

 Navigation

 	
 index

 	
 next |

 	Transactional Celery for Pyramid 0.1.0 documentation

Welcome to Transactional Celery for Pyramid’s documentation!

Contents:

	Transactional Celery for Pyramid
	Features

	Limitations

	Usage

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History

	0.1.1 (2015-01-19)

	0.1.0 (2015-01-19)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

Transactional Celery for Pyramid

[image: https://badge.fury.io/py/pyramid_transactional_celery.png]
 [http://badge.fury.io/py/pyramid_transactional_celery][image: https://travis-ci.org/petrilli/pyramid_transactional_celery.png?branch=master]
 [https://travis-ci.org/petrilli/pyramid_transactional_celery][image: https://pypip.in/d/pyramid_transactional_celery/badge.png]
 [https://pypi.python.org/pypi/pyramid_transactional_celery]A transaction-aware Celery job setup. This is integrated with the Zope
transaction [https://pypi.python.org/pypi/transaction] package, which implements a full two-phase commit protocol.
While it is not designed for anything other than Pyramid, it also does not
use any component of Pyramid. It’s simply not tested anywhere else.

	Free software: BSD license

	Documentation: https://pyramid_transactional_celery.readthedocs.org.

Features

	Queues tasks into a thread-local when they are called either using delay
or apply_async.

	If the transaction is aborted, then the tasks will never be called.

	If the transaction is committed, the tasks will go through their normal
apply_async process and be queued for processing.

Limitations

Currently, the code is designed around Celery v3.1, and it is unknown whether
it will work with previous versions. I’m more than happy to integrate changes
that would make it work with other releases, but since I generally stay on
the latest release, it isn’t a priority for my own development.

Usage

Using the library is a relatively easy thing to do. First, you’ll need to
integrate Celery into your Pyramid application, for which I recommend using
pyramid_celery [https://pypi.python.org/pypi/pyramid_celery/]. Once that’s done, you simply need to start creating your
tasks. The big difference is for function-based tasks, you use a different
decorator:

from pyramid_transactional_celery import task_tm

@task_tm
def add(x, y):
 """Add two numbers together."""
 return x + y

That’s all there is to it. For class-based tasks, you simply need to
subclass TransactionalTask instead of Task:

from pyramid_transactional_celery import TransactionalTask

class SampleTask(TransactionalTask):
 """A sample task that is transactional."""
 def run(x, y):
 return x + y

That’s it. Bob’s your uncle.

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

Installation

At the command line:

$ easy_install pyramid_transactional_celery

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pyramid_transactional_celery
$ pip install pyramid_transactional_celery

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

Usage

To use Transactional Celery for Pyramid in a project:

import pyramid_transactional_celery

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/petrilli/pyramid_transactional_celery/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Transactional Celery for Pyramid could always use more documentation, whether as part of the
official Transactional Celery for Pyramid docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/petrilli/pyramid_transactional_celery/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyramid_transactional_celery for local development.

	Fork the pyramid_transactional_celery repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyramid_transactional_celery.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyramid_transactional_celery
$ cd pyramid_transactional_celery/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pyramid_transactional_celery tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/petrilli/pyramid_transactional_celery/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pyramid_transactional_celery

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

Credits

Development Lead

	Christopher Petrilli <petrilli@amber.org>

Contributors

None yet. Why not be the first?

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Transactional Celery for Pyramid 0.1.0 documentation

History

0.1.1 (2015-01-19)

	Removed an excess creation of a CeleryDataManager that was a left-over from
a previous approach. While this didn’t create a bug, it wasted memory.

0.1.0 (2015-01-19)

	Initial functionality, but more testing of edge cases is needed to ensure
that it works correctly in all cases, and with other versions of Celery.

	First release on PyPI.

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Transactional Celery for Pyramid 0.1.0 documentation

Index

 Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Transactional Celery for Pyramid 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Christopher Petrilli.
 Created using Sphinx 1.2.2.

_static/down.png

