
Pyresto
Release 0.4-dev

Sep 27, 2017





Contents

1 Getting Started 3

2 Documentation 5
2.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 API Documentation 9
3.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Python Module Index 15

i



ii



Pyresto, Release 0.4-dev

An ORM package to prevent repetitive work for writing clients for RESTful APIs.

Source https://github.com/BYK/pyresto/

Issues https://github.com/BYK/pyresto/issues/

PyPi http://pypi.python.org/pypi/pyresto/

Contents 1

https://github.com/BYK/pyresto/
https://github.com/BYK/pyresto/issues/
http://pypi.python.org/pypi/pyresto/


Pyresto, Release 0.4-dev

2 Contents



CHAPTER 1

Getting Started

Install with pip or easy_install:

pip install pyresto
easy_install pyresto

or download the latest version from GitHub:

git clone git://github.com/BYK/pyresto.git
cd pyresto
python setup.py develop

3

https://github.com/BYK/pyresto


Pyresto, Release 0.4-dev

4 Chapter 1. Getting Started



CHAPTER 2

Documentation

Tutorial

Welcome to the pyresto tutorial. This tutorial will guide you through the development of a REST interface for the
Github API. The implementation can be found in the Pyresto source repository in the pyresto.apis.github
module.

The Base

Start off by creating a base model class for the service you are using which will hold the common values such as the
API host, the common model representation using __repr__ etc:

class GitHubModel(Model):
_url_base = 'https://api.github.com'

def __repr__(self):
if hasattr(self, '_links'):

desc = self._links['self']
elif hasattr(self, 'url'):

desc = self.url
else:

desc = self._current_path

return '<GitHub.{0} [{1}]>'.format(self.__class__.__name__, desc)

Simple Models

Then continue with implementing simple models which does not refer to any other model, such as the Comment
model for GitHub:

5

http://developer.github.com
http://developer.github.com
https://github.com/BYK/pyresto


Pyresto, Release 0.4-dev

class Comment(GitHubModel):
_path = '/repos/{repo_name}/comments/{id}'
_pk = ('repo_name', 'id')

Note that we didn’t define any attributes except for the mandatory _path and _pk attributes since pyresto automat-
ically fills all attributes provided by the server response. This inhibits any possible efforts to implement client side
verification though since the server already verifies all the requests made to it, and results in simpler code. This also
makes the models “future-proof” and conforms to the best practices for “real” RESTful or Hypermedia APIs, which
many recently started to use as a term instead of “real RESTful”.

Relations

After defining some “simple” models, you can start implementing models having relations with each other:

class Commit(GitHubModel):
_path = '/repos/{repo_name}/commits/{sha}'
_pk = ('repo_name', 'sha')
comments = Many(Comment, '{self._current_path}/comments?per_page=100')

Note that we used the attribute name comments which will “shadow” any attribute named “comments” sent by the
server as documented in Model, so be wise when you are choosing your relation names and use the ones provided by
the service documentation if there are any.

Note that we used the Many relation here. We provided the model class itself, which will be the class of all the items
in the collection and, the path to fetch the collection. We used commit.url in the path format where commit will
be the commit instance we are bound to, or to be clear, the commit “resource” which we are trying to get the comments
of.

Since we don’t expect many comments for a given commit, we used the default Many implementation which will
result in a WrappedList instance that can be considered as a list. This will cause a chain of requests when this
attribute is first accessed until all the comments are fetched and no “next” link can be extracted from the Link header.
See Model._continuator for more info on this.

If we were expecting lots of items to be in the collection, or an unknown number of items in the collection, we could
have used lazy=True like this:

class Repo(GitHubModel):
_path = '/repos/{full_name}'
_pk = 'full_name'
commits = Many(Commit, '{self._current_path}/commits?per_page=100', lazy=True)
comments = Many(Comment, '{self._current_path}/comments?per_page=100')
tags = Many(Tag, '{self._current_path}/tags?per_page=100')
branches = Many(Branch, '{self._current_path}/branches?per_page=100')
keys = Many(Key, '{self._current_path}/keys?per_page=100')

Using lazy=True will result in a LazyList type of field on the model when accessed, which is basically a gener-
ator. So you can iterate over it but you cannot directly access a specific element by index or get the total length of the
collection.

You can also use the Foreign relation to refer to other models:

class Tag(GitHubModel):
_path = '/repos/{repo_name}/tags/{name}'
_pk = ('repo_name', 'name')
commit = Foreign(Commit, embedded=True)

6 Chapter 2. Documentation

http://developer.github.com/v3/repos/commits/


Pyresto, Release 0.4-dev

When used in its simplest form, just like in the code above, this relation expects the primary key value for the model
it is referencing, Commit here, to be provided by the server under the same name. So we expect from GitHub API
to provide the commit sha, which is the primary key for Commit models, under the label commit when we fetch the
data for a Tag. When this property is accessed, a simple Model.get call is made on the Commit model, which
fetches all the data associated with the it and puts them into a newly created model instance.

Late Bindings

Since all relation types expect the class object itself for relations, it is not always possible to put all relation definitions
inside the class definition. For those cases, you can simply late bind the relations as follows:

# Late bindings due to circular references
Commit.committer = Foreign(User, '__committer', embedded=True)
Commit.author = Foreign(User, '__author', embedded=True)
Repo.contributors = Many(User,

'{self._current_path}/contributors?per_page=100')
Repo.owner = Foreign(User, '__owner', embedded=True)
Repo.watcher_list = Many(User, '{self._current_path}/watchers?per_page=100')
User.follower_list = Many(User, '{self._current_path}/followers?per_page=100')
User.watched = Many(Repo, '{self._current_path}/watched?per_page=100')

Authentication

Most services require authentication even for only fetching data so providing means of authentication is essential.
Define the possible authentication mechanisms for the service:

from ...auth import HTTPBasicAuth, AppQSAuth, AuthList, enable_auth
# Define authentication methods
auths = AuthList(basic=HTTPBasicAuth, app=AppQSAuth)

Make sure you use the provided authentication classes by requests.auth if they suit your needs. If you still need
a custom authentication class, make sure you derive it from Auth.

After defining the authentication methods, create a module-global function that will set the default authentication
method and credentials for all requests for convenience:

# Enable and publish global authentication
auth = enable_auth(auths, GitHubModel, 'app')

Above, we provide the list of methods/classes we have previously defined, the base class for our service since all other
models inherit from that and will use the authentication defined on that, unless overridden. And we also set our default
authentication mechanism to remove the burden from the shoulders of the users of our API library.

2.1. Tutorial 7



Pyresto, Release 0.4-dev

8 Chapter 2. Documentation



CHAPTER 3

API Documentation

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

API

pyresto.core.ModelBase

class pyresto.core.ModelBase
Bases: abc.ABCMeta

Meta class for Model class. This class automagically creates the necessary Model._path class variable if it
is not already defined. The default path pattern is /modelname/{id}.

pyresto.core.Model

class pyresto.core.Model(**kwargs)
Bases: object

The base model class where every data model using pyresto should be inherited from. Uses ModelBase as its
metaclass for various reasons explained in ModelBase.

__init__(**kwargs)
Constructor for model instances. All named parameters passed to this method are bound to the newly
created instance. Any property names provided at this level which are interfering with the predefined class
relations (especially for Foreign fields) are prepended “__” to avoid conflicts and to be used by the
related relation class. For instance if your class has father = Foreign(Father) and father is
provided to the constructor, its value is saved under __father to be used by the Foreign relationship
class as the id of the foreign Model.

Constructor also tries to populate the Model._current_path instance variable by formatting
Model._path using the arguments provided.

9

https://docs.python.org/2/library/abc.html#abc.ABCMeta
https://docs.python.org/2/library/functions.html#object


Pyresto, Release 0.4-dev

_url_base = None
The class variable that holds the bae uel for the API endpoint for the Model. This should be a “full” URL
including the scheme, port and the initial path if there is any.

_path = None
The class variable that holds the path to be used to fetch the instance from the server. It is a format string
using the new format notation defined for str.format(). The primary key will be passed under the
same name defined in the _pk property and any other named parameters passed to the Model.get() or
the class constructor will be available to this string for formatting.

_auth = None
The class variable that holds the default authentication object to be passed to requests. Can be overrid-
den on either class or instance level for convenience.

_parser = <function loads>
The class method which receives the class object and the body text of the server response to be parsed. It is
expected to return a dictionary object having the properties of the related model. Defaults to a “staticazed”
version of json.loads() so it is not necessary to override it if the response type is valid JSON.

_fetched = False
The instance variable which is used to determine if the Model instance is filled from the server or not. It
can be modified for certain usages but this is not suggested. If _fetched is False when an attribute,
that is not in the class dictionary, tried to be accessed, the __fetch() method is called before raising an
AttributeError.

_get_params = {}
The instance variable which holds the additional named get parameters provided to the Model.get()
to fetch the instance. It is used internally by the Relation classes to get more info about the current
Model instance while fetching its related resources.

classmethod _continuator(response)
The class method which receives the response from the server. This method is expected to return a con-
tinuation URL for the fetched resource, if there is any (like the next page’s URL for paginated content)
and None otherwise. The default implementation uses the standard HTTP link header and returns the url
provided under the label “next” for continuation and None if it cannot find this label.

Parameters response (requests.Response) – The response for the HTTP request made
to fetch the resources.

_id
A property that returns the instance’s primary key value.

_pk
The class variable where the attribute name for the primary key for the Model is stored as a string. This
property is required and not providing a default is intentional to force developers to explicitly define it on
every Model class.

classmethod _rest_call(url, method=’GET’, fetch_all=True, **kwargs)
A method which handles all the heavy HTTP stuff by itself. This is actually a private method but to let the
instances and derived classes to call it, is made protected using only a single _ prefix.

All undocumented keyword arguments are passed to the HTTP request as keyword arguments such as
method, url etc.

Parameters fetch_all (boolean) – (optional) Determines if the function should recur-
sively fetch any “paginated” resource or simply return the downloaded and parsed data along
with a continuation URL.

Returns Returns a tuple where the first part is the parsed data from the server using

10 Chapter 3. API Documentation

https://docs.python.org/2/library/stdtypes.html#str.format
https://docs.python.org/2/library/json.html#json.loads


Pyresto, Release 0.4-dev

Model._parser, and the second half is the continuation URL extracted using Model.
_continuator or None if there isn’t any.

Return type tuple

classmethod get(*args, **kwargs)
The class method that fetches and instantiates the resource defined by the provided pk value. Any other
extra keyword arguments are used to format the Model._path variable to construct the request URL.

Parameters pk (string) – The primary key value for the requested resource.

Return type Model or None

pyresto.core.Auth

pyresto.core.AuthList

pyresto.core.enable_auth

pyresto.core.Relation

class pyresto.core.Relation
Bases: object

Base class for all relation types.

pyresto.core.Many

class pyresto.core.Many(model, path=None, lazy=False, preprocessor=None)
Bases: pyresto.core.Relation

Class for ‘many’ Relation type which is essentially a collection for a certain model. Needs a base Model
for the collection and a path to get the collection from. Falls back to provided model’s Model.path if not
provided.

__init__(model, path=None, lazy=False, preprocessor=None)
Constructor for Many relation instances.

Parameters

• model (Model) – The model class that each instance in the collection will be a member
of.

• path (string or None) – (optional) The unicode path to fetch the collection items,
if different than Model._path, which usually is.

• lazy (boolean) – (optional) A boolean indicator to determine the type of the Many
field. Normally, it will be a WrappedList which is essentially a list. Use lazy=True
if the number of items in the collection will be uncertain or very large which will result in
a LazyList property which is practically a generator.

_Many__make_fetcher(url, instance)
A function factory method which creates a simple fetcher function for the Many relation, that is used
internally. The Model._rest_call() method defined on the models is expected to return the data and
a continuation URL if there is any. This method generates a bound, fetcher function that calls the internal
Model._rest_call() function on the Model, and processes its results to satisfy the requirements
explained above.

3.1. API 11

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/constants.html#None


Pyresto, Release 0.4-dev

Parameters url (unicode) – The url which the fetcher function will be bound to.

_with_owner(owner)
A function factory method which returns a mapping/wrapping function. The returned function creates a
new instance of the Model that the Relation is defined with, sets its owner and “automatically fetched”
internal flag and returns it.

Parameters owner (Model) – The owner Model for the collection and its items.

pyresto.core.Foreign

class pyresto.core.Foreign(model, key_property=None, key_extractor=None, embedded=False)
Bases: pyresto.core.Relation

Class for ‘foreign’ Relation type which is essentially a reference to a certain Model. Needs a base Model
for obvious reasons.

__init__(model, key_property=None, key_extractor=None, embedded=False)
Constructor for the Foreign relations.

Parameters

• model (Model) – The model class for the foreign resource.

• key_property (string or None) – (optional) The name of the property on the
base Model which contains the id for the foreign model.

• key_extractor (function(model)) – (optional) The function that will extract the
id of the foreign model from the provided Model instance. This argument is provided to
make it possible to handle complex id extraction operations for foreign fields.

pyresto.core.WrappedList

class pyresto.core.WrappedList(iterable, wrapper)
Bases: list

Wrapped list implementation to dynamically create models as someone tries to access an item or a slice in the
list. Returns a generator instead, when someone tries to iterate over the whole list.

pyresto.core.LazyList

class pyresto.core.LazyList(wrapper, fetcher)
Bases: object

Lazy list implementation for continuous iteration over very large lists such as commits in a large repository.
This is essentially a chained and structured generator. No caching and memoization at all since the intended
usage is for small number of iterations.

12 Chapter 3. API Documentation

https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#object


Pyresto, Release 0.4-dev

pyresto.core.PyrestoException

pyresto.core.PyrestoServerResponseException

pyresto.core.PyrestoInvalidRestMethodException

pyresto.core.PyrestoInvalidAuthTypeException

3.1. API 13



Pyresto, Release 0.4-dev

14 Chapter 3. API Documentation



Python Module Index

p
pyresto, 5
pyresto.core, 9

15



Pyresto, Release 0.4-dev

16 Python Module Index



Index

Symbols
_Many__make_fetcher() (pyresto.core.Many method), 11
__init__() (pyresto.core.Foreign method), 12
__init__() (pyresto.core.Many method), 11
__init__() (pyresto.core.Model method), 9
_auth (pyresto.core.Model attribute), 10
_continuator() (pyresto.core.Model class method), 10
_fetched (pyresto.core.Model attribute), 10
_get_params (pyresto.core.Model attribute), 10
_id (pyresto.core.Model attribute), 10
_parser (pyresto.core.Model attribute), 10
_path (pyresto.core.Model attribute), 10
_pk (pyresto.core.Model attribute), 10
_rest_call() (pyresto.core.Model class method), 10
_url_base (pyresto.core.Model attribute), 9
_with_owner() (pyresto.core.Many method), 12

F
Foreign (class in pyresto.core), 12

G
get() (pyresto.core.Model class method), 11

L
LazyList (class in pyresto.core), 12

M
Many (class in pyresto.core), 11
Model (class in pyresto.core), 9
ModelBase (class in pyresto.core), 9

P
pyresto (module), 5
pyresto.core (module), 9

R
Relation (class in pyresto.core), 11

W
WrappedList (class in pyresto.core), 12

17


	Getting Started
	Documentation
	Tutorial

	API Documentation
	API

	Python Module Index

