

Welcome to pyramid_sqlalchemy_sessions’s documentation!

Contents:

	Getting Started
	Introduction

	Why would you (not) need this library

	Before you begin

	Quick Start

	Detailed features guide
	Basic Session Usage

	Idle Timeout

	Runtime-configurable Idle Timeout

	Absolute Timeout

	Runtime-configurable Absolute Timeout

	Renewal Timeout

	Runtime-configurable Renewal Timeout

	Runtime-configurable cookie settings

	Userid

	CSRF

	Configuration guide
	Overview

	Model configuration

	Working with settings

	Configuration settings reference

	DB maintenance

	API Reference
	Configuration

	SQL Alchemy ORM Classes (Mixins)

	Events

	Exceptions

	Glossary of terms

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Introduction

pyramid_sqlalchemy_sessions is a Pyramid framework [https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html]
add-on library providing a session implementation using
SQLAlchemy [http://www.sqlalchemy.org/] as a storage backend.

Session data is stored in the database and is fully transactional.
Session cookie only contains randomly generated session ID required to
refer the DB entry and is fully encrypted in AES-GCM mode using
PyCryptodome [https://www.pycryptodome.org] library.

The library features are fully modularized, and you are only paying for what
you are using.

The library aims to provide secure solution by default, and to use best
security practices.

Why would you (not) need this library

You may need this library if:

	You need ability to store session data server-side, for security
or any other reasons

	You need reliable session data storage.
As we depend on SQLAlchemy [http://www.sqlalchemy.org/], you can try to
use any ACID-compatible DB engine if it’s supported by SQLAlchemy.

	You want to store important data in the session.
Valid usecases include things like: authentication data,
online store shopping cart, multi-step form wizard state,
user preferences, etc.

	You want (or don’t mind) your session data to be transactional.
The library will use same dbsession as your app and will automatically join
all transactions. So you can be sure that any ROLLBACK for your main
data will not leave inconsistent session data.

You may skip this library if:

	you prefer lightweight solutions even if it compromises security or features.
In this case, cookie-based session backend is a better pick.

	you want to store not very important information or even throw-away data

	you require that session data should be always saved, regardless of
transaction results, e.g. if you collect statistics.
This is a big No to this library.

	you don’t care about transactions, data reliability and don’t mind to lose
session data from time to time.
In this case you could pick a memory-based session backend, like
pyramid_redis_sessions [https://pypi.python.org/pypi/pyramid_redis_sessions]. or pyramid_session_redis [https://github.com/jvanasco/pyramid_session_redis]

Note

Without a server-side backend it’s impossible to securely
terminate any session, as cookie-based solutions rely on gentleman
agreement to “forget” the cookie, which can’t be enforced.

Before you begin

The library will assume the following:

	You are using SQLAlchemy [http://www.sqlalchemy.org/] as a data
storage backend. The library tries to use portable solutions as much as
possible, but the author does not have ability to test every engine out
there, especially proprietary ones. So for a start we can say that
PostgreSQL and MySQL-family (MariaDB, etc) are supported. SQLite works but
it’s main purpose is to run test cases as generally it has poor
support for concurrency and transactions.

	Your database and SQLALchemy engine are configured to work in
SERIALIZABLE transaction isolation mode. It’s the best mode to avoid
any data anomalies and if the DB implements optimistic locking such as
MVCC [https://en.wikipedia.org/wiki/Multiversion_concurrency_control],
is also best for performance: avoid excessive locks but be ready to retry
the transaction (basically what pyramid_retry is doing).

	You are using pyramid_tm [https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm] to manage your transactions. Transaction
will span the whole request, without any manual commits by the developer.
It’s important as breaking this workflow could break the whole library.
Savepoints compatibility haven’t been tested yet.

	You don’t clear your session [http://docs.sqlalchemy.org/en/latest/glossary.html#term-session] by running
dbsession.expunge_all(), etc.
As the library will share the DB session [http://docs.sqlalchemy.org/en/latest/glossary.html#term-session] with your app,
both your main data and the library data need to coexist peacefully.

Note

It’s possible to use a separate session [http://docs.sqlalchemy.org/en/latest/glossary.html#term-session] for the library,
as generally the library can’t distinguish right sessions
from wrong ones, but such configuration haven’t been tested and
is not supported at the moment.

	Since Pyramid 1.9, the library will assume you are using
pyramid_retry to retry failed transactions.
Retrying is not required technically, but in most cases you
would want to retry instead of showing 500 page to the
user, so it’s a welcomed feature.

	Your code expects that your session data won’t be always committed
to the DB. For example, in Pyramid you can raise or
return HTTP exceptions. For an app the difference between the two
is not always significant, but for the library it is huge:
raising a seemingly safe pyramid.httpexceptions.HTTPFound [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound]
will always ROLLBACK the transaction, even while this type of response
is successful. Inside pyramid_tm [https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm] there are some tweaks for what is
a success or not, but generally you want to avoid exceptions if you can,
if you want your session data to be committed at all.

Make sure your app configuration includes the following line:

tm.annotate_user = False

Annotations can cause problems with the library, as it may start
a premature transaction before pyramid_tm has begun.

Also using explicit transaction manager by setting tm.manager_hook as
described in pyramid_tm [https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/api.html#module-pyramid_tm] docs is recommended.

Quick Start

Let’s configure a minimal session. We will assume you created a project
using pyramid-cookiecutter-alchemy cookiecutter, and your DB session
is available as request.dbsession.

Create session.py file in your models subpackage and add the
following lines:

from pyramid_sqlalchemy_sessions import BaseMixin
Using default declarative Base provided by the cookiecutter.
from .meta import Base

class Session(BaseMixin, Base):
 __tablename__ = 'session'

Import your new model in the __init__.py of your models subpackage:

from .session import Session

and initialize the db using the script generated by the cookiecutter.

Then, start a python shell and run:

>>> from pyramid_sqlalchemy_sessions import generate_secret_key
>>> generate_secret_key()

Copy the generated key (without surrounding single quotes) to clipboard.
Add the following settings to the [app:main] section of your
configuration file:

session.secret_key = paste your generated key here
session.model_class = yourproject.models.session.Session

And finally, include the library configuration in your project
main __init__.py file:

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_sqlalchemy_sessions')
 config.scan()
 return config.make_wsgi_app()

Now unless you have some conflict in your configuration or you did a mistake,
the session should be working.

Detailed features guide

Basic Session Usage

You can always use basic session features dictated by the
pyramid.interfaces.ISession API:

	store pickle-serializable data in the session dict

	store and fetch flash messages

Note

Unlike default cookie-based session implementations provided by the
Pyramid, the library does not store flash messages in the main session
dict.
So for example session.clear() will not clear the messages.

Idle Timeout

The feature implements OWASP “Idle Timeout” security policy [https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Idle_Timeout].
With this feature enabled, user’s session will expire after idle_timeout
seconds has passed since his last session activity.

For this feature to work properly, every request accessing session has to
extend it, i.e. to update it’s expiration timestamp. This is one of the
complaints related to DB-based session backends: traditional relational
databases don’t like too many writes because of locking, slow discs,
replication, etc.

At minimum, any session write (when session data is put or changed
inside the session) will extend it. But if the code processing the request
only reads the session, that’s when we can optimize the DB performance using
dedicated settings:

	extension_delay allows to lower the frequency of extensions, i.e. db
writes. Session reads will not extend the session sooner than
extension_delay since last extension.

	extension_chance allows to randomize the extensions by session reads.
It’s a percentage-based chance to extend: every time an extension could
happen (including the requirement to pass extension_delay if the
latter was enabled) a dice will be rolled to decide if the extension
should happen.

This setting is experimental. It’s main purpose is to deal with very
specific and not very common scenario: concurrent requests using same
session. Concurrent writes to same rows can cause performance
issues because of row locks and serialization conflicts.
Note that this setting affects all requests, not only parallel ones,
so it has to be applied very carefully (if at all).

	extension_deadline allows to limit the randomness of the extension,
when extension_chance is lower than 100. Upon reaching the
extension_deadline since last extension, next session read will
always extend, as if extension_chance was set to 100.

The most important side effect of these 3 settings is they affect
error margin when calculating idle timeout: sessions will be
expired earlier than should have been. If, and to what extent it is
acceptable is for you to decide.

Runtime-configurable Idle Timeout

Same as Idle Timeout, but allows to use different feature
settings per session. See Working with settings for details.

Absolute Timeout

The feature implements OWASP “Absolute Timeout” security policy [https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Absolute_Timeout].
With this feature enabled, user’s session will expire after
absolute_timeout seconds has passed since creation of the session,
regardless of any session activity.

Runtime-configurable Absolute Timeout

Same as Absolute Timeout, but allows to use different feature
settings per session. See Working with settings for details.

Renewal Timeout

The feature implements OWASP “Renewal Timeout” security policy [https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Renewal_Timeout].
With this feature enabled, user’s session will periodically run renewal
procedure. The procedure can be described as following:

	Generate random renewal ID in addition to the main ID on session creation

	Wait until renewal_timeout seconds has passed since creation
(or last renewal).

	Upon reaching the timeout, try to renew the session by generating a
candidate renewal ID and sending it to the user.

	Wait until we receive acknowledgement - session cookie with the candidate
ID. If there’s no acknowledgement, try again after renewal_try_every
seconds has passed since the last renewal try. Until acknowledgement is
received, the old renewal ID is valid.

	When user sends a session cookie containing the candidate ID, delete old
renewal ID and use the candidate instead. At this moment renewal is
finished.

	After this, if an old (or any otherwise unknown) renewal id is received,
invalidate the session.

The purpose of the renewal is to limit the time an attacker could use
stolen session cookie (assuming the theft happened once and the attacker
can’t access newly issued cookies).
Also this protocol allows to detect the fact of theft itself,
when both the attacker and the user try to use the same session. We may not
know who is who, but we certainly know that there are 2 versions of the
same cookie and one of them is invalid.

Runtime-configurable Renewal Timeout

Same as Renewal Timeout, but allows to use different feature
settings per session. See Working with settings for details.

Runtime-configurable cookie settings

The feature allows to use different cookie settings per session.
See Working with settings for details.

Userid

Pyramid framework provides
pyramid.authentication.SessionAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.SessionAuthenticationPolicy] that stores
user ID in the session. The problem is that the interaction
between the policy and the session is not explicit: user ID is treated like
any other session dict key. While we could always treat the user ID key as
a special guest, explicit interaction is a much better idea:

Read
who = request.session.userid
Write
request.session.userid = 123
What could happen when you "forget" the user.
request.session.userid = None

The feature allows to explicitly associate sessions with users:

	User ID is stored in a dedicated session table column. This brings some
important advantages:

	you can query sessions by user. For example, you can invalidate all
sessions of a user, or show the user his “login sessions”.

	you can eager-load additional data the current view [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view] may require.
Just configure some eager-loading relationships on your model and some
of your views will only run a single query per request.

	The library provides UserSessionAuthenticationPolicy that uses
the explicit API of this feature.

Note

The library will not register UserSessionAuthenticationPolicy
as the authentication policy automatically. You have to do it yourself.

CSRF

The feature allows to store CSRF token in the dedicated session table column.
You can work with it using session.new_csrf_token() and
session.get_csrf_token() methods.

Note

CSRF session API has been deprecated since Pyramid 1.9, but in case
you need it, you can still use this optional feature.

Configuration guide

Overview

You can configure session factory in 2 steps:

	Pick desired session features and add corresponding
SQL Alchemy ORM Classes (Mixins) to the bases list of your model.

The library will detect mixin combination and enable corresponding
session features.

Note

It’s much better to exclude mixins of features that you are
not planning to use:

	your database will save some resources

	the library will run a bit less code

	if you accidentally try to enable a timeout setting that
depends on a missing mixin, you will get explicit error
at startup instead of a runtime error.

	Apply session settings - globally, or per-session (if the setting is
configurable at runtime). Global settings are provided at startup, and
per-session settings use global settings as defaults. In case global
settings are not provided, library defaults will be used as globals.
(see Configuration settings reference)

Note

Timeout-related features have settings also deciding if the feature is
enabled or not:

	idle_timeout

	absolute_timeout

	renewal_timeout

For these features, even if corresponding mixin is included, the feature will
not work when the setting value is None.

Model configuration

In the following example we configure a session storing user ID, having
non-runtime-configurable Absolute Timeout and runtime-configurable
Idle Timeout. The example also showcases:

	ability to customize model columns - we use UUID as User ID instead
of the default integer.

	eager-loading of the user object.

from sqlalchemy import (
 Column,
 ForeignKey,
)
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import relationship
from pyramid_sqlalchemy_sessions import (
 BaseMixin,
 UseridMixin,
 AbsoluteMixin,
 ConfigIdleMixin,
)
Using default declarative Base provided by the cookiecutter.
from .meta import Base

class Session(
 UseridMixin,
 AbsoluteMixin,
 ConfigIdleMixin,
 BaseMixin,
 Base,
):
 __tablename__ = 'session'

 userid = Column(UUID(as_uuid=True), ForeignKey('user.id'))
 # user instance loaded automatically when user is logged in.
 user = relationship('User', backref='sessions', lazy='joined')

Note

Runtime-configurable features mixins subclass their non-configurable
versions, so you don’t need to include both.

Tip

Don’t forget to add DB indexes to your session table! The library doesn’t
provide one, as it’s difficult to create universal index solution for all
mixin configurations and different DB engines.

Working with settings

Some settings only meant to be set once and forgotten, such as
cookie_name or dbsession_name.
But most other settings are accessable and even configurable at runtime
(if the corresponding session model mixin is enabled).

You can access current session settings using the settings object:

Read
idle_timeout = request.session.settings.idle_timeout
Settings is also a dict-like object.
absolute_timeout = request.session.settings['absolute_timeout']

By default you can only read the settings. But when you enable a
runtime-configurable feature, it’s settings can be changed also:

Suppose configurable cookie settings feature is enabled.
You need to put settings in editable mode first.
request.session.settings.edit()
request.session.settings.cookie_max_age = 12345
When you are done, you need to save it.
Settings are always validated before saving.
request.session.settings.save()
You can use settings as context manager so that edit and save
is called automatically
with request.session.settings as s:
 s['cookie_max_age'] = 54321

Note

Currently changing of settings works only for a new session,
otherwise you will get a SettingsError exception.

Note

The session implementation provided by the library is
lazy, and will not persist clean session,
so any changes of settings for such sessions also won’t be persisted
in the DB.

Configuration settings reference

Required settings

	secret_keystr

	This setting is required by default serializer when the library
includeme() function runs.

Not meant to be accessible at runtime.

	serializerobject

	Controls what serializer to use. Only needed if you want to
configure session factory manually and to skip the
includeme().

Not meant to be accessible at runtime.

	model_classclass

	Controls what model to use to store session data in the DB. Should
be a dotted Python name referencing the class (if provided by default
way of configuration, e.g. through the ini file) or the class object
itself (may need to use this option if you are configuring the session
factory manually).

Not meant to be accessible at runtime.

Optional settings (settings with library defaults)

	dbsession_namestr

	Session code will try to access SQLAlchemy session [http://docs.sqlalchemy.org/en/latest/glossary.html#term-session]
as an attribute of request [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-request] using this name.

Not meant to be accessible at runtime.

Default: dbsession

	cookie_namestr

	Name of the session cookie (will appear in Cookie and Set-Cookie
headers).
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Not meant to be accessible at runtime.

Default: session

	cookie_max_ageint or None

	How long the browser will store the cookie. None is for
non-persistent cookie.
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Default: None

	cookie_pathstr

	Path of the session cookie. Can be a valid path only
(starting with /).
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Default: /

	cookie_domainstr or None

	Domain of the session cookie.
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Default: None

	cookie_securebool

	Boolean flag instructing the browser to send cookie in HTTPS mode only.
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Default: False

	cookie_httponlybool

	Boolean flag instructing the browser to prevent scripts accessing
the cookie.
See WebOb [https://docs.pylonsproject.org/projects/webob/en/stable/index.html] and RFC 6265 [https://tools.ietf.org/html/rfc6265.html] for details.

Default: True

	idle_timeoutint or None

	Controls idle timeout value.
See Idle Timeout for detailed explanation.

Default: None

	absolute_timeoutint or None

	Controls absolute timeout value.
See Absolute Timeout for detailed explanation.

Default: None

	renewal_timeoutint or None

	Controls renewal timeout value.
See Renewal Timeout for detailed explanation.

Default: None

	renewal_try_everyint

	When Renewal Timeout feature is working, the library will
try to renew the session every renewal_try_every seconds until
success.
See Renewal Timeout for detailed explanation.

Default: 5

	extension_delayint or None

	When Idle Timeout feature is working, the library will
not try hard to extend the session more often than every
extension_delay seconds.
See Idle Timeout for detailed explanation.

Default: None

	extension_chanceint

	When Idle Timeout feature is working, the library will
extend the session randomly, using extension_chance chance
(in percents).
See Idle Timeout for detailed explanation.

Default: 100

	extension_deadlineint

	When Idle Timeout feature is working, and
extension_chance < 100 the library will extend the session after
reaching the extension_deadline timeout, as if extension_chance
was 100.
See Idle Timeout for detailed explanation.

Default: 1

DB maintenance

At the moment the library does not have any DB migrations code. You are
responsible for taking care of your DB schema if your model changes.

The library will delete any expired or otherwise invalid session on the
first encounter - when receiving the session cookie. However, a session
could expire without the server encountering it again and it’s a common
situation with bots as they don’t care about cookies at all. To deal with
this problem the library has DB maintenance procedure that will remove
expired sessions from the DB. It’s provided in the form of
pyramid_session_gc commandline script.
You can run it as the following:

pyramid_session_gc <config_uri>

The script will load config provided by config_uri argument and use it’s
settings to access the DB.

You can run it as often as you want using a scheduler of your choice.

Note

Special care must be taken when switching global settings on and off
without removing existing session rows - it’s developer’s duty to
process the data so that the library code is not confused.
It’s recommended to delete existing sessions if possible,
when changing global settings, unless you really know what you are doing.

API Reference

Note

All library API is importable from the root level.

Configuration

	
pyramid_sqlalchemy_sessions.config.factory_args_from_settings(settings, maybe_dotted, prefix='session.')

	Convert configuration (ini) file settings to a defaults-applied dict
suitable as get_session_factory() function arguments.
Only validates secret key and model class settings -
full validation happens inside the get_session_factory() function.

Arguments:

	settings

	dictionary of Pyramid app settings (required)

	maybe_dotted

	a callable to resolve dotted Python name to a full class
(required)

	prefix

	settings names prefix

Returns dictionary of settings, suitable as args for the
get_session_factory() function.

Raises ConfigurationError if secret_key or model_class
settings are invalid

	
pyramid_sqlalchemy_sessions.config.generate_secret_key(size=32)

	Generate a random secret key as a string suitable for configuration
files. Size is secret key size in bytes.

	
pyramid_sqlalchemy_sessions.session.get_session_factory(serializer, model_class, **kw)

	Return session factory constructed using settings provided by
the arguments.

Arguments:

	serializer

	a serializer object (required)

	model_class

	session model object (required)

Other keyword arguments are optional (using library defaults when
not provided). See Configuration settings reference for details.

	
class pyramid_sqlalchemy_sessions.authn.UserSessionAuthenticationPolicy(callback=None, debug=False)

	Authentication policy storing user ID in the session.
Similar to pyramid.authentication.SessionAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.SessionAuthenticationPolicy],
with some differences:

	uses explicit Userid feature and will only work with
session storage implementation from the pyramid_sqlalchemy_sessions
package

	doesn’t need a prefix argument, as the ID is stored explicitly in a
dedicated DB column

SQL Alchemy ORM Classes (Mixins)

	
class pyramid_sqlalchemy_sessions.model.BaseMixin

	Base session ORM class mixin. Subclass this mixin to get a minimal
working session without any extra features.

	
class pyramid_sqlalchemy_sessions.model.FullyFeaturedSession

	Class providing all features of all mixins together. Use it if you
are really using all features, or if you don’t care about running dead
code or having unused columns in the DB.

	
class pyramid_sqlalchemy_sessions.model.UseridMixin

	Mixin that enables Userid feature.

	
class pyramid_sqlalchemy_sessions.model.CSRFMixin

	Mixin that enables CSRF feature.

	
class pyramid_sqlalchemy_sessions.model.IdleMixin

	Mixin that enables Idle Timeout feature.

	
class pyramid_sqlalchemy_sessions.model.AbsoluteMixin

	Mixin that enables Absolute Timeout feature.

	
class pyramid_sqlalchemy_sessions.model.RenewalMixin

	Mixin that enables Renewal Timeout feature.

	
class pyramid_sqlalchemy_sessions.model.ConfigCookieMixin

	Mixin that enables Runtime-configurable cookie settings feature.

	
class pyramid_sqlalchemy_sessions.model.ConfigIdleMixin

	Mixin that enables Runtime-configurable Idle Timeout feature.

	
class pyramid_sqlalchemy_sessions.model.ConfigAbsoluteMixin

	Mixin that enables Runtime-configurable Absolute Timeout feature.

	
class pyramid_sqlalchemy_sessions.model.ConfigRenewalMixin

	Mixin that enables Runtime-configurable Renewal Timeout feature.

Events

	
class pyramid_sqlalchemy_sessions.events.InvalidCookieErrorEvent(request, exception=None)

	Pyramid event [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event]. Fired when InvalidCookieError is catched

	
class pyramid_sqlalchemy_sessions.events.CookieCryptoErrorEvent(request, exception=None)

	Pyramid event [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event]. Fired when CookieCryptoError is catched

	
class pyramid_sqlalchemy_sessions.events.RenewalViolationEvent(request, exception=None)

	Pyramid event [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-event].
Fired when received cookie contains invalid renewal id, which could
be a sign of a stolen session cookie or abnormal browser behavior such
as using old cookies restored from a backup.

Exceptions

	
exception pyramid_sqlalchemy_sessions.exceptions.ConfigurationError

	Raised when the session factory has been incorrectly configured.

	
exception pyramid_sqlalchemy_sessions.exceptions.CookieCryptoError

	Raised by serializer when session cookie can’t be decrypted
and/or authenticated.
Could be a sign of a system problem, user tampering with the cookie,
or secret key mismatch.

The library will catch this exception to avoid breaking normal flow of
the application. You can subscribe to CookieCryptoErrorEvent
event if you want to run additional procedures when it happens.

	
exception pyramid_sqlalchemy_sessions.exceptions.InconsistentDataError

	Raised when inconsistent session data has been found in the DB, which
could be a sign of incorrect DB manipulations or misconfiguration.

	
exception pyramid_sqlalchemy_sessions.exceptions.InvalidCookieError

	Raised by serializer when session cookie is invalid prior to
decryption/deserializing.
Could be a sign of a system problem or user tampering with the cookie.

The library will catch this exception to avoid breaking normal flow of
the application. You can subscribe to InvalidCookieErrorEvent
event if you want to run additional procedures when it happens.

	
exception pyramid_sqlalchemy_sessions.exceptions.SettingsError

	Runtime settings errors not related to incorrect settings values.
Incorrect settings values raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] instead.

Glossary of terms

	session

	In the context of web applications, a temporary storage of information
related to the current user. In the Pyramid framework it’s usually an
object implementing pyramid.interfaces.ISession

	session factory

	A callable returning session object. In the Pyramid framework
it’s usually an object implementing
pyramid.interfaces.ISessionFactory

	serializer

	An object with dumps and loads methods, packing and unpacking
data to/from a cookie value.

	model

	SQLAlchemy ORM model class, subclassing declarative Base and selected
model mixins. In the context of this library, a model is a
class referenced by the model_class setting.

	new session

	Session is new when it hasn’t been saved (i.e. committed) to the
database yet. You can get a new session when you start it, or after
you invalidate a session.

	session data

	The main purpose of session is to store useful data. Examples of
such data in the library include:

	any session dict values

	flash messages

	user ID with Userid feature enabled

	CSRF token with CSRF feature enabled

	any internal data the libary may need to save (not exposed to the
developer)

Note

Session settings are metadata, not the data.

	lazy session

	Session is called lazy if it is not saved without any data.
The library session is lazy: you need to store session data
to make it dirty and to save it in the database.

	clean session

	Session not containing any session data.

	dirty session

	A new session having uncommitted session data, or
an existing session having any uncommitted data.

	session extension

	A process of updating session idle expiration timestamp, or in
other words, applying idle timeout using the current time as a base.
Happens once per request.

	session renewal

	A procedure that includes rotating a separate randomly generated
renewal ID, described in detail in Renewal Timeout

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyramid_sqlalchemy_sessions	

 	
 	
 pyramid_sqlalchemy_sessions.exceptions	

 	
 	
 pyramid_sqlalchemy_sessions.model	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U

A

 	
 	AbsoluteMixin (class in pyramid_sqlalchemy_sessions.model)

B

 	
 	BaseMixin (class in pyramid_sqlalchemy_sessions.model)

C

 	
 	clean session

 	ConfigAbsoluteMixin (class in pyramid_sqlalchemy_sessions.model)

 	ConfigCookieMixin (class in pyramid_sqlalchemy_sessions.model)

 	ConfigIdleMixin (class in pyramid_sqlalchemy_sessions.model)

 	
 	ConfigRenewalMixin (class in pyramid_sqlalchemy_sessions.model)

 	ConfigurationError

 	CookieCryptoError

 	CookieCryptoErrorEvent (class in pyramid_sqlalchemy_sessions.events)

 	CSRFMixin (class in pyramid_sqlalchemy_sessions.model)

D

 	
 	dirty session

F

 	
 	factory_args_from_settings() (in module pyramid_sqlalchemy_sessions.config)

 	
 	FullyFeaturedSession (class in pyramid_sqlalchemy_sessions.model)

G

 	
 	generate_secret_key() (in module pyramid_sqlalchemy_sessions.config)

 	
 	get_session_factory() (in module pyramid_sqlalchemy_sessions.session)

I

 	
 	IdleMixin (class in pyramid_sqlalchemy_sessions.model)

 	InconsistentDataError

 	
 	InvalidCookieError

 	InvalidCookieErrorEvent (class in pyramid_sqlalchemy_sessions.events)

L

 	
 	lazy session

M

 	
 	model

N

 	
 	new session

P

 	
 	pyramid_sqlalchemy_sessions.exceptions (module)

 	
 	pyramid_sqlalchemy_sessions.model (module)

R

 	
 	RenewalMixin (class in pyramid_sqlalchemy_sessions.model)

 	RenewalViolationEvent (class in pyramid_sqlalchemy_sessions.events)

 	
 	
 RFC

 	RFC 6265, [1], [2], [3], [4], [5]

S

 	
 	serializer

 	session

 	session data

 	
 	session extension

 	session factory

 	session renewal

 	SettingsError

U

 	
 	UseridMixin (class in pyramid_sqlalchemy_sessions.model)

 	
 	UserSessionAuthenticationPolicy (class in pyramid_sqlalchemy_sessions.authn)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to pyramid_sqlalchemy_sessions’s documentation!

 		
 Getting Started

 		
 Introduction

 		
 Why would you (not) need this library

 		
 Before you begin

 		
 Quick Start

 		
 Detailed features guide

 		
 Basic Session Usage

 		
 Idle Timeout

 		
 Runtime-configurable Idle Timeout

 		
 Absolute Timeout

 		
 Runtime-configurable Absolute Timeout

 		
 Renewal Timeout

 		
 Runtime-configurable Renewal Timeout

 		
 Runtime-configurable cookie settings

 		
 Userid

 		
 CSRF

 		
 Configuration guide

 		
 Overview

 		
 Model configuration

 		
 Working with settings

 		
 Configuration settings reference

 		
 Required settings

 		
 Optional settings (settings with library defaults)

 		
 DB maintenance

 		
 API Reference

 		
 Configuration

 		
 SQL Alchemy ORM Classes (Mixins)

 		
 Events

 		
 Exceptions

 		
 Glossary of terms

_static/up-pressed.png

_static/up.png

