

Pyresto

An ORM package to prevent repetitive work for writing clients for RESTful APIs.

	Source:	https://github.com/BYK/pyresto/

	Issues:	https://github.com/BYK/pyresto/issues/

	PyPi:	http://pypi.python.org/pypi/pyresto/

Getting Started

Install with pip or easy_install:

pip install pyresto
easy_install pyresto

or download the latest version from GitHub [https://github.com/BYK/pyresto]:

git clone git://github.com/BYK/pyresto.git
cd pyresto
python setup.py develop

Documentation

	Tutorial
	The Base

	Simple Models

	Relations

	Late Bindings

	Authentication

API Documentation

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API
	pyresto.core.ModelBase

	pyresto.core.Model

	pyresto.core.Auth

	pyresto.core.AuthList

	pyresto.core.enable_auth

	pyresto.core.Relation

	pyresto.core.Many

	pyresto.core.Foreign

	pyresto.core.WrappedList

	pyresto.core.LazyList

	pyresto.core.PyrestoException

	pyresto.core.PyrestoServerResponseException

	pyresto.core.PyrestoInvalidRestMethodException

	pyresto.core.PyrestoInvalidAuthTypeException

Tutorial

Welcome to the pyresto tutorial. This tutorial will guide you through
the development of a REST interface for
the Github API [http://developer.github.com]. The
implementation can be found in
the Pyresto source repository [https://github.com/BYK/pyresto] in the
pyresto.apis.github module.

The Base

Start off by creating a base model class for the service you are using which
will hold the common values such as the API host, the common model
representation using __repr__ etc:

class GitHubModel(Model):
 _url_base = 'https://api.github.com'

 def __repr__(self):
 if hasattr(self, '_links'):
 desc = self._links['self']
 elif hasattr(self, 'url'):
 desc = self.url
 else:
 desc = self._current_path

 return '<GitHub.{0} [{1}]>'.format(self.__class__.__name__, desc)

Simple Models

Then continue with implementing simple models which does not refer to any other
model, such as the Comment model for GitHub:

class Comment(GitHubModel):
 _path = '/repos/{repo_name}/comments/{id}'
 _pk = ('repo_name', 'id')

Note that we didn’t define any attributes except for the mandatory _path
and _pk attributes since pyresto automatically fills all attributes
provided by the server response. This inhibits any possible efforts to
implement client side verification though since the server already verifies all
the requests made to it, and results in simpler code. This also makes the
models “future-proof” and conforms to the best practices for “real” RESTful or
Hypermedia APIs, which many recently started to use as a term instead of “real
RESTful”.

Relations

After defining some “simple” models, you can start implementing models having
relations with each other:

class Commit(GitHubModel):
 _path = '/repos/{repo_name}/commits/{sha}'
 _pk = ('repo_name', 'sha')
 comments = Many(Comment, '{self._current_path}/comments?per_page=100')

Note that we used the attribute name comments which will “shadow” any
attribute named “comments” sent by the server as documented in
Model, so be wise when you are choosing your
relation names and use the ones provided by the
service documentation [http://developer.github.com/v3/repos/commits/] if
there are any.

Note that we used the Many relation here. We provided the
model class itself, which will be the class of all the items in the collection
and, the path to fetch the collection. We used commit.url in the path
format where commit will be the commit instance we are bound to, or to be
clear, the commit “resource” which we are trying to get the comments of.

Since we don’t expect many comments for a given commit, we used the default
Many implementation which will result in a
WrappedList instance that can be considered as a
list. This will cause a chain of requests when this attribute is first
accessed until all the comments are fetched and no “next” link can be extracted
from the Link header. See
Model._continuator for more info on this.

If we were expecting lots of items to be in the collection, or an unknown
number of items in the collection, we could have used lazy=True like this:

class Repo(GitHubModel):
 _path = '/repos/{full_name}'
 _pk = 'full_name'
 commits = Many(Commit, '{self._current_path}/commits?per_page=100', lazy=True)
 comments = Many(Comment, '{self._current_path}/comments?per_page=100')
 tags = Many(Tag, '{self._current_path}/tags?per_page=100')
 branches = Many(Branch, '{self._current_path}/branches?per_page=100')
 keys = Many(Key, '{self._current_path}/keys?per_page=100')

Using lazy=True will result in a LazyList type of
field on the model when accessed, which is basically a generator. So you can
iterate over it but you cannot directly access a specific element by index or
get the total length of the collection.

You can also use the Foreign relation to refer to
other models:

class Tag(GitHubModel):
 _path = '/repos/{repo_name}/tags/{name}'
 _pk = ('repo_name', 'name')
 commit = Foreign(Commit, embedded=True)

When used in its simplest form, just like in the code above, this relation
expects the primary key value for the model it is referencing, Commit here,
to be provided by the server under the same name. So we expect from GitHub
API to provide the commit sha, which is the primary key for Commit models,
under the label commit when we fetch the data for a Tag. When this
property is accessed, a simple Model.get call is made
on the Commit model, which fetches all the data associated with the it and
puts them into a newly created model instance.

Late Bindings

Since all relation types expect the class object itself for relations, it is
not always possible to put all relation definitions inside the class definition.
For those cases, you can simply late bind the relations as follows:

Late bindings due to circular references
Commit.committer = Foreign(User, '__committer', embedded=True)
Commit.author = Foreign(User, '__author', embedded=True)
Repo.contributors = Many(User,
 '{self._current_path}/contributors?per_page=100')
Repo.owner = Foreign(User, '__owner', embedded=True)
Repo.watcher_list = Many(User, '{self._current_path}/watchers?per_page=100')
User.follower_list = Many(User, '{self._current_path}/followers?per_page=100')
User.watched = Many(Repo, '{self._current_path}/watched?per_page=100')

Authentication

Most services require authentication even for only fetching data so providing
means of authentication is essential. Define the possible authentication
mechanisms for the service:

from ...auth import HTTPBasicAuth, AppQSAuth, AuthList, enable_auth
Define authentication methods
auths = AuthList(basic=HTTPBasicAuth, app=AppQSAuth)

Make sure you use the provided authentication classes by requests.auth
if they suit your needs. If you still need a custom authentication class, make
sure you derive it from Auth.

After defining the authentication methods, create a module-global function that
will set the default authentication method and credentials for all requests for
convenience:

Enable and publish global authentication
auth = enable_auth(auths, GitHubModel, 'app')

Above, we provide the list of methods/classes we have previously defined, the
base class for our service since all other models inherit from that and will
use the authentication defined on that, unless overridden. And we also set our
default authentication mechanism to remove the burden from the shoulders of the
users of our API library.

API

pyresto.core.ModelBase

	
class pyresto.core.ModelBase

	Bases: abc.ABCMeta [https://docs.python.org/2/library/abc.html#abc.ABCMeta]

Meta class for Model class. This class automagically creates the
necessary Model._path class variable if it is not already
defined. The default path pattern is /modelname/{id}.

pyresto.core.Model

	
class pyresto.core.Model(**kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The base model class where every data model using pyresto should be
inherited from. Uses ModelBase as its metaclass for various
reasons explained in ModelBase.

	
__init__(**kwargs)

	Constructor for model instances. All named parameters passed to this
method are bound to the newly created instance. Any property names
provided at this level which are interfering with the predefined class
relations (especially for Foreign fields) are prepended “__”
to avoid conflicts and to be used by the related relation class. For
instance if your class has father = Foreign(Father) and father
is provided to the constructor, its value is saved under __father
to be used by the Foreign relationship class as the id of the
foreign Model.

Constructor also tries to populate the Model._current_path
instance variable by formatting Model._path using the arguments
provided.

	
_url_base = None

	The class variable that holds the bae uel for the API endpoint for the
Model. This should be a “full” URL including the scheme, port
and the initial path if there is any.

	
_path = None

	The class variable that holds the path to be used to fetch the instance
from the server. It is a format string using the new format notation
defined for str.format() [https://docs.python.org/2/library/stdtypes.html#str.format]. The primary key will be passed under the
same name defined in the _pk property and any other named
parameters passed to the Model.get() or the class constructor will
be available to this string for formatting.

	
_auth = None

	The class variable that holds the default authentication object to be
passed to requests. Can be overridden on either class or instance
level for convenience.

	
_parser = <function loads>

	The class method which receives the class object and the body text of
the server response to be parsed. It is expected to return a
dictionary object having the properties of the related model. Defaults
to a “staticazed” version of json.loads() [https://docs.python.org/2/library/json.html#json.loads] so it is not necessary
to override it if the response type is valid JSON.

	
_fetched = False

	The instance variable which is used to determine if the Model
instance is filled from the server or not. It can be modified for
certain usages but this is not suggested. If _fetched is
False when an attribute, that is not in the class dictionary, tried
to be accessed, the __fetch() method is called before raising an
AttributeError.

	
_get_params = {}

	The instance variable which holds the additional named get parameters
provided to the Model.get() to fetch the instance. It is used
internally by the Relation classes to get more info about the
current Model instance while fetching its related resources.

	
classmethod _continuator(response)

	The class method which receives the response from the server. This
method is expected to return a continuation URL for the fetched
resource, if there is any (like the next page’s URL for paginated
content) and None otherwise. The default implementation uses the
standard HTTP link header and returns the url provided under the label
“next” for continuation and None if it cannot find this label.

	Parameters:	response (requests.Response) – The response for the HTTP request made to fetch the
resources.

	
_id

	A property that returns the instance’s primary key value.

	
_pk

	The class variable where the attribute name for the primary key for the
Model is stored as a string. This property is required and not
providing a default is intentional to force developers to explicitly
define it on every Model class.

	
classmethod _rest_call(url, method='GET', fetch_all=True, **kwargs)

	A method which handles all the heavy HTTP stuff by itself. This is
actually a private method but to let the instances and derived classes
to call it, is made protected using only a single _ prefix.

All undocumented keyword arguments are passed to the HTTP request as
keyword arguments such as method, url etc.

	Parameters:	fetch_all (boolean) – (optional) Determines if the function should
recursively fetch any “paginated” resource or simply
return the downloaded and parsed data along with a
continuation URL.

	Returns:	Returns a tuple where the first part is the parsed data from
the server using Model._parser, and the second half
is the continuation URL extracted using
Model._continuator or None if there isn’t any.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	
classmethod get(*args, **kwargs)

	The class method that fetches and instantiates the resource defined by
the provided pk value. Any other extra keyword arguments are used to
format the Model._path variable to construct the request URL.

	Parameters:	pk (string [https://docs.python.org/2/library/string.html#module-string]) – The primary key value for the requested resource.

	Return type:	Model or None

pyresto.core.Auth

pyresto.core.AuthList

pyresto.core.enable_auth

pyresto.core.Relation

	
class pyresto.core.Relation

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for all relation types.

pyresto.core.Many

	
class pyresto.core.Many(model, path=None, lazy=False, preprocessor=None)

	Bases: pyresto.core.Relation

Class for ‘many’ Relation type which is essentially a collection
for a certain model. Needs a base Model for the collection and a
path to get the collection from. Falls back to provided model’s
Model.path if not provided.

	
__init__(model, path=None, lazy=False, preprocessor=None)

	Constructor for Many relation instances.

	Parameters:	
	model (Model) – The model class that each instance in the collection
will be a member of.

	path (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None]) – (optional) The unicode path to fetch the collection items,
if different than Model._path, which usually is.

	lazy (boolean) – (optional) A boolean indicator to determine the type of
the Many field. Normally, it will be a
WrappedList which is essentially a list. Use
lazy=True if the number of items in the collection
will be uncertain or very large which will result in a
LazyList property which is practically a
generator.

	
_Many__make_fetcher(url, instance)

	A function factory method which creates a simple fetcher function for
the Many relation, that is used internally. The
Model._rest_call() method defined on the models is expected to
return the data and a continuation URL if there is any. This method
generates a bound, fetcher function that calls the internal
Model._rest_call() function on the Model, and processes
its results to satisfy the requirements explained above.

	Parameters:	url (unicode [https://docs.python.org/2/library/functions.html#unicode]) – The url which the fetcher function will be bound to.

	
_with_owner(owner)

	A function factory method which returns a mapping/wrapping function.
The returned function creates a new instance of the Model that
the Relation is defined with, sets its owner and
“automatically fetched” internal flag and returns it.

	Parameters:	owner (Model) – The owner Model for the collection and its items.

pyresto.core.Foreign

	
class pyresto.core.Foreign(model, key_property=None, key_extractor=None, embedded=False)

	Bases: pyresto.core.Relation

Class for ‘foreign’ Relation type which is essentially a reference
to a certain Model. Needs a base Model for obvious
reasons.

	
__init__(model, key_property=None, key_extractor=None, embedded=False)

	Constructor for the Foreign relations.

	Parameters:	
	model (Model) – The model class for the foreign resource.

	key_property (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None]) – (optional) The name of the property on the base
Model which contains the id for the
foreign model.

	key_extractor (function(model)) – (optional) The function that will extract the id
of the foreign model from the provided
Model instance. This argument is
provided to make it possible to handle complex id
extraction operations for foreign fields.

pyresto.core.WrappedList

	
class pyresto.core.WrappedList(iterable, wrapper)

	Bases: list

Wrapped list implementation to dynamically create models as someone tries
to access an item or a slice in the list. Returns a generator instead, when
someone tries to iterate over the whole list.

pyresto.core.LazyList

	
class pyresto.core.LazyList(wrapper, fetcher)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Lazy list implementation for continuous iteration over very large lists
such as commits in a large repository. This is essentially a chained and
structured generator. No caching and memoization at all since the intended
usage is for small number of iterations.

pyresto.core.PyrestoException

pyresto.core.PyrestoServerResponseException

pyresto.core.PyrestoInvalidRestMethodException

pyresto.core.PyrestoInvalidAuthTypeException

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyresto	

 	
 	
 pyresto.core	

Index

 _
 | F
 | G
 | L
 | M
 | P
 | R
 | W

_

 	
 	__init__() (pyresto.core.Foreign method)

 	(pyresto.core.Many method)

 	(pyresto.core.Model method)

 	_auth (pyresto.core.Model attribute)

 	_continuator() (pyresto.core.Model class method)

 	_fetched (pyresto.core.Model attribute)

 	_get_params (pyresto.core.Model attribute)

 	
 	_id (pyresto.core.Model attribute)

 	_Many__make_fetcher() (pyresto.core.Many method)

 	_parser (pyresto.core.Model attribute)

 	_path (pyresto.core.Model attribute)

 	_pk (pyresto.core.Model attribute)

 	_rest_call() (pyresto.core.Model class method)

 	_url_base (pyresto.core.Model attribute)

 	_with_owner() (pyresto.core.Many method)

F

 	
 	Foreign (class in pyresto.core)

G

 	
 	get() (pyresto.core.Model class method)

L

 	
 	LazyList (class in pyresto.core)

M

 	
 	Many (class in pyresto.core)

 	
 	Model (class in pyresto.core)

 	ModelBase (class in pyresto.core)

P

 	
 	pyresto (module)

 	
 	pyresto.core (module)

R

 	
 	Relation (class in pyresto.core)

W

 	
 	WrappedList (class in pyresto.core)

 nav.xhtml

 Table of Contents

 		Pyresto

 		Tutorial

 		The Base

 		Simple Models

 		Relations

 		Late Bindings

 		Authentication

 		API

 		pyresto.core.ModelBase

 		pyresto.core.Model

 		pyresto.core.Auth

 		pyresto.core.AuthList

 		pyresto.core.enable_auth

 		pyresto.core.Relation

 		pyresto.core.Many

 		pyresto.core.Foreign

 		pyresto.core.WrappedList

 		pyresto.core.LazyList

 		pyresto.core.PyrestoException

 		pyresto.core.PyrestoServerResponseException

 		pyresto.core.PyrestoInvalidRestMethodException

 		pyresto.core.PyrestoInvalidAuthTypeException

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

