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CHAPTER 1

Introduction to pyro

k .

pyro is a simple framework for implementing and playing with hydrodynamics solvers. It is designed to provide a
tutorial for students in computational astrophysics (and hydrodynamics in general) and for easily prototyping new
methods. We introduce simple implementations of some popular methods used in the field, with the code written to be
easily understandable. All simulations use a single grid (no domain decomposition).

Note: pyro is not meant for demanding scientific simulations—given the choice between performance and clarity,
clarity is taken.

pyro builds off of a finite-volume framework for solving PDEs. There are a number of solvers in pyro, allowing for
the solution of hyperbolic (wave), parabolic (diffusion), and elliptic (Poisson) equations. In particular, the following
solvers are developed:

* linear advection

* compressible hydrodynamics

¢ shallow water hydrodynamics
* multigrid

* implicit thermal diffusion

* incompressible hydrodynamics

* low Mach number atmospheric hydrodynamics
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* shallow water hydrodynamics

Runtime visualization shows the evolution as the equations are solved.
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CHAPTER 2

Setting up pyro

You can clone pyro from github: http://github.com/python-hydro/pyro2

Note: It is strongly recommended that you use python 3.x. While python 2.x might still work, we do not test pyro
under python 2, so it may break at any time in the future.

The following python packages are required:
* numpy
* matplotlib
* numba
e pytest (for unit tests)
The following steps are needed before running pyro:
* add pyro/ to your PYTHONPATH environment variable (note this is only

needed if you wish to use pyro as a python module - this step is not necessary if you only run pyro via the commandline
using the pyro.py script). For

the bash shell, this is done as:

’ export PYTHONPATH="/path/to/pyro/:${PYTHONPATH}" ‘

e define the environment variable PYRO_HOME to point to the pyro2/ directory (only needed for regression
testing)

’ export PYRO_HOME="/path/to/pyro/" ‘

2.1 Quick test

Run the advection solver to quickly test if things are setup correctly:



http://github.com/python-hydro/pyro2
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./pyro.py advection smooth inputs.smooth

You should see a plot window pop up with a smooth pulse advecting diagonally through the periodic domain.
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CHAPTER 3

Notes on the numerical methods

Detailed discussions and derivations of the numerical methods used in pyro are given in the set of notes Introduction
to Computational Astrophysical Hydrodynamics, part of the Open Astrophysics Bookshelf.



http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
https://github.com/Open-Astrophysics-Bookshelf
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CHAPTER 4

Design ideas

pyro is written entirely in python (by default, we expect python 3), with a few low-level routines compiled jusz-in-time
by numba for performance. The numpy package is used for representing arrays throughout the python code and the
matplotlib library is used for visualization. Finally, pytest is used for unit testing of some components.

All solvers are written for a 2-d grid. This gives a good balance between complexity and speed.

A paper describing the design philosophy of pyro was accepted to Astronomy & Computing [paper link].

4.1 Directory structure

The files for each solver are in their own sub-directory, with additional sub-directories for the mesh and utilities. Each
solver has two sub-directories: problems/ and tests/. These store the different problem setups for the solver and
reference output for testing.

Your PYTHONPATH environment variable should be set to include the top-level pyro2/ directory.
The overall structure is:

e pyro2/: This is the top-level directory. The main driver, pyro.py, is here, and all pyro simulations should
be run from this directory.

e advection/: The linear advection equation solver using the CTU method. All advection-specific routines
live here.

— problems/: The problem setups for the advection solver.
— tests/: Reference advection output files for comparison and regression testing.
* advection_fv4/: The fourth-order accurate finite-volume advection solver that uses RK4 time integration.
— problems/: The problem setups for the fourth-order advection solver.
— tests/: Reference advection output files for comparison and regression testing.
e advection_nonuniform/: The solver for advection with a non-uniform velocity field.

— problems/: The problem setups for the non-uniform advection solver.
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— tests/: Reference advection output files for comparison and regression testing.
advection_rk/: The linear advection equation solver using the method-of-lines approach.

— problems/: This is a symbolic link to the advection/problems/ directory.

— tests/: Reference advection output files for comparison and regression testing.
advection_weno/: The method-of-lines WENO solver for linear advection.

— problems/: This is a symbolic link to the advection/problems/ directory.
analysis/: Various analysis scripts for processing pyro output files.

compressible/: The fourth-order accurate finite-volume compressible hydro solver that uses RK4 time
integration. This is built from the method of McCourquodale and Colella (2011).

— problems/: The problem setups for the fourth-order compressible hydrodynamics solver.
— tests/: Reference compressible hydro output for regression testing.

compressible_fv4/: The compressible hydrodynamics solver using the CTU method. All source files
specific to this solver live here.

— problems/: This is a symbolic link to the compressible/problems/ directory.

— tests/: Reference compressible hydro output for regression testing.
compressible_rk/: The compressible hydrodynamics solver using method of lines integration.

— problems/: This is a symbolic link to the compressible/problems/ directory.

— tests/: Reference compressible hydro output for regression testing.

compressible_sdc/: The fourth-order compressible solver, using spectral-deferred correction (SDC) for
the time integration.

— problems/: This is a symbolic link to the compressible/problems/ directory.
— tests/: Reference compressible hydro output for regression testing.
diffusion/: The implicit (thermal) diffusion solver. All diffusion-specific routines live here.
— problems/: The problem setups for the diffusion solver.
— tests/: Reference diffusion output for regression testing.

incompressible/: The incompressible hydrodynamics solver. All incompressible-specific routines live
here.

— problems/: The problem setups for the incompressible solver.
— tests/: Reference incompressible hydro output for regression testing.

1m_atm/: The low Mach number hydrodynamics solver for atmospherical flows. All low-Mach-specific files
live here.

— problems/: The problem setups for the low Mach number solver.
— tests/: Reference low Mach hydro output for regression testing.

mesh/: The main classes that deal with 2-d cell-centered grids and the data that lives on them. All the solvers
use these classes to represent their discretized data.

multigrid/: The multigrid solver for cell-centered data. This solver is used on its own to illustrate how
multigrid works, and directly by the diffusion and incompressible solvers.

— problems/: The problem setups for when the multigrid solver is used in a stand-alone fashion.

10
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— tests/: Reference multigrid solver solutions (from when the multigrid solver is used stand-alone) for
regression testing.

* particles/: The solver for Lagrangian tracer particles.
— tests/: Particle solver testing.

* swe/: The shallow water solver.
— problems/: The problem setups for the shallow water solver.
— tests/: Reference shallow water output for regression testing.

e util/: Various service modules used by the pyro routines, including runtime parameters, I/O, profiling, and
pretty output modes.

4.2 Numba

numba is used to speed up some critical portions of the code. Numba is a just-in-time compiler for python. When a
call is first made to a function decorated with Numba’s @n jit decorator, it is compiled to machine code ‘just-in-time’
for it to be executed. Once compiled, it can then run at (near-to) native machine code speed.

We also use Numba’s cache=True option, which means that once the code is compiled, Numba will write the code
into a file-based cache. The next time you run the same bit of code, Numba will use the saved version rather than
compiling the code again, saving some compilation time at the start of the simulation.

Note: Because we have chosen to cache the compiled code, Numba will save it in the __pycache___ directories.
If you change the code, a new version will be compiled and saved, but the old version will not be deleted. Over time,
you may end up with many unneeded files saved in the __pycache___ directories. To clean up these files, you can
run . /mk.sh clean in the main pyro2 directory.

4.3 Main driver

All the solvers use the same driver, the main pyro . py script. The flowchart for the driver is:
* parse runtime parameters
* setup the grid (initialize () function from the solver)
— initialize the data for the desired problem (init_data () function from the problem)
* do any necessary pre-evolution initialization (preevolve () function from the solver)
¢ evolve while t < tmax and n < max_steps
— fill boundary conditions (fi11_BC_all () method of the Cel1CenterData2d class)

— get the timestep (compute_timestep () calls the solver’s method_compute_timestep () func-
tion from the solver)

— evolve for a single timestep (evolve () function from the solver)
- t=t+dt

— output (write () method of the CellCenterData2d class)

— visualization (dovis () function from the solver)

e call the solver’s finalize () function to output any useful information at the end

4.2. Numba 11
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This format is flexible enough for the advection, compressible, diffusion, and incompressible evolution solver. Each
solver provides a Simulation class that provides the following methods (note: inheritance is used, so many of these
methods come from the base NullSimulation class):

compute_timestep: return the timestep based on the solver’s
method_compute_timestep ()) and timestepping parameters in the driver

dovis: performs visualization of the current solution

evolve: advances the system of equations through a single timestep
finalize: any final clean-ups, printing of analysis hints.

finished: return True if we’ve met the stopping criteria for a simulation
initialize: sets up the grid and solution variables

method_compute_timestep: returns the timestep for evolving the system

specific needs (through

preevolve: does any initialization to the fluid state that is necessary before the main evolution. Not every

solver will need something here.
read_extras: read in any solver-specific data from a stored output file
write: write the state of the simulation to an HDFS5 file

write_extras: any solver-specific writing

Each problem setup needs only provide an init_data () function that fills the data in the patch object.

12
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CHAPTER B

Running

Pyro can be run in two ways: either from the commandline, using the pyro.py script and passing in the solver,
problem and inputs as arguments, or by using the Py ro class.

5.1 Commandline

The pyro.py script takes 3 arguments: the solver name, the problem setup to run with that solver (this is defined in
the solver’s problems/ sub-directory), and the inputs file (again, usually from the solver’s problems/ directory).

For example, to run the Sedov problem with the compressible solver we would do:

./pyro.py compressible sedov inputs.sedov

This knows to look for inputs.sedov in compressible/problems/ (alternately, you can specify the full
path for the inputs file).

To run the smooth Gaussian advection problem with the advection solver, we would do:

./pyro.py advection smooth inputs.smooth

Any runtime parameter can also be specified on the command line, after the inputs file. For example, to disable runtime
visualization for the above run, we could do:

./pyro.py advection smooth inputs.smooth vis.dovis=0

Note: Quite often, the slowest part of the runtime is the visualization, so disabling vis as shown above can dramatically
speed up the execution. You can always plot the results after the fact using the plot .py script, as discussed in
Analysis routines.

13
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5.2 Pyro class

Alternatively, pyro can be run using the Py ro class. This provides an interface that enables simulations to be set up
and run in a Jupyter notebook — see examples/examples.ipynb for an example notebook. A simulation can be
set up and run by carrying out the following steps:

* create a Pyro object, initializing it with a specific solver
* initialize the problem, passing in runtime parameters and inputs
* run the simulation

For example, if we wished to use the compressible solver to run the Kelvin-Helmholtz problem kh, we would do
the following:

from pyro import Pyro

pyro = Pyro("compressible™)

pyro.initialize_problem (problem_name="kh",
inputs_file="inputs.kh")

pyro.run_sim()

Instead of using an inputs file to define the problem parameters, we can define a dictionary of parameters and pass
them into the initialize problem function using the keyword argument inputs_dict. If an inputs file is
also passed into the function, the parameters in the dictionary will override any parameters in the file. For example, if
we wished to turn off visualization for the previous example, we would do:

parameters = {"vis.dovis":0}

pyro.initialize_problem(problem name="kh",
inputs_file="inputs.kh",
inputs_dict=parameters)

It’s possible to evolve the simulation forward timestep by timestep manually using the single_step function (rather
than allowing run_sim to do this for us). To evolve our example simulation forward by a single step, we’d run

pyro.single_step ()

This will fill the boundary conditions, compute the timestep dt, evolve a single timestep and do output/visualization
(if required).

5.3 Runtime options

The behavior of the main driver, the solver, and the problem setup can be controlled by runtime parameters specified in
the inputs file (or via the command line or passed into the initialize_problem function). Runtime parameters
are grouped into sections, with the heading of that section enclosed in [ .. 1. The list of parameters are stored in
three places:

* the pyro/_defaults file
¢ the solver’s _defaults file
* problem’s _defaults file (named _problem-name.defaults inthe solver’s problem/ sub-directory).

These three files are parsed at runtime to define the list of valid parameters. The inputs file is read next and used to
override the default value of any of these previously defined parameters. Additionally, any parameter can be specified
at the end of the commandline, and these will be used to override the defaults. The collection of runtime parameters is
stored in a Runt imeParameters object.

14 Chapter 5. Running
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The runparams.py module in util/ controls access to the runtime parameters. You can setup the runtime pa-
rameters, parse an inputs file, and access the value of a parameter (hydro.cf1l in this example) as:

rp = RuntimeParameters ()
rp.load_params ("inputs.test")

cfl = rp.get_param("hydro.cfl")

When pyro is run, the file inputs.auto is output containing the full list of runtime parameters, their value for the
simulation, and the comment that was associated with them from the _defaults files. This is a useful way to see
what parameters are in play for a given simulation.

All solvers use the following parameters:

e section: [driver]

option value description
tmax 1.0 maximum simulation time to evolve
max_steps 10000 | maximum number of steps to take
fix_dt -1.0
init_tstep_factor | 0.01 first timestep = init_tstep_factor * CFL timestep
max_dt_change | 2.0 max amount the timestep can change between steps
verbose 1.0 verbosity
¢ section: [io]
option value | description
basename | pyro_ | basename for output files
dt_out 0.1 simulation time between writing output files
n_out 10000 | number of timesteps between writing output files
do_io 1 do we output at all?

e section: [mesh]

option value description

Xxmin 0.0 domain minumum x-coordinate
Xmax 1.0 domain maximum x-coordinate
ymin 0.0 domain minimum y-coordinate
ymax 1.0 domain maximum y-coordinate

xlboundary | reflect | minimum x BC (‘reflect’, ‘outflow’, or ‘periodic’)
xrboundary | reflect | maximum x BC (‘reflect’, ‘outflow’, or ‘periodic’)
ylboundary | reflect | minimumy BC (‘reflect’, ‘outflow’, or ‘periodic’)
yrboundary | reflect | maximum y BC (‘reflect’, ‘outflow’, or ‘periodic’)
nx 25 number of zones in the x-direction
ny 25 number of zones in the y-direction

* section: [particles]

option value description

do_particles 0 include particles? (1=yes, 0=no)

n_particles 100 number of particles

particle_generator | random | how do we generate particles? (random, grid)

5.3. Runtime options 15
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e section: [vis]

option value | description
dovis 1 runtime visualization? (1=yes, 0=no)
store_images | O store vis images to files (1=yes, 0=no)

16
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CHAPTER O

Working with output

6.1 Utilities

Several simply utilities exist to operate on output files

e compare.py: this script takes two plot files and compares them zone-by-zone and reports the differences.
This is useful for testing, to see if code changes affect the solution. Many problems have stored benchmarks in
their solver’s tests directory. For example, to compare the current results for the incompressible shear problem
to the stored benchmark, we would do:

./compare.py shear_128_0216.pyro incompressible/tests/shear_128_0216.pyro

Differences on the order of machine precision may arise because of optimizations and compiler differences
across platforms. Students should familiarize themselves with the details of how computers store numbers
(floating point). An excellent read is What every computer scientist should know about floating-point arithmetic
by D. Goldberg.

e plot.py: this script uses the solver’s dovis () routine to plot an output file. For example, to plot the data in
the file shear_128_0216.pyro from the incompressible shear problem, you would do:

’./plot.py -0 image.png shear_ 128_0216.pyro

where the —o option allows you to specify the output file name.

6.2 Reading and plotting manually

pyro output data can be read using the ut i 1. io. read method. The following sequence (done in a python session)
reads in stored data (from the compressible Sedov problem) and plots data falling on a line in the x direction through
the y-center of the domain (note: this will include the ghost cells).

17



pyro Documentation, Release 2.2

import matplotlib.pyplot as plt
import util.io as io
sim = io.read("sedov_unsplit_0000.h5")

dens = sim.cc_data.get_var ("density")
plt.plot(dens.g.x, dens[:,dens.g.ny//2])
plt.show ()

S| |

3.0+
2.5 1

2.0 1

1.5 1

1.0 1

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Note: this includes the ghost cells, by default, seen as the small regions of zeros on the left and right.
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CHAPTER /

Adding a problem

The easiest way to add a problem is to copy an existing problem setup in the solver you wish to use (in its problems/
sub-directory). Three different files will need to be copied (created):

e problem.py: this is the main initialization routine. The function init_data () is called at runtime
by the Simulation object’s initialize () method. Two arguments are passed in, the simulation’s
CellCenterData2d object and the Runt imeParameters object. The jobof init_data () isto fill all
of the variables defined in the Cel1CenterData2d object.

* _problem.defaults: this contains the runtime parameters and their defaults for your problem. They should
be placed in a block with the heading [problem] (where problem is your problem’s name). Anything listed
here will be available through the Runt imeParameters object at runtime.

* inputs.problem: thisis the inputs file that is used at runtime to set the parameters for your problem. Any of
the general parameters (like the grid size, boundary conditions, etc.) as well as the problem-specific parameters
can be set here. Once the problem is defined, you need to add the problem name to the __all__ list in the
__init__ .pyfilein the problems/ sub-directory. This lets python know about the problem.

19
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CHAPTER 8

Mesh overview

All solvers are based on a finite-volume/cell-centered discretization. The basic theory of such methods is discussed in
Notes on the numerical methods.

Note: The core data structure that holds data on the grid is CellCenterDataZ2d. This does not distinguish
between cell-centered data and cell-averages. This is fine for methods that are second-order accurate, but for higher-
order methods, the V24 class has methods for converting between the two data centerings.

8.1 mesh.patch implementation and use

We import the basic mesh functionality as:

import mesh.patch as patch
import mesh.fv as fv

import mesh.boundary as bnd
import mesh.array indexer as ai

There are several main objects in the patch class that we interact with:

* patch.Grid2d: this is the main grid object. It is basically a container that holds the number of zones in each
coordinate direction, the domain extrema, and the coordinates of the zones themselves (both at the edges and
center).

e patch.CellCenterDataZd: this is the main data object—it holds cell-centered data on a grid. To build a
patch.CellCenterDatald object you need to pass in the patch. Grid2d object that defines the mesh.
The patch.CellCenterDatald object then allocates storage for the unknowns that live on the grid. This
class also provides methods to fill boundary conditions, retrieve the data in different fashions, and read and write
the object from/to disk.

e fv.FV2d: this is a special class derived from patch.CellCenterDataZ2d that implements some extra
functions needed to convert between cell-center data and averages with fourth-order accuracy.

* bnd. BC: This is simply a container that holds the names of the boundary conditions on each edge of the domain.

21
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e ai.ArrayIndexer: This is a class that subclasses the NumPy ndarray and makes the data in the array know
about the details of the grid it is defined on. In particular, it knows which cells are valid and which are the ghost
cells, and it has methods to do the a;41 ; operations that are common in difference methods.

e integration.RKIntegrator: This class implements Runge-Kutta integration in time by managing a
hierarchy of grids at different time-levels. A Butcher tableau provides the weights and evaluation points for the
different stages that make up the integration.

The procedure for setting up a grid and the data that lives on it is as follows:

myg = patch.Grid2d (16, 32, xmax=1.0, ymax=2.0)

This creates the 2-d grid object myg with 16 zones in the x-direction and 32 zones in the y-direction. It also specifies
the physical coordinate of the rightmost edge in x and y.

mydata = patch.CellCenterData2d (myg)
bc = bnd.BC (xlb="periodic", xrb="periodic", ylb="reflect-even", yrb="outflow")

mydata.register_var ("a", bc)
mydata.create ()

This creates the cell-centered data object, mydata, that lives on the grid we just built above. Next we create a
boundary condition object, specifying the type of boundary conditions for each edge of the domain, and finally use
this to register a variable, a that lives on the grid. Once we call the create () method, the storage for the variables is
allocated and we can no longer add variables to the grid. Note that each variable needs to specify a BC—this allows us
to do different actions for each variable (for example, some may do even reflection while others may do odd reflection).

8.2 Jupyter notebook

A Jupyter notebook that illustrates some of the basics of working with the grid is provided as mesh-examples.ipynb.
This will demonstrate, for example, how to use the ArrayIndexer methods to construct differences.

8.3 Tests

The actual filling of the boundary conditions is done by the 7111 BC method. The script bc_demo . py tests the
various types of boundary conditions by initializing a small grid with sequential data, filling the BCs, and printing out
the results.

22 Chapter 8. Mesh overview




[2]:

CHAPTER 9

Mesh examples

this notebook illustrates the basic ways of interacting with the pyro2 mesh module. We create some data that lives on
a grid and show how to fill the ghost cells. The pretty_print() function shows us that they work as expected.

: from _ future  import print_function

import numpy as np

import mesh.boundary as bnd
import mesh.patch as patch
import matplotlib.pyplot as plt
$matplotlib inline

# for unit testing, we want to ensure the same random numbers
np.random.seed (100)

9.1 Setup a Grid with Variables

There are a few core classes that we deal with when creating a grid with associated variables:

e Grid2d : this holds the size of the grid (in zones) and the physical coordinate information, including coordi-
nates of cell edges and centers

* BC : this is a container class that simply holds the type of boundary condition on each domain edge.

e ArrayIndexer : this is an array of data along with methods that know how to access it with different offsets
into the data that usually arise in stencils (like {i+1, j})

* CellCenterData2d : this holds the data that lives on a grid. Each variable that is part of this class has its
own boundary condition type.

We start by creating a Grid2d object with 4 x 6 cells and 2 ghost cells

g = patch.Grid2d (4, 6, ng=2)
print (g)

23
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2-d grid: nx = 4, ny = 6, ng = 2

[3]: help(qg)

Help on Grid2d in module mesh.patch object:

class Grid2d(builtins.object)

the 2-d grid class. The grid object will contain the coordinate
information (at various centerings).

A basic (1-d) representation of the layout is::

| \ \ X \ | | \ X \ \ |
t—k—t= /) A=k —X—x—t—k—+— [/ —A—k—F—*—X—x—+— [/ —F—x—+
0 ng-1 ng ng+l ... ng+nx-1 ngtnx 2ng+tnx—1
ilo ihi
| <= ng guardcells->|<--- nx interior zones —--->|<- ng guardcells->|

The '+’ marks the data locations.
Methods defined here:

__eqg___(self, other)
are two grids equivalent?

__init__ (self, nx, ny, ng=1l, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0)
Create a Grid2d object.

The only data that we require is the number of points that
make up the mesh in each direction. Optionally we take the
extrema of the domain (default is [0,1]1x[0,1]) and number of
ghost cells (default is 1).

Note that the Grid2d object only defines the discretization,
it does not know about the boundary conditions, as these can
vary depending on the variable.

Parameters
nx : int

Number of zones in the x-direction
ny : int

Number of zones in the y-direction
ng : int, optional
Number of ghost cells

xmin : float, optional

Physical coordinate at the lower x boundary
xmax : float, optional

Physical coordinate at the upper x boundary
ymin : float, optional

Physical coordinate at the lower y boundary
ymax : float, optional

Physical coordinate at the upper y boundary

str__ (self)

(continues on next page)
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(continued from previous page)

print out some basic information about the grid object

coarse_like(self, N)
return a new grid object coarsened by a factor n, but with
all the other properties the same

return a new grid object finer by a factor n, but with
all the other properties the same

scratch_array(self, nvar=1l)
return a standard numpy array dimensioned to have the size

\

\

\

\

\

\

| fine_like(self, N)
\

\

\

\

\

| and number of ghostcells as the parent grid
\

Data descriptors defined here:

_ dict___
dictionary for instance variables (if defined)

_ _weakref_
list of weak references to the object (if defined)

Data and other attributes defined here:

__hash__ = None

Then create a dataset that lives on this grid and add a variable name. For each variable that lives on the grid, we need
to define the boundary conditions — this is done through the BC object.

[4]: bc = bnd.BC(xlb="periodic", xrb="periodic", ylb="reflect", yrb="outflow")
print (bc)

BCs: -x: periodic +x: periodic ~-y: reflect-even +y: outflow
[5]: d = patch.CellCenterData2d(qg)

d.register_var ("a", bc)
d.create ()

print (d)
cc data: nx = 4, ny = 6, ng = 2
nvars = 1
variables:
a: min: 0.0000000000 max: 0.0000000000
BCs: -x: periodic +x: periodic —-y: reflect-even +y: outflow

9.2 Working with the data

Now we fill the grid with random data. get_var () returns an ArrayIndexer object that has methods for access-
ing views into the data. Here we use a . v () to get the “valid” region, i.e. excluding ghost cells.

9.2. Working with the data 25



pyro Documentation, Release 2.2

[6]: a = d.get_var("a")
a.v()[:,:] = np.random.rand(g.nx, g.ny)

when we pretty_print() the variable, we see the ghost cells colored red. Note that we just filled the interior above.

[7]: a.pretty_print ()

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.12157 0.2092 0.17194  0.33611 0 0
0 0 0.0047189 0.89132 0.81168 0.81765 0 0
0 0.84478 0.57509 0.97862  0.94003 0 0
0 0 0.42452  0.13671 0.2197 0.4317 0 0
0 0 0.27837 0.82585 0.10838 0.27407 0 0
0 0 0.5434  0.67075 0.18533  0.81622 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Ty
|
+-——> x

pretty_print () can also take an argumet, specifying the format string to be used for the output.

[8]: a.pretty_print (fmt="27.3g")

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.122 0.209 0.172 0.336 0 0
0 00.00472 0.891 0.812 0.818 0 0
0 0O 0.845 0.575 0.979 0.94 0 0
0 0 0.425 0.137 0.22 0.432 0 0
0 0 0.278 0.826 0.108 0.274 0 0
0 0 0.543 0.671 0.185 0.816 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Y

|

+——> x

now fill the ghost cells — notice that the left and right are periodic, the upper is outflow, and the lower is reflect, as
specified when we registered the data above.

[9]: d.fill_BC("a")
a.pretty_print ()

0.17194 0.33611 0.12157 0.2092 0.17194 0.33611 0.12157 0.2092
0.17194 0.33611 0.12157 0.2092 0.17194 0.33611 0.12157 0.2092
0.17194 0.33611 0.12157 0.2092 0.17194 0.33611 0.12157 0.2092
0.81168 0.81765 0.0047189 0.89132 0.81168 0.81765 0.0047189 0.89132
0.97862 0.94003 0.84478 0.57509 0.97862 0.94003 0.84478 0.57509
0.2197 0.4317 0.42452 0.13671 0.2197 0.4317 0.42452 0.13671
0.10838 0.27407 0.27837 0.82585 0.10838 0.27407 0.27837 0.82585
0.18533 0.81622 0.5434 0.67075 0.18533 0.81622 0.5434 0.67075
0.18533 0.81622 0.5434 0.67075 0.18533 0.81622 0.5434 0.67075
0.10838 0.27407 0.27837 0.82585 0.10838 0.27407 0.27837 0.82585

(continues on next page)
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+——> x

We can find the L2 norm of the data easily

a.norm ()

0.5749769043407793

and the min and max

print (a.min (), a.max

0))

0.004718856190972565 0.9786237847073697

9.3 ArrayIndexer

(continued from previous page)

We we access the data, an ArrayIndexer object is returned. The ArrayIndexer sub-classes the NumPy
ndarray, so it can do all of the methods that a NumPy array can, but in addition, we can use the ip (), jp (),
or ipjp () methods to the ArrayIndexer object shift our view in the X, y, or x & y directions.

To make this clearer, we’ll change our data set to be nicely ordered numbers. We index the ArrayIndex the same
way we would a NumPy array. The index space includes ghost cells, so the i1o and ihi attributes from the grid
object are useful to index just the valid region. The . v () method is a shortcut that also gives a view into just the valid

data.

Note: when we use one of the ip (), jp (), ipjp (), or v () methods, the result is a regular NumPy ndarray,
not an ArrayIndexer object. This is because it only spans part of the domain (e.g., no ghost cells), and therefore

cannot be associated with the Grid2d object that the ArrayIndexer is built from.

type (a)

type(a.v())

numpy .ndarray

al:,:] = np.arange (g

a.pretty_print ()
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.gx*g.qy) .reshape (g.qgx,
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(continues on next page)
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(continued from previous page)

+——> x

We index our arrays as {i,j}, so x (indexed by 1) is the row and y (indexed by j) is the column in the NumPy array.
Note that python arrays are stored in row-major order, which means that all of the entries in the same row are adjacent
in memory. This means that when we simply print out the ndarray, we see constant-x horizontally, which is the
transpose of what we are used to.

a.v()

array ([[22., 23., 24., 25., 26., 27.
[32., 33., 34., 35., 36., 37.
[42., 43., 44., 45., 46., 47.
[52., 53., 54., 55., 56., 57.

~ 0~

N

We can offset our view into the array by one in x — this would be like {i+1, j} when we loop over data. The ip ()
method is used here, and takes an argument which is the (positive) shift in the x (i) direction. So here’s a shift by 1

a.ip (-1, buf=1)

array ([[ 1., 2., 3., 4., 5., 6., 7., 8.
(11., 12., 13., 14., 15., 16., 17., 18.
[21., 22., 23., 24., 25., 26., 27., 28.
[31., 32., 33., 34., 35., 36., 37., 38.
[41., 42., 43., 44., 45., 46., 47., 48.
[51., 52., 53., 54., 55., 56., 57., 58.

~

~

~

~

o~
-~

A shifted view is necessarily smaller than the original array, and relies on ghost cells to bring new data into view.
Because of this, the underlying data is no longer the same size as the original data, so we return it as an ndarray
(which is actually just a view into the data in the ArrayIndexer object, so no copy is made.

To see that it is simply a view, lets shift and edit the data

d = a.ip (1)
d[1i,1] = 0.0
a.pretty_print ()

9 1 29 39 49 59 69 79
8 18 28 38 48 58 '8
7 17 27 37 47 57 77
6 16 26 36 46 56 76
5 15 25 35 45 55 65 5
4 14 24 34 44 54 64 74
3 13 23 33 0 53 63 73
2 12 22 32 42 52 62 12
1 11 21 31 41 51 61 71
0 10 20 30 40 50 60 70
Ty

|

+-—> x

Here, since d was really a view into a;1,;j, and we accessed element (1,1) into that view (with 0,0 as the origin), we
were really accessing the element (2,1) in the valid region
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9.4 Differencing

ArrayIndexer objects are easy to use to construct differences, like those that appear in a stencil for a finite-
difference, without having to explicitly loop over the elements of the array.

Here’s we’ll create a new dataset that is initialized with a sine function

g = patch.Grid2d (8, 8, ng=2)
d patch.CellCenterData2d (qg)

bc = bnd.BC (x1lb="periodic", xrb="periodic", ylb="periodic", yrb="periodic")
d.register_var ("a", bc)

d.create ()

a = d.get_var("a")
al:,:] = np.sin(2.0xnp.pi*a.g.x2d)
d.fill_BC("a")

Our grid object can provide us with a scratch array (an ArrayIndexer object) define on the same grid

g.scratch_array ()
type (b)

] : mesh.array_indexer.ArrayIndexer

We can then fill the data in this array with differenced data from our original array — since b has a separate data region
in memory, its elements are independent of a. We do need to make sure that we have the same number of elements on
the left and right of the =. Since by default, ip () will return a view with the same size as the valid region, we can use
.v () on the left to accept the differences.

Here we compute a centered-difference approximation to the first derivative

b.v()[:,:] = (a.ip(1) — a.ip(-1))/(2.0%a.g.dx)
# normalization was Z2.0#*pi
bl[:,:] /= 2.0*xnp.pi

plt.plot(g.x[g.ilo:g.ihi+1], al[g.ilo:g.ihi+l,a.qg.jc])
plt.plot(g.x[g.ilo:g.ihi+1], bl[g.ilo:g.ihi+l,b.g.]jc])
print (a.g.dx)
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0.00
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9.5 Coarsening and prolonging

we can get a new ArrayIndexer object on a coarser grid for one of our variables

c =

d.restrict ("a")

c.pretty_print ()

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.65328 0.65328 -0.65328 -0.65328 0 0
0 0 0.65328 0.65328 -0.65328 -0.65328 0 0
0 0 0.65328 0.65328 -0.65328 -0.65328 0 0
0 0 0.65328 0.65328 -0.65328 -0.65328 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Ty
|
+-—> x
or a finer grid
f = d.prolong("a")
f.pretty_print (fmt="%6.2g")
0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
— 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
— 0 0 0 0 0 0
0 0 0.22 0.55 0.86 .99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
—~-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_,
-»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
—~-0.99 -0.86 -0.55 -0.22 0 0
C 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_,
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
—~-0.99 -0.86 -0.55 -0.22 0 0
C ) 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0O 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_,
—»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
—~-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
~»-0.99 -0.86 -0.55 -0.22 0 0
0 0 0.22 0.55 0.86 99 0.99 .86 .55 0.22 -0.22 -0.55 -0.86 -0.99_
—~-0.99 -0.86 -0.55 -0.22 0 0
(continues on next page)
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0 0 0.22 0.55 0.86

—-0.99 -0.86 -0.55 -0.22

0 0 0.22 0.55 0.86

—~=-0.99 -0.86 -0.55 -0.22

—-0.99 -0.86 -0.55 -0.22

0 0 0 0
— 0 0 0 0
0 0 0
— 0 0 0 C
y
+-=> X

0 0 0.22 0.55 0.86

(continued from previous page)

.22 -0.22 -0.55 -0.86 -0.99_,
.22 -0.22 -0.55 -0.86 -0.99_,

.22 -0.22 -0.55 -0.86 -0.99_

9.5. Coarsening and prolonging
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cHAaPTER 10

Advection solvers

The linear advection equation:
a; +ua, +vay, =0

provides a good basis for understanding the methods used for compressible hydrodynamics. Chapter 4 of the notes
summarizes the numerical methods for advection that we implement in pyro.

pyro has several solvers for linear advection, which solve the equation with different spatial and temporal intergration
schemes.

10.1 advection solver

advect ion implements the directionally unsplit corner transport upwind algorithm /Colella90] with piecewise lin-
ear reconstruction. This is an overall second-order accurate method, with timesteps restricted by

At < min {Az, Ay}
Jul * [v]

The parameters for this solver are:

¢ section: [advection]

option | value | description

u 1.0 advective velocity in x-direction

v 1.0 advective velocity in y-direction

limiter | 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)

e section: [driver]

option | value | description
cfl 0.8 advective CFL number
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* section: [particles]

option value | description
do_particles 0
particle_generator | grid

10.2 advection_fv4 solver

advection_fv4 uses a fourth-order accurate finite-volume method with RK4 time integration, following the ideas
in [McCorquodaleColellall]. Tt can be thought of as a method-of-lines integration, and as such has a slightly more
restrictive timestep:

The main complexity comes from needing to average the flux over the faces of the zones to achieve 4th order accuracy
spatially.

The parameters for this solver are:

e section: [advection]

option value | description

u 1.0 advective velocity in x-direction

v 1.0 advective velocity in y-direction

limiter 1 limiter (0 = none, 1 = ppm)
temporal_method | RK4 integration method (see mesh/integrators.py)

e section: [driver]

option | value | description
cfl 0.8 advective CFL number

10.3 advection nonuniform solver

advection_nonuniform models advection with a non-uniform velocity field. This is used to implement the
slotted disk problem from [Zal79]. The basic method is similar to the algorithm used by the main advection
solver.

The paramters for this solver are:

* section: [advection]

option | value | description

u 1.0 advective velocity in x-direction

v 1.0 advective velocity in y-direction

limiter | 2 limiter (O = none, 1 = 2nd order, 2 = 4th order)

e section: [driver]
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option | value | description

cfl 0.8 advective CFL number
e section: [particles]

option value | description

do_particles 0

particle_generator | grid

¢ section: [slotted]

option | value

description

omega | 0.5

angular velocity

offset 0.25

offset of the slot’s center from domain’s center

10.4 advection_rk solver

advection_rk uses a method of lines time-integration approach with piecewise linear spatial reconstruction for
linear advection. This is overall second-order accurate, so it represents a simpler algorithm than the advection_fv4
method (in particular, we can treat cell-centers and cell-averages as the same, to second order).

The parameter for this solver are:

e section: [advection]

option value | description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method | RK4 integration method (see mesh/integrators/.py)
¢ section: [driver]
option | value | description

cfl

0.8 advective CFL number

10.5 advection_weno solver

advection_weno uses a WENO reconstruction and method of lines time-integration

The main parameters that affect this solver are:

e section: [advection]

e section: [driver]

option

value | description

cfl

0.5 advective CFL number

10.4. advection_rk solver
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10.6 General ideas

The main use for the advection solver is to understand how Godunov techniques work for hyperbolic problems. These
same ideas will be used in the compressible and incompressible solvers. This video shows graphically how the basic
advection algorithm works, consisting of reconstruction, evolution, and averaging steps:

10.7 Examples

10.7.1 smooth

The smooth problem initializes a Gaussian profile and advects it with u = v = 1 through periodic boundaries for a
period. The result is that the final state should be identical to the initial state—any disagreement is our numerical error.
This is run as:

./pyro.py advection smooth inputs.smooth

By varying the resolution and comparing to the analytic solution, we can measure the convergence rate of the method.
The smooth_error.py scriptin analysis/ will compare an output file to the analytic solution for this problem.
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convergence for smooth advection problem
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The points above are the L2-norm of the absolute error for the smooth advection problem after 1 period with CFL=0.
8, for both the advection and advection_fwv4 solvers. The dashed and dotted lines show ideal scaling. We
see that we achieve nearly 2nd order convergence for the advection solver and 4th order convergence with the
advection_fv4 solver. Departures from perfect scaling are likely due to the use of limiters.
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10.7.2 tophat

The tophat problem initializes a circle in the center of the domain with value 1, and O outside. This has very steep
jumps, and the limiters will kick in strongly here.

10.8 Exercises

The best way to learn these methods is to play with them yourself. The exercises below are suggestions for explorations
and features to add to the advection solver.

10.8.1 Explorations

* Test the convergence of the solver for a variety of initial conditions (tophat hat will differ from the smooth case
because of limiting). Test with limiting on and off, and also test with the slopes set to O (this will reduce it down
to a piecewise constant reconstruction method).

* Run without any limiting and look for oscillations and under and overshoots (does the advected quantity go
negative in the tophat problem?)

10.8.2 Extensions

* Implement a dimensionally split version of the advection algorithm. How does the solution compare between
the unsplit and split versions? Look at the amount of overshoot and undershoot, for example.

* Research the inviscid Burger’s equation—this looks like the advection equation, but now the quantity being
advected is the velocity itself, so this is a non-linear equation. It is very straightforward to modify this solver
to solve Burger’s equation (the main things that need to change are the Riemann solver and the fluxes, and the
computation of the timestep).

The neat thing about Burger’s equation is that it admits shocks and rarefactions, so some very interesting flow
problems can be setup.
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Compressible hydrodynamics solvers

The Euler equations of compressible hydrodynamics take the form:

ap B
o(pU
<§t)+V-<pUU>+Vp:pg
O(pFE
(gt)+v'[(pE+p)U]=pU-g

with pE = pe + $p|U|* and p = p(p,e). Note these do not include any dissipation terms, since they are usually
negligible in astrophysics.

pyro has several compressible solvers to solve this equation set. The implementations here have flattening at shocks,
artificial viscosity, a simple gamma-law equation of state, and (in some cases) a choice of Riemann solvers. Optional
constant gravity in the vertical direction is allowed.

Note:  All the compressible solvers share the same problems/ directory, which lives in compressible/
problems/. For the other compressible solvers, we simply use a symbolic-link to this directory in the solver’s
directory.

11.1 compressible solver

compressible is based on a directionally unsplit (the corner transport upwind algorithm) piecewise linear method
for the Euler equations, following [Colella90]. This is overall second-order accurate.

The parameters for this solver are:

* section: [compressible]
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e section: [driver]

¢ section: [eos]

* section: [particles]

option value | description
use_flattening | 1 apply flattening at shocks (1)
70 0.75 | flattening z0 parameter
zl 0.85 | flattening z1 parameter
delta 0.33 | flattening delta parameter
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
grav 0.0 gravitational acceleration (in y-direction)
riemann HLLC | HLLC or CGF
option | value | description
cfl 0.8
option | value | description
gamma | 1.4 pres = rho ener (gamma - 1)
option value | description
do_particles 0
particle_generator | grid

11.2 compressible_rk solver

compressible rk uses a method of lines time-integration approach with piecewise linear spatial reconstruction
for the Euler equations. This is overall second-order accurate.

The parameters for this solver are
* section: [compressible]

e section: [driver]

e section: [eos]

11.3 compressible_f£fv4 solver

compressible fv4 uses
[McCorquodaleColellall].

option | value | description
cfl 0.8
option | value | description
gamma pres = rho ener (gamma - 1)

a 4th order

accurate method with RK4

time

integration,

following

40
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The parameter for this solver are:

* section: [compressible]

option value | description

use_flattening 1 apply flattening at shocks (1)

70 0.75 | flattening z0 parameter

zl 0.85 | flattening z1 parameter

delta 0.33 | flattening delta parameter

cvisc 0.1 artifical viscosity coefficient

limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method | RK4 integration method (see mesh/integration.py)
grav 0.0 gravitational acceleration (in y-direction)

e section: [driver]

option | value | description
cfl 0.8

¢ section: [eos]

option | value | description
gamma | 1.4 pres = rho ener (gamma - 1)

11.4 compressible_sdc solver

compressible_sdc uses a 4th order accurate method with spectral-deferred correction (SDC) for the time inte-
gration. This shares much in common with the compressible fv4 solver, aside from how the time-integration is
handled.

The parameters for this solver are:

* section: [compressible]

option value | description

use_flattening 1 apply flattening at shocks (1)

70 0.75 | flattening z0 parameter

zl 0.85 | flattening z1 parameter

delta 0.33 | flattening delta parameter

cvisc 0.1 artifical viscosity coefficient

limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method | RK4 integration method (see mesh/integration.py)
grav 0.0 gravitational acceleration (in y-direction)

e section: [driver]

option | value | description
cfl 0.8

¢ section: [eos]
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option | value | description
gamma | 1.4 pres = rho ener (gamma - 1)

11.5 Example problems

Note: The 4th-order accurate solver (compressible fv4) requires that the initialization create cell-averages
accurate to 4th-order. To allow for all the solvers to use the same problem setups, we assume that the initialization
routines initialize cell-centers (which is fine for 2nd-order accuracy), and the preevolve () method will convert
these to cell-averages automatically after initialization.

11.5.1 Sod

The Sod problem is a standard hydrodynamics problem. It is a one-dimensional shock tube (two states separated by an
interface), that exhibits all three hydrodynamic waves: a shock, contact, and rarefaction. Furthermore, there are exact
solutions for a gamma-law equation of state, so we can check our solution against these exact solutions. See Toro’s
book for details on this problem and the exact Riemann solver.

Because it is one-dimensional, we run it in narrow domains in the x- or y-directions. It can be run as:

./pyro.py compressible sod inputs.sod.x
./pyro.py compressible sod inputs.sod.y

A simple script, sod_compare.py in analysis/ will read a pyro output file and plot the solution over the exact
Sod solution. Below we see the result for a Sod run with 128 points in the x-direction, gamma = 1.4, and run until t =
0.2s.
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We see excellent agreement for all quantities. The shock wave is very steep, as expected. The contact wave is
smeared out over ~5 zones—this is discussed in the notes above, and can be improved in the PPM method with

contact steepening.

11.5. Example problems
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11.5.2 Sedov

The Sedov blast wave problem is another standard test with an analytic solution (Sedov 1959). A lot of energy is point
into a point in a uniform medium and a blast wave propagates outward. The Sedov problem is run as:

./pyro.py compressible sedov inputs.sedov

The video below shows the output from a 128 x 128 grid with the energy put in a radius of 0.0125 surrounding the
center of the domain. A gamma-law EOS with gamma = 1.4 is used, and we run until 0.1

We see some grid effects because it is hard to initialize a small circular explosion on a rectangular grid. To compare
to the analytic solution, we need to radially bin the data. Since this is a 2-d explosion, the physical geometry it
represents is a cylindrical blast wave, so we compare to Sedov’s cylindrical solution. The radial binning is done with
the sedov_compare.py scriptin analysis/
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This shows good agreement with the analytic solution.

11.5.3 quad

The quad problem sets up different states in four regions of the domain and watches the complex interfaces that
develop as shocks interact. This problem has appeared in several places (and a detailed investigation is online by
Pawel Artymowicz). It is run as:
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./pyro.py compressible quad inputs.quad
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11.5.4 rt

The Rayleigh-Taylor problem puts a dense fluid over a lighter one and perturbs the interface with a sinusoidal velocity.
Hydrostatic boundary conditions are used to ensure any initial pressure waves can escape the domain. It is run as:

./pyro.py compressible rt inputs.rt

11.5.5 bubble

The bubble problem initializes a hot spot in a stratified domain and watches it buoyantly rise and roll up. This is run
as:

./pyro.py compressible bubble inputs.bubble
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The shock at the top of the domain is because we cut off the stratified atmosphere at some low density and the resulting
material above that rains down on our atmosphere. Also note the acoustic signal propagating outward from the bubble
(visible in the U and e panels).

11.6 Exercises

11.6.1 Explorations

* Measure the growth rate of the Rayleigh-Taylor instability for different wavenumbers.

¢ There are multiple Riemann solvers in the compressible algorithm. Run the same problem with the different
Riemann solvers and look at the differences. Toro’s text is a good book to help understand what is happening.

* Run the problems with and without limiting—do you notice any overshoots?

11.6.2 Extensions
* Limit on the characteristic variables instead of the primitive variables. What changes do you see? (the notes
show how to implement this change.)
* Add passively advected species to the solver.
* Add an external heating term to the equations.

¢ Add 2-d axisymmetric coordinates (r-z) to the solver. This is discussed in the notes. Run the Sedov problem with
the explosion on the symmetric axis—now the solution will behave like the spherical sedov explosion instead
of the cylindrical explosion.

» Swap the piecewise linear reconstruction for piecewise parabolic (PPM). The notes and the Miller and Colella
paper provide a good basis for this. Research the Roe Riemann solver and implement it in pyro.
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11.7 Going further

The compressible algorithm presented here is essentially the single-grid hydrodynamics algorithm used in the Cas-
tro code—an adaptive mesh radiation hydrodynamics code developed at CCSE/LBNL. Castro is freely available for
download.

A simple, pure Fortran, 1-d compressible hydrodynamics code that does piecewise constant, linear, or parabolic (PPM)
reconstruction is also available. See the hydrold page.
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cHAPTER 12

Compressible solver comparisons

We run various problems run with the different compressible solvers in pyro (standard Riemann, Runge-Kutta, fourth
order).

12.1 Kelvin-Helmholiz

The McNally Kelvin-Helmbholtz problem sets up a heavier fluid moving in the negative x-direction sandwiched be-
tween regions of lighter fluid moving in the positive x-direction.

The image below shows the KH problem initialized with McNally’s test. It ran on a 128 x 128 grid, with gamma =
1.7, and ran until t = 2.0. This is run with:

./pyro.py compressible kh inputs.kh kh.vbulk=0

./pyro.py compressible_rk kh inputs.kh kh.vbulk=0
./pyro.py compressible_fv4 kh inputs.kh kh.vbulk=0
./pyro.py compressible_sdc kh inputs.kh kh.vbulk=0
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We vary the velocity in the positive y-direction (vbulk) to see how effective the solvers are at preserving the initial
shape.

12.2 Sedov

The Sedov problem ran on a 128 x 128 grid, with gamma = 1.4, and until t = 0.1, which can be run as:

./pyro.py compressible sedov inputs.sedov

./pyro.py compressible_rk sedov inputs.sedov
./pyro.py compressible_fv4 sedov inputs.sedov
./pyro.py compressible_sdc sedov inputs.sedov
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The quad problem ran on a 256 x 256 grid until t = 0.8, which can be run as:

./pyro.py
./pyro.py
./pyro.py
./pyro.py

compressible quad inputs.quad
compressible_rk quad inputs.quad

compressible_fv4 quad inputs.quad
compressible_sdc quad inputs.quad
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The bubble problem ran on a 128 x 256 grid until t = 3.0, which can be run as:

./pyro
./pyro
./pyro
./pyro

Y%
-PY
-PY
Y%

compressible bubble inputs.bubble

compressible_rk bubble inputs.bubble
compressible_fv4 bubble inputs.bubble
compressible_sdc bubble inputs.bubble
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The Rayleigh-Taylor problem ran on a 64 x 192 grid until t = 3.0, which can be run as:

./pyro.py compressible rt inputs.rt
./pyro.py compressible_rk rt inputs.rt
./pyro.py compressible_fv4 rt inputs.rt

./pyro.py compressible_sdc rt inputs.rt
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cHAPTER 13

Multigrid solvers

pyro solves elliptic problems (like Laplace’s equation or Poisson’s equation) through multigrid. This accelerates the
convergence of simple relaxation by moving the solution down and up through a series of grids. Chapter 9 of the pdf
notes gives an introduction to solving elliptic equations, including multigrid.

There are three solvers:

* The core solver, provided in the class MG. CellCenterMG2d solves constant-coefficient Helmholtz problems
of the form (oo — BV?)¢p = f

e The class variable coeff MG.VarCoeffCCMG2d solves variable coefficient Poisson problems of the
form V - (nV¢) = f. This class inherits the core functionality from MG.CellCenterMG2d.

* The class general_ MG.GeneralMG2d solves a general elliptic equation of the form a¢ + V - (8V @) 4 -
V¢ = f. This class inherits the core functionality from MG. CellCenterMG2d.

This solver is the only one to support inhomogeneous boundary conditions.
We simply use V-cycles in our implementation, and restrict ourselves to square grids with zoning a power of 2.

The multigrid solver is not controlled through pyro.py since there is no time-dependence in pure elliptic problems.
Instead, there are a few scripts in the multigrid/ subdirectory that demonstrate its use.

13.1 Examples

13.1.1 multigrid test

A basic multigrid test is run as (using a path relative to the root of the pyro2 repository):

./examples/multigrid/mg_test_simple.py

Themg_test_simple.py script solves a Poisson equation with a known analytic solution. This particular example
comes from the text A Multigrid Tutorial, 2nd Ed., by Briggs. The example is:

Uae + Uy = =2 [(1 = 62%)y*(1 = y%) + (1 - 6y%)a*(1 — 2?)]
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on [0, 1] x [0, 1] with u = 0 on the boundary.

The solution to this is shown below.
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Since this has a known analytic solution:

u(z,y) = (¢* — ) (y* — v?)

We can assess the convergence of our solver by running at a variety of resolutions and computing the norm of the error
with respect to the analytic solution. This is shown below:
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The dotted line is 2nd order convergence, which we match perfectly.
The movie below shows the smoothing at each level to realize this solution:

You can run this example locally by running the mg_vis.py script:

./examples/multigrid/mg_vis.py

13.1.2 projection

Another example uses multigrid to extract the divergence free part of a velocity field. This is run as:

./examples/multigrid/project_periodic.py

Given a vector field, U, we can decompose it into a divergence free part, Uy, and the gradient of a scalar, ¢:
U=Us+Vo

We can project out the divergence free part by taking the divergence, leading to an elliptic equation:
V2¢=V-U

The project-periodic.py script starts with a divergence free velocity field, adds to it the gradient of a scalar,
and then projects it to recover the divergence free part. The error can found by comparing the original velocity field to
the recovered field. The results are shown below:

13.1. Examples 67



pyro Documentation, Release 2.2

1.0
0.75
0.8
0.50
06 0.25
- 0.00
0.4 —0.25
—0.50
0.2
-0.75
0.0

0.0 0.2 0.4 0.6 0.8
X

Left is the original u velocity, middle is the modified field after adding the gradient of the scalar, and right is the
recovered field.

13.2 Exercises

13.2.1 Explorations

* Try doing just smoothing, no multigrid. Show that it still converges second order if you use enough iterations,
but that the amount of time needed to get a solution is much greater.

13.2.2 Extensions

* Implement inhomogeneous dirichlet boundary conditions
¢ Add a different bottom solver to the multigrid algorithm

* Make the multigrid solver work for non-square domains
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cHAPTER 14

Multigrid examples

: Smatplotlib inline

import matplotlib.pyplot as plt

: from _ future  import print_function

import numpy as np
import mesh.boundary as bnd

import mesh.patch as patch
import multigrid.MG as MG

14.1 Constant-coefficent Poisson equation

We want to solve
Pux + Pyy = —2[(1 = 62°)y*(1 — y?) + (1 — 6y°)a*(1 — 2?)]
on
[0,1] x [0, 1]
with homogeneous Dirichlet boundary conditions (this example comes from “A Multigrid Tutorial”).

This has the analytic solution
u(e,y) = (2% —2")(y" —y?)

We start by setting up a multigrid object—this needs to know the number of zones our problem is defined on

: nx = ny = 256

mg = MG.CellCenterMG2d (nx, ny,
x1_BC_type="dirichlet", xr_BC_type="dirichlet",
vl _BC_type="dirichlet", yr_BC_type="dirichlet", verbose=1)
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cc data: nx = 2, ny = 2, ng =1

nvars 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: -x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet

cc data: nx = 4, ny = 4, ng =1

nvars 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +ty:,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet

cc data: nx = 8, ny = 8, ng = 1

nvars 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: -x: dirichlet +x: dirichlet -y: dirichlet +y:,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:,
—dirichlet

cc data: nx = 16, ny = 16, ng = 1

nvars = 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet

cc data: nx = 32, ny = 32, ng = 1

nvars = 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet

(continues on next page)
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(continued from previous page)

f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—~dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—~dirichlet

cc data: nx = 64, ny = 64, ng = 1

nvars = 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet

cc data: nx = 128, ny = 128, ng =1

nvars = 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet -y: dirichlet +y:.,
—dirichlet

cc data: nx = 256, ny = 256, ng = 1

nvars = 3
variables:
v: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
f: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet
r: min: 0.0000000000 max: 0.0000000000
BCs: —-x: dirichlet +x: dirichlet —-y: dirichlet +y:,
—dirichlet

Next, we initialize the RHS. To make life easier, the Ce11CenterMG2d object has the coordinates of the solution
grid (including ghost cells) as mg . x2d and mg . y2d (these are two-dimensional arrays).

[4]: def rhs(x, y):
return -2.0x((1.0-6.0%x*x*x2) xy**2% (1.0-y*xx2) + (1.0-6.0xy**2) *x*x*x2x (1.0-x%%2))

mg.init_RHS (rhs (mg.x2d, mg.y2d))

Source norm = 1.09751581367

The last setup step is to initialize the solution—this is the starting point for the solve. Usually we just want to start with
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all zeros, so we use the init_zeros () method

: mg.init_zeros()

we can now solve — there are actually two different techniques we can do here. We can just do pure smoothing on the
solution grid using mg. smooth (mg.nlevels-1, N), where N is the number of smoothing iterations. To get the

solution N will need to be large and this will take a long time.

Multigrid accelerates the smoothing. We can do a V-cycle multigrid solution using mg.solve ()

: mg.solve ()

source norm = 1.09751581367
«< beginning V-cycle (cycle 1) »>

level: 7, grid: 256 x 256
before G-S, residual L2: 1.097515813669473
after G-S, residual L2: 1.502308451578657

level: 6, grid: 128 x 128
before G-S, residual L2: 1.0616243965458263
after G-S, residual L2: 1.4321452257629033

level: 5, grid: 64 x 64
before G-S, residual L2: 1.011366277976364
after G-S, residual L2: 1.281872470375375

level: 4, grid: 32 x 32
before G-S, residual L2: 0.903531158162907
after G-S, residual L2: 0.9607576999783505

level: 3, grid: 16 x 16
before G-S, residual L2: 0.6736112182020367
after G-S, residual L2: 0.4439774050299674

level: 2, grid: 8 x 8
before G-S, residual L2: 0.30721142286171554
after G-S, residual L2: 0.0727215591269748

level: 1, grid: 4 x 4
before G-S, residual L2: 0.04841813458618458

after G-S, residual L2: 3.9610700301811246e-05

bottom solve:
level: 0, grid: 2 x 2

level: 1, grid: 4 x 4

before G-S, residual L2: 3.925006722484123e-05
after G-S, residual L2: 1.0370099820862674e-09

level: 2, grid: 8 x 8
before G-S, residual L2: 0.07010129273961899

after G-S, residual L2: 0.0008815704830693547

level: 3, grid: 16 x 16
before G-S, residual L2: 0.4307377377402105
after G-S, residual L2: 0.007174899576794818

level: 4, grid: 32 x 32

(continues on next page)
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«< beginning V-cycle

before G-S, residual L2:

after G-S, residual L2:

level: 5, grid: 64 x 64

before G-S, residual L2:

after G-S, residual L2:

0.911086486792154
0.016187566022