

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyrana 0.6 documentation

Introduction

Pyrana is a pure-python package which provides easy, pythonic and
powerful handling of multimedia files.

	easy: pyrana does not submerge you with tons of options and details,
but is filled with sane defaults. pyrana aims to be multimedia
processing what
requests [http://docs.python-requests.org/en/latest/] is for http.

	pythonic: pyrana wants to play nice and work well with the other
well-established relevant python packages:
Pillow [https://pypi.python.org/pypi/Pillow],
pygame [http://pygame.org],
PySDL2 [http://pysdl2.readthedocs.org/en/latest/],
PyAudio [http://people.csail.mit.edu/hubert/pyaudio/],
numpy [http://www.numpy.org/] compatibility is coming soon.

	powerful: pyrana provides an independent API, but is built on the
great foundations provided by the powerful FFMpeg
libraries [http://ffmpeg.org].

pyrana is a modern, pure python package which is developed for python 3
and compatible with python 2.7, which takes great
advantage of CFFI [http://cffi.readthedocs.org/en/release-0.7/], so
the compatibility with pypy [http://pypy.org] is just one step away.

pyrana offers a minimum 100% unit-test and documentation coverage, and
put great emphasis on small, yet complete and workable examples. Last
but not least, pyrana is released under the very liberal ZLIB license.

More documentation about pyrana on this series of blog
posts [http://mojaves.github.io/category/pyrana.html]

Contents

	Tutorial: write a simple media player with pyrana
	Overview

	Opening the File

	Reading the Data

	A note on packets

	Pygame and Video

	Creating and using an Overlay

	Drawing the Image

	The exception hierarchy of pyrana

	Types and flags

	More flags and enumerations for audio

	The fundamental unit in encoded media streams

	How to deal with media formats

	Decoding and encoding audio streams

	Decoding and encoding video streams

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

Tutorial

This is a multi-part tutorial about how to write a simple yet complete
and fully functional media player using
pyrana [http://bitbucket.org/mojaves/pyrana]. The structure of the
tutorial intentionally resemples as closely as possible the FFmpeg
tutorial [http://dranger.com/ffmpeg/tutorial01.html].

As for the original work, to which this one pays heavy debt, this
document is released under the terms of the Creative Commons
Attribution-Share Alike 2.5
License [http://creativecommons.org/licenses/by-sa/2.5/].

	Overview

	Opening the File

	Reading the Data

	A note on packets

	Pygame and Video

	Creating and using an Overlay

	Drawing the Image

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

 	Tutorial

Overview

Movie files have a few basic components. First, the file itself is
called a container, and the type of container determines where the
information in the file goes. Examples of containers are AVI, Quicktime,
Matroska (MKV) or ogg. Next, you have a bunch of streams; for example,
you usually have an audio stream and a video stream. (A “stream” is just
a fancy word for “a succession of data elements made available over
time”.) The data elements in a stream are called frames. Each stream
is encoded by a different kind of codec. The codec defines how the
actual data is COded and DECoded - hence the name CODEC. Examples of
codecs are WEBM, H.264, MP3 or Vorbis. Packets are then read from the
stream. Packets are pieces of data that can contain bits of data that
are decoded into raw frames that we can finally manipulate for our
application. For our purposes, each packet contains complete frames, or
multiple frames in the case of audio.

At its very basic level, dealing with video and audio streams is very
easy:

with open_stream("video.ogg") as video:
 frame = video.read_packet()
if not frame.complete:
 continue
 do_something(frame)

We will see soon enough that in real python code, thanks to pyrana, the
real code is not very different from this pseudo code above. However,
some programs might have a very complex do_something step. So in
this tutorial, we’re going to open a file, read from the video stream
inside it, and our do_something is going to be writing the frame to
a PPM file.

Opening the File

First, let’s see how we open a file in the first place. With pyrana, you
have to first initialize the library.

import pyrana

somewhere, once per run

pyrana.setup()

This registers all available file formats and codecs with the library so
they will be used automatically when a file with the corresponding
format/codec is opened. Note that you only need to call pyrana.setup()
once, but it is safe to do it multiple times, if you cannot avoid it.

Now we can actually open the media file:

with open(sys.argv[1], "rb") as src:
 dmx = pyrana.Demuxer(src)

Here dmx is one of the most common shortcut names for demuxer.
We get our filename from the first argument. The Demuxer instance needs
a valid, already open, binary data provider to be used as underlying
source of data. Now you can access the stream informations using the
streams attribute. demuxer.streams is just a collections of data
structures, so let’s find the zero-th (aka the first) video stream in
the collection.

from pyrana.formats import find_stream, MediaType
...
sid = find_stream(demuxer.streams,
 0,
 MediaType.AVMEDIA_TYPE_VIDEO)
sid: Stream ID
vstream = dmx.streams[sid]

Now we can have all the available metadata about the stream (e.g. width
and height for a video stream, channel count and bytes per sample for an
audio stream). However, we still need a decoder for that video stream.
Simple enough:

vdec = dmx.open_decoder(sid)

Simple as that! now codec is ready to roll and decode the frames
that will be sent to it.

Reading the Data

What we’re going to do is read through the entire video stream by
reading in the packet, decoding it into our frame, and once our frame is
complete, we will convert and save it.

Since we’re planning to output PPM files, which are stored in 24-bit
RGB, we’re going to have to convert our frame from its native format to
RGB. pyrana will do these conversions for us. For most projects
(including ours) we’re going to want to convert our initial frame to a
specific format. It’s enough to ask an Image from a (video) Frame using
the image() method and specifying the desired pixel format. The default
value for image() is the same as the video stream.

with open(sys.argv[1], "rb") as src:
 dmx = pyrana.formats.Demuxer(src)
 sid = pyrana.formats.find_stream(dmx.streams,
 0,
 MediaType.AVMEDIA_TYPE_VIDEO)
 num = 0
 vdec = dmx.open_decoder(sid)
 frame = vdec.decode(dmx.stream(sid))
 image = frame.image(pyrana.video.PixelFormat.AV_PIX_FMT_RGB24)

A note on packets

Technically a packet can contain partial frames or other bits of data,
but pyrana’s Demuxers (thanks to the ffmpeg libraries) ensures that the
packets we get contain either complete or multiple frames.

The process, again, is simple: Demuxer.read_frame() reads in a packet
and stores it in a Packet object. Decoder.decode() converts the packet
to a frame for us. However, we might not have all the information we
need for a frame after decoding a packet, so Decoder.decode() raises
NeedFeedError if it is not able to decode the next frame. Finally, we
use Image.convert() to convert from the native format
(Image.pixel_format) to RGB.

Now all we need to do is make the save_frame function to write the RGB
information to a file in PPM format. We’re going to be kind of sketchy
on the PPM format itself; trust us, it works.

def ppm_write(frame, seqno):
 """
 saves a raw frame in a PPM image. See man ppm for details.
 the `seqno` parameter is just to avoid to overwrite them without
 getting too fancy with the filename generation.
 """
 image = frame.image(pyrana.video.PixelFormat.AV_PIX_FMT_RGB24)
 with open("frame%d.ppm" % (seqno), "wb") as dst:
 header = "P6\n%i %i\n255\n" % (image.width, image.height)
 dst.write(header.encode("utf-8"))
 dst.write(bytes(image))

In this case we require the full frame (not just the image) to be passed
to be sure to get an image with the conformant Pixel Format. We do a bit
of standard file opening, etc., and then write the RGB data. We write
the file one line at a time. A PPM file is simply a file that has RGB
information laid out in a long string. If you know HTML colors, it would
be like laying out the color of each pixel end to end like
#ff0000#ff0000.... would be a red screen. (It’s stored in binary and
without the separator, but you get the idea.) The header indicated how
wide and tall the image is, and the max size of the RGB values.

Most image programs should be able to open PPM files. Test it on some
movie files.

The full working code used in this post is available
here [https://github.com/mojaves/pyrana/blob/master/examples/03_decode_video.py].

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

 	Tutorial

Pygame and Video

To draw to the screen, we’re going to use pygame. pygame is an excellent
and well known module which advertises itself as

Pygame is a set of Python modules designed for writing games. Pygame adds functionality
on top of the excellent SDL library. This allows you to create fully featured games and
multimedia programs in the python language. Pygame is highly portable and runs on
nearly every platform and operating system.

You can get the package at the official
website [http://www.pygame.org] or on PyPI.

Pygame has various methods for drawing images to the screen, and it has
one in particularly well suited for displaying movies on the screen -
what it calls a YUV overlay. YUV (technically not YUV but YCbCr:
generally speaking, YUV is an analog format and YCbCr is a digital
format. However, they are often -and incorrectly- used as synonims) is a
way of storing raw image data like RGB. Roughly speaking, Y is the
brightness (or “luma”) component, and U and V are the color components.
pygame’s YUV overlay takes in a triplet of bytes (strings in py2.x)
containing the YUV data and displays it. It accepts an handful of
different kinds of YUV formats, but YV12 is most often the fastest.
There is another YUV format called YUV420P that is the same as YV12,
except the U and V arrays are switched. The 420 means it is subsampled,
at a ratio of 4:2:0, basically meaning there is 1 color sample for every
4 luma samples, so the color information is quartered. This is a good
way of saving bandwidth, as the human eye does not percieve this change.
The “P” in the name means that the format is “planar” – simply meaning
that the Y, U, and V components are in separate arrays. pyrana can
convert images to YUV420P, with the added bonus that many video streams
are in that format already, or are easily converted to that format.

So our current plan is to replace the ppm_write function from part
1 [http://mojaves.github.io/pyrana-player-tutorial-part-1.html], and
instead output our frame to the screen. But first we have to start by
seeing how to use the pygame package. First we have to import and to
initialize it, once again one time only:

import pygame
...
pygame.init()

Creating and using an Overlay

Now we need a place on the screen to put stuff. The basic area for
displaying images with SDL is called an overlay:

pygame.display.set_mode((width, height))
self._ovl = pygame.Overlay(pygame.YV12_OVERLAY, (width, height))
self._ovl.set_location(0, 0, wwidth, height)

As we said before, we are using YV12 to display the image:

self._ovl.display((Y, U, V))

The overlay object takes care of locking, so we don’t have to. The
Y, U and V objects are bytes() (strings in py2.x) filled
with the actual data to display. Of course since we are dealing with
YUV420P here, we only have 3 channels, and therefore only 3 sets of
data. Other formats might have a fourth pointer for an alpha channel or
something.

The code which draws using the pygame overlays can be packed in an handy
class:

class PygameViewer(object):
def __init__(self):
 self._ovl = None
 self._frames = 0

@property
def frames(self):
 return self._frames

def setup(self, w, h):
 pygame.display.set_mode((w, h))
 self._ovl = pygame.Overlay(pygame.YV12_OVERLAY, (w, h))
 self._ovl.set_location(0, 0, w, h)

def show(self, Y, U, V):
 self._ovl.display((Y, U, V))
 self._frames += 1

Drawing the Image

What is stil left is to fetch the plane data and pass it to pygame’s
overlay in order to actually display it. No worries, this is very simple
as well:

while True:
 frame = vdec.decode(dmx.stream(sid))
 img = frame.image()
 view.show(img.plane(0), img.plane(1), img.plane(2))

Where view is of course an instance -already set up and ready- of a
PygameViewer defined above. This is actually the whole decoding
loop! The Image objects provides an handy plane() method with just
returns the bytes() of the selected plane.

What happens when you run this program? The video is going crazy! In
fact, we’re just displaying all the video frames as fast as we can
extract them from the movie file. We don’t have any code right now for
figuring out when we need to display video. Eventually (in part 5),
we’ll get around to syncing the video. But first we’re missing something
even more important: sound!

The full working code (well, a slightly enhanced version of) used in
this post is available
here [https://github.com/mojaves/pyrana/blob/master/examples/11_compat_video_pygame.py].

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

errors

The pyrana exception hierarchy.
Outside the pyrana package it is expected to catch those
exception, not to raise them. However, doing so should’nt
harm anyone.

	
exception pyrana.errors.EOSError

	End Of Stream. Kinda more akin to StopIteration than EOFError.

	
exception pyrana.errors.LibraryVersionError

	Missing the right library version for the expected dependency.

	
exception pyrana.errors.NeedFeedError

	More data is needed to obtain a Frame or a Packet.
Feed more data in the raising object and try again.

	
exception pyrana.errors.NotFoundError

	cannot satisfy the user request: asked for an
inexistent attribute or for unsupported parameter
combination.

	
exception pyrana.errors.ProcessingError

	Runtime processing error.

	
exception pyrana.errors.PyranaError

	Root of the pyrana error tree.
You should’nt use it directly, not even in an except clause.

	
exception pyrana.errors.SetupError

	Error while setting up a pyrana object.
Check again the parameters.

	
exception pyrana.errors.UnsupportedError

	Requested an unsupported feature.
Did you properly initialized everything?

	
exception pyrana.errors.WrongParameterError

	Unknown or invalid parameter supplied.

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

enumerations and flags

Autogenerated. Do not edit!
Use make_enum.py instead.

	
class pyrana.ffenums.PictureType

	File: /usr/include/libavutil/avutil.h
SHA-1: f1c7e9e2e1ee6c926efe926604aa20d404f183e0
Portion: [214, 224]

	
class pyrana.ffenums.PixelFormat

	Wraps the Pixel Formats
File: /usr/include/libavutil/pixfmt.h
SHA-1: b25a74b75de569cae7ca2fb3a95422ef530c7cae

	
class pyrana.ffenums.SampleFormat

	Wraps the Sample Formats
File: /usr/include/libavutil/samplefmt.h
SHA-1: fd8c0c10256909ce67c45dbbed5ead599180b348

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

audio

channel layout definitions.
manually crafted because they are implemented as
a bunch of #defines in libavutil <= 52

	
class pyrana.ffaclayout.ChannelLayout

	Channel Layout definitions.

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

packets

This module provides the transport layer Packet support code.
For internal usage only: do not use nor import directly.

	
class pyrana.packet.Packet(stream_id=None, data=None, pts=-9223372036854775808, dts=-9223372036854775808, is_key=False)

	a Packet object represents an immutable, encoded packet of a
multimedia stream.

	
blob()

	returns the bytes() dump of the object

	
data

	the raw data (bytes) this packet carries.

	
dts

	the Decoding TimeStamp of this packet.

	
classmethod from_cdata(cpkt)

	builds a pyrana Packet from (around) a (cffi-wrapped) libav*
packet object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
is_key

	boolean flag. Is this packet a key frame?
(provided by libav*)

	
pts

	the Presentation TimeStamp of this packet.

	
raw_pkt(*args, **kwds)

	raw access to the underlying FFmpeg packet.
used by decoders in some corner but important cases.
For internal usage only.
TODO: ensure R/O and (thus) simplify

	
size

	Size of the packet data (bytes)

	
stream_id

	the identifier of the logical stream which this packet belongs to.

	
class pyrana.packet.PacketFlags

	wrapper for the (wannabe)enum of AVPktFlag
in libavcodec/avcodec.h

	
pyrana.packet.bind_packet(*args, **kwds)

	allocates an AVPacket and cleans it up on exception.

	
pyrana.packet.raw_packet(*args, **kwds)

	context manager for a raw ffmpeg packet of the given size.

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

formats

This module provides the transport layer interface: encoded packets,
Muxer, Demuxers and their support code.

	
class pyrana.formats.AVFmtFlags

	wrapper for the (wannabe)enum
in libavformat/avformat.h

	
class pyrana.formats.Demuxer(src, name=None, delay_open=False, streaming=False)

	Demuxer object. Use a file-like for real I/O.
The file-like must be already open, and must support read()
returning bytes (not strings).
If the file format is_seekable but the file-like doesn’t support
seek, expect weird things.

	
close()

	close the underlying demuxer.

	
next()

	python 2.x iterator hook.

	
open(name=None)

	open the underlying demuxer.

	
open_decoder(stream_id)

	create and returns a full-blown decoder Instance capable
to decode the selected stream.
Like doing things manually, just easily.

	
read_frame(stream_id=-1)

	reads and returns a new complete encoded frame (enclosed in a Packet)
from the demuxer.
if the optional `stream_id’ argument is !ANY, returns a frame
belonging to the specified streams.

raises EndOfStreamError if
- a stream id is specified, and such streams doesn’t exists.
- the streams ends.

	
seek_frame(frameno, stream_id=-1)

	seek to the given frame number in the stream.

	
seek_ts(tstamp, stream_id=-1)

	seek to the given timestamp (msecs) in the stream.

	
stream(sid=-1)

	generator that returns all packets that belong to a
specified stream id.

	
streams

	streams: read-only attribute
list of StreamInfo objects describing the streams found by
the demuxer (as in old pyrana, no changes)

	
class pyrana.formats.FormatFlags

	wrapper for the (wannabe)enum of AVFormatFlags
in libavformat/avformat.h

	
class pyrana.formats.Muxer(sink, name=None, streaming=True)

	Muxer object. Use a file-like for real I/O.
The file-like must be already open, and must support write()
returning bytes (not strings).
If the file format is_seekable but the file-like doesn’t support
seek, expect weird things.

	
add_stream(encoder)

	register a new stream into the Muxer for the given
Encoder. XXX add more docs

	
open_encoder(output_codec, params)

	create and returns a full-blown enccoder Instance capable,
given the encoder parameters, already bound and registered
as stream in the Muxer.

	
write_frame(packet)

	writes a data frame, enclosed into an encoded Packet,
in the stream.

	
write_header()

	Writes the header into the output stream.

	
write_trailer()

	Writes the trailer (if any) into the output stream.
Requires the header to be written (and, likely, some data)
Must be the last operation before to release the Muxer.

	
class pyrana.formats.SeekFlags

	wrapper for the (wannabe)enum of AVSeekFlags
in libavformat/avformat.h

	
pyrana.formats.find_stream(streams, nth, media)

	find the nth stream of the specified media a streams info
(as in Demuxer().streams).
Return the corresponding stream_id.
Raise NotFoundError otherwise.

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyrana 0.6 documentation

audio

this module provides the audio codec interface.
Encoders, Decoders and their support code.

	
class pyrana.audio.AVRounding

	Rounding methods.
Maybe should be moved into a more generic module.

	
class pyrana.audio.Decoder(input_codec, params=None)

	Decodes audio Packets into audio Frames.

	
decode(packets)

	Decode data from a logical stream of packets, and returns when
the first next frame is available.
The input stream can be
- a materialized sequence of packets (list, tuple...)
- a generator (e.g. Demuxer.stream()).

	
decode_packet(packet)

	Generator method.
Decode a single packet (as in returned by a Demuxer) and extracts
all the frames encoded into it.
An encoded packet can legally contain more than one frame, altough
this is not so common.
This method deals with the [one packet -> many frames] scenario.
The internal underlying decoder does its own buffer, so you can
freely dispose the packet(s) fed into this method after it exited.
raises ProcessingError if decoding fails;
raises NeedFeedError if decoding partially succeeds, but more
data is needed to reconstruct a full frame.

	
extra_data

	bytearray-like, read-write

	
flush()

	emits all frames that can be recostructed by the data
buffered into the Decoder, and empties such buffers.
Call it last, do not intermix with decode*() calls.
caution: more than one frame can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

	
classmethod from_cdata(ctx)

	builds a pyrana Audio Decoder from (around) a (cffi-wrapped) libav*
(audio)decoder object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
media_type

	the codec media type.

	
open(ffh=None)

	opens the codec into the codec context.

	
params

	the codec parameters.

	
ready

	is the codec readu to go?

	
setup()

	Dispach the given parameters to the internal
(FFmpeg) data structures.

	
static wire(dec)

	wire up the Decoder. See codec.wire_decoder

	
class pyrana.audio.Encoder(output_codec, params)

	Encode audio Frames into Packets.

	
encode(frame)

	Encode a logical frame in one or possibly more)packets, and
return an iterable which will yield all the packets produced.

	
extra_data

	bytearray-like, read-write

	
flush()

	emits all packets which may have been buffered by the Encoder
and empties such buffers. Call it last, do not intermix with
encode*() calls.
caution: more than one encoded frame (thus many packets)
can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

	
classmethod from_cdata(ctx, params, codec=None)

	builds a pyrana audio Encoder from (around) a (cffi-wrapped) liabv*
(audio) context.
WARNING: raw access. Use with care.

	
media_type

	the codec media type.

	
open(ffh=None)

	opens the codec into the codec context.

	
params

	the codec parameters.

	
ready

	is the codec readu to go?

	
static wire(enc)

	wire up the Encoder. See codec.wire_encoder

	
class pyrana.audio.Frame(rate, layout, samplefmt)

	An Audio frame.

	
cdata

	Direct access to the internal C AVFrame object.

	
classmethod from_cdata(ppframe)

	builds a pyrana generic Base Frame from (around) a (cffi-wrapped)
libav* AVFrame object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
is_key

	Is this a key frame?

	
pts

	The Presentation TimeStamp of this Frame.

	
samples(smpfmt=None)

	Returns a new Image object which provides access to the
Picture (thus the pixel as bytes()) data.

	
class pyrana.audio.Samples

	Represents the Sample data inside a Frame.

	
blob()

	returns the bytes() dump of the object

	
bps

	Bytes per sample.

	
channel(idx)

	Read-only byte access to a single channel of the Samples.

	
channels

	The number of audio channels, only used for audio.

	
convert(smpfmt)

	convert the Samples data in a new SampleFormat.
returns a brand new, independent Image.

	
classmethod from_cdata(ppframe, swr=None, parent=None)

	builds a pyrana Image from a (cffi-wrapped) libav*
Frame object. The Picture data itself will still be hold in the
Frame object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
is_shared

	Is the underlying C-Frame shared with the parent py-Frame?

	
num_samples

	The number of audio samples (per channel) described by this frame.

	
sample_format

	Frame sample format. Expected to be always equal
to the stream sample format.

	
sample_rate

	Sample rate of the audio data.

	
pyrana.audio.fill_s16(frame)

	fill a audio frame with a single tone sound

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyrana 0.6 documentation

video

this module provides the video codec interface.
Encoders, Decoders and their support code.

	
class pyrana.video.Decoder(input_codec, params=None)

	Decodes video Packets into video Frames.

	
decode(packets)

	Decode data from a logical stream of packets, and returns when
the first next frame is available.
The input stream can be
- a materialized sequence of packets (list, tuple...)
- a generator (e.g. Demuxer.stream()).

	
decode_packet(packet)

	Generator method.
Decode a single packet (as in returned by a Demuxer) and extracts
all the frames encoded into it.
An encoded packet can legally contain more than one frame, altough
this is not so common.
This method deals with the [one packet -> many frames] scenario.
The internal underlying decoder does its own buffer, so you can
freely dispose the packet(s) fed into this method after it exited.
raises ProcessingError if decoding fails;
raises NeedFeedError if decoding partially succeeds, but more
data is needed to reconstruct a full frame.

	
extra_data

	bytearray-like, read-write

	
flush()

	emits all frames that can be recostructed by the data
buffered into the Decoder, and empties such buffers.
Call it last, do not intermix with decode*() calls.
caution: more than one frame can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

	
classmethod from_cdata(ctx)

	builds a pyrana Video Decoder from (around) a (cffi-wrapped) libav*
(video)decoder object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
media_type

	the codec media type.

	
open(ffh=None)

	opens the codec into the codec context.

	
params

	the codec parameters.

	
ready

	is the codec readu to go?

	
setup()

	Dispach the given parameters to the internal
(FFmpeg) data structures.

	
static wire(dec)

	wire up the Decoder. See codec.wire_decoder

	
class pyrana.video.Encoder(output_codec, params)

	Encode video Frames into Packets.

	
encode(frame)

	Encode a logical frame in one or possibly more)packets, and
return an iterable which will yield all the packets produced.

	
extra_data

	bytearray-like, read-write

	
flush()

	emits all packets which may have been buffered by the Encoder
and empties such buffers. Call it last, do not intermix with
encode*() calls.
caution: more than one encoded frame (thus many packets)
can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

	
classmethod from_cdata(ctx, params, codec=None)

	builds a pyrana video Encoder from (around) a (cffi-wrapped) liabv*
(audio) context.
WARNING: raw access. Use with care.

	
media_type

	the codec media type.

	
open(ffh=None)

	opens the codec into the codec context.

	
params

	the codec parameters.

	
ready

	is the codec readu to go?

	
setup()

	Dispach the given parameters to the internal
(FFmpeg) data structures.

	
static wire(enc)

	wire up the Encoder. See codec.wire_encoder

	
class pyrana.video.Frame(width, height, pixfmt)

	A Video frame.

	
asr

	The sample aspect ratio of the frame.

	
cdata

	Direct access to the internal C AVFrame object.

	
coded_pict_number

	Picture number in bitstream order.

	
display_pict_number

	Picture number in display order.

	
classmethod from_cdata(ppframe)

	builds a pyrana generic Base Frame from (around) a (cffi-wrapped)
libav* AVFrame object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
image(pixfmt=None)

	Returns a new Image object which provides access to the
Picture (thus the pixel as bytes()) data.

	
is_interlaced

	Is the content of the picture interlaced?

	
is_key

	Is this a key frame?

	
pict_type

	Picture type of the frame, see AVPictureType.

	
pts

	The Presentation TimeStamp of this Frame.

	
top_field_first

	If is_interlaced(), is top field displayed first?

	
class pyrana.video.Image

	Represents the Picture data inside a Frame.

	
blob()

	returns the bytes() dump of the object.

	
convert(pixfmt)

	convert the Image data in a new PixelFormat.
returns a brand new, independent Image.

	
classmethod from_cdata(ppframe, sws=None, parent=None)

	builds a pyrana Image from a (cffi-wrapped) libav*
Frame object. The Picture data itself will still be hold in the
Frame object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

	
height

	Frame height. Expected to be always equal to the stream height.

	
is_shared

	Is the underlying C-Frame shared with the parent py-Frame?

	
pixel_format

	Frame pixel format. Expected to be always equal
to the stream pixel format.

	
plane(idx)

	Read-only byte access to a single plane of the Image.

	
planes

	Return the number of planes in the Picture data.
e.g. RGB: 1; YUV420: 3

	
width

	Frame width. Expected to be always equal to the stream width.

	
class pyrana.video.SWSMode

	SWS operational flags.
This wasn’t a proper enum, rather a collection
of #defines, and that’s the reason why it is
defined here.

	
pyrana.video.fill_yuv420p(frame, i)

	fill a video frame with a test pattern.

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pyrana 0.6 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyrana	

 	
 	
 pyrana.audio	

 	
 	
 pyrana.codec	

 	
 	
 pyrana.errors	

 	
 	
 pyrana.ffaclayout	

 	
 	
 pyrana.ffenums	

 	
 	
 pyrana.formats	

 	
 	
 pyrana.packet	

 	
 	
 pyrana.video	

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pyrana 0.6 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	add_stream() (pyrana.formats.Muxer method)

 	asr (pyrana.video.Frame attribute)

 	

 	AVFmtFlags (class in pyrana.formats)

 	AVRounding (class in pyrana.audio)

B

 	

 	BaseDecoder (class in pyrana.codec)

 	BaseEncoder (class in pyrana.codec)

 	BaseFrame (class in pyrana.codec)

 	bind_frame() (in module pyrana.codec)

 	

 	bind_packet() (in module pyrana.packet)

 	blob() (pyrana.audio.Samples method)

 	

 	(pyrana.codec.Payload method)

 	(pyrana.packet.Packet method)

 	(pyrana.video.Image method)

 	bps (pyrana.audio.Samples attribute)

C

 	

 	cdata (pyrana.audio.Frame attribute)

 	

 	(pyrana.codec.BaseFrame attribute)

 	(pyrana.video.Frame attribute)

 	channel() (pyrana.audio.Samples method)

 	ChannelLayout (class in pyrana.ffaclayout)

 	channels (pyrana.audio.Samples attribute)

 	close() (pyrana.formats.Demuxer method)

 	

 	CodecFlag (class in pyrana.codec)

 	CodecFlag2 (class in pyrana.codec)

 	CodecMixin (class in pyrana.codec)

 	coded_pict_number (pyrana.video.Frame attribute)

 	convert() (pyrana.audio.Samples method)

 	

 	(pyrana.video.Image method)

D

 	

 	data (pyrana.packet.Packet attribute)

 	decode() (pyrana.audio.Decoder method)

 	

 	(pyrana.codec.BaseDecoder method)

 	(pyrana.video.Decoder method)

 	decode_packet() (pyrana.audio.Decoder method)

 	

 	(pyrana.codec.BaseDecoder method)

 	(pyrana.video.Decoder method)

 	Decoder (class in pyrana.audio)

 	

 	(class in pyrana.video)

 	

 	Demuxer (class in pyrana.formats)

 	display_pict_number (pyrana.video.Frame attribute)

 	dts (pyrana.packet.Packet attribute)

E

 	

 	encode() (pyrana.audio.Encoder method)

 	

 	(pyrana.codec.BaseEncoder method)

 	(pyrana.video.Encoder method)

 	Encoder (class in pyrana.audio)

 	

 	(class in pyrana.video)

 	

 	EOSError

 	extra_data (pyrana.audio.Decoder attribute)

 	

 	(pyrana.audio.Encoder attribute)

 	(pyrana.codec.CodecMixin attribute)

 	(pyrana.video.Decoder attribute)

 	(pyrana.video.Encoder attribute)

F

 	

 	fill_s16() (in module pyrana.audio)

 	fill_yuv420p() (in module pyrana.video)

 	find_encoder() (in module pyrana.codec)

 	find_stream() (in module pyrana.formats)

 	

 	flush() (pyrana.audio.Decoder method)

 	

 	(pyrana.audio.Encoder method)

 	(pyrana.codec.BaseDecoder method)

 	(pyrana.codec.BaseEncoder method)

 	(pyrana.video.Decoder method)

 	(pyrana.video.Encoder method)

 	FormatFlags (class in pyrana.formats)

 	Frame (class in pyrana.audio)

 	

 	(class in pyrana.video)

 	from_cdata() (pyrana.audio.Decoder class method)

 	

 	(pyrana.audio.Encoder class method)

 	(pyrana.audio.Frame class method)

 	(pyrana.audio.Samples class method)

 	(pyrana.codec.BaseDecoder class method)

 	(pyrana.codec.BaseEncoder class method)

 	(pyrana.codec.BaseFrame class method)

 	(pyrana.packet.Packet class method)

 	(pyrana.video.Decoder class method)

 	(pyrana.video.Encoder class method)

 	(pyrana.video.Frame class method)

 	(pyrana.video.Image class method)

H

 	

 	height (pyrana.video.Image attribute)

I

 	

 	Image (class in pyrana.video)

 	image() (pyrana.video.Frame method)

 	is_interlaced (pyrana.video.Frame attribute)

 	

 	is_key (pyrana.audio.Frame attribute)

 	

 	(pyrana.codec.BaseFrame attribute)

 	(pyrana.packet.Packet attribute)

 	(pyrana.video.Frame attribute)

 	is_shared (pyrana.audio.Samples attribute)

 	

 	(pyrana.video.Image attribute)

L

 	

 	LibraryVersionError

M

 	

 	make_codec() (in module pyrana.codec)

 	make_fetcher() (in module pyrana.codec)

 	make_payload() (in module pyrana.codec)

 	

 	media_type (pyrana.audio.Decoder attribute)

 	

 	(pyrana.audio.Encoder attribute)

 	(pyrana.codec.CodecMixin attribute)

 	(pyrana.video.Decoder attribute)

 	(pyrana.video.Encoder attribute)

 	Muxer (class in pyrana.formats)

N

 	

 	NeedFeedError

 	next() (pyrana.formats.Demuxer method)

 	

 	NotFoundError

 	num_samples (pyrana.audio.Samples attribute)

O

 	

 	open() (pyrana.audio.Decoder method)

 	

 	(pyrana.audio.Encoder method)

 	(pyrana.codec.BaseDecoder method)

 	(pyrana.codec.CodecMixin method)

 	(pyrana.formats.Demuxer method)

 	(pyrana.video.Decoder method)

 	(pyrana.video.Encoder method)

 	open_decoder() (pyrana.formats.Demuxer method)

 	

 	open_encoder() (pyrana.formats.Muxer method)

P

 	

 	Packet (class in pyrana.packet)

 	PacketFlags (class in pyrana.packet)

 	params (pyrana.audio.Decoder attribute)

 	

 	(pyrana.audio.Encoder attribute)

 	(pyrana.codec.CodecMixin attribute)

 	(pyrana.video.Decoder attribute)

 	(pyrana.video.Encoder attribute)

 	Payload (class in pyrana.codec)

 	pict_type (pyrana.video.Frame attribute)

 	PictureType (class in pyrana.ffenums)

 	pixel_format (pyrana.video.Image attribute)

 	PixelFormat (class in pyrana.ffenums)

 	plane() (pyrana.video.Image method)

 	planes (pyrana.video.Image attribute)

 	ProcessingError

 	

 	pts (pyrana.audio.Frame attribute)

 	

 	(pyrana.codec.BaseFrame attribute)

 	(pyrana.packet.Packet attribute)

 	(pyrana.video.Frame attribute)

 	pyrana.audio (module)

 	pyrana.codec (module)

 	pyrana.errors (module)

 	pyrana.ffaclayout (module)

 	pyrana.ffenums (module)

 	pyrana.formats (module)

 	pyrana.packet (module)

 	pyrana.video (module)

 	PyranaError

R

 	

 	raw_packet() (in module pyrana.packet)

 	raw_pkt() (pyrana.packet.Packet method)

 	

 	read_frame() (pyrana.formats.Demuxer method)

 	ready (pyrana.audio.Decoder attribute)

 	

 	(pyrana.audio.Encoder attribute)

 	(pyrana.codec.CodecMixin attribute)

 	(pyrana.video.Decoder attribute)

 	(pyrana.video.Encoder attribute)

S

 	

 	sample_format (pyrana.audio.Samples attribute)

 	sample_rate (pyrana.audio.Samples attribute)

 	SampleFormat (class in pyrana.ffenums)

 	Samples (class in pyrana.audio)

 	samples() (pyrana.audio.Frame method)

 	seek_frame() (pyrana.formats.Demuxer method)

 	seek_ts() (pyrana.formats.Demuxer method)

 	SeekFlags (class in pyrana.formats)

 	

 	setup() (pyrana.audio.Decoder method)

 	

 	(pyrana.codec.CodecMixin method)

 	(pyrana.video.Decoder method)

 	(pyrana.video.Encoder method)

 	SetupError

 	size (pyrana.packet.Packet attribute)

 	stream() (pyrana.formats.Demuxer method)

 	stream_id (pyrana.packet.Packet attribute)

 	streams (pyrana.formats.Demuxer attribute)

 	SWSMode (class in pyrana.video)

T

 	

 	top_field_first (pyrana.video.Frame attribute)

U

 	

 	UnsupportedError

W

 	

 	width (pyrana.video.Image attribute)

 	wire() (pyrana.audio.Decoder static method)

 	

 	(pyrana.audio.Encoder static method)

 	(pyrana.video.Decoder static method)

 	(pyrana.video.Encoder static method)

 	wire_decoder() (in module pyrana.codec)

 	wire_encoder() (in module pyrana.codec)

 	

 	write_frame() (pyrana.formats.Muxer method)

 	write_header() (pyrana.formats.Muxer method)

 	write_trailer() (pyrana.formats.Muxer method)

 	WrongParameterError

 Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

pyrana-intro.html

 Navigation

 		
 index

 		
 modules |

 		pyrana 0.6 documentation »

 Pyrana is a pure-python package which provides easy, pythonic and
powerful handling of multimedia files.

		easy: pyrana does not submerge you with tons of options and details,
but is filled with sane defaults. pyrana aims to be multimedia
processing what
requests [http://docs.python-requests.org/en/latest/] is for http.

		pythonic: pyrana wants to play nice and work well with the other
well-established relevant python packages:
Pillow [https://pypi.python.org/pypi/Pillow],
pygame [http://pygame.org],
PySDL2 [http://pysdl2.readthedocs.org/en/latest/],
PyAudio [http://people.csail.mit.edu/hubert/pyaudio/],
numpy [http://www.numpy.org/] compatibility is coming soon.

		powerful: pyrana provides an independent API, but is built on the
great foundations provided by the powerful FFMpeg
libraries [http://ffmpeg.org].

pyrana is a modern, pure python package which is developed for python 3
and compatible with python 2.7, which takes great
advantage of CFFI [http://cffi.readthedocs.org/en/release-0.7/], so
the compatibility with pypy [http://pypy.org] is just one step away.

pyrana offers a minimum 100% unit-test and documentation coverage, and
put great emphasis on small, yet complete and workable examples. Last
but not least, pyrana is released under the very liberal ZLIB license.

More documentation about pyrana on this series of blog
posts [http://mojaves.github.io/category/pyrana.html]

 © Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pyrana 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

_static/up.png

_static/plus.png

codec.html

 Navigation

 		
 index

 		
 modules |

 		pyrana 0.6 documentation »

codec

Common code shared by audio and video codecs.
This module is not part of the pyrana public API.

		
class pyrana.codec.BaseDecoder(input_codec, params=None, delay_open=False)

		Decoder base class. Common both to audio and video decoders.

		
decode(packets)

		Decode data from a logical stream of packets, and returns when
the first next frame is available.
The input stream can be
- a materialized sequence of packets (list, tuple...)
- a generator (e.g. Demuxer.stream()).

		
decode_packet(packet)

		Generator method.
Decode a single packet (as in returned by a Demuxer) and extracts
all the frames encoded into it.
An encoded packet can legally contain more than one frame, altough
this is not so common.
This method deals with the [one packet -> many frames] scenario.
The internal underlying decoder does its own buffer, so you can
freely dispose the packet(s) fed into this method after it exited.
raises ProcessingError if decoding fails;
raises NeedFeedError if decoding partially succeeds, but more
data is needed to reconstruct a full frame.

		
flush()

		emits all frames that can be recostructed by the data
buffered into the Decoder, and empties such buffers.
Call it last, do not intermix with decode*() calls.
caution: more than one frame can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

		
classmethod from_cdata(ctx)

		builds a pyrana Decoder from (around) a (cffi-wrapped) libav*
decoder object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

		
open(ffh=None)

		opens the codec into the codec context.

		
class pyrana.codec.BaseEncoder(output_codec, params, delay_open=False)

		Encoder base class. Common both to audio and video encoders.

		
encode(frame)

		Encode a logical frame in one or possibly more)packets, and
return an iterable which will yield all the packets produced.

		
flush()

		emits all packets which may have been buffered by the Encoder
and empties such buffers. Call it last, do not intermix with
encode*() calls.
caution: more than one encoded frame (thus many packets)
can be buffered.
Raises NeedFeedError if all the internal buffers are empty.

		
classmethod from_cdata(ctx, params, codec=None)

		builds a pyrana Encoder from (around) a (cffi-wrapped) libav*
decoder object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

		
class pyrana.codec.BaseFrame

		Abstract Frame class. Provides bookkeeping and access
to attributes common to frames of all media types.
Do not use directly.

		
cdata

		Direct access to the internal C AVFrame object.

		
classmethod from_cdata(ppframe)

		builds a pyrana generic Base Frame from (around) a (cffi-wrapped)
libav* AVFrame object.
The libav object must be already initialized and ready to go.
WARNING: raw access. Use with care.

		
is_key

		Is this a key frame?

		
pts

		The Presentation TimeStamp of this Frame.

		
class pyrana.codec.CodecFlag

		wrapper for the (wannabe) enum in avcodec.h
CODEC_FLAG_*

		
class pyrana.codec.CodecFlag2

		wrapper for the (wannabe) enum in avcodec.h
CODEC_FLAG2_*

		
class pyrana.codec.CodecMixin(params=None)

		Mixin. Abstracts the common codec attributes:
parameters reference, read-only access, extradata
management.

		
extra_data

		bytearray-like, read-write

		
media_type

		the codec media type.

		
open(ffh=None)

		opens the codec into the codec context.

		
params

		the codec parameters.

		
ready

		is the codec readu to go?

		
setup()

		Dispach the given parameters to the internal
(FFmpeg) data structures.

		
class pyrana.codec.Payload

		Generic media-agnostic frame payload.

		
blob()

		returns the bytes() dump of the object.

		
pyrana.codec.bind_frame(*args, **kwds)

		allocates an AVFrame and cleans it up on exception.

		
pyrana.codec.find_encoder(output_codec, ffh=None)

		Finds a suitable encoder for the given output codec.
Raises SetupError if the codec isn’t supported.

		
pyrana.codec.make_codec(vcodec, acodec, stream_id, ctx, *args)

		builds the right decoder for a given stream
of an AVCodecContext.

		
pyrana.codec.make_fetcher(seq)

		Builds a callable which extracts, deletes from
the originating sequence-like (either materialized
or generating) and returns an item.

		
pyrana.codec.make_payload(cls, ffh, ppframe, parent)

		Setups the common fields of every multimedia payload object.

		
pyrana.codec.wire_decoder(dec, av_decode, new_frame, mtype)

		Injects the specific decoding hooks in a generic decoder.

		
pyrana.codec.wire_encoder(enc, av_encode, mtype)

		Injects the specific encoding hooks in a generic encoder.

 © Copyright 2014, Francesco Romani.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

