 1
test_build_pileup_from_bam_with_pysam 16,632.5681 (177.25) 19,306.6560 (96.59) 17,037.7162 (177.19) 531.0751 (202.38) 16,870.8330 (176.28) 279.1677 (224.37) 3;4 58.6933 (0.01) 32 1
test_build_mapping_qualities_from_bam_with_samtoolspipe 17,398.3518 (185.41) 18,481.6569 (92.46) 17,832.1261 (185.45) 294.9103 (112.39) 17,837.8206 (186.39) 511.8400 (411.37) 21;0 56.0786 (0.01) 52 1
test_build_query_names_from_bam_with_pysam 31,534.0199 (336.05) 38,316.2647 (191.70) 32,677.2804 (339.84) 1,371.6101 (522.70) 32,179.0325 (336.24) 1,392.1391 (>1000.0) 3;1 30.6023 (0.00) 30 1
test_fetch_plain 43,747.1233 (466.20) 48,690.7829 (243.60) 44,573.8085 (463.56) 1,170.8588 (446.20) 44,067.5411 (460.46) 1,436.5837 (>1000.0) 3;1 22.4347 (0.00) 22 1
test_build_query_positions_from_bam_with_samtoolspipe 46,316.5548 (493.58) 53,700.3577 (268.66) 48,235.6640 (501.64) 1,861.0317 (709.21) 47,625.2194 (497.63) 2,603.7074 (>1000.0) 6;1 20.7315 (0.00) 21 1
test_build_query_bases_with_reference_from_bam_with_samtoolspysam 51,565.1479 (549.51) 53,523.1121 (267.78) 51,778.6650 (538.49) 424.4621 (161.76) 51,656.8925 (539.76) 110.5051 (88.81) 1;4 19.3130 (0.00) 20 1
test_build_query_bases_with_reference_from_bam_with_pysam 58,850.6740 (627.15) 62,164.5451 (311.01) 60,161.6779 (625.67) 1,120.6101 (427.05) 59,595.2785 (622.71) 1,995.0196 (>1000.0) 7;0 16.6219 (0.00) 16 1
test_iterate_file_large_uncompressed 59,419.9076 (633.22) 69,053.0874 (345.48) 62,825.7126 (653.38) 3,805.1150 (>1000.0) 60,805.1391 (635.35) 6,407.6949 (>1000.0) 3;0 15.9170 (0.00) 14 1
test_iterate_file_large_compressed 63,986.9571 (681.89) 74,156.9120 (371.01) 68,370.8835 (711.05) 3,254.6200 (>1000.0) 67,221.2075 (702.39) 4,770.3525 (>1000.0) 5;0 14.6261 (0.00) 16 1
test_read_python_large_uncompressed 67,611.8080 (720.51) 89,112.1533 (445.83) 73,631.8916 (765.76) 5,978.7052 (>1000.0) 71,702.4822 (749.21) 7,856.0165 (>1000.0) 2;1 13.5811 (0.00) 13 1
test_fetch_parsed 72,237.5344 (769.81) 81,976.9856 (410.13) 74,540.4099 (775.21) 2,326.3668 (886.54) 74,016.3419 (773.39) 1,579.0667 (>1000.0) 1;1 13.4155 (0.00) 14 1
test_build_query_bases_from_bam_with_pysam_pileups 75,841.3766 (808.21) 87,975.1425 (440.14) 79,393.9784 (825.68) 3,516.2458 (>1000.0) 79,346.7313 (829.09) 5,217.5033 (>1000.0) 2;0 12.5954 (0.00) 13 1
test_build_query_bases_with_reference_from_bam_with_samtoolspipe 131,162.9396 (>1000.0) 132,858.8147 (664.70) 131,838.0199 (>1000.0) 595.6090 (226.98) 131,801.5633 (>1000.0) 956.9665 (769.11) 2;0 7.5851 (0.00) 8 1
test_iterate_parsed_large_uncompressed 132,991.8914 (>1000.0) 140,153.4099 (701.19) 134,101.5892 (>1000.0) 2,452.3161 (934.54) 133,218.1590 (>1000.0) 396.3616 (318.56) 1;1 7.4570 (0.00) 8 1
test_iterate_generic_large_uncompressed 134,743.7277 (>1000.0) 142,329.4526 (712.08) 138,167.4954 (>1000.0) 3,346.7773 (>1000.0) 136,839.1849 (>1000.0) 6,541.1879 (>1000.0) 4;0 7.2376 (0.00) 8 1
test_read_python_large_compressed 175,127.6311 (>1000.0) 190,855.1529 (954.86) 181,702.9339 (>1000.0) 5,756.2207 (>1000.0) 181,221.0185 (>1000.0) 8,577.6616 (>1000.0) 2;0 5.5035 (0.00) 6 1
test_iterate_parsed_large_compressed 231,405.7611 (>1000.0) 243,728.8519 (>1000.0) 239,037.8296 (>1000.0) 5,212.7778 (>1000.0) 241,544.3324 (>1000.0) 8,062.6113 (>1000.0) 1;0 4.1834 (0.00) 5 1
test_iterate_generic_large_compressed 235,042.3876 (>1000.0) 256,518.8371 (>1000.0) 242,535.5468 (>1000.0) 8,272.5197 (>1000.0) 240,163.0748 (>1000.0) 8,360.1568 (>1000.0) 1;0 4.1231 (0.00) 5 1

Glossary

	BAM
	Binary SAM format. BAM files are binary formatted, indexed and
allow random access.

	BCF
	Binary VCF.

	BED
	Browser Extensible Data format. A text file format used to store genomic
regions as coordinates and associated notations.

	bgzip
	Utility in the htslib package to block compress genomic data
files.

	cigar
	Stands for Compact Idiosyncratic Gapped Alignment Report and
represents a compressed (run-length encoded) pairwise alignment
format. It was first defined by the Exonerate Aligner, but was alter
adapted and adopted as part of the SAM standard and many other
aligners. In the Python API, the cigar alignment is presented as a
list of tuples (operation,length). For example, the tuple [
(0,3), (1,5), (0,2)] refers to an alignment with 3 matches, 5
insertions and another 2 matches.

	column
	
	The portion of reads aligned to a single base in the
	reference sequence.

	contig
	The sequence that a tid refers to. For example chr1, contig123.

	CRAM
	CRAM is a binary format representing the same sequence alignment
information as SAM and BAM, but offering significantly better
lossless compression than BAM.

	faidx
	Utility in the samtools [http://samtools.sourceforge.net/] package to index fasta formatted
files.

	FASTA
	Simple text format containing sequence data, with only the bare
minimum of metadata. Typically used for reference sequence data.

	FASTQ
	Simple text format containing sequence data and associated base
qualities.

	fetching
	Retrieving all mapped reads mapped to a region.

	genotype
	
	An individual’s collection of genes. It can also refer to the two alleles
	inherited for a particular gene.

	GTF
	
	The Gene Transfer Format is a file format used to hold information
	about gene structure.

	hard clipping
	hard clipped
	In hard clipped reads, part of the sequence has been removed
prior to alignment. That only a subsequence is aligend might be
recorded in the cigar alignment, but the removed
sequence will not be part of the alignment record, in contrast
to soft clipped reads.

	pileup
	Pileup

	reference
	Synonym for contig.

	region
	A genomic region, stated relative to a reference sequence. A
region consists of reference name (‘chr1’), start (15000), and
end (20000). Start and end can be omitted for regions spanning
a whole chromosome. If end is missing, the region will span from
start to the end of the chromosome. Within pysam, coordinates
are 0-based half-open intervals, i.e., the first base of the
reference sequence is numbered zero; and the base at position
start is part of the interval, but the base at end is not.

When a region is written as a single string using
samtools [http://samtools.sourceforge.net/]-compatible notation, e.g., ‘chr1:15001-20000’,
the string’s coordinates instead represent a 1-based closed interval,
i.e., both (1-based) positions 15,001 and 20,000 are part of the
interval. (This example denotes the same 5,000-base region as the
example in the previous paragraph.)

	SAM
	A textual format for storing genomic alignment information.

	sam file
	A file containing aligned reads. The sam file can either
be a BAM file or a TAM file.

	soft clipping
	soft clipped
	In alignments with soft clipping part of the query sequence
are not aligned. The unaligned query sequence is still part
of the alignment record. This is in difference to
hard clipped reads.

	tabix
	Utility in the htslib package to index bgzip compressed
files.

	tabix file
	A sorted, compressed and indexed tab-separated file created
by the command line tool tabix or the commands
tabix_compress() and tabix_index(). The file
is indexed by chromosomal coordinates.

	tabix row
	A row in a tabix file. Fields within a row are
tab-separated.

	TAM
	Text SAM file. TAM files are human readable files of
tab-separated fields. TAM files do not allow random access.

	target
	The sequence that a read has been aligned to. Target
sequences have bot a numerical identifier (tid)
and an alphanumeric name (Reference).

	tid
	The target id. The target id is 0 or a positive integer mapping to
entries within the sequence dictionary in the header section of
a TAM file or BAM file.

	VCF
	Variant Call Format.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_hts_options() (pysam.HTSFile method)

 	add_line() (pysam.VariantHeader method)

 	add_meta() (pysam.VariantHeader method)

 	add_record() (pysam.VariantHeader method)

 	add_sample() (pysam.VariantHeader method)

 	add_samples() (pysam.VariantHeader method)

 	aend (pysam.AlignedSegment attribute)

 	alen (pysam.AlignedSegment attribute)

 	aligned_pairs (pysam.AlignedSegment attribute)

 	AlignedSegment (class in pysam)

 	alignment (pysam.PileupRead attribute)

 	
 	AlignmentFile (class in pysam)

 	AlignmentHeader (class in pysam)

 	alleles (pysam.VariantRecord attribute)

 	alts (pysam.VariantHeader attribute)

 	(pysam.VariantRecord attribute)

 	as_dict() (pysam.AlignmentHeader method)

 	asBed (class in pysam)

 	asGTF (class in pysam)

 	asTuple (class in pysam)

 	asVCF (class in pysam)

 	attrs (pysam.VariantHeaderRecord attribute)

B

 	
 	BAM

 	BCF

 	BED

 	
 	bgzip

 	bin (pysam.AlignedSegment attribute)

 	blocks (pysam.AlignedSegment attribute)

 	build() (pysam.IndexedReads method)

C

 	
 	category (pysam.HTSFile attribute)

 	check_index() (pysam.AlignmentFile method)

 	check_truncation() (pysam.HTSFile method)

 	chrom (pysam.VariantRecord attribute)

 	cigar

 	(pysam.AlignedSegment attribute)

 	cigarstring (pysam.AlignedSegment attribute)

 	cigartuples (pysam.AlignedSegment attribute)

 	close() (pysam.AlignmentFile method)

 	(pysam.FastaFile method)

 	(pysam.FastxFile method)

 	(pysam.HTSFile method)

 	(pysam.TabixFile method)

 	(pysam.VariantFile method)

 	closed (pysam.FastaFile attribute)

 	(pysam.FastxFile attribute)

 	(pysam.HTSFile attribute)

 	
 	column

 	compare() (pysam.AlignedSegment method)

 	compression (pysam.HTSFile attribute)

 	contig

 	(pysam.VariantRecord attribute)

 	contigs (pysam.TabixFile attribute)

 	(pysam.VariantHeader attribute)

 	copy() (pysam.AlignmentHeader method)

 	(pysam.VariantFile method)

 	(pysam.VariantHeader method)

 	(pysam.VariantRecord method)

 	count() (pysam.AlignmentFile method)

 	count_coverage() (pysam.AlignmentFile method)

 	CRAM

D

 	
 	description (pysam.HTSFile attribute)

F

 	
 	faidx

 	FASTA

 	FastaFile (class in pysam)

 	FASTQ

 	FastqProxy (class in pysam)

 	FastxFile (class in pysam)

 	fetch() (pysam.AlignmentFile method)

 	(pysam.FastaFile method)

 	(pysam.TabixFile method)

 	(pysam.VariantFile method)

 	fetching

 	filename (pysam.FastaFile attribute)

 	(pysam.FastxFile attribute)

 	
 	filter (pysam.VariantRecord attribute)

 	filters (pysam.VariantHeader attribute)

 	find() (pysam.IndexedReads method)

 	find_introns() (pysam.AlignmentFile method)

 	find_introns_slow() (pysam.AlignmentFile method)

 	flag (pysam.AlignedSegment attribute)

 	format (pysam.HTSFile attribute)

 	(pysam.VariantRecord attribute)

 	formats (pysam.VariantHeader attribute)

 	from_dict() (pysam.AlignedSegment class method)

 	(pysam.AlignmentHeader class method)

 	from_references() (pysam.AlignmentHeader class method)

 	from_text() (pysam.AlignmentHeader class method)

 	fromstring() (pysam.AlignedSegment class method)

G

 	
 	genotype

 	get() (pysam.AlignmentHeader method)

 	(pysam.VariantHeaderRecord method)

 	get_aligned_pairs() (pysam.AlignedSegment method)

 	get_blocks() (pysam.AlignedSegment method)

 	get_cigar_stats() (pysam.AlignedSegment method)

 	get_forward_qualities() (pysam.AlignedSegment method)

 	get_forward_sequence() (pysam.AlignedSegment method)

 	get_index_statistics() (pysam.AlignmentFile method)

 	get_mapping_qualities() (pysam.PileupColumn method)

 	get_num_aligned() (pysam.PileupColumn method)

 	get_overlap() (pysam.AlignedSegment method)

 	get_quality_array() (pysam.FastqProxy method)

 	get_query_names() (pysam.PileupColumn method)

 	get_query_positions() (pysam.PileupColumn method)

 	get_query_qualities() (pysam.PileupColumn method)

 	get_query_sequences() (pysam.PileupColumn method)

 	
 	get_reference_length() (pysam.AlignmentFile method)

 	(pysam.AlignmentHeader method)

 	(pysam.FastaFile method)

 	get_reference_name() (pysam.AlignmentFile method)

 	(pysam.AlignmentHeader method)

 	(pysam.HTSFile method)

 	(pysam.VariantFile method)

 	get_reference_positions() (pysam.AlignedSegment method)

 	get_reference_sequence() (pysam.AlignedSegment method)

 	get_tag() (pysam.AlignedSegment method)

 	get_tags() (pysam.AlignedSegment method)

 	get_tid() (pysam.AlignmentFile method)

 	(pysam.AlignmentHeader method)

 	(pysam.HTSFile method)

 	(pysam.VariantFile method)

 	getrname() (pysam.AlignmentFile method)

 	gettid() (pysam.AlignmentFile method)

 	GTF

H

 	
 	hard clipped

 	hard clipping

 	has_index() (pysam.AlignmentFile method)

 	
 	has_tag() (pysam.AlignedSegment method)

 	head() (pysam.AlignmentFile method)

 	header (pysam.TabixFile attribute)

 	HTSFile (class in pysam)

I

 	
 	id (pysam.VariantRecord attribute)

 	indel (pysam.PileupRead attribute)

 	IndexedReads (class in pysam)

 	infer_query_length() (pysam.AlignedSegment method)

 	infer_read_length() (pysam.AlignedSegment method)

 	inferred_length (pysam.AlignedSegment attribute)

 	info (pysam.VariantHeader attribute)

 	(pysam.VariantRecord attribute)

 	is_bam (pysam.HTSFile attribute)

 	is_bcf (pysam.HTSFile attribute)

 	is_closed (pysam.HTSFile attribute)

 	is_cram (pysam.HTSFile attribute)

 	is_del (pysam.PileupRead attribute)

 	is_duplicate (pysam.AlignedSegment attribute)

 	is_forward (pysam.AlignedSegment attribute)

 	is_head (pysam.PileupRead attribute)

 	is_mapped (pysam.AlignedSegment attribute)

 	is_open (pysam.HTSFile attribute)

 	is_open() (pysam.FastaFile method)

 	(pysam.FastxFile method)

 	is_paired (pysam.AlignedSegment attribute)

 	is_proper_pair (pysam.AlignedSegment attribute)

 	is_qcfail (pysam.AlignedSegment attribute)

 	
 	is_read (pysam.HTSFile attribute)

 	is_read1 (pysam.AlignedSegment attribute)

 	is_read2 (pysam.AlignedSegment attribute)

 	is_refskip (pysam.PileupRead attribute)

 	is_reverse (pysam.AlignedSegment attribute)

 	is_sam (pysam.HTSFile attribute)

 	is_secondary (pysam.AlignedSegment attribute)

 	is_supplementary (pysam.AlignedSegment attribute)

 	is_tail (pysam.PileupRead attribute)

 	is_unmapped (pysam.AlignedSegment attribute)

 	is_valid_reference_name() (pysam.HTSFile method)

 	is_valid_tid() (pysam.AlignmentFile method)

 	(pysam.AlignmentHeader method)

 	(pysam.HTSFile method)

 	(pysam.VariantFile method)

 	is_vcf (pysam.HTSFile attribute)

 	is_write (pysam.HTSFile attribute)

 	isize (pysam.AlignedSegment attribute)

 	items() (pysam.AlignmentHeader method)

 	(pysam.VariantHeaderRecord method)

 	iteritems() (pysam.AlignmentHeader method)

 	(pysam.VariantHeaderRecord method)

 	iterkeys() (pysam.VariantHeaderRecord method)

 	itervalues() (pysam.VariantHeaderRecord method)

K

 	
 	key (pysam.VariantHeaderRecord attribute)

 	
 	keys() (pysam.AlignmentHeader method)

 	(pysam.VariantHeaderRecord method)

L

 	
 	lengths (pysam.AlignmentFile attribute)

 	(pysam.AlignmentHeader attribute)

 	(pysam.FastaFile attribute)

 	
 	level (pysam.PileupRead attribute)

M

 	
 	mapped (pysam.AlignmentFile attribute)

 	mapping_quality (pysam.AlignedSegment attribute)

 	mapq (pysam.AlignedSegment attribute)

 	mate() (pysam.AlignmentFile method)

 	mate_is_forward (pysam.AlignedSegment attribute)

 	mate_is_mapped (pysam.AlignedSegment attribute)

 	
 	mate_is_reverse (pysam.AlignedSegment attribute)

 	mate_is_unmapped (pysam.AlignedSegment attribute)

 	merge() (pysam.VariantHeader method)

 	modified_bases (pysam.AlignedSegment attribute)

 	modified_bases_forward (pysam.AlignedSegment attribute)

 	mpos (pysam.AlignedSegment attribute)

 	mrnm (pysam.AlignedSegment attribute)

N

 	
 	n (pysam.PileupColumn attribute)

 	name (pysam.FastqProxy attribute)

 	new_record() (pysam.VariantFile method)

 	(pysam.VariantHeader method)

 	next_reference_id (pysam.AlignedSegment attribute)

 	next_reference_name (pysam.AlignedSegment attribute)

 	
 	next_reference_start (pysam.AlignedSegment attribute)

 	nocoordinate (pysam.AlignmentFile attribute)

 	nreferences (pysam.AlignmentFile attribute)

 	(pysam.AlignmentHeader attribute)

 	(pysam.FastaFile attribute)

 	nsegments (pysam.PileupColumn attribute)

O

 	
 	open() (pysam.VariantFile method)

 	
 	opt() (pysam.AlignedSegment method)

 	overlap() (pysam.AlignedSegment method)

P

 	
 	parse_region() (pysam.HTSFile method)

 	pileup

 	pileup() (pysam.AlignmentFile method)

 	PileupColumn (class in pysam)

 	PileupRead (class in pysam)

 	pileups (pysam.PileupColumn attribute)

 	
 	pnext (pysam.AlignedSegment attribute)

 	pop() (pysam.VariantHeaderRecord method)

 	pos (pysam.AlignedSegment attribute)

 	(pysam.PileupColumn attribute)

 	(pysam.VariantRecord attribute)

 	positions (pysam.AlignedSegment attribute)

Q

 	
 	qend (pysam.AlignedSegment attribute)

 	qlen (pysam.AlignedSegment attribute)

 	qname (pysam.AlignedSegment attribute)

 	qqual (pysam.AlignedSegment attribute)

 	qstart (pysam.AlignedSegment attribute)

 	qual (pysam.AlignedSegment attribute)

 	(pysam.VariantRecord attribute)

 	quality (pysam.FastqProxy attribute)

 	query (pysam.AlignedSegment attribute)

 	query_alignment_end (pysam.AlignedSegment attribute)

 	
 	query_alignment_length (pysam.AlignedSegment attribute)

 	query_alignment_qualities (pysam.AlignedSegment attribute)

 	query_alignment_sequence (pysam.AlignedSegment attribute)

 	query_alignment_start (pysam.AlignedSegment attribute)

 	query_length (pysam.AlignedSegment attribute)

 	query_name (pysam.AlignedSegment attribute)

 	query_position (pysam.PileupRead attribute)

 	query_position_or_next (pysam.PileupRead attribute)

 	query_qualities (pysam.AlignedSegment attribute)

 	query_sequence (pysam.AlignedSegment attribute)

R

 	
 	records (pysam.VariantHeader attribute)

 	ref (pysam.VariantRecord attribute)

 	reference

 	reference_end (pysam.AlignedSegment attribute)

 	reference_id (pysam.AlignedSegment attribute)

 	(pysam.PileupColumn attribute)

 	reference_length (pysam.AlignedSegment attribute)

 	reference_name (pysam.AlignedSegment attribute)

 	(pysam.PileupColumn attribute)

 	reference_pos (pysam.PileupColumn attribute)

 	reference_start (pysam.AlignedSegment attribute)

 	
 	references (pysam.AlignmentFile attribute)

 	(pysam.AlignmentHeader attribute)

 	(pysam.FastaFile attribute)

 	region

 	remove() (pysam.VariantHeaderRecord method)

 	reset() (pysam.HTSFile method)

 	(pysam.VariantFile method)

 	rid (pysam.VariantRecord attribute)

 	rlen (pysam.AlignedSegment attribute)

 	(pysam.VariantRecord attribute)

 	rname (pysam.AlignedSegment attribute)

 	rnext (pysam.AlignedSegment attribute)

S

 	
 	SAM

 	sam file

 	samples (pysam.VariantHeader attribute)

 	(pysam.VariantRecord attribute)

 	seek() (pysam.HTSFile method)

 	seq (pysam.AlignedSegment attribute)

 	sequence (pysam.FastqProxy attribute)

 	set_min_base_quality() (pysam.PileupColumn method)

 	
 	set_tag() (pysam.AlignedSegment method)

 	set_tags() (pysam.AlignedSegment method)

 	setTag() (pysam.AlignedSegment method)

 	soft clipped

 	soft clipping

 	start (pysam.VariantRecord attribute)

 	stop (pysam.VariantRecord attribute)

 	subset_samples() (pysam.VariantFile method)

T

 	
 	tabix

 	tabix file

 	tabix row

 	tabix_compress() (in module pysam)

 	tabix_index() (in module pysam)

 	tabix_iterator() (in module pysam)

 	TabixFile (class in pysam)

 	tags (pysam.AlignedSegment attribute)

 	TAM

 	target

 	tell() (pysam.HTSFile method)

 	
 	template_length (pysam.AlignedSegment attribute)

 	text (pysam.AlignmentFile attribute)

 	tid

 	(pysam.AlignedSegment attribute)

 	(pysam.PileupColumn attribute)

 	tlen (pysam.AlignedSegment attribute)

 	to_dict() (pysam.AlignedSegment method)

 	(pysam.AlignmentHeader method)

 	to_string() (pysam.AlignedSegment method)

 	tostring() (pysam.AlignedSegment method)

 	translate() (pysam.VariantRecord method)

 	type (pysam.VariantHeaderRecord attribute)

U

 	
 	unmapped (pysam.AlignmentFile attribute)

 	
 	update() (pysam.VariantHeaderRecord method)

V

 	
 	value (pysam.VariantHeaderRecord attribute)

 	values() (pysam.AlignmentHeader method)

 	(pysam.VariantHeaderRecord method)

 	VariantFile (class in pysam)

 	VariantHeader (class in pysam)

 	
 	VariantHeaderRecord (class in pysam)

 	VariantRecord (class in pysam)

 	VCF

 	version (pysam.HTSFile attribute)

 	(pysam.VariantHeader attribute)

W

 	
 	write() (pysam.AlignmentFile method)

 	(pysam.VariantFile method)

 nav.xhtml

 Table of Contents

 		
 pysam: htslib interface for python

 		
 Introduction

 		
 API

 		
 SAM/BAM/CRAM files

 		
 AlignmentFile

 		
 AlignmentHeader

 		
 AlignedSegment

 		
 PileupColumn

 		
 PileupRead

 		
 IndexedReads

 		
 Tabix files

 		
 TabixFile

 		
 tabix_iterator()

 		
 tabix_compress()

 		
 tabix_index()

 		
 asTuple

 		
 asVCF

 		
 asBed

 		
 asGTF

 		
 FASTA files

 		
 FastaFile

 		
 FASTQ files

 		
 FastxFile

 		
 FastqProxy

 		
 VCF/BCF files

 		
 VariantFile

 		
 VariantHeader

 		
 VariantRecord

 		
 VariantHeaderRecord

 		
 HTSFile

 		
 HTSFile

 		
 Working with BAM/CRAM/SAM-formatted files

 		
 Opening a file

 		
 Fetching reads mapped to a region

 		
 Using the pileup-engine

 		
 Creating BAM/CRAM/SAM files from scratch

 		
 Using streams

 		
 Using samtools commands within python

 		
 Working with tabix-indexed files

 		
 Working with VCF/BCF formatted files

 		
 Extending pysam

 		
 Installing pysam

 		
 Conda installation

 		
 Pypi installation

 		
 Builtin

 		
 External

 		
 Installation from repository

 		
 Requirements

 		
 FAQ

 		
 How should I cite pysam

 		
 Is pysam thread-safe?

 		
 pysam coordinates are wrong

 		
 Calling pysam.fetch() confuses existing iterators

 		
 AlignmentFile.fetch does not show unmapped reads

 		
 I can’t call AlignmentFile.fetch on a file without an index

 		
 BAM files with a large number of reference sequences are slow

 		
 Weirdness with spliced reads in samfile.pileup(chr,start,end) given spliced alignments from an RNA-seq bam file

 		
 I can’t edit quality scores in place

 		
 Why is there no SNPCaller class anymore?

 		
 I get an error ‘PileupProxy accessed after iterator finished’

 		
 Pysam won’t compile

 		
 ImportError: cannot import name csamtools

 		
 Developer’s guide

 		
 Code organization

 		
 Importing new versions of htslib and samtools

 		
 Unit testing

 		
 Benchmarking

 		
 Contributors

 		
 Release notes

 		
 Release 0.22.0

 		
 Release 0.21.0

 		
 Release 0.20.0

 		
 Release 0.19.1

 		
 Release 0.19.0

 		
 Release 0.18.0

 		
 Release 0.17.0

 		
 Release 0.16.0

 		
 Release 0.15.4

 		
 Release 0.15.3

 		
 Release 0.15.2

 		
 Release 0.15.1

 		
 Release 0.15.0

 		
 Release 0.14.1

 		
 Release 0.14.0

 		
 Release 0.13.0

 		
 Release 0.12.0.1

 		
 Release 0.12.0

 		
 Release 0.11.2.2

 		
 Release 0.11.2.1

 		
 Release 0.11.2

 		
 Release 0.11.1

 		
 Release 0.11.0

 		
 Release 0.10.0

 		
 Release 0.9.1

 		
 Release 0.9.0

 		
 Overview

 		
 Detailed release notes

 		
 Release 0.8.4

 		
 Release 0.8.3

 		
 Release 0.8.2.1

 		
 Release 0.8.2

 		
 Release 0.8.1

 		
 Release 0.8.0

 		
 Release 0.7.8

 		
 Release 0.7.7

 		
 Release 0.7.6

 		
 Release 0.7.5

 		
 Release 0.7.4

 		
 Release 0.7.3

 		
 Release 0.7.2

 		
 Release 0.7.1

 		
 Release 0.7

 		
 Release 0.6

 		
 Release 0.5

 		
 Release 0.4

 		
 Release 0.3

 		
 Benchmarking

 		
 Glossary

_static/file.png

_static/minus.png

_static/plus.png

