
pyramid_sqlalchemy_sessions
Documentation

Release 0.1

Andrey Tretyakov

Sep 11, 2018

Contents:

1 Getting Started 1
1.1 Introduction . 1
1.2 Why would you (not) need this library . 1
1.3 Before you begin . 2
1.4 Quick Start . 3

2 Detailed features guide 5
2.1 Basic Session Usage . 5
2.2 Idle Timeout . 5
2.3 Runtime-configurable Idle Timeout . 6
2.4 Absolute Timeout . 6
2.5 Runtime-configurable Absolute Timeout . 6
2.6 Renewal Timeout . 6
2.7 Runtime-configurable Renewal Timeout . 7
2.8 Runtime-configurable cookie settings . 7
2.9 Userid . 7
2.10 CSRF . 7

3 Configuration guide 9
3.1 Overview . 9
3.2 Model configuration . 10
3.3 Working with settings . 10
3.4 Configuration settings reference . 11

4 DB maintenance 13

5 API Reference 15
5.1 Configuration . 15
5.2 SQL Alchemy ORM Classes (Mixins) . 16
5.3 Events . 16
5.4 Exceptions . 17

6 Glossary of terms 19

7 Indices and tables 21

Python Module Index 23

i

ii

CHAPTER 1

Getting Started

1.1 Introduction

pyramid_sqlalchemy_sessions is a Pyramid framework add-on library providing a session implementation
using SQLAlchemy as a storage backend.

Session data is stored in the database and is fully transactional. Session cookie only contains randomly generated
session ID required to refer the DB entry and is fully encrypted in AES-GCM mode using PyCryptodome library.

The library features are fully modularized, and you are only paying for what you are using.

The library aims to provide secure solution by default, and to use best security practices.

1.2 Why would you (not) need this library

You may need this library if:

• You need ability to store session data server-side, for security or any other reasons

• You need reliable session data storage. As we depend on SQLAlchemy, you can try to use any ACID-compatible
DB engine if it’s supported by SQLAlchemy.

• You want to store important data in the session. Valid usecases include things like: authentication data, online
store shopping cart, multi-step form wizard state, user preferences, etc.

• You want (or don’t mind) your session data to be transactional. The library will use same dbsession as your app
and will automatically join all transactions. So you can be sure that any ROLLBACK for your main data will not
leave inconsistent session data.

You may skip this library if:

• you prefer lightweight solutions even if it compromises security or features. In this case, cookie-based session
backend is a better pick.

• you want to store not very important information or even throw-away data

1

https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html
http://www.sqlalchemy.org/
https://www.pycryptodome.org
http://www.sqlalchemy.org/

pyramid_sqlalchemy_sessions Documentation, Release 0.1

• you require that session data should be always saved, regardless of transaction results, e.g. if you collect statis-
tics. This is a big No to this library.

• you don’t care about transactions, data reliability and don’t mind to lose session data from time to time. In this
case you could pick a memory-based session backend, like pyramid_redis_sessions. or pyramid_session_redis

Note: Without a server-side backend it’s impossible to securely terminate any session, as cookie-based solutions rely
on gentleman agreement to “forget” the cookie, which can’t be enforced.

1.3 Before you begin

The library will assume the following:

• You are using SQLAlchemy as a data storage backend. The library tries to use portable solutions as much as
possible, but the author does not have ability to test every engine out there, especially proprietary ones. So for a
start we can say that PostgreSQL and MySQL-family (MariaDB, etc) are supported. SQLite works but it’s main
purpose is to run test cases as generally it has poor support for concurrency and transactions.

• Your database and SQLALchemy engine are configured to work in SERIALIZABLE transaction isolation
mode. It’s the best mode to avoid any data anomalies and if the DB implements optimistic locking such as
MVCC, is also best for performance: avoid excessive locks but be ready to retry the transaction (basically what
pyramid_retry is doing).

• You are using pyramid_tm to manage your transactions. Transaction will span the whole request, without
any manual commits by the developer. It’s important as breaking this workflow could break the whole library.
Savepoints compatibility haven’t been tested yet.

• You don’t clear your session by running dbsession.expunge_all(), etc. As the library will share the
DB session with your app, both your main data and the library data need to coexist peacefully.

Note: It’s possible to use a separate session for the library, as generally the library can’t distinguish right
sessions from wrong ones, but such configuration haven’t been tested and is not supported at the moment.

• Since Pyramid 1.9, the library will assume you are using pyramid_retry to retry failed transactions. Retry-
ing is not required technically, but in most cases you would want to retry instead of showing 500 page to the
user, so it’s a welcomed feature.

• Your code expects that your session data won’t be always committed to the DB. For example, in Pyramid you
can raise or return HTTP exceptions. For an app the difference between the two is not always significant, but
for the library it is huge: raising a seemingly safe pyramid.httpexceptions.HTTPFound will always
ROLLBACK the transaction, even while this type of response is successful. Inside pyramid_tm there are some
tweaks for what is a success or not, but generally you want to avoid exceptions if you can, if you want your
session data to be committed at all.

Make sure your app configuration includes the following line:

tm.annotate_user = False

Annotations can cause problems with the library, as it may start a premature transaction before pyramid_tm has
begun.

Also using explicit transaction manager by setting tm.manager_hook as described in pyramid_tm docs is rec-
ommended.

2 Chapter 1. Getting Started

https://pypi.python.org/pypi/pyramid_redis_sessions
https://github.com/jvanasco/pyramid_session_redis
http://www.sqlalchemy.org/
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm
http://docs.sqlalchemy.org/en/latest/glossary.html#term-session
http://docs.sqlalchemy.org/en/latest/glossary.html#term-session
http://docs.sqlalchemy.org/en/latest/glossary.html#term-session
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm
https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm

pyramid_sqlalchemy_sessions Documentation, Release 0.1

1.4 Quick Start

Let’s configure a minimal session. We will assume you created a project using
pyramid-cookiecutter-alchemy cookiecutter, and your DB session is available as request.dbsession.

Create session.py file in your models subpackage and add the following lines:

from pyramid_sqlalchemy_sessions import BaseMixin
Using default declarative Base provided by the cookiecutter.
from .meta import Base

class Session(BaseMixin, Base):
__tablename__ = 'session'

Import your new model in the __init__.py of your models subpackage:

from .session import Session

and initialize the db using the script generated by the cookiecutter.

Then, start a python shell and run:

>>> from pyramid_sqlalchemy_sessions import generate_secret_key
>>> generate_secret_key()

Copy the generated key (without surrounding single quotes) to clipboard. Add the following settings to the
[app:main] section of your configuration file:

session.secret_key = paste your generated key here
session.model_class = yourproject.models.session.Session

And finally, include the library configuration in your project main __init__.py file:

def main(global_config, **settings):
config = Configurator(settings=settings)
config.include('pyramid_sqlalchemy_sessions')
config.scan()
return config.make_wsgi_app()

Now unless you have some conflict in your configuration or you did a mistake, the session should be working.

1.4. Quick Start 3

pyramid_sqlalchemy_sessions Documentation, Release 0.1

4 Chapter 1. Getting Started

CHAPTER 2

Detailed features guide

2.1 Basic Session Usage

You can always use basic session features dictated by the pyramid.interfaces.ISession API:

• store pickle-serializable data in the session dict

• store and fetch flash messages

Note: Unlike default cookie-based session implementations provided by the Pyramid, the library does not store flash
messages in the main session dict. So for example session.clear() will not clear the messages.

2.2 Idle Timeout

The feature implements OWASP “Idle Timeout” security policy. With this feature enabled, user’s session will expire
after idle_timeout seconds has passed since his last session activity.

For this feature to work properly, every request accessing session has to extend it, i.e. to update it’s expiration times-
tamp. This is one of the complaints related to DB-based session backends: traditional relational databases don’t like
too many writes because of locking, slow discs, replication, etc.

At minimum, any session write (when session data is put or changed inside the session) will extend it. But if the
code processing the request only reads the session, that’s when we can optimize the DB performance using dedicated
settings:

• extension_delay allows to lower the frequency of extensions, i.e. db writes. Session reads will not extend
the session sooner than extension_delay since last extension.

• extension_chance allows to randomize the extensions by session reads. It’s a percentage-based chance to
extend: every time an extension could happen (including the requirement to pass extension_delay if the
latter was enabled) a dice will be rolled to decide if the extension should happen.

5

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Idle_Timeout

pyramid_sqlalchemy_sessions Documentation, Release 0.1

This setting is experimental. It’s main purpose is to deal with very specific and not very common scenario:
concurrent requests using same session. Concurrent writes to same rows can cause performance issues because
of row locks and serialization conflicts. Note that this setting affects all requests, not only parallel ones, so it
has to be applied very carefully (if at all).

• extension_deadline allows to limit the randomness of the extension, when extension_chance is
lower than 100. Upon reaching the extension_deadline since last extension, next session read will always
extend, as if extension_chance was set to 100.

The most important side effect of these 3 settings is they affect error margin when calculating idle timeout: sessions
will be expired earlier than should have been. If, and to what extent it is acceptable is for you to decide.

2.3 Runtime-configurable Idle Timeout

Same as Idle Timeout, but allows to use different feature settings per session. See Working with settings for details.

2.4 Absolute Timeout

The feature implements OWASP “Absolute Timeout” security policy. With this feature enabled, user’s session will
expire after absolute_timeout seconds has passed since creation of the session, regardless of any session activity.

2.5 Runtime-configurable Absolute Timeout

Same as Absolute Timeout, but allows to use different feature settings per session. See Working with settings for
details.

2.6 Renewal Timeout

The feature implements OWASP “Renewal Timeout” security policy. With this feature enabled, user’s session will
periodically run renewal procedure. The procedure can be described as following:

1. Generate random renewal ID in addition to the main ID on session creation

2. Wait until renewal_timeout seconds has passed since creation (or last renewal).

3. Upon reaching the timeout, try to renew the session by generating a candidate renewal ID and sending it to the
user.

4. Wait until we receive acknowledgement - session cookie with the candidate ID. If there’s no acknowledgement,
try again after renewal_try_every seconds has passed since the last renewal try. Until acknowledgement
is received, the old renewal ID is valid.

5. When user sends a session cookie containing the candidate ID, delete old renewal ID and use the candidate
instead. At this moment renewal is finished.

6. After this, if an old (or any otherwise unknown) renewal id is received, invalidate the session.

The purpose of the renewal is to limit the time an attacker could use stolen session cookie (assuming the theft happened
once and the attacker can’t access newly issued cookies). Also this protocol allows to detect the fact of theft itself,
when both the attacker and the user try to use the same session. We may not know who is who, but we certainly know
that there are 2 versions of the same cookie and one of them is invalid.

6 Chapter 2. Detailed features guide

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Absolute_Timeout
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Renewal_Timeout

pyramid_sqlalchemy_sessions Documentation, Release 0.1

2.7 Runtime-configurable Renewal Timeout

Same as Renewal Timeout, but allows to use different feature settings per session. See Working with settings for details.

2.8 Runtime-configurable cookie settings

The feature allows to use different cookie settings per session. See Working with settings for details.

2.9 Userid

Pyramid framework provides pyramid.authentication.SessionAuthenticationPolicy that stores
user ID in the session. The problem is that the interaction between the policy and the session is not explicit: user
ID is treated like any other session dict key. While we could always treat the user ID key as a special guest, explicit
interaction is a much better idea:

Read
who = request.session.userid
Write
request.session.userid = 123
What could happen when you "forget" the user.
request.session.userid = None

The feature allows to explicitly associate sessions with users:

1. User ID is stored in a dedicated session table column. This brings some important advantages:

• you can query sessions by user. For example, you can invalidate all sessions of a user, or show the user his
“login sessions”.

• you can eager-load additional data the current view may require. Just configure some eager-loading rela-
tionships on your model and some of your views will only run a single query per request.

2. The library provides UserSessionAuthenticationPolicy that uses the explicit API of this feature.

Note: The library will not register UserSessionAuthenticationPolicy as the authentication policy auto-
matically. You have to do it yourself.

2.10 CSRF

The feature allows to store CSRF token in the dedicated session table column. You can work with it using session.
new_csrf_token() and session.get_csrf_token() methods.

Note: CSRF session API has been deprecated since Pyramid 1.9, but in case you need it, you can still use this optional
feature.

2.7. Runtime-configurable Renewal Timeout 7

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.SessionAuthenticationPolicy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view

pyramid_sqlalchemy_sessions Documentation, Release 0.1

8 Chapter 2. Detailed features guide

CHAPTER 3

Configuration guide

3.1 Overview

You can configure session factory in 2 steps:

1. Pick desired session features and add corresponding SQL Alchemy ORM Classes (Mixins) to the bases list of
your model.

The library will detect mixin combination and enable corresponding session features.

Note: It’s much better to exclude mixins of features that you are not planning to use:

• your database will save some resources

• the library will run a bit less code

• if you accidentally try to enable a timeout setting that depends on a missing mixin, you will get explicit
error at startup instead of a runtime error.

2. Apply session settings - globally, or per-session (if the setting is configurable at runtime). Global settings are
provided at startup, and per-session settings use global settings as defaults. In case global settings are not
provided, library defaults will be used as globals. (see Configuration settings reference)

Note: Timeout-related features have settings also deciding if the feature is enabled or not:

• idle_timeout

• absolute_timeout

• renewal_timeout

For these features, even if corresponding mixin is included, the feature will not work when the setting value is None.

9

pyramid_sqlalchemy_sessions Documentation, Release 0.1

3.2 Model configuration

In the following example we configure a session storing user ID, having non-runtime-configurable Absolute Timeout
and runtime-configurable Idle Timeout. The example also showcases:

• ability to customize model columns - we use UUID as User ID instead of the default integer.

• eager-loading of the user object.

from sqlalchemy import (
Column,
ForeignKey,

)
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import relationship
from pyramid_sqlalchemy_sessions import (

BaseMixin,
UseridMixin,
AbsoluteMixin,
ConfigIdleMixin,

)
Using default declarative Base provided by the cookiecutter.
from .meta import Base

class Session(
UseridMixin,
AbsoluteMixin,
ConfigIdleMixin,
BaseMixin,
Base,
):
__tablename__ = 'session'

userid = Column(UUID(as_uuid=True), ForeignKey('user.id'))
user instance loaded automatically when user is logged in.
user = relationship('User', backref='sessions', lazy='joined')

Note: Runtime-configurable features mixins subclass their non-configurable versions, so you don’t need to include
both.

Tip: Don’t forget to add DB indexes to your session table! The library doesn’t provide one, as it’s difficult to create
universal index solution for all mixin configurations and different DB engines.

3.3 Working with settings

Some settings only meant to be set once and forgotten, such as cookie_name or dbsession_name. But most
other settings are accessable and even configurable at runtime (if the corresponding session model mixin is enabled).

You can access current session settings using the settings object:

Read
idle_timeout = request.session.settings.idle_timeout

(continues on next page)

10 Chapter 3. Configuration guide

pyramid_sqlalchemy_sessions Documentation, Release 0.1

(continued from previous page)

Settings is also a dict-like object.
absolute_timeout = request.session.settings['absolute_timeout']

By default you can only read the settings. But when you enable a runtime-configurable feature, it’s settings can be
changed also:

Suppose configurable cookie settings feature is enabled.
You need to put settings in editable mode first.
request.session.settings.edit()
request.session.settings.cookie_max_age = 12345
When you are done, you need to save it.
Settings are always validated before saving.
request.session.settings.save()
You can use settings as context manager so that edit and save
is called automatically
with request.session.settings as s:

s['cookie_max_age'] = 54321

Note: Currently changing of settings works only for a new session, otherwise you will get a SettingsError
exception.

Note: The session implementation provided by the library is lazy, and will not persist clean session, so any changes
of settings for such sessions also won’t be persisted in the DB.

3.4 Configuration settings reference

3.4.1 Required settings

secret_key [str] This setting is required by default serializer when the library includeme() function runs.

Not meant to be accessible at runtime.

serializer [object] Controls what serializer to use. Only needed if you want to configure session factory manually
and to skip the includeme().

Not meant to be accessible at runtime.

model_class [class] Controls what model to use to store session data in the DB. Should be a dotted Python name
referencing the class (if provided by default way of configuration, e.g. through the ini file) or the class object
itself (may need to use this option if you are configuring the session factory manually).

Not meant to be accessible at runtime.

3.4.2 Optional settings (settings with library defaults)

dbsession_name [str] Session code will try to access SQLAlchemy session as an attribute of request using this name.

Not meant to be accessible at runtime.

Default: dbsession

3.4. Configuration settings reference 11

http://docs.sqlalchemy.org/en/latest/glossary.html#term-session
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-request

pyramid_sqlalchemy_sessions Documentation, Release 0.1

cookie_name [str] Name of the session cookie (will appear in Cookie and Set-Cookie headers). See WebOb
and RFC 6265 for details.

Not meant to be accessible at runtime.

Default: session

cookie_max_age [int or None] How long the browser will store the cookie. None is for non-persistent cookie. See
WebOb and RFC 6265 for details.

Default: None

cookie_path [str] Path of the session cookie. Can be a valid path only (starting with /). See WebOb and RFC 6265
for details.

Default: /

cookie_domain [str or None] Domain of the session cookie. See WebOb and RFC 6265 for details.

Default: None

cookie_secure [bool] Boolean flag instructing the browser to send cookie in HTTPS mode only. See WebOb and
RFC 6265 for details.

Default: False

cookie_httponly [bool] Boolean flag instructing the browser to prevent scripts accessing the cookie. See WebOb and
RFC 6265 for details.

Default: True

idle_timeout [int or None] Controls idle timeout value. See Idle Timeout for detailed explanation.

Default: None

absolute_timeout [int or None] Controls absolute timeout value. See Absolute Timeout for detailed explanation.

Default: None

renewal_timeout [int or None] Controls renewal timeout value. See Renewal Timeout for detailed explanation.

Default: None

renewal_try_every [int] When Renewal Timeout feature is working, the library will try to renew the session every
renewal_try_every seconds until success. See Renewal Timeout for detailed explanation.

Default: 5

extension_delay [int or None] When Idle Timeout feature is working, the library will not try hard to extend the session
more often than every extension_delay seconds. See Idle Timeout for detailed explanation.

Default: None

extension_chance [int] When Idle Timeout feature is working, the library will extend the session randomly, using
extension_chance chance (in percents). See Idle Timeout for detailed explanation.

Default: 100

extension_deadline [int] When Idle Timeout feature is working, and extension_chance < 100 the library will
extend the session after reaching the extension_deadline timeout, as if extension_chance was 100.
See Idle Timeout for detailed explanation.

Default: 1

12 Chapter 3. Configuration guide

https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html
https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html
https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html
https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html
https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html
https://docs.pylonsproject.org/projects/webob/en/stable/index.html
https://tools.ietf.org/html/rfc6265.html

CHAPTER 4

DB maintenance

At the moment the library does not have any DB migrations code. You are responsible for taking care of your DB
schema if your model changes.

The library will delete any expired or otherwise invalid session on the first encounter - when receiving the session
cookie. However, a session could expire without the server encountering it again and it’s a common situation with bots
as they don’t care about cookies at all. To deal with this problem the library has DB maintenance procedure that will
remove expired sessions from the DB. It’s provided in the form of pyramid_session_gc commandline script.
You can run it as the following:

pyramid_session_gc <config_uri>

The script will load config provided by config_uri argument and use it’s settings to access the DB.

You can run it as often as you want using a scheduler of your choice.

Note: Special care must be taken when switching global settings on and off without removing existing session rows
- it’s developer’s duty to process the data so that the library code is not confused. It’s recommended to delete existing
sessions if possible, when changing global settings, unless you really know what you are doing.

13

pyramid_sqlalchemy_sessions Documentation, Release 0.1

14 Chapter 4. DB maintenance

CHAPTER 5

API Reference

Note: All library API is importable from the root level.

5.1 Configuration

pyramid_sqlalchemy_sessions.config.factory_args_from_settings(settings,
maybe_dotted,
prefix=’session.’)

Convert configuration (ini) file settings to a defaults-applied dict suitable as get_session_factory()
function arguments. Only validates secret key and model class settings - full validation happens inside the
get_session_factory() function.

Arguments:

settings dictionary of Pyramid app settings (required)

maybe_dotted a callable to resolve dotted Python name to a full class (required)

prefix settings names prefix

Returns dictionary of settings, suitable as args for the get_session_factory() function.

Raises ConfigurationError if secret_key or model_class settings are invalid

pyramid_sqlalchemy_sessions.config.generate_secret_key(size=32)
Generate a random secret key as a string suitable for configuration files. Size is secret key size in bytes.

pyramid_sqlalchemy_sessions.session.get_session_factory(serializer, model_class,
**kw)

Return session factory constructed using settings provided by the arguments.

Arguments:

serializer a serializer object (required)

15

pyramid_sqlalchemy_sessions Documentation, Release 0.1

model_class session model object (required)

Other keyword arguments are optional (using library defaults when not provided). See Configuration settings
reference for details.

class pyramid_sqlalchemy_sessions.authn.UserSessionAuthenticationPolicy(callback=None,
de-
bug=False)

Authentication policy storing user ID in the session. Similar to pyramid.authentication.
SessionAuthenticationPolicy, with some differences:

• uses explicit Userid feature and will only work with session storage implementation from the
pyramid_sqlalchemy_sessions package

• doesn’t need a prefix argument, as the ID is stored explicitly in a dedicated DB column

5.2 SQL Alchemy ORM Classes (Mixins)

class pyramid_sqlalchemy_sessions.model.BaseMixin
Base session ORM class mixin. Subclass this mixin to get a minimal working session without any extra features.

class pyramid_sqlalchemy_sessions.model.FullyFeaturedSession
Class providing all features of all mixins together. Use it if you are really using all features, or if you don’t care
about running dead code or having unused columns in the DB.

class pyramid_sqlalchemy_sessions.model.UseridMixin
Mixin that enables Userid feature.

class pyramid_sqlalchemy_sessions.model.CSRFMixin
Mixin that enables CSRF feature.

class pyramid_sqlalchemy_sessions.model.IdleMixin
Mixin that enables Idle Timeout feature.

class pyramid_sqlalchemy_sessions.model.AbsoluteMixin
Mixin that enables Absolute Timeout feature.

class pyramid_sqlalchemy_sessions.model.RenewalMixin
Mixin that enables Renewal Timeout feature.

class pyramid_sqlalchemy_sessions.model.ConfigCookieMixin
Mixin that enables Runtime-configurable cookie settings feature.

class pyramid_sqlalchemy_sessions.model.ConfigIdleMixin
Mixin that enables Runtime-configurable Idle Timeout feature.

class pyramid_sqlalchemy_sessions.model.ConfigAbsoluteMixin
Mixin that enables Runtime-configurable Absolute Timeout feature.

class pyramid_sqlalchemy_sessions.model.ConfigRenewalMixin
Mixin that enables Runtime-configurable Renewal Timeout feature.

5.3 Events

class pyramid_sqlalchemy_sessions.events.InvalidCookieErrorEvent(request,
excep-
tion=None)

Pyramid event. Fired when InvalidCookieError is catched

16 Chapter 5. API Reference

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.SessionAuthenticationPolicy
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.SessionAuthenticationPolicy
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event

pyramid_sqlalchemy_sessions Documentation, Release 0.1

class pyramid_sqlalchemy_sessions.events.CookieCryptoErrorEvent(request, excep-
tion=None)

Pyramid event. Fired when CookieCryptoError is catched

class pyramid_sqlalchemy_sessions.events.RenewalViolationEvent(request, excep-
tion=None)

Pyramid event. Fired when received cookie contains invalid renewal id, which could be a sign of a stolen session
cookie or abnormal browser behavior such as using old cookies restored from a backup.

5.4 Exceptions

exception pyramid_sqlalchemy_sessions.exceptions.ConfigurationError
Raised when the session factory has been incorrectly configured.

exception pyramid_sqlalchemy_sessions.exceptions.CookieCryptoError
Raised by serializer when session cookie can’t be decrypted and/or authenticated. Could be a sign of a system
problem, user tampering with the cookie, or secret key mismatch.

The library will catch this exception to avoid breaking normal flow of the application. You can subscribe to
CookieCryptoErrorEvent event if you want to run additional procedures when it happens.

exception pyramid_sqlalchemy_sessions.exceptions.InconsistentDataError
Raised when inconsistent session data has been found in the DB, which could be a sign of incorrect DB manip-
ulations or misconfiguration.

exception pyramid_sqlalchemy_sessions.exceptions.InvalidCookieError
Raised by serializer when session cookie is invalid prior to decryption/deserializing. Could be a sign of a system
problem or user tampering with the cookie.

The library will catch this exception to avoid breaking normal flow of the application. You can subscribe to
InvalidCookieErrorEvent event if you want to run additional procedures when it happens.

exception pyramid_sqlalchemy_sessions.exceptions.SettingsError
Runtime settings errors not related to incorrect settings values. Incorrect settings values raise ValueError
instead.

5.4. Exceptions 17

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event
https://docs.python.org/3/library/exceptions.html#ValueError

pyramid_sqlalchemy_sessions Documentation, Release 0.1

18 Chapter 5. API Reference

CHAPTER 6

Glossary of terms

session In the context of web applications, a temporary storage of information related to the current user. In the
Pyramid framework it’s usually an object implementing pyramid.interfaces.ISession

session factory A callable returning session object. In the Pyramid framework it’s usually an object implementing
pyramid.interfaces.ISessionFactory

serializer An object with dumps and loads methods, packing and unpacking data to/from a cookie value.

model SQLAlchemy ORM model class, subclassing declarative Base and selected model mixins. In the context of
this library, a model is a class referenced by the model_class setting.

new session Session is new when it hasn’t been saved (i.e. committed) to the database yet. You can get a new session
when you start it, or after you invalidate a session.

session data The main purpose of session is to store useful data. Examples of such data in the library include:

• any session dict values

• flash messages

• user ID with Userid feature enabled

• CSRF token with CSRF feature enabled

• any internal data the libary may need to save (not exposed to the developer)

Note: Session settings are metadata, not the data.

lazy session Session is called lazy if it is not saved without any data. The library session is lazy: you need to store
session data to make it dirty and to save it in the database.

clean session Session not containing any session data.

dirty session A new session having uncommitted session data, or an existing session having any uncommitted data.

session extension A process of updating session idle expiration timestamp, or in other words, applying idle timeout
using the current time as a base. Happens once per request.

19

pyramid_sqlalchemy_sessions Documentation, Release 0.1

session renewal A procedure that includes rotating a separate randomly generated renewal ID, described in detail in
Renewal Timeout

20 Chapter 6. Glossary of terms

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

pyramid_sqlalchemy_sessions Documentation, Release 0.1

22 Chapter 7. Indices and tables

Python Module Index

p
pyramid_sqlalchemy_sessions.exceptions,

17
pyramid_sqlalchemy_sessions.model, 16

23

pyramid_sqlalchemy_sessions Documentation, Release 0.1

24 Python Module Index

Index

A
AbsoluteMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16

B
BaseMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16

C
clean session, 19
ConfigAbsoluteMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
ConfigCookieMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
ConfigIdleMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
ConfigRenewalMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
ConfigurationError, 17
CookieCryptoError, 17
CookieCryptoErrorEvent (class in pyra-

mid_sqlalchemy_sessions.events), 16
CSRFMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16

D
dirty session, 19

F
factory_args_from_settings() (in module pyra-

mid_sqlalchemy_sessions.config), 15
FullyFeaturedSession (class in pyra-

mid_sqlalchemy_sessions.model), 16

G
generate_secret_key() (in module pyra-

mid_sqlalchemy_sessions.config), 15
get_session_factory() (in module pyra-

mid_sqlalchemy_sessions.session), 15

I
IdleMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
InconsistentDataError, 17
InvalidCookieError, 17
InvalidCookieErrorEvent (class in pyra-

mid_sqlalchemy_sessions.events), 16

L
lazy session, 19

M
model, 19

N
new session, 19

P
pyramid_sqlalchemy_sessions.exceptions (module), 17
pyramid_sqlalchemy_sessions.model (module), 16

R
RenewalMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
RenewalViolationEvent (class in pyra-

mid_sqlalchemy_sessions.events), 17
RFC

RFC 6265, 12

S
serializer, 19
session, 19
session data, 19
session extension, 19
session factory, 19
session renewal, 20
SettingsError, 17

25

pyramid_sqlalchemy_sessions Documentation, Release 0.1

U
UseridMixin (class in pyra-

mid_sqlalchemy_sessions.model), 16
UserSessionAuthenticationPolicy (class in pyra-

mid_sqlalchemy_sessions.authn), 16

26 Index

	Getting Started
	Introduction
	Why would you (not) need this library
	Before you begin
	Quick Start

	Detailed features guide
	Basic Session Usage
	Idle Timeout
	Runtime-configurable Idle Timeout
	Absolute Timeout
	Runtime-configurable Absolute Timeout
	Renewal Timeout
	Runtime-configurable Renewal Timeout
	Runtime-configurable cookie settings
	Userid
	CSRF

	Configuration guide
	Overview
	Model configuration
	Working with settings
	Configuration settings reference

	DB maintenance
	API Reference
	Configuration
	SQL Alchemy ORM Classes (Mixins)
	Events
	Exceptions

	Glossary of terms
	Indices and tables
	Python Module Index

