

    
      
          
            
  
Welcome to the Docs for Forest and pyQuil!


Overview

pyQuil is part of the Rigetti Forest toolkit [http://forest.rigetti.com] for
quantum programming in the cloud. If you are
interested in obtaining an API key for the beta, please reach out by signing up
here [http://forest.rigetti.com]. We look forward to hearing from you.

pyQuil is an open source Python library developed at Rigetti Computing [http://rigetti.com]
that constructs programs for quantum computers. The source is hosted on
GitHub [https://github.com/rigetticomputing/pyquil]. More concretely,
pyQuil produces programs in the Quantum Instruction Language (Quil).
For a full description of Quil, please refer to the whitepaper
A Practical Quantum Instruction Set Architecture. 1  Quil is an opinionated quantum
instruction language — its basic belief is that in the near term quantum computers
will operate as coprocessors, working in concert with traditional CPUs. This means that
Quil is designed to execute on a Quantum Abstract Machine that has a shared classical/quantum
architecture at its core.

Quil programs can be executed on a cloud-based Quantum Virtual Machine (QVM). This is a
classical simulation of a quantum processor that can simulate various qubit operations.
The default access key allows you to run simulations of up to 26 qubits. These simulations
can be run through either synchronous API calls, or through an asynchronous job queue for
larger programs. More information about the QVM can be found in the The Quantum Virtual Machine (QVM).

In addition to the QVM, we offer the ability to run programs on our superconducting quantum processors,
or Quantum Processing Units (QPUs), at our lab in Berkeley, California. To request upgraded
access to our 19Q QPU, please fill out the request form [https://www.rigetti.com/qpu-request]
with a brief summary of what you hope to use it for. For more information on QPUs, check out
The Quantum Processing Unit (QPU).

If you are already familiar with quantum computing, then feel free to proceed to
Installation and Getting Started. Otherwise, take a look at our Introduction to Quantum Computing, where we use Quil
introduce the basics of quantum computing and the Quantum Abstract Machine on which it runs.
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Introduction to Quantum Computing

With every breakthrough in science there is the potential for new
technology. For over twenty years, researchers have done inspiring work
in quantum mechanics, transforming it from a theory for understanding
nature into a fundamentally new way to engineer computing technology.
This field, quantum computing, is beautifully interdisciplinary,
and impactful in two major ways:


	It reorients the relationship between physics and computer science.
Physics does not just place restrictions on what computers we can
design, it also grants new power and inspiration.


	It can simulate nature at its most fundamental level, allowing us to
solve deep problems in quantum chemistry, materials discovery, and more.




Quantum computing has come a long way, and in the next few years there
will be significant breakthroughs in the field. To get here, however,
we have needed to change our intuition for computation in many ways. As with
other paradigms — such as object-oriented programming, functional programming,
distributed programming, or any of the other marvelous ways of thinking that have
been expressed in code over the years — even the basic tenants of quantum computing
opens up vast new potential for computation.

However, unlike other paradigms, quantum computing goes further. It requires an extension
of classical probability theory. This extension, and the core of quantum
computing, can be formulated in terms of linear algebra. Therefore, we begin
our investigation into quantum computing with linear algebra and probability.


From Bit to Qubit


Probabilistic Bits as Vector Spaces

From an operational perspective, a bit is described by the results of
measurements performed on it. Let the possible results of measuring a bit (0
or 1) be represented by orthonormal basis vectors \(\vec{0}\) and
\(\vec{1}\). We will call these vectors outcomes. These outcomes
span a two-dimensional vector space that represents a probabilistic bit.
A probabilistic bit can be represented as a vector


\[\vec{v} = a\,\vec{0} + b\,\vec{1},\]

where \(a\) represents the probability of the bit being 0 and \(b\)
represents the probability of the bit being 1. This clearly also
requires that \(a+b=1\). In this picture the system (the
probabilistic bit) is a two-dimensional real vector space and a
state of a system is a particular vector in that vector space.

import numpy as np
import matplotlib.pyplot as plt

outcome_0 = np.array([1.0, 0.0])
outcome_1 = np.array([0.0, 1.0])
a = 0.75
b = 0.25

prob_bit = a*outcome_0 + b*outcome_1

X,Y = prob_bit
plt.figure()
ax = plt.gca()
ax.quiver(X,Y,angles='xy',scale_units='xy',scale=1)
ax.set_xlim([0,1])
ax.set_ylim([0,1])
plt.draw()
plt.show()





[image: _images/output_4_1.png]
Given some state vector, like the one plotted above, we can find the
probabilities associated with each outcome by projecting the vector onto
the basis outcomes. This gives us the following rule:


\[\begin{split}\operatorname{Pr}(0) = \vec{v}^T.\vec{0} = a \\ \operatorname{Pr}(1) = \vec{v}^T.\vec{1} = b,\end{split}\]

where Pr(0) and Pr(1) are the probabilities of the 0 and 1 outcomes
respectively.




Dirac Notation

Physicists have introduced a convenient notation for the vector transposes and dot
products we used in the previous example. This notation, called Dirac notation in honor
of the great theoretical physicist Paul Dirac, allows us to define


\[\begin{split}\vec{v} = |\,v\rangle \\ \vec{v}^T = \langle v\,| \\ \vec{u}^T.\vec{v} = \langle u\,|\,v \rangle.\end{split}\]

Thus, we can rewrite our “measurement rule” in this notation as


\[\begin{split}Pr(0) = \langle v\,|\,0 \rangle = a \\ Pr(1) = \langle v\,|\,1 \rangle = b.\end{split}\]

We will use this notation throughout the rest of this introduction.




Multiple Probabilistic Bits

This vector space interpretation of a single probabilistic bit can be
straightforwardly extended to multiple bits. Let us take two coins as an
example (labelled 0 and 1 instead of H and T since we are
programmers). Their states can be represented as


\[\begin{split} |\,u\rangle = \frac{1}{2}|\,0_u\rangle + \frac{1}{2}|\,1_u\rangle \\
|\,v\rangle = \frac{1}{2}|\,0_v\rangle + \frac{1}{2}|\,1_v\rangle,\end{split}\]

where \(1_u\) represents the 1 outcome on coin \(u\). The
combined system of the two coins has four possible outcomes \(\{
0_u0_v,\;0_u1_v,\;1_u0_v,\;1_u1_v \}\) that are the basis
states of a larger four-dimensional vector space. The rule for
constructing a combined state is to take the tensor product of
individual states, e.g.


\[|\,u\rangle\otimes|\,v\rangle = \frac{1}{4}|\,0_u0_v\rangle+\frac{1}{4}|\,0_u1_v\rangle+\frac{1}{4}|\,1_u0_v\rangle+\frac{1}{4}|\,1_u1_v\rangle.\]

Then, the combined space is simply the space spanned by the tensor products
of all pairs of basis vectors of the two smaller spaces.

We will talk more about these larger spaces in the quantum case, but it is
important to note that not all composite states can be written as tensor
products of sub-states. (Consider the state \(\frac{1}{2}|\,0_u0_v\rangle + \frac{1}{2}|\,1_u1_v\rangle\).) In general, the combined state for \(n\)
probabilistic bits is a vector of size \(2^n\) and is given by
\(\bigotimes_{i=0}^{n-1}|\,v_i\rangle\).




Qubits

Quantum mechanics rewrites these rules to some extent. A quantum bit, called a
qubit, is the quantum analog of a bit in that it has two outcomes when
it is measured. Similar to the previous section, a qubit can also be
represented in a vector space, but with complex coefficients instead of
real ones. A qubit system is a two-dimensional complex vector space,
and the state of a qubit is a complex vector in that space. Again we
will define a basis of outcomes \(\{|\,0\rangle,
|\,1\rangle\}\) and let a generic qubit state be written as


\[\alpha |\,0\rangle + \beta |\,1\rangle.\]

Since these coefficients can be imaginary, they cannot be simply
interpreted as probabilities of their associated outcomes. Instead we
rewrite the rule for outcomes in the following manner:


\[\begin{split}\operatorname{Pr}(0) = |\langle v\,|\,0 \rangle|^2 = |\alpha|^2 \\ \operatorname{Pr}(1) = |\langle v\,|\,1 \rangle|^2 = |\beta|^2,\end{split}\]

and as long as \(|\alpha|^2 + |\beta|^2 = 1\) we are able to
recover acceptable probabilities for outcomes based on our new complex
vector.

This switch to complex vectors means that rather than representing a
state vector in a plane, we instead to represent the vector on a
sphere (called the Bloch sphere in quantum mechanics literature).
From this perspective the quantum state corresponding to an
outcome of 0 is represented by:

[image: _images/bloch_1.png]
Notice that the two axes in the horizontal plane have been labeled \(x\)
and \(y\), implying that \(z\) is the vertical axis (not labeled). Physicists
use the convention that a qubit’s \(\{|\,0\rangle,
|\,1\rangle\}\) states are the
positive and negative unit vectors along the z axis, respectively. These
axes will be useful later in this document.

Multiple qubits are represented in precisely the same way, but taking
tensor products of the spaces and states. Thus \(n\) qubits have
\(2^n\) possible states.




An Important Distinction

An important distinction between the probabilistic case described above
and the quantum case is that probabilistic states may just mask out
ignorance. For example a coin is physically only 0 or 1 and the
probabilistic view merely represents our ignorance about which it actually
is. This is not the case in quantum mechanics. Assuming events cannot instantaneously
influence one another, the quantum states —
as far as we know — cannot mask any underlying state. This is what
people mean when they say that there is no local hidden variable theory [https://en.wikipedia.org/wiki/Bell's_theorem] for
quantum mechanics. These probabilistic quantum states are as real as it
gets: they don’t describe our knowledge of the quantum system, they
describe the physical reality of the system.




Some Code

Let us take a look at some code in pyQuil to see how these quantum states
play out. We will dive deeper into quantum operations and pyQuil in
the following sections. Note that in order to run these examples you will need
to install pyQuil and set up a connection to the Forest API.
Each of the code snippets below will be immediately followed by its output.

# Imports for pyQuil (ignore for now)
import numpy as np
from pyquil.quil import Program
from pyquil.api import QVMConnection
quantum_simulator = QVMConnection()

# pyQuil is based around operations (or gates) so we will start with the most
# basic one: the identity operation, called I. I takes one argument, the index
# of the qubit that it should be applied to.
from pyquil.gates import I

# Make a quantum program that allocates one qubit (qubit #0) and does nothing to it
p = Program(I(0))

# Quantum states are called wavefunctions for historical reasons.
# We can run this basic program on our connection to the simulator.
# This call will return the state of our qubits after we run program p.
# This api call returns a tuple, but we'll ignore the second value for now.
wavefunction = quantum_simulator.wavefunction(p)

# wavefunction is a Wavefunction object that stores a quantum state as a list of amplitudes
alpha, beta = wavefunction

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".format(abs(beta)**2))





Our qubit is in the state alpha=(1+0j) and beta=0j
The probability of measuring the qubit in outcome 0 is 1.0
The probability of measuring the qubit in outcome 1 is 0.0





Applying an operation to our qubit affects the probability of each outcome.

# We can import the qubit "flip" operation, called X, and see what it does.
# We will learn more about this operation in the next section.
from pyquil.gates import X

p = Program(X(0))

wavefunc = quantum_simulator.wavefunction(p)
alpha, beta = wavefunc

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".format(abs(beta)**2))





Our qubit is in the state alpha=0j and beta=(1+0j)
The probability of measuring the qubit in outcome 0 is 0.0
The probability of measuring the qubit in outcome 1 is 1.0





In this case we have flipped the probability of outcome 0 into the probability of outcome 1 for our qubit.
We can also investigate what happens to the state of multiple qubits. We’d expect the state of
multiple qubits to grow exponentially in size, as their vectors are tensored together.

# Multiple qubits also produce the expected scaling of the state.
p = Program(I(0), I(1))
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program(I(0), I(1), I(2), I(3))
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program()
for x in range(10):
    p += I(x)
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes)  )





The quantum state is of dimension: 4
The quantum state is of dimension: 16
The quantum state is of dimension: 1024





Let’s look at the actual value for the state of two qubits combined. The
resulting dictionary of this method contains outcomes as keys and the probabilities of
those outcomes as values.

# wavefunction(Program) returns a coefficient array that corresponds to outcomes in the following order
wavefunction = quantum_simulator.wavefunction(Program(I(0), I(1)))
print(wavefunction.get_outcome_probs())





{'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}










Qubit Operations

In the previous section we introduced our first two operations: the I
(or identity) operation and the X operation. In this section we will get into some
more details on what these operations are.

Quantum states are complex vectors on the Bloch sphere, and quantum operations are matrices with two properties:


	They are reversible.


	When applied to a state vector on the Bloch sphere, the resulting vector
is also on the Bloch sphere.




Matrices that satisfy these two properties are called unitary matrices. Applying an operation to a quantum state is the same as multiplying a vector by one of these matrices. Such an operation is called a gate.

Since individual qubits are two-dimensional vectors, operations on
individual qubits are 2x2 matrices. The identity matrix leaves the state vector unchanged:


\[\begin{split}I = \left(\begin{matrix}
1 & 0\\
0 & 1
\end{matrix}\right)\end{split}\]

so the program that applies this operation to the zero state is just


\[\begin{split} I\,|\,0\rangle = \left(\begin{matrix}
1 & 0\\
0 & 1
\end{matrix}\right)\left(\begin{matrix}
1 \\
0
\end{matrix}\right) = \left(\begin{matrix}
1 \\
0
\end{matrix}\right) = |\,0\rangle\end{split}\]

p = Program(I(0))
print(quantum_simulator.wavefunction(p))





(1+0j)|0>






Pauli Operators

Let’s revisit the X gate introduced above. It is one of three important single-qubit gates,
called the Pauli operators:


\[\begin{split}X = \left(\begin{matrix}
0 & 1\\
1 & 0
\end{matrix}\right)
\qquad
Y = \left(\begin{matrix}
0 & -i\\
i & 0
\end{matrix}\right)
\qquad
Z = \left(\begin{matrix}
1 & 0\\
0 & -1
\end{matrix}\right)\end{split}\]

from pyquil.gates import X, Y, Z

p = Program(X(0))
wavefunction = quantum_simulator.wavefunction(p)
print("X|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This looks like a bit flip.\n")

p = Program(Y(0))
wavefunction = quantum_simulator.wavefunction(p)
print("Y|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This also looks like a bit flip.\n")

p = Program(Z(0))
wavefunction = quantum_simulator.wavefunction(p)
print("Z|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This state looks unchanged.")





X|0> =  (1+0j)|1>
The outcome probabilities are {'1': 1.0, '0': 0.0}
This looks like a bit flip.

Y|0> =  1j|1>
The outcome probabilities are {'1': 1.0, '0': 0.0}
This also looks like a bit flip.

Z|0> =  (1+0j)|0>
The outcome probabilities are {'1': 0.0, '0': 1.0}
This state looks unchanged.





The Pauli matrices have a visual interpretation: they perform 180-degree rotations of
qubit state vectors on the Bloch sphere. They operate about their respective axes
as shown in the Bloch sphere depicted above. For example, the X gate performs a 180-degree
rotation about the \(x\) axis. This explains the results of our code above: for a state vector
initially in the +\(z\) direction, both X and Y gates will rotate it to -\(z\),
and the Z gate will leave it unchanged.

However, notice that while the X and Y gates produce the same outcome probabilities, they
actually produce different states. These states are not distinguished if they are measured
immediately, but they produce different results in larger programs.

Quantum programs are built by applying successive gate operations:

# Composing qubit operations is the same as multiplying matrices sequentially
p = Program(X(0), Y(0), Z(0))
wavefunction = quantum_simulator.wavefunction(p)

print("ZYX|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())





ZYX|0> =  [ 0.-1.j  0.+0.j]
With outcome probabilities
{'0': 1.0, '1': 0.0}








Multi-Qubit Operations

Operations can also be applied to composite states of multiple qubits.
One common example is the controlled-NOT or CNOT gate that works on two
qubits. Its matrix form is:


\[\begin{split}CNOT = \left(\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{matrix}\right)\end{split}\]

Let’s take a look at how we could use a CNOT gate in pyQuil.

from pyquil.gates import CNOT

p = Program(CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|00> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(0), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(1), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|10> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(0), X(1), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|11> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())





CNOT|00> =  (1+0j)|00>
With outcome probabilities
 {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}

CNOT|01> =  (1+0j)|11>
With outcome probabilities
 {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}

CNOT|10> =  (1+0j)|10>
With outcome probabilities
 {'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}

CNOT|11> =  (1+0j)|01>
With outcome probabilities
 {'00': 0.0, '01': 1.0, '10': 0.0, '11': 0.0}





The CNOT gate does what its name implies: the state of the second qubit is flipped
(negated) if and only if the state of the first qubit is 1 (true).

Another two-qubit gate example is the SWAP gate, which swaps the \( |01\rangle \)
and \(|10\rangle \) states:


\[\begin{split}SWAP = \left(\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix}\right)\end{split}\]

from pyquil.gates import SWAP
p = Program(X(0), SWAP(0,1))
wavefunction = quantum_simulator.wavefunction(p)

print("SWAP|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())





SWAP|01> =  (1+0j)|10>
With outcome probabilities
 {'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}





In summary, quantum computing operations are composed of a series of
complex matrices applied to complex vectors. These matrices must be unitary (meaning that
their complex conjugate transpose is equal to their inverse) because the overall probability of
all outcomes must always sum to one.






The Quantum Abstract Machine

We now have enough background to introduce the programming model
that underlies Quil. This is a hybrid quantum-classical model in which
\(N\) qubits interact with \(M\) classical bits:

[image: _images/qam.png]
These qubits and classical bits come with a defined gate set, e.g. which
gate operations can be applied to which qubits. Different kinds of
quantum computing hardware place different limitations on what gates
can be applied, and the fixed gate set represents these limitations.

Full details on the Quantum Abstract Machine and Quil can be found in the
Quil whitepaper [https://arxiv.org/abs/1608.03355].

The next section on measurements will describe the interaction between
the classical and quantum parts of a Quantum Abstract Machine (QAM).


Qubit Measurements

Measurements have two effects:


	They project the state vector onto one of the basic outcomes


	(optional) They store the outcome
of the measurement in a classical bit.




Here’s a simple example:

# Create a program that stores the outcome of measuring qubit #0 into classical register [0]
classical_register_index = 0
p = Program(I(0)).measure(0, classical_register_index)





Up until this point we have used the quantum simulator to cheat a little bit — we have
actually looked at the wavefunction that comes back. However, on real
quantum hardware, we are unable to directly look at the wavefunction.
Instead we only have access to the classical bits that are affected by
measurements. This functionality is emulated by the run command.

# Choose which classical registers to look in at the end of the computation
classical_regs = [0, 1]
print(quantum_simulator.run(p, classical_regs))





[[0, 0]]





We see that both registers are zero. However, if we had flipped the
qubit before measurement then we obtain:

classical_register_index = 0
p = Program(X(0)) # Flip the qubit
p.measure(0, classical_register_index) # Measure the qubit

classical_regs = [0, 1]
print(quantum_simulator.run(p, classical_regs))





[[1, 0]]





These measurements are deterministic, e.g. if we make them multiple
times then we always get the same outcome:

classical_register_index = 0
p = Program(X(0)) # Flip the qubit
p.measure(0, classical_register_index) # Measure the qubit

classical_regs = [0]
trials = 10
print(quantum_simulator.run(p, classical_regs, trials))





[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]








Classical/Quantum Interaction

However this is not the case in general — measurements can affect the quantum
state as well. In fact, measurements act like projections onto
the outcome basis states. To show how this works, we first introduce a new single-qubit gate,
the Hadamard gate. The matrix form of the Hadamard gate is:


\[\begin{split}H = \frac{1}{\sqrt{2}}\left(\begin{matrix}
1 & 1\\
1 & -1
\end{matrix}\right)\end{split}\]

The following pyQuil code shows how we can use the Hadamard gate:

from pyquil.gates import H

# The Hadamard produces what is called a superposition state
coin_program = Program(H(0))
wavefunction = quantum_simulator.wavefunction(coin_program)

print("H|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())





H|0> =  (0.7071067812+0j)|0> + (0.7071067812+0j)|1>
With outcome probabilities
{'0': 0.49999999999999989, '1': 0.49999999999999989}





A qubit in this state will be measured half of the time in the \( |0\rangle \) state,
and half of the time in the \( |1\rangle \) state. In a sense, this qubit truly is a
random variable representing a
coin. In fact, there are many wavefunctions that will give this same operational
outcome. There is a continuous family of states of the form


\[\frac{1}{\sqrt{2}}\left(|\,0\rangle + e^{i\theta}|\,1\rangle\right)\]

that represent the outcomes of an unbiased coin.  Being able to work with
all of these different new states is part of what gives quantum computing
extra power over regular bits.

# Introduce measurement
classical_reg = 0
coin_program = Program(H(0)).measure(0, classical_reg)
trials = 10

# We see probabilistic results of about half 1's and half 0's
print(quantum_simulator.run(coin_program, [0], trials))





[[0], [1], [1], [0], [1], [0], [0], [1], [0], [0]]





pyQuil allows us to look at the wavefunction after a measurement as well:

classical_reg = 0
coin_program = Program(H(0))
print("Before measurement: H|0> = ", quantum_simulator.wavefunction(coin_program))

coin_program.measure(0, classical_reg)
for x in range(5):
    print("After measurement: ", quantum_simulator.wavefunction(coin_program))





Before measurement: H|0> =  [ 0.70710678+0.j  0.70710678+0.j]

After measurement:  (1+0j)|1>
After measurement:  (1+0j)|0>
After measurement:  (1+0j)|0>
After measurement:  (1+0j)|1>
After measurement:  (1+0j)|1>





We can clearly see that measurement has an effect on the quantum state
independent of what is stored classically. We begin in a state that has
a 50-50 probability of being \( |0\rangle \) or \( |1\rangle \).
After measurement, the state changes into being entirely in \( |0\rangle \)
or entirely in \( |1\rangle \) according to which outcome was
obtained. This is the phenomenon referred to as the collapse of the wavefunction.
Mathematically, the wavefunction is being projected onto the vector of
the obtained outcome and subsequently rescaled to unit norm.

# This happens with bigger systems too
classical_reg = 0

# This program prepares something called a Bell state (a special kind of "entangled state")
bell_program = Program(H(0), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(bell_program)
print("Before measurement: Bell state = ", wavefunction)

bell_program.measure(0, classical_reg)
for x in range(5):
    wavefunction = quantum_simulator.wavefunction(bell_program)
    print("After measurement: ", wavefunction.get_outcome_probs())





Before measurement: Bell state =  (0.7071067812+0j)|00> + (0.7071067812+0j)|11>

After measurement:  {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement:  {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement:  {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement:  {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement:  {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}





The above program prepares entanglement because, even though there are
random outcomes, after every measurement both qubits are in the same state. They
are either both \( |0\rangle \) or both \( |1\rangle \). This special kind of
correlation is part of what makes quantum mechanics so unique and powerful.




Classical Control

There are also ways of introducing classical control of quantum
programs. For example, we can use the state of classical bits to determine what
quantum operations to run.

true_branch = Program(X(7)) # if branch
false_branch = Program(I(7)) # else branch

# Branch on classical reg [1]
p = Program(X(0)).measure(0, 1).if_then(1, true_branch, false_branch)

# Measure qubit #7 into classical register [7]
p.measure(7, 7)

# Run and check register [7]
print(quantum_simulator.run(p, [7]))





[[1]]





A [1] here means that qubit 7 was indeed flipped.

[image: _images/branch.png]



Example: The Probabilistic Halting Problem

A fun example is to create a program that has an exponentially
increasing chance of halting, but that may run forever!

inside_loop = Program(H(0)).measure(0, 1)

p = Program().inst(X(0)).while_do(1, inside_loop)

# Run and check register [1]
print(quantum_simulator.run(p, [1]))





[[0]]





[image: _images/loop.png]





Next Steps

We hope that you have enjoyed your whirlwind tour of quantum computing.
You are now ready to check out the Installation and Getting Started guide!

If you would like to learn more, Nielsen and Chuang’s
Quantum Computation and Quantum Information is a particularly excellent resource for
newcomers to the field.

If you’re interested in learning about the software behind quantum computing, take a look
at our blog posts on The Quantum Software
Challenge [https://medium.com/@rigetticomputing/the-quantum-software-challenge-1a86eec1ce47].







          

      

      

    

  

    
      
          
            
  
Installation and Getting Started

Make sure you have a current version of Python installed on your computer. We recommend
installing the Anaconda Python distribution [https://www.anaconda.com/download/].

Then, install pyQuil with:

conda install -c rigetti pyquil






Note

PyQuil works on both Python 2 and 3. However, Rigetti strongly recommends
using Python 3 if possible. Future feature developments in PyQuil may support
Python 3 only.




Note

We also support installation via pip with pip install pyquil




Connecting to Rigetti Forest

pyQuil can be used to build and manipulate Quil programs without restriction.
However, to run programs (e.g., to get wavefunctions, get multishot experiment data),
you will need an API key for Rigetti Forest. This will allow you to run your programs
on the Rigetti QVM or QPU.

Sign up here [http://forest.rigetti.com] to get a Forest API key, it’s free
and only takes a few seconds. We also highly recommend that you join our
public slack channel [http://slack.rigetti.com] where you can
connect with other users and Rigetti members for support.

Run the following command to automatically set up the config. This will prompt you for
the required information (URL, key, and user id). It will then create a file in the
proper location (the user’s root directory):

pyquil-config-setup





If the setup completed successfully then you can skip to the next section.

You can also create the configuration file manually if you’d like and place
it at ~/.pyquil_config. The configuration file is in INI format and should
contain all the information required to connect to Forest:

[Rigetti Forest]
key: <Rigetti Forest API key>
user_id: <Rigetti User ID>





Alternatively, you can place the file at your own chosen location and then set
the PYQUIL_CONFIG environment variable to the path of the file.


Note

You may specify an absolute path or use the ~ to indicate your home directory.
On Linux, this points to /users/username.
On Mac, this points to /Users/Username.
On Windows, this points to C:\Users\Username




Note

Windows users may find it easier to name the file pyquil.ini and open it using notepad.
Then, set the PYQUIL_CONFIG environment variable by opening up a command prompt and
running: setenv PYQUIL_CONFIG=C:\Users\Username\pyquil.ini



As a last resort, connection information can be provided via environment variables.

export QVM_API_KEY=<Rigetti Forest API key>
export QVM_USER_ID=<Rigetti User ID>





If you are still seeing errors or warnings then file a bug using
Github Issues [https://github.com/rigetticomputing/pyquil/issues].




Getting Started

This toolkit provides some simple libraries for writing quantum
programs.

from pyquil.quil import Program
from pyquil.api import QVMConnection
from pyquil.gates import CNOT, H

qvm = QVMConnection()
p = Program(H(0), CNOT(0, 1))

wf = qvm.wavefunction(p)
print(wf)





(0.7071067812+0j)|00> + (0.7071067812+0j)|11>





It comes with a few parts:


	Quil: The Quantum Instruction Language standard. Instructions
written in Quil can be executed on any implementation of a quantum
abstract machine, such as the quantum virtual machine (QVM), or on a
real quantum processing unit (QPU). More details regarding Quil can be
found in the whitepaper [https://arxiv.org/abs/1608.03355].


	pyQuil: A Python library to help write and run Quil code and
quantum programs.


	QVM: A Quantum Virtual Machine, which is an implementation of the
quantum abstract machine on classical hardware. The QVM lets you use a
regular computer to simulate a small quantum computer. You can access
the Rigetti QVM running in the cloud with your API key.
Sign up here [http://forest.rigetti.com] to get your key.


	QPU: pyQuil also includes some a special connection which lets you run experiments
on Rigetti’s prototype superconducting quantum processors over the cloud.


	Quilc: In addition to running on the QVM or the QPU, users can directly use
the Quil compiler, to investigate how arbitrary quantum programs can be compiled
to target specific physical instruction set architectures (ISAs).







Your First Quantum Program

pyQuil is a Python library that helps you write programs in the Quantum Instruction Language (Quil).
It also ships with a simple script examples/run_quil.py that runs Quil code directly. You can
test your connection to Forest using this script by executing the following on your command line

cd examples/
python run_quil.py hello_world.quil





You should see the following output array [[1, 0, 0, 0, 0, 0, 0, 0]].
This indicates that you have successfully interacted with our API.

You can continue to write more Quil code in files and run them using the run_quil.py script.
The following sections describe how to use the pyQuil library directly to build quantum programs in
Python.







          

      

      

    

  

    
      
          
            
  
The Basics: Programs and Gates

Quantum programs are written in Forest using the Program object from the quil module.

from pyquil.quil import Program
p = Program()





Programs are then constructed from quantum gates, which can be found in the gates module. We can
add quantum gates to programs in numerous ways, including using the .inst(...) method. We use
the .measure(...) method to measure qubits into classical registers:

from pyquil.gates import X
p.inst(X(0)).measure(0, 0)





<pyquil.quil.Program at 0x101d45a90>





This program simply applies the \(X\)-gate to the zeroth qubit,
measures that qubit, and stores the measurement result in the zeroth
classical register. We can look at the Quil code that makes up this
program simply by printing it.

print(p)





X 0
MEASURE 0 [0]





Most importantly, of course, we can see what happens if we run this
program on the Quantum Virtual Machine, or QVM:

from pyquil.api import QVMConnection
qvm = QVMConnection()

print(qvm.run(p, [0]))





Congratulations! You just ran a program on the QVM. The returned value should be:

[[1]]





For more information on what the above result means, and on executing quantum programs on the QVM in
general, see The Quantum Virtual Machine (QVM). Feel free to skip ahead and read about executing programs on the QVM
(and the QPU for that matter), but don’t forget to come back. The remainder of this section of the
docs will be dedicated to constructing programs in detail, an essential part of becoming fluent in
quantum programming.


Some Program Construction Features

Multiple instructions can be applied at once or chained together. The
following are all valid programs:

print("Multiple inst arguments with final measurement:")
print(Program().inst(X(0), Y(1), Z(0)).measure(0, 1))

print("Chained inst with explicit MEASURE instruction:")
print(Program().inst(X(0)).inst(Y(1)).measure(0, 1).inst(MEASURE(1, 2)))

print("A mix of chained inst and measures:")
print(Program().inst(X(0)).measure(0, 1).inst(Y(1), X(0)).measure(0, 0))

print("A composition of two programs:")
print(Program(X(0)) + Program(Y(0)))





Multiple inst arguments with final measurement:
X 0
Y 1
Z 0
MEASURE 0 [1]

Chained inst with explicit MEASURE instruction:
X 0
Y 1
MEASURE 0 [1]
MEASURE 1 [2]

A mix of chained inst and measures:
X 0
MEASURE 0 [1]
Y 1
X 0
MEASURE 0 [0]

A composition of two programs:
X 0
Y 0








Fixing a Mistaken Instruction

If an instruction was appended to a program incorrectly, one can pop it
off.

p = Program().inst(X(0))
p.inst(Y(1))
print("Oops! We have added Y 1 by accident:")
print(p)

print("We can fix by popping:")
p.pop()
print(p)

print("And then add it back:")
p += Program(Y(1))
print(p)





Oops! We have added Y 1 by accident:
X 0
Y 1

We can fix by popping:
X 0

And then add it back:
X 0
Y 1








The Standard Gate Set

The following gates methods come standard with Quil and gates.py:


	Pauli gates I, X, Y, Z


	Hadamard gate: H


	Phase gates: PHASE(\(\theta\)), S, T


	Controlled phase gates: CZ, CPHASE00( \(\alpha\) ),
CPHASE01( \(\alpha\) ), CPHASE10( \(\alpha\)
), CPHASE( \(\alpha\) )


	Cartesian rotation gates: RX( \(\theta\) ), RY(
\(\theta\) ), RZ( \(\theta\) )


	Controlled \(X\) gates: CNOT, CCNOT


	Swap gates: SWAP, CSWAP, ISWAP, PSWAP( \(\alpha\)
)




The parameterized gates take a real or complex floating point
number as an argument.




Defining New Gates

New gates can be easily added inline to Quil programs. All you need is a
matrix representation of the gate. For example, below we define a
\(\sqrt{X}\) gate.

import numpy as np

# First we define the new gate from a matrix
x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0]))
sqrt_x = np.array([[ 0.5+0.5j,  0.5-0.5j],
                   [ 0.5-0.5j,  0.5+0.5j]])
p = Program().defgate("SQRT-X", sqrt_x)

# Then we can use the new gate,
p.inst(("SQRT-X", 0))
print(p)





DEFGATE SQRT-X:
    0.5+0.5i, 0.5-0.5i
    0.5-0.5i, 0.5+0.5i

SQRT-X 0





print(qvm.wavefunction(p))





(0.5+0.5j)|0> + (0.5-0.5j)|1>





Below we show how we can define \(X_0\otimes \sqrt{X_1}\) as a single gate.

# A multi-qubit defgate example
x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0]))
sqrt_x = np.array([[ 0.5+0.5j,  0.5-0.5j],
                [ 0.5-0.5j,  0.5+0.5j]])
x_sqrt_x = np.kron(x_gate_matrix, sqrt_x)
p = Program().defgate("X-SQRT-X", x_sqrt_x)

# Then we can use the new gate
p.inst(("X-SQRT-X", 0, 1))
wavefunction = qvm.wavefunction(p)
print(wavefunction)





(0.5+0.5j)|01> + (0.5-0.5j)|11>








Defining Parametric Gates

It is also possible to define parametric gates using pyQuil.
Let’s say we want to have a controlled RX gate. Since RX is a parametric gate, we need a slightly different way of defining it than in the previous section.

from pyquil.parameters import Parameter, quil_sin, quil_cos
from pyquil.quilbase import DefGate
import numpy as np

theta = Parameter('theta')
crx = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, quil_cos(theta / 2), -1j * quil_sin(theta / 2)], [0, 0, -1j * quil_sin(theta / 2), quil_cos(theta / 2)]])

dg = DefGate('CRX', crx, [theta])
CRX = dg.get_constructor()

p = Program()
p.inst(dg)
p.inst(H(0))
p.inst(CRX(np.pi/2)(0, 1))

wavefunction = qvm.wavefunction(p)
print(wavefunction)





(0.7071067812+0j)|00> + (0.5+0j)|01> + -0.5j|11>





quil_sin and quil_cos work as the regular sinus and cosinus, but they support the parametrization. Parametrized functions you can use with pyQuil are: quil_sin, quil_cos, quil_sqrt, quil_exp, and quil_cis.







          

      

      

    

  

    
      
          
            
  
Advanced Usage


Quantum Fourier Transform (QFT)

Let us do an example that includes multi-qubit parameterized gates.

Here we wish to compute the discrete Fourier transform of
[0, 1, 0, 0, 0, 0, 0, 0]. We do this in three steps:


	Write a function called qft3 to make a 3-qubit QFT quantum
program.


	Write a state preparation quantum program.


	Execute state preparation followed by the QFT on the QVM.




First we define a function to make a 3-qubit QFT quantum program. This
is a mix of Hadamard and CPHASE gates, with a final bit reversal
correction at the end consisting of a single SWAP gate.

from math import pi

def qft3(q0, q1, q2):
    p = Program()
    p.inst( H(q2),
            CPHASE(pi/2.0, q1, q2),
            H(q1),
            CPHASE(pi/4.0, q0, q2),
            CPHASE(pi/2.0, q0, q1),
            H(q0),
            SWAP(q0, q2) )
    return p





There is a very important detail to recognize here: The function
qft3 doesn’t compute the QFT, but rather it makes a quantum
program to compute the QFT on qubits q0, q1, and q2.

We can see what this program looks like in Quil notation by doing
the following:

print(qft3(0, 1, 2))





H 2
CPHASE(1.5707963267948966) 1 2
H 1
CPHASE(0.7853981633974483) 0 2
CPHASE(1.5707963267948966) 0 1
H 0
SWAP 0 2





Next, we want to prepare a state that corresponds to the sequence we
want to compute the discrete Fourier transform of. Fortunately, this is
easy, we just apply an \(X\)-gate to the zeroth qubit.

state_prep = Program().inst(X(0))





We can verify that this works by computing its wavefunction. However, we
need to add some “dummy” qubits, because otherwise wavefunction
would return a two-element vector.

add_dummy_qubits = Program().inst(I(1), I(2))
wavefunction = qvm.wavefunction(state_prep + add_dummy_qubits)
print(wavefunction)





(1+0j)|001>





If we have two quantum programs a and b, we can concatenate them
by doing a + b. Using this, all we need to do is compute the QFT
after state preparation to get our final result.

wavefunction = qvm.wavefunction(state_prep + qft3(0, 1, 2))
print(wavefunction.amplitudes)





array([  3.53553391e-01+0.j        ,   2.50000000e-01+0.25j      ,
         2.16489014e-17+0.35355339j,  -2.50000000e-01+0.25j      ,
        -3.53553391e-01+0.j        ,  -2.50000000e-01-0.25j      ,
        -2.16489014e-17-0.35355339j,   2.50000000e-01-0.25j      ])





We can verify this works by computing the (inverse) FFT from NumPy.

from numpy.fft import ifft
ifft([0,1,0,0,0,0,0,0], norm="ortho")





array([ 0.35355339+0.j        ,  0.25000000+0.25j      ,
        0.00000000+0.35355339j, -0.25000000+0.25j      ,
       -0.35355339+0.j        , -0.25000000-0.25j      ,
        0.00000000-0.35355339j,  0.25000000-0.25j      ])








Classical Control Flow

Here are a couple quick examples that show how much richer the classical
control of a Quil program can be. In this first example, we have a
register called classical_flag_register which we use for looping.
Then we construct the loop in the following steps:


	We first initialize this register to 1 with the init_register
program so our while loop will execute. This is often called the
loop preamble or loop initialization.


	Next, we write body of the loop in a program itself. This will be a
program that computes an \(X\) followed by an \(H\) on our
qubit.


	Lastly, we put it all together using the while_do method.




# Name our classical registers:
classical_flag_register = 2

# Write out the loop initialization and body programs:
init_register = Program(TRUE([classical_flag_register]))
loop_body = Program(X(0), H(0)).measure(0, classical_flag_register)

# Put it all together in a loop program:
loop_prog = init_register.while_do(classical_flag_register, loop_body)

print(loop_prog)





TRUE [2]
LABEL @START1
JUMP-UNLESS @END2 [2]
X 0
H 0
MEASURE 0 [2]
JUMP @START1
LABEL @END2





Notice that the init_register program applied a Quil instruction directly to a
classical register.  There are several classical commands that can be used in this fashion:


	TRUE which sets a single classical bit to be 1


	FALSE which sets a single classical bit to be 0


	NOT which flips a classical bit


	AND which operates on two classical bits


	OR which operates on two classical bits


	MOVE which moves the value of a classical bit at one classical address into another


	EXCHANGE which swaps the value of two classical bits




In this next example, we show how to do conditional branching in the
form of the traditional if construct as in many programming
languages. Much like the last example, we construct programs for each
branch of the if, and put it all together by using the if_then
method.

# Name our classical registers:
test_register = 1
answer_register = 0

# Construct each branch of our if-statement. We can have empty branches
# simply by having empty programs.
then_branch = Program(X(0))
else_branch = Program()

# Make a program that will put a 0 or 1 in test_register with 50% probability:
branching_prog = Program(H(1)).measure(1, test_register)

# Add the conditional branching:
branching_prog.if_then(test_register, then_branch, else_branch)

# Measure qubit 0 into our answer register:
branching_prog.measure(0, answer_register)

print(branching_prog)





H 1
MEASURE 1 [1]
JUMP-WHEN @THEN3 [1]
JUMP @END4
LABEL @THEN3
X 0
LABEL @END4
MEASURE 0 [0]





We can run this program a few times to see what we get in the
answer_register.

qvm.run(branching_prog, [answer_register], 10)





[[1], [1], [1], [0], [1], [0], [0], [1], [1], [0]]








Parametric Depolarizing Noise

The Rigetti QVM has support for emulating certain types of noise models.
One such model is parametric Pauli noise, which is defined by a
set of 6 probabilities:


	The probabilities \(P_X\), \(P_Y\), and \(P_Z\) which
define respectively the probability of a Pauli \(X\), \(Y\),
or \(Z\) gate getting applied to each qubit after every gate
application. These probabilities are called the gate noise
probabilities.


	The probabilities \(P_X'\), \(P_Y'\), and \(P_Z'\) which
define respectively the probability of a Pauli \(X\), \(Y\),
or \(Z\) gate getting applied to the qubit being measured
before it is measured. These probabilities are called the
measurement noise probabilities.




We can instantiate a noisy QVM by creating a new connection with these
probabilities specified.

# 20% chance of a X gate being applied after gate applications and before measurements.
gate_noise_probs = [0.2, 0.0, 0.0]
meas_noise_probs = [0.2, 0.0, 0.0]
noisy_qvm = api.QVMConnection(gate_noise=gate_noise_probs, measurement_noise=meas_noise_probs)





We can test this by applying an \(X\)-gate and measuring. Nominally,
we should always measure 1.

p = Program().inst(X(0)).measure(0, 0)
print("Without Noise: {}".format(qvm.run(p, [0], 10)))
print("With Noise   : {}".format(noisy_qvm.run(p, [0], 10)))





Without Noise: [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]
With Noise   : [[0], [0], [0], [0], [0], [1], [1], [1], [1], [0]]








Parametric Programs

A big advantage of working in pyQuil is that you are able to leverage all the functionality of
Python to generate Quil programs.  In quantum/classical hybrid algorithms this often leads to
situations where complex classical functions are used to generate Quil programs. pyQuil provides
a convenient construction to allow you to use Python functions to generate templates of Quil
programs, called ParametricPrograms:

# This function returns a quantum circuit with different rotation angles on a gate on qubit 0
def rotator(angle):
    return Program(RX(angle, 0))

from pyquil.parametric import ParametricProgram
par_p = ParametricProgram(rotator) # This produces a new type of parameterized program object





The parametric program par_p now takes the same arguments as rotator:

print(par_p(0.5))





RX(0.5) 0





We can think of ParametricPrograms as a sort of template for Quil programs.  They cache computations
that happen in Python functions so that templates in Quil can be efficiently substituted.




Pauli Operator Algebra

Many algorithms require manipulating sums of Pauli combinations, such as
\(\sigma = \frac{1}{2}I - \frac{3}{4}X_0Y_1Z_3 + (5-2i)Z_1X_2,\) where
\(G_n\) indicates the gate \(G\) acting on qubit \(n\). We
can represent such sums by constructing PauliTerm and PauliSum.
The above sum can be constructed as follows:

from pyquil.paulis import ID, sX, sY, sZ

# Pauli term takes an operator "X", "Y", "Z", or "I"; a qubit to act on, and
# an optional coefficient.
a = 0.5 * ID
b = -0.75 * sX(0) * sY(1) * sZ(3)
c = (5-2j) * sZ(1) * sX(2)

# Construct a sum of Pauli terms.
sigma = a + b + c
print("sigma = {}".format(sigma))





sigma = 0.5*I + -0.75*X0*Y1*Z3 + (5-2j)*Z1*X2





Right now, the primary thing one can do with Pauli terms and sums is to construct the
exponential of the Pauli term, i.e., \(\exp[-i\beta\sigma]\).  This is
accomplished by constructing a parameterized Quil program that is evaluated
when passed values for the coefficients of the angle \(\beta\).

Related to exponentiating Pauli sums we provide utility functions for finding
the commuting subgroups of a Pauli sum and approximating the exponential with the
Suzuki-Trotter approximation through fourth order.

When arithmetic is done with Pauli sums, simplification is automatically
done.

The following shows an instructive example of all three.

import pyquil.paulis as pl

# Simplification
sigma_cubed = sigma * sigma * sigma
print("Simplified  : {}".format(sigma_cubed))
print()

#Produce Quil code to compute exp[iX]
H = -1.0 * sX(0)
print("Quil to compute exp[iX] on qubit 0:")
print(pl.exponential_map(H)(1.0))





Simplified  : (32.46875-30j)*I + (-16.734375+15j)*X0*Y1*Z3 + (71.5625-144.625j)*Z1*X2

Quil to compute exp[iX] on qubit 0:
H 0
RZ(-2.0) 0
H 0





A more sophisticated feature of pyQuil is that it can create templates of Quil programs in
ParametricProgram objects.  An example use of these templates is in exponentiating a Hamiltonian
that is parametrized by a constant.  This commonly occurs in variational algorithms. The function
exponential_map is used to compute exp[i * alpha * H] without explicitly filling in a value for
alpha.

parametric_prog = pl.exponential_map(H)
print(parametric_prog(0.0))
print(parametric_prog(1.0))
print(parametric_prog(2.0))





This ParametricProgram now acts as a template, caching the result of the exponential_map
calculation so that it can be used later with new values.







          

      

      

    

  

    
      
          
            
  
Exercises


Exercise 1: Quantum Dice

Write a quantum program to simulate throwing an 8-sided die. The Python
function you should produce is:

def throw_octahedral_die():
    # return the result of throwing an 8 sided die, an int between 1 and 8, by running a quantum program





Next, extend the program to work for any kind of fair die:

def throw_polyhedral_die(num_sides):
    # return the result of throwing a num_sides sided die by running a quantum program








Exercise 2: Controlled Gates

We can use the full generality of NumPy to construct new gate matrices.


	Write a function controlled which takes a \(2\times 2\)
matrix \(U\) representing a single qubit operator, and makes a
\(4\times 4\) matrix which is a controlled variant of \(U\),
with the first argument being the control qubit.


	Write a Quil program to define a controlled-\(Y\) gate in this
manner. Find the wavefunction when applying this gate to qubit 1
controlled by qubit 0.







Exercise 3: Grover’s Algorithm

Write a quantum program for the single-shot Grover’s algorithm. The
Python function you should produce is:

# data is an array of 0's and 1's such that there are exactly three times as many
# 0's as 1's
def single_shot_grovers(data):
    # return an index that contains the value 1





As an example: single_shot_grovers([0,0,1,0]) should return 2.

HINT - Remember that the Grover’s diffusion operator is:


\[\begin{split}\begin{pmatrix}
2/N - 1 & 2/N & \cdots & 2/N \\
2/N &  & &\\
\vdots & & \ddots & \\
2/N & & & 2/N-1
\end{pmatrix}\end{split}\]







          

      

      

    

  

    
      
          
            
  
The Quantum Virtual Machine (QVM)

The Rigetti Quantum Virtual Machine is an implementation of the Quantum Abstract Machine from
A Practical Quantum Instruction Set Architecture. 1  It is implemented in ANSI Common LISP and
executes programs specified in the Quantum Instruction Language (Quil). Quil is an opinionated
quantum instruction language: its basic belief is that in the near term quantum computers will
operate as coprocessors, working in concert with traditional CPUs.  This means that Quil is
designed to execute on a Quantum Abstract Machine that has a shared classical/quantum architecture
at its core. The QVM is a wavefunction simulation of unitary evolution with classical control flow
and shared quantum classical memory.

Most API keys give access to the QVM with up to 30 qubits. If you would like access to more qubits
or help running larger jobs, then contact us at support@rigetti.com. On request we may also
provide access to a QVM that allows persistent wavefunction memory between different programs as
well as direct access to the wavefunction memory (wrapped as a numpy array) from python.


Using the QVM

The QVM is available in pyQuil via the api module.

from pyquil.api import QVMConnection
qvm = QVMConnection()





One executes quantum programs on the QVM using two paradigms: the .run(...) method, and
the .wavefunction(...) method. The former closely mirrors how one will execute programs on a
real QPU (see Using the QPU), while the latter takes advantage of the virtual machine, and allows
direct access to the wavefunction. These two methods are described in the following two sections.
(For information on constructing quantum programs, please refer back to The Basics: Programs and Gates.)


The .run(...) method

program = Program(X(0), MEASURE(0, 0))
results = qvm.run(program, trials=1)
# results = [[1]]





The .run(...) method takes numerous arguments, several of which are optional. The most important
are


	the program to be executed on the QVM,


	the classical_addresses which to be returned from the QVM (not included above; by default, these are set to the addresses used in the program’s MEASURE instructions), and


	the number of trials to be executed on the machine.




The results returned are a list of lists of integers. In the above case, that’s

[[1]]





Let’s unpack this. The outer list is an
enumeration over the trials; if you set trials=1 then len(results) should equal 1.

The inner list, on the other hand, is an enumeration over the results stored in the classical
addresses. We see that the result of this program is that the classical register [0] now stores
the state of qubit 0, which should be 1 after an \(X\)-gate. We
can of course ask for more classical registers:

qvm.run(p, [0, 1, 2])





[[1, 0, 0]]





The classical registers are initialized to zero, so registers [1]
and [2] come out as zero. If we stored the measurement in a
different classical register we would obtain:

p = Program()   # clear the old program
p.inst(X(0)).measure(0, 1)
qvm.run(p, [0, 1, 2])





[[0, 1, 0]]





We can also run programs multiple times and accumulate all the results
in a single list.

coin_flip = Program().inst(H(0)).measure(0, 0)
num_flips = 5
qvm.run(coin_flip, [0], num_flips)





[[0], [1], [0], [1], [0]]





Try running the above code several times. You will see that you will,
with very high probability, get different results each time.




The .wavefunction(...) method

The QVM is a virtual machine. As such, we can directly inspect the wavefunction of
a program, even without measurements, using the .wavefunction(...) method:

coin_flip = Program().inst(H(0))
qvm.wavefunction(coin_flip)





<pyquil.wavefunction.Wavefunction at 0x1088a2c10>





The return value is a Wavefunction object that stores the amplitudes of the
quantum state at the conclusion of the program. We can print this object

coin_flip = Program().inst(H(0))
wavefunction = qvm.wavefunction(coin_flip)
print(wavefunction)





(0.7071067812+0j)|0> + (0.7071067812+0j)|1>





To see the amplitudes listed as a sum of computational basis states. We can index into those
amplitudes directly or look at a dictionary of associated outcome probabilities.

assert wavefunction[0] == 1 / np.sqrt(2)
# The amplitudes are stored as a numpy array on the Wavefunction object
print(wavefunction.amplitudes)
prob_dict = wavefunction.get_outcome_probs() # extracts the probabilities of outcomes as a dict
print(prob_dict)
prob_dict.keys() # these stores the bitstring outcomes
assert len(wavefunction) == 1 # gives the number of qubits





[ 0.70710678+0.j  0.70710678+0.j]
{'1': 0.49999999999999989, '0': 0.49999999999999989}





The result from a wavefunction call also contains an optional amount of classical memory to
check:

coin_flip = Program().inst(H(0)).measure(0,0)
wavefunction = qvm.wavefunction(coin_flip, classical_addresses=range(9))
classical_mem = wavefunction.classical_memory





Additionally, we can pass a random seed to the Connection object. This allows us to reliably
reproduce measurement results for the purpose of testing:

seeded_cxn = api.QVMConnection(random_seed=17)
print(seeded_cxn.run(Program(H(0)).measure(0, 0), [0], 20))

seeded_cxn = api.QVMConnection(random_seed=17)
# This will give identical output to the above
print(seeded_cxn.run(Program(H(0)).measure(0, 0), [0], 20))





It is important to remember that this wavefunction method is just a useful debugging tool
for small quantum systems, and it cannot be feasibly obtained on a
quantum processor.






Multi-Qubit Basis Enumeration

The Rigetti QVM enumerates bitstrings such that qubit 0 is the least significant bit (LSB)
and therefore on the right end of a bitstring as shown in the table below which contains some
examples.











	bitstring

	qubit_(n-1)

	…

	qubit_2

	qubit_1

	qubit_0





	1…101

	1

	…

	1

	0

	1



	0…110

	0

	…

	1

	1

	0






This convention is counter to that often found in the quantum computing literature where
bitstrings are often ordered such that the lowest-index qubit is on the left.
The vector representation of a wavefunction assumes the “canonical” ordering of basis elements.
I.e., for two qubits this order is 00, 01, 10, 11.
In the typical Dirac notation for quantum states, the tensor product of two different degrees of
freedom is not always explicitly understood as having a fixed order of those degrees of freedom.
This is in contrast to the kronecker product between matrices which uses the same mathematical
symbol and is clearly not commutative.
This, however, becomes important when writing things down as coefficient vectors or matrices:


\[\begin{split}\ket{0}_0 \otimes \ket{1}_1 = \ket{1}_1 \otimes \ket{0}_0
= \ket{10}_{1,0} \equiv \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}\end{split}\]

As a consequence there arise some subtle but important differences in the ordering of wavefunction
and multi-qubit gate matrix coefficients.
According to our conventions the matrix


\[\begin{split}U_{\rm CNOT(1,0)} \equiv
\begin{pmatrix}
    1 & 0 & 0 & 0 \\
    0 & 1 & 0 & 0 \\
    0 & 0 & 0 & 1 \\
    0 & 0 & 1 & 0
\end{pmatrix}\end{split}\]

corresponds to the Quil instruction CNOT(1, 0) which is counter to how most other people in the
field order their tensor product factors (or more specifically their kronecker products).
In this convention CNOT(0, 1) is given by


\[\begin{split}U_{\rm CNOT(0,1)} \equiv
\begin{pmatrix}
    1 & 0 & 0 & 0 \\
    0 & 0 & 0 & 1 \\
    0 & 0 & 1 & 0 \\
    0 & 1 & 0 & 0
\end{pmatrix}\end{split}\]

For additional information why we decided on this basis ordering check out our note
Someone shouts, “|01000>!” Who is Excited? 2.


	1

	https://arxiv.org/abs/1608.03355



	2

	https://arxiv.org/abs/1711.02086








Examples of Quantum Programs

To create intuition for a new class of algorithms, that will run on Quantum Virtual Machines (QVM), it is useful (and
fun) to play with the abstraction that the software provides.

A broad class of programs that can easily be implemented on a QVM are generalizations of
Game Theory to incorporate Quantum Strategies [https://arxiv.org/abs/quant-ph/0611234].


Meyer-Penny Game

A conceptually simple example that falls into this class is the
Meyer-Penny Game [https://link.aps.org/doi/10.1103/PhysRevLett.82.1052]. The game goes as follows: The Starship
Enterprise, during one of its deep-space missions, is facing an immediate calamity, when a powerful alien suddenly
appears on the bridge. The alien, named Q, offers to help Picard, the captain of the Enterprise, under the condition
that Picard beats Q in a simple game of penny flips.

The rules: Picard is to place a penny Heads up into an opaque box. Then Picard and Q take turns to flip or not flip the
penny without being able to see it; first Q then P then Q again. After this the penny is revealed; Q wins if it shows
Heads (H), while Tails (T) makes Picard the winner.

Picard quickly estimates that his chance of winning is 50% and agrees to play the game. He loses the first round and
insists on playing again. To his surprise Q agrees, and they continue playing several rounds more, each of which Picard
loses. How is that possible?

What Picard did not anticipate is that Q has access to quantum tools. Instead of flipping the penny, Q puts the penny
into a superposition of Heads and Tails proportional to the quantum state \(|H\rangle+|T\rangle\). Then no matter
whether Picard flips the penny or not, it will stay in a superposition (though the relative sign might change). In the
third step Q undoes the superposition and always finds the penny to shows Heads.

To simulate the game we first construct the corresponding quantum circuit, which takes two qubits – one to simulate
Picard’s choice whether or not to flip the penny and the other to represent the penny. The initial state for all Qubits
is \(|0\rangle (= |T\rangle)\). To simulate Picard’s decision, we assume that he chooses randomly whether or not to
flip the coin, in agreement with the optimal strategy for the classic penny-flip game. This random choice can be created
by putting one qubit into an equal superposition, e.g. with the Hadamard gate H, and then measure its state. The
measurement will show Heads or Tails with equal probability p=0.5.

To simulate the penny flip game we take the second qubit and put it into its excited state
\(|1\rangle (= |H\rangle)\) by applying the X (or NOT) gate. Q’s first move is to apply the Hadamard gate H.
Picard’s decision about the flip is simulated as a CNOT operation where the control bit is the outcome of the random
number generator described above. Finally Q applies a Hadamard gate again, before we measure the outcome. The full
circuit is shown in the figure below.


[image: _images/MeyerPennyGame.png]


First we import all the necessary tools:

from pyquil.quil import Program
import pyquil.api as api

from pyquil.gates import I, H, X
qvm = api.QVMConnection()





Then we need to define two registers that will be used for the measurement of Picard’s decision bit and the final answer
of the penny tossing game.

picard_register = 1
answer_register = 0





Moreover we need to encode the two different actions of Picard, which conceptually is equivalent to an if-else control
flow as:

then_branch = Program(X(0))
else_branch = Program(I(0))





and then wire it all up into the overall measurement circuit:

prog = (Program()
    # Prepare Qubits in Heads state or superposition, respectively
    .inst(X(0), H(1))
    # Q puts the penny into a superposition
    .inst(H(0))
    # Picard makes a decision and acts accordingly
    .measure(1, picard_register)
    .if_then(picard_register, then_branch, else_branch)
    # Q undoes his superposition operation
    .inst(H(0))
    # The outcome is recorded into the answer register
    .measure(0, answer_register))





Finally we play the game several times

qvm.run(prog, [0, 1], trials=10)





and record the register outputs as

[[1, 1],
 [1, 1],
 [1, 0],
 [1, 0],
 [1, 0],
 [1, 0],
 [1, 1],
 [1, 1],
 [1, 0],
 [1, 0]]





Remember that the first number is the outcome of the game (value of the answer_register) whereas the second number is
the outcome of Picard’s decision (value of the picard_register).

Indeed, no matter what Picard does, Q will always win!




Exercises


Prisoner’s Dilemma

A classic strategy game is the prisoner’s dilemma [https://en.wikipedia.org/wiki/Prisoner%27s_dilemma] where two
prisoners get the minimal penalty if they collaborate and stay silent, get zero penalty if one of them defects and the
other collaborates (incurring maximum penalty) and get intermediate penalty if they both defect. This game has an
equilibrium where both defect and incur intermediate penalty.

However, things change dramatically when we allow for quantum strategies leading to the
Quantum Prisoner’s Dilemma [https://arxiv.org/abs/quant-ph/9806088].

Can you design a program that simulates this game?











          

      

      

    

  

    
      
          
            
  
The Quantum Processing Unit (QPU)

A quantum processing unit (QPU), also referred to as a quantum chip, is a physical (fabricated)
chip that contains a number of interconnected qubits. It is the foundational component of a full
quantum computer, which includes the housing environment for the QPU, the control electronics, and
many other components.

This page describes how to use the Forest API for interacting with Rigetti QPUs, and provides
technical details and average performance of Agave, the 8Q QPU currently available, that has
been designed, fabricated and packaged by Rigetti.


Using the QPU


Note

User permissions for QPU access must be enabled by a Forest administrator.  QPUConnection
calls will automatically fail without these user permissions.  Speak to a Forest administrator
for information about upgrading your access plan.



One establishes a connection to a Rigetti QPU in the same manner as a QVM:

from pyquil.api import QPUConnection
qpu = QPUConnection() # NOTE: This raises a UserWarning!





There is one caveat, however, as shown in the UserWarning that is raised by the above
command: You must specify a device as an argument. This is described in the following section.


Accessing available devices with get_devices()

The initialization function for a QPUConnection object must be provided a speciffic Rigetti QPU
as an argument, so that Forest knows on which quantum computer you want to execute your programs.
The available QPUs, synonymously referred to as devices in Forest, can be inspected via the
function get_devices in the api module:

from pyquil.api import get_devices
for device in get_devices():
    if device.is_online():
        print('Device {} is online'.format(device.name))






Note

The Device objects returned by get_devices captures other characteristics about the
associated QPU, such as its connectivity, coherence times, single- and two-qubit gate
fidelities. For more information on the Device class, see Getting QPU Information from the Device Class.



Devices are typically named according to the convention [n]Q-[name], where n is the number
of active qubits on the device and name is a human-readable name that designates the device.




Execution on the QPU

One may execute Quil programs on the QPU (nearly) identically to the QVM, via the .run(...)
method (obviously, since the QPU is a real quantum computer, the .wavefunction(...) method is
not available). We may fix the above example then by providing a device to the QPUConnection:

from pyquil.api import get_devices, QPUConnection

agave = get_devices(as_dict=True)['8Q-Agave']
qpu = QPUConnection(agave)
# The device name as a string is also acceptable
# qpu = QPUConnection('8Q-Agave')





You have now established a connection to the 8Q-Agave QPU. Executing programs is then identical
to the QVM (we may ommit the classical_addresses and trials arguments to use their
defaults):

from pyquil.quil import Program
from pyquil.gates import X, MEASURE

program = Program(X(0), MEASURE(0, 0))
qpu.run(program, [0])





In addition to the .run(...) method, a QPUConnection object provides the following methods:


	.run(quil_program, classical_addresses, trials=1): This method sends the Program object
quil_program to the QPU for execution, which runs the program trials many times.  After
each run on the QPU, all the qubits in the QPU are simultaneously measured and their results are
stored in classical registers according to the MEASURE instructions provided. Then, a list of
registers listed in classical_addresses is returned to the user for each trial. This call is
blocking: it will wait until the QPU returns its results for inspection.


	.run_async(quil_program, classical_addresses, trials=1): This method has identical behavior
to .run except that it is nonblocking, and it instead returns a job ID string.


	.run_and_measure(quil_program, qubits, trials=1): This method sends the Program object
quil_program to the QPU for execution, which runs the program trials many times.  After
each run on the QPU, the all the qubits in the QPU are simultaneously measured, and the results
from those listed in qubits are returned to the user for each trial. This call is blocking:
it will wait until the QPU returns its results for inspection.


	.run_and_measure_async(quil_program, qubits, trials=1): This method has identical behavior
to .run_and_measure except that it is nonblocking, and it instead returns a job ID string.





Note

The QPU’s run functionality matches that of the QVM’s run functionality, but the
behavior of run_and_measure does not match its QVMConnection counterpart (cf.
Optimized Calls). The QVMConnection version of
run repeats the execution of a program many times, producing a (potentially) different
outcome each time, whereas run_and_measure executes a program only once and uses the QVM’s
unique ability to perform wavefunction inspection to multiply sample the same distribution.
The QPU does not have this ability, and thus its run_and_measure call behaves as the
QVM’s run.



For example, the following Python snippet demonstrates the execution of a small job on the QPU
identified as “8Q-Agave”:

from pyquil.quil import Program
import pyquil.api as api
from pyquil.gates import *
qpu = api.QPUConnection('8Q-Agave')
p = Program(H(0), CNOT(0, 1), MEASURE(0, 0), MEASURE(1, 1))
qpu.run(p, [0, 1], 1000)





When the QPU execution time is expected to be long and there is classical computation that the
program would like to accomplish in the meantime, the QPUConnection object allows for an
asynchronous run_async call to be placed instead.  By storing the resulting job ID,
the state of the job and be queried later and its results obtained then.  The mechanism for
querying the state of a job is also through the QPUConnection object: a job ID string can be
transformed to a pyquil.api.Job object via the method .get_job(job_id); the state of a
Job object (taken at its creation time) can then be inspected by the method .is_done();
and when this returns True the output of the QPU can be retrieved via the method .result().

For example, consider the following Python snippet:

from pyquil.quil import Program
import pyquil.api as api
from pyquil.gates import *
qpu = api.QPUConnection('8Q-Agave')
p = Program(H(0), CNOT(0, 1), MEASURE(0, 0), MEASURE(1, 1))
job_id = qpu.run_async(p, [0, 1], 1000)
while not qpu.get_job(job_id).is_done():
    ## get some other work done while we wait
    ...
    ## and eventually yield to recheck the job result
## now the job is guaranteed to be finished, so pull the QPU results
job_result = qpu.get_job(job_id).result()








Getting QPU Information from the Device Class

The pyQuil Device class provides useful information for learning about, and working with,
Rigetti’s available QPUs. One may query for available devices using the get_devices function:

from pyquil.api import get_devices

devices = get_devices(as_dict=True)
# E.g. {'8Q-Agave': <Device 8Q-Agave online>, '19Q-Acorn': <Device 19Q-Acorn offline>}

agave = devices['8Q-Agave']





The variable agave points to a Device object that holds useful information regarding the
QPU, including:


	Connectivity via its instruction set architecture (agave.isa of class ISA).


	Hardware specifications such as coherence times and fidelities (agave.specs of class Specs).


	Noise model information (agave.noise_model of class NoiseModel).




These 3 attributes are accessed in the following ways (note that the specs shown below may be out of date):

  print(agave.specs)
  # Specs(qubits_specs=..., edges_specs=...)

  print(agave.specs.qubits_specs)
  """
  [_QubitSpecs(id=0, fRO=0.7841, f1QRB=0.9575, T1=1.07e-05, T2=1.06e-05),
   _QubitSpecs(id=1, fRO=0.9099, f1QRB=0.9513, T1=1e-05, T2=9.2e-06),
   _QubitSpecs(id=2, fRO=0.9427, f1QRB=0.9825, T1=1.55e-05, T2=1.25e-05),
   _QubitSpecs(id=3, fRO=0.9122, f1QRB=0.9703, T1=1.42e-05, T2=1.85e-05),
   _QubitSpecs(id=4, fRO=0.6777, f1QRB=0.9693, T1=1.46e-05, T2=2.62e-05),
   _QubitSpecs(id=5, fRO=0.8319, f1QRB=0.9624, T1=1.49e-05, T2=1.28e-05),
   _QubitSpecs(id=6, fRO=0.7526, f1QRB=0.969, T1=1.42e-05, T2=1.29e-05),
   _QubitSpecs(id=7, fRO=0.8954, f1QRB=0.9322, T1=1.32e-05, T2=1.77e-05)]
   """

  print(agave.isa)
  # ISA(qubits=..., edges=...)

  print(agave.isa.edges)
  """
[Edge(targets=[0, 1], type='CZ', dead=False),
 Edge(targets=[0, 7], type='CZ', dead=False),
 Edge(targets=[1, 2], type='CZ', dead=False),
 Edge(targets=[2, 3], type='CZ', dead=False),
 Edge(targets=[3, 4], type='CZ', dead=False),
 Edge(targets=[4, 5], type='CZ', dead=False),
 Edge(targets=[5, 6], type='CZ', dead=False),
 Edge(targets=[6, 7], type='CZ', dead=False)]
  """

  print(agave.noise_model)
  # NoiseModel(gates=[KrausModel(...) ...] ...)





Additionally, the Specs class provides methods for access specs info across the chip in a more
succinct manner:

agave.specs.T1s()
# {0: 1.07e-05, 1: 1e-05, 2: 1.55e-05, 3: 1.42e-05, 4: 1.46e-05, 5: 1.49e-05, 6: 1.42e-05, 7: 1.32e-05}

agave.specs.fCZs()
# {(0, 1): 0.9176, (0, 7): 0.9095, (1, 2): 0.9065, (2, 3): 0.8191, (3, 4): 0.87, (4, 5): 0.67, (5, 6): 0.9302, (6, 7): 0.9295}





With these tools provided by the Device class, users may learn more about Rigetti hardware, and
construct programs tailored specifically to that hardware. The Device class can also be used to seed a QVM with characteristics of the device, supporting noisy simulation. For more information on this, see the next section.




Simulating the QPU using the QVM

The QVM is a powerful tool for testing quantum programs before executing them on the QPU. In
addition to the noise.py module for generating custom noise models for simulating noise on the
QVM, pyQuil provides a simple interface for loading the QVM with noise models tailored to Rigetti’s
available QPUs, in just one modified line of code. This is made possible via the Device class,
which holds hardware specification information, noise model information, and instruction set
architecture (ISA) information regarding connectivity. This information is held in the Specs,
ISA and NoiseModel attributes of the Device class, respectively.

Specifically, to load a QVM with the NoiseModel information from a Device, all that is
required is to provide a Device object to the QVM during initialization:

from pyquil.api import get_devices, QVMConnection

agave = get_devices(as_dict=True)['8Q-Agave']
qvm = QVMConnection(agave)





By simply providing a device during QVM initialization, all programs executed on this QVM will, by
default, have noise applied that is characteristic of the corresponding Rigetti QPU (in the case
above, the agave device). One may then efficiently test realistic quantum algorithms on the QVM,
in advance of running those programs on the QPU.




Retune Interruptions

Because the QPU is a physical device, it is occasionally taken offline for recalibration.
This offline period typically lasts 10-40 minutes, depending upon QPU characteristics and other
external factors.  During this period, the QPU will be listed as offline, and it will reject
new jobs (but pending jobs will remain queued).  When the QPU resumes activity, its performance
characteristics may be slightly different (in that different gates may enjoy different process
fidelities).






Agave QPU Properties

The quantum processor consists of 8 superconducting transmon qubits with fixed capacitive coupling
in the planar lattice design shown in Fig. 1.

The resonant frequencies of qubits 0, 2, 4, and 6 are tunable while qubits 1, 3, 5, and 7 are fixed. The former set has two Josephson junctions in an asymmetric SQUID geometry to provide roughly 1 GHz of frequency tunability, and flux-insensitive
“sweet spots” near

\(\omega^{\textrm{max}}_{01}/2\pi\approx 4.8 \, \textrm{GHz}\)

and

\(\omega^{\textrm{min}}_{01}/2\pi\approx 3.3 \, \textrm{GHz}\).

These tunable devices are coupled to bias lines for AC and DC flux delivery. Each qubit is
capacitively coupled to a quasi-lumped element resonator for dispersive readout of the qubit state.
Single-qubit control is effected by applying microwave drives at the resonator ports. Two-qubit
gates are activated via RF drives on the flux bias lines.


[image: 8Q-Agave]
\(\textbf{Figure 1 $|$ Connectivity of Rigetti 8Q. a,}\) Chip schematic showing tunable
transmons (green circles) capacitively coupled to fixed-frequency transmons
(blue circles). \(\textbf{b}\), Optical image of an 8Q chip, representative of Agave.




1-Qubit Gate Performance

The device is characterized by several parameters:


	\(\omega_\textrm{01}/2\pi\) is the qubit transition frequency


	\(\omega_\textrm{r}/2\pi\) is the resonator frequency


	\(\eta/2\pi\) is the anharmonicity of the qubit


	\(g/2\pi\) is the coupling strength between a qubit and a resonator


	\(\lambda/2\pi\) is the coupling strength between two neighboring qubits




In Rigetti 8Q, each tunable qubit is capacitively coupled to two fixed-frequency qubits.
We use a parametric flux modulation to activate a controlled Z gate between tunable and fixed
qubits. The typical time-scale of these entangling gates is in the range 100–250 ns.

Table 1 summarizes the main performance parameters of Rigetti 8Q. The resonator and qubit
frequencies are measured with standard spectroscopic techniques. The relaxation time \(T_1\) is
extracted from repeated inversion recovery experiments. Similarly, the coherence time \(T^*_2\)
is measured with repeated Ramsey fringe experiments. Single-qubit gate fidelities are estimated
with randomized benchmarking protocols in which a sequence of \(m\) Clifford gates is applied
to the qubit followed by a measurement on the computational basis. The sequence of Clifford gates
are such that the first \(m-1\) gates are chosen uniformly at random from the Clifford group,
while the last Clifford gate is chosen to bring the state of the system back to the initial state.
This protocol is repeated for different values of \(m\in \{2,4,8,16,32,64,128\}\). The reported
single-qubit gate fidelity is related to the randomized benchmarking decay constant \(p\) in
the following way: \(\mathsf{F}_\textrm{1q} = p +(1-p)/2\). Finally, the readout assignment
fidelities are extracted with dispersive readouts combined with a linear classifier trained on
\(|0\rangle\) and \(|1\rangle\) state preparation for each qubit. The reported readout
assignment fidelity is given by expression \(\mathsf{F}_\textrm{RO} = [p(0|0)+p(1|1)]/2\), where
\(p(b|a)\) is the probability of measuring the qubit in state \(b\) when prepared in state
\(a\).


\(\textbf{Table 1 | Rigetti 8Q performance}\)










	
	\(\omega^{\textrm{max}}_{\textrm{r}}/2\pi\)

	\(\omega^{\textrm{max}}_{01}/2\pi\)

	\(T_1\)

	\(T^*_2\)

	\(\mathsf{F}_{\textrm{1q}}\)

	\(\mathsf{F}_{\textrm{RO}}\)



	
	\(\textrm{MHz}\)

	\(\textrm{MHz}\)

	\(\mu\textrm{s}\)

	\(\mu\textrm{s}\)

	
	


	0

	5863

	4586

	10.72

	10.6

	0.957

	0.784



	1

	5293

	3909

	10.04

	9.2

	0.951

	0.910



	2

	5713

	4524

	15.52

	12.5

	0.982

	0.943



	3

	5411

	4054

	14.17

	18.5

	0.970

	0.912



	4

	5620

	4660

	14.58

	26.2

	0.969

	0.678



	5

	5171

	4081

	14.86

	12.8

	0.962

	0.832



	6

	5751

	4760

	14.17

	12.9

	0.969

	0.753



	7

	5454

	4110

	13.19

	17.7

	0.932

	0.895









Qubit-Qubit Coupling

The coupling strength between two qubits can be extracted from a precise measurement of the shift
in qubit frequency after the neighboring qubit is in the excited state. This protocol consists of
two steps: a \(\pi\) pulse is applied to the first qubit, followed by a Ramsey fringe
experiment on the second qubit which precisely determines its
transition frequency (see Fig. 2a). The effective shift is denoted by
\(\chi_\textrm{qq}\) and typical values are in the range
\(\approx 100 \, \textrm{kHz}\). The coupling strength \(\lambda\) between the two qubits
can be calculated in the following way:



\[\lambda^{(1,2)} = \sqrt{\left|\frac{\chi^{(1,2)}_\textrm{qq} \left[\,f^\textrm{(1)}_{01}-f^\textrm{(2)}_{12}\right]\left[\,f^\textrm{(1)}_{12}-f^\textrm{(2)}_{01}\right]}{2(\eta_1+\eta_2)}\right|}\]




Figure 2b shows the coupling strength for our device. This quantity is crucial to predict the gate
time of our parametric entangling gates.


[image: alternate text]
\(\textbf{Figure 2 $|$ Coupling strength. a,}\) Quantum circuit
implemented to measure the qubit-qubit effective frequency shift.
\(\textbf{b,}\) Capacitive coupling between neighboring qubits expressed in MHz.






2-Qubit Gate Performance

Table 2 shows the two-qubit gate performance of Rigetti 8Q. These parameters refer to parametric
CZ gates performed on one pair at a time. We analyze these CZ gates through quantum process
tomography (QPT). This procedure starts by applying local rotations to the two qubits taken from
the set \(\{I,R_x(\pi/2),R_y(\pi/2),R_x(\pi)\}\), followed by a CZ gate and
post-rotations that bring the qubit states back to the computational basis. QPT involves the
analysis of \(16\times16 =256\) different experiments, each of which we repeat \(500\)
times. The reported fidelity \(\mathsf{F}^\textrm{cptp}_\textrm{PT}\)
is the average gate fidelity [Nielsen2002] of the ideal process and the process matrix inferred via maximum likelihood
tomography under complete positivity (cp) and trace preservation (tp) constraints
(cf. supplementary material of [Reagor2018]).


\(\textbf{Table 2 | Rigetti 8Q two-qubit gate performance}\)







	
	\(f_\textrm{m}\)

	\(t_\textrm{CZ}\)

	\(\mathsf{F}^\textrm{cptp}_{\textrm{PT}}\)



	
	\(\textrm{MHz}\)

	ns

	


	0 - 1

	226

	195

	0.92



	1 - 2

	153

	198

	0.91



	2 - 3

	138

	132

	0.82



	3 - 4

	163

	160

	0.87



	4 - 5

	168

	163

	0.67



	5 - 6

	107

	186

	0.93



	6 - 7

	123

	162

	0.93



	7 - 0

	298

	118

	0.91







	Nielsen2002

	Nielsen, M. A. (2002) ‘A simple formula for the average gate fidelity of a quantum dynamical operation’, http://arxiv.org/abs/quant-ph/0205035



	Reagor2018

	Reagor, M. et al. (2018) ‘Demonstration of universal parametric entangling gates on a multi-qubit lattice’, http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aao3603










Acorn QPU Properties – CURRENTLY UNAVAILABLE

This quantum processor consists of 20 superconducting transmon qubits with fixed capacitive coupling
in the planar lattice design shown in Fig. 3.

The resonant frequencies of qubits 0–4 and 10–14 are
tunable while qubits 5–9 and 15–19 are fixed. The former have two Josephson junctions in an
asymmetric SQUID geometry to provide roughly 1 GHz of frequency tunability, and flux-insensitive
“sweet spots” near

\(\omega^{\textrm{max}}_{01}/2\pi\approx 4.5 \, \textrm{GHz}\)

and

\(\omega^{\textrm{min}}_{01}/2\pi\approx 3.0 \, \textrm{GHz}\).

These tunable devices are coupled to bias lines for AC and DC flux delivery. Each qubit is
capacitively coupled to a quasi-lumped element resonator for dispersive readout of the qubit state.
Single-qubit control is effected by applying microwave drives at the resonator ports. Two-qubit
gates are activated via RF drives on the flux bias lines.

Due to a fabrication defect, qubit 3 is not tunable, which prohibits operation of the two-qubit
parametric gate described below between qubit 3 and its neighbors. Consequently, we will treat this as
a 19-qubit processor. However, this chip is currently unavailable.


[image: 19Q-Acorn]
\(\textbf{Figure 3 $|$ Connectivity of Rigetti 19Q. a,}\) Chip schematic showing tunable
transmons (green circles) capacitively coupled to fixed-frequency transmons
(blue circles). \(\textbf{b}\), Optical chip image. Note that some couplers have
been dropped to produce a lattice with three-fold, rather than four-fold
connectivity.



Table 3 summarizes the main performance parameters of Rigetti 19Q.


\(\textbf{Table 3 | Rigetti 19Q performance}\)











	
	\(\omega^{\textrm{max}}_{\textrm{r}}/2\pi\)

	\(\omega^{\textrm{max}}_{01}/2\pi\)

	\(\eta/2\pi\)

	\(T_1\)

	\(T^*_2\)

	\(\mathsf{F}_{\textrm{1q}}\)

	\(\mathsf{F}_{\textrm{RO}}\)



	
	\(\textrm{MHz}\)

	\(\textrm{MHz}\)

	\(\textrm{MHz}\)

	\(\mu\textrm{s}\)

	\(\mu\textrm{s}\)

	
	


	0

	5592

	4386

	-208

	15.2 \(\pm\) 2.5

	7.2 \(\pm\) 0.7

	0.9815

	0.938



	1

	5703

	4292

	-210

	17.6 \(\pm\) 1.7

	7.7 \(\pm\) 1.4

	0.9907

	0.958



	2

	5599

	4221

	-142

	18.2 \(\pm\) 1.1

	10.8 \(\pm\) 0.6

	0.9813

	0.97



	3

	5708

	3829

	-224

	31.0 \(\pm\) 2.6

	16.8 \(\pm\) 0.8

	0.9908

	0.886



	4

	5633

	4372

	-220

	23.0 \(\pm\) 0.5

	5.2 \(\pm\) 0.2

	0.9887

	0.953



	5

	5178

	3690

	-224

	22.2 \(\pm\) 2.1

	11.1 \(\pm\) 1.0

	0.9645

	0.965



	6

	5356

	3809

	-208

	26.8 \(\pm\) 2.5

	26.8 \(\pm\) 2.5

	0.9905

	0.84



	7

	5164

	3531

	-216

	29.4 \(\pm\) 3.8

	13.0 \(\pm\) 1.2

	0.9916

	0.925



	8

	5367

	3707

	-208

	24.5 \(\pm\) 2.8

	13.8 \(\pm\) 0.4

	0.9869

	0.947



	9

	5201

	3690

	-214

	20.8 \(\pm\) 6.2

	11.1 \(\pm\) 0.7

	0.9934

	0.927



	10

	5801

	4595

	-194

	17.1 \(\pm\) 1.2

	10.6 \(\pm\) 0.5

	0.9916

	0.942



	11

	5511

	4275

	-204

	16.9 \(\pm\) 2.0

	4.9 \(\pm\) 1.0

	0.9901

	0.900



	12

	5825

	4600

	-194

	8.2  \(\pm\) 0.9

	10.9 \(\pm\) 1.4

	0.9902

	0.942



	13

	5523

	4434

	-196

	18.7 \(\pm\) 2.0

	12.7 \(\pm\) 0.4

	0.9933

	0.921



	14

	5848

	4552

	-204

	13.9 \(\pm\) 2.2

	9.4 \(\pm\) 0.7

	0.9916

	0.947



	15

	5093

	3733

	-230

	20.8 \(\pm\) 3.1

	7.3 \(\pm\) 0.4

	0.9852

	0.970



	16

	5298

	3854

	-218

	16.7 \(\pm\) 1.2

	7.5 \(\pm\) 0.5

	0.9906

	0.948



	17

	5097

	3574

	-226

	24.0 \(\pm\) 4.2

	8.4 \(\pm\) 0.4

	0.9895

	0.921



	18

	5301

	3877

	-216

	16.9 \(\pm\) 2.9

	12.9 \(\pm\) 1.3

	0.9496

	0.930



	19

	5108

	3574

	-228

	24.7 \(\pm\) 2.8

	9.8 \(\pm\) 0.8

	0.9942

	0.930






Table 4 shows the two-qubit gate performance of Rigetti 19Q.


\(\textbf{Table 4 | Rigetti 19Q two-qubit gate performance}\)








	
	\(A_0\)

	\(f_\textrm{m}\)

	\(t_\textrm{CZ}\)

	\(\mathsf{F}^\textrm{cptp}_{\textrm{PT}}\)



	
	\(\Phi/\Phi_0\)

	\(\textrm{MHz}\)

	ns

	


	0 - 5

	0.27

	94.5

	168

	0.936



	0 - 6

	0.36

	123.9

	197

	0.889



	1 - 6

	0.37

	137.1

	173

	0.888



	1 - 7

	0.59

	137.9

	179

	0.919



	2 - 7

	0.62

	87.4

	160

	0.817



	2 - 8

	0.23

	55.6

	189

	0.906



	4 - 9

	0.43

	183.6

	122

	0.854



	5 - 10

	0.60

	152.9

	145

	0.870



	6 - 11

	0.38

	142.4

	180

	0.838



	7 - 12

	0.60

	241.9

	214

	0.87



	8 - 13

	0.40

	152.0

	185

	0.881



	9 - 14

	0.62

	130.8

	139

	0.872



	10 - 15

	0.53

	142.1

	154

	0.854



	10 - 16

	0.43

	170.3

	180

	0.838



	11 - 16

	0.38

	160.6

	155

	0.891



	11 - 17

	0.29

	85.7

	207

	0.844



	12 - 17

	0.36

	177.1

	184

	0.876



	12 - 18

	0.28

	113.9

	203

	0.886



	13 - 18

	0.24

	66.2

	152

	0.936



	13 - 19

	0.62

	109.6

	181

	0.921



	14 - 19

	0.59

	188.1

	142

	0.797












          

      

      

    

  

    
      
          
            
  
The Quil Compiler


Expectations for Program Contents

The QPUs have much more limited natural gate sets than the standard gate set offered by pyQuil: the
gate operators are constrained to lie in RZ(θ), RX(kπ/2), and CZ; and the
gates are required to act on physically available hardware (for single-qubit gates, this means
acting only on live qubits, and for qubit-pair gates, this means acting on neighboring qubits).

To ameliorate these limitations, the QPU execution stack contains an optimizing compiler that
translates arbitrary ProtoQuil to QPU-executable Quil.  The compiler is designed to avoid changing
even non-semantic details of input Quil code, except to make it shorter when possible.  For
instance, it will not readdress Quil code that is already appropriately addressed to physically
realizable hardware objects on the QPU.  The following figure illustrates the layout and addressing
of the Rigetti 8Q-Agave QPU.


[image: 8Q connectivity]
Qubit adjacency schematic for the Rigetti 8Q-Agave QPU.






Interacting with the Compiler

The QVMConnection and QPUConnection classes in pyQuil offer indirect support for interacting
with the compiler: they are both capable of submitting jobs to the compiler for preprocessing before
the job is forwarded to the execution target.  This behavior is disabled by default for the QVM and
enabled by default for the QPU.  PyQuil also offers the CompilerConnection class for direct
access to the compiler, which returns compiled Program jobs to the user without executing them.
CompilerConnection can be used to learn about the properties of the program,
like gate volume, single qubit gate depth, topological swaps, program fidelity and multiqubit gate
depth. In all cases, the user’s Forest plan must have compiler access enabled to use these features.

Here’s an example of using CompilerConnection to compile a program that targets the 8Q-Agave
QPU, separately from sending a program to the QPU/QVM.

from pyquil.api import CompilerConnection, get_devices
from pyquil.quil import Pragma, Program
from pyquil.gates import CNOT, H

devices = get_devices(as_dict=True)
agave = devices['8Q-Agave']
compiler = CompilerConnection(agave)

job_id = compiler.compile_async(Program(H(0), CNOT(0,1), CNOT(1,2)))
job = compiler.wait_for_job(job_id)

print('compiled quil', job.compiled_quil())
print('gate volume', job.gate_volume())
print('gate depth', job.gate_depth())
print('topological swaps', job.topological_swaps())
print('program fidelity', job.program_fidelity())
print('multiqubit gate depth', job.multiqubit_gate_depth())





Here’s what you should see:

PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7)"
RZ(pi/2) 0
RX(pi/2) 0
RZ(-pi/2) 1
RX(pi/2) 1
CZ 1 0
RX(-pi/2) 1
RZ(-pi/2) 2
RX(pi/2) 2
CZ 2 1
RZ(-pi/2) 0
RZ(-pi/2) 1
RX(-pi/2) 2
RZ(pi/2) 2
PRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7)"
PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7)"
PRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7)"

gate volume 13
gate depth 7
topological swaps 0
program fidelity 0.898155927658081
multiqubit gate depth 2





The QVMConnection and QPUConnection objects have their compiler interactions set up in the
same way: the .run and .run_and_measure methods take the optional arguments
needs_compilation and isa that respectively toggle the compilation preprocessing step and
provide the compiler with a target instruction set architecture, specified as a pyQuil ISA
object. The compiler can be bypassed by passing the method parameter needs_compilation=False.
If the isa named argument is not set, then the default_isa property on the
connection object is used instead. The compiled program can be accessed after a job has been
submitted to the QPU by using the .compiled_quil() accessor method on the resulting Job
object instance.




Region-specific compiler features through PRAGMA

The Quil compiler can also be communicated with through PRAGMA commands embedded in the Quil
program.


Preserved regions

The compiler can be circumvented in user-specified regions. The start of such a region is denoted by
PRAGMA PRESERVE_BLOCK, and the end is denoted by PRAGMA END_PRESERVE_BLOCK.  The Quil
compiler promises not to modify any instructions contained in such a region.

The following is an example of a program that prepares a Bell state on qubits 0 and 1, then performs
a time delay to invite noisy system interaction before measuring the qubits.  The time delay region
is marked by PRAGMA PRESERVE_BLOCK and PRAGMA END_PRESERVE_BLOCK; without these delimiters,
the compiler will remove the identity gates that serve to provide the time delay.  However, the
regions outside of the PRAGMA region will still be compiled, converting the Bell state preparation
to the native gate set.

#   prepare a Bell state
H 0
CNOT 0 1
#   wait a while
PRAGMA PRESERVE_BLOCK
I 0
I 1
I 0
I 1
# ...
I 0
I 1
PRAGMA END_PRESERVE_BLOCK
#   and read out the results
MEASURE 0 [0]
MEASURE 1 [1]








Parallelizable regions

The compiler can sometimes arrange gate sequences more cleverly if the user gives it hints about
sequences of gates that commute.  A region containing commuting sequences is bookended by
PRAGMA COMMUTING_BLOCKS and PRAGMA END_COMMUTING_BLOCKS; within such a region, a given
commuting sequence is bookended by PRAGMA BLOCK and PRAGMA END_BLOCK.

The following snippet demonstrates this hinting syntax in a context typical of VQE-type algorithms:
after a first stage of performing some state preparation on individual qubits, there is a second
stage of “mixing operations” that both re-use qubit resources and mutually commute, followed by a
final rotation and measurement.  The following program is naturally laid out on a ring with vertices
(read either clockwise or counterclockwise) as 0, 1, 2, 3.  After scheduling the first round of
preparation gates, the compiler will use the hinting to schedule the first and third blocks (which
utilize qubit pairs 0-1 and 2-3) before the second and fourth blocks (which utilize qubit pairs 1-2
and 0-3), resulting in a reduction in circuit depth by one half.  Without hinting, the compiler will
instead execute the blocks in their written order.

# Stage one
H 0
H 1
H 2
H 3
# Stage two
PRAGMA COMMUTING_BLOCKS
PRAGMA BLOCK
CNOT 0 1
RZ(0.4) 1
CNOT 0 1
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 1 2
RZ(0.6) 2
CNOT 1 2
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 2 3
RZ(0.8) 3
CNOT 2 3
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 0 3
RZ(0.9) 3
CNOT 0 3
PRAGMA END_BLOCK
PRAGMA END_COMMUTING_BLOCKS
# Stage three
H 0
H 1
H 2
H 3
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]
MEASURE 3 [3]








Rewirings

When a Quil program contains multi-qubit instructions that do not name qubit-qubit links present on a
target device, the compiler will rearrange the qubits so that execution becomes possible.  In order to
help the user understand what rearrangement may have been done, the compiler emits two forms of
PRAGMA: PRAGMA EXPECTED_REWIRING and PRAGMA CURRENT_REWIRING.  From the perspective of the
user, both PRAGMA instructions serve the same purpose: PRAGMA ..._REWIRING "#(n0 n1 ... nk)"
indicates that the logical qubit labeled j in the program has been assigned to lie on the physical
qubit labeled nj on the device.  This is strictly for human-readability: user-supplied instructions
of the form PRAGMA [EXPECTED|CURRENT]_REWIRING are discarded and have no effect.

In addition, you have some control over how the compiler constructs its
rewiring. If you include a
PRAGMA INITIAL_REWIRING "[NAIVE|RANDOM|PARTIAL|GREEDY]"
instruction before any non-pragmas, the compiler will alter its rewiring
behavior.


	PARTIAL (default): the compiler will start with nothing assigned to each
physical qubit. Then, it will fill in the logical-to-physical mapping as it
encounters new qubits in the program, making its best guess for where they
should be placed.


	NAIVE: the compiler will start with an identity mapping as the initial
rewiring


	RANDOM: the compiler will start with a random permutation


	GREEDY: the compiler will make a guess for the initial rewiring based on a
quick initial scan of the entire program.









Common Error Messages

The compiler itself is subject to some limitations, and some of the more commonly observed errors
follow:


	! ! ! Error: Failed to select a SWAP instruction. Perhaps the qubit graph is disconnected?
This error indicates a readdressing failure: some non-native Quil could not be reassigned to lie
on native devices.  Two common reasons for this failure are:



	It is possible for the readdressing problem to be too difficult for the compiler to sort out,
causing deadlock.


	If a qubit-qubit gate is requested to act on two qubit resources that lie on disconnected
regions of the qubit graph, the addresser will fail.









	! ! ! Error: Matrices do not lie in the same projective class. The compiler attempted to
decompose an operator as native Quil instructions, and the resulting instructions do not match the
original operator.  This can happen when the original operator is not a unitary matrix, and could
indicate an invalid DEFGATE block.


	! ! ! Error: Addresser loop only supports pure quantum instructions. The compiler inspected an
instruction that it does not understand.  The most common cause of this error is the inclusion of
classical control in a program submission, which is legal Quil but falls outside of the
domain of ProtoQuil.










          

      

      

    

  

    
      
          
            
  
Using Qubit Placeholders

In PyQuil, we typically use integers to identify qubits

from pyquil.quil import Program
from pyquil.gates import CNOT, H
print(Program(H(0), CNOT(0, 1)))





H 0
CNOT 0 1





However, when running on real, near-term QPUs we care about what
particular physical qubits our program will run on. In fact, we may want
to run the same program on an assortment of different qubits. This is
where using QubitPlaceholders comes in.

from pyquil.quilatom import QubitPlaceholder
q0 = QubitPlaceholder()
q1 = QubitPlaceholder()
prog = Program(H(q0), CNOT(q0, q1))
print(prog)





H {q4402789176}
CNOT {q4402789176} {q4402789120}





If you try to use this program directly, it will not work

print(prog.out())





---------------------------------------------------------------------------

RuntimeError                              Traceback (most recent call last)

<ipython-input-3-da474d3af403> in <module>()
----> 1 print(prog.out())

...

pyquil/pyquil/quilatom.py in out(self)
     53 class QubitPlaceholder(QuilAtom):
     54     def out(self):
---> 55         raise RuntimeError("Qubit {} has not been assigned an index".format(self))
     56
     57     def __str__(self):


RuntimeError: Qubit q4402789176 has not been assigned an index





Instead, you must explicitly map the placeholders to physical qubits. By
default, the function address_qubits will address qubits from 0 to
N.

from pyquil.quil import address_qubits
print(address_qubits(prog))





H 0
CNOT 0 1





The real power comes into play when you provide an explicit mapping

print(address_qubits(prog, qubit_mapping={
    q0: 14,
    q1: 19,
}))





H 14
CNOT 14 19






Register

Usually, your algorithm will use an assortment of qubits. You can use
the convenience function QubitPlaceholder.register() to request a
list of qubits to build your program.

qbyte = QubitPlaceholder.register(8)
prog2 = Program(H(q) for q in qbyte)
print(address_qubits(prog2, {q: i*2 for i, q in enumerate(qbyte)}))





H 0
H 2
H 4
H 6
H 8
H 10
H 12
H 14











          

      

      

    

  

    
      
          
            
  
Noise and Quantum Computation


Modeling Noisy Quantum Gates


Pure States vs. Mixed States

Errors in quantum computing can introduce classical uncertainty in what the underlying state is.
When this happens we sometimes need to consider not only wavefunctions but also probabilistic sums of
wavefunctions when we are uncertain as to which one we have. For example, if we think that an X gate
was accidentally applied to a qubit with a 50-50 chance then we would say that there is a 50% chance
we have the \(\ket{0}\) state and a 50% chance that we have a \(\ket{1}\) state.
This is called an “impure” or
“mixed”state in that it isn’t just a wavefunction (which is pure) but instead a distribution over
wavefunctions. We describe this with something called a density matrix, which is generally an
operator. Pure states have very simple density matrices that we can write as an outer product of a
ket vector \(\ket{\psi}\) with its own bra version \(\bra{\psi}=\ket{\psi}^\dagger\).
For a pure state the density matrix is simply


\[\rho_\psi = \ket{\psi}\bra{\psi}.\]

The expectation value of an operator for a mixed state is given by


\[\langle X \rangle_\rho = \tr{X \rho}\]

where \(\tr{\cdot}\) is the trace of an operator, which is the sum of its diagonal elements
which is independent of choice of basis.
Pure state density matrices satisfy


\[\rho \text{ is pure } \Leftrightarrow \rho^2 = \rho\]

which you can easily verify for \(\rho_\psi\) assuming that the state is normalized.
If we want to describe a situation with classical uncertainty between states \(\rho_1\) and
\(\rho_2\), then we can take their weighted sum


\[\rho = p \rho_1 + (1-p) \rho_2\]

where \(p\in [0,1]\) gives the classical probability that the state is \(\rho_1\).

Note that classical uncertainty in the wavefunction is markedly different from superpositions.
We can represent superpositions using wavefunctions, but use density matrices to describe
distributions over wavefunctions. You can read more about density matrices here
[DensityMatrix].


	DensityMatrix

	https://en.wikipedia.org/wiki/Density_matrix








Quantum Gate Errors

For a quantum gate given by its unitary operator \(U\), a “quantum
gate error” describes the scenario in which the actually induces
transformation deviates from \(\ket{\psi} \mapsto U\ket{\psi}\).
There are two basic types of quantum gate errors:


	coherent errors are those that preserve the purity of the input
state, i.e., instead of the above mapping we carry out a perturbed,
but unitary operation \(\ket{\psi} \mapsto \tilde{U}\ket{\psi}\),
where \(\tilde{U} \neq U\).


	incoherent errors are those that do not preserve the purity of
the input state, in this case we must actually represent the
evolution in terms of density matrices. The state
\(\rho := \ket{\psi}\bra{\psi}\) is then mapped as


\[\rho \mapsto \sum_{j=1}^n K_j\rho K_j^\dagger,\]

where the operators \(\{K_1, K_2, \dots, K_m\}\) are called
Kraus operators and must obey
\(\sum_{j=1}^m K_j^\dagger K_j = I\) to conserve the trace of
\(\rho\). Maps expressed in the above form are called Kraus maps.
It can be shown that every physical map on a finite dimensional
quantum system can be represented as a Kraus map, though this
representation is not generally unique. You can find more
information about quantum operations
here [https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators]





In a way, coherent errors are in principle amendable by more precisely
calibrated control. Incoherent errors are more tricky.




Why Do Incoherent Errors Happen?

When a quantum system (e.g., the qubits on a quantum processor) is not
perfectly isolated from its environment it generally co-evolves with the
degrees of freedom it couples to. The implication is that while the
total time evolution of system and environment can be assumed to be
unitary, restriction to the system state generally is not.

Let’s throw some math at this for clarity: Let our total Hilbert
space be given by the tensor product of system and environment Hilbert
spaces: \(\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_E\). Our
system “not being perfectly isolated” must be translated to the
statement that the global Hamiltonian contains a contribution that
couples the system and environment:


\[H = H_S \otimes I + I \otimes H_E + V\]

where \(V\) non-trivally acts on both the system and the
environment. Consequently, even if we started in an initial state that
factorized over system and environment
\(\ket{\psi}_{S,0}\otimes \ket{\psi}_{E,0}\) if everything evolves
by the Schrödinger equation


\[\ket{\psi_t} = e^{-i \frac{Ht}{\hbar}} \left(\ket{\psi}_{S,0}\otimes \ket{\psi}_{E,0}\right)\]

the final state will generally not admit such a factorization.




A Toy Model

In this (somewhat technical) section we show how environment
interaction can corrupt an identity gate and derive its Kraus map. For
simplicity, let us assume that we are in a reference frame in which both
the system and environment Hamiltonian’s vanish \(H_S = 0, H_E = 0\)
and where the cross-coupling is small even when multiplied by the
duration of the time evolution
\(\|\frac{tV}{\hbar}\|^2 \sim \epsilon \ll 1\) (any operator norm
\(\|\cdot\|\) will do here). Let us further assume that
\(V = \sqrt{\epsilon} V_S \otimes V_E\) (the more general case is
given by a sum of such terms) and that the initial environment state
satisfies \(\bra{\psi}_{E,0} V_E\ket{\psi}_{E,0} = 0\). This turns
out to be a very reasonable assumption in practice but a more thorough
discussion exceeds our scope.

Then the joint system + environment state
\(\rho = \rho_{S,0} \otimes \rho_{E,0}\) (now written as a density
matrix) evolves as


\[\rho \mapsto \rho' :=  e^{-i \frac{Vt}{\hbar}} \rho e^{+i \frac{Vt}{\hbar}}\]

Using the Baker-Campbell-Hausdorff theorem we can expand this to second
order in \(\epsilon\)


\[\rho' = \rho - \frac{it}{\hbar} [V, \rho] - \frac{t^2}{2\hbar^2} [V, [V, \rho]] + O(\epsilon^{3/2})\]

We can insert the initially factorizable state
\(\rho = \rho_{S,0} \otimes \rho_{E,0}\) and trace over the
environmental degrees of freedom to obtain


\[\begin{split}\begin{align}
\rho_S' := \tr{\rho'}_E & = \rho_{S,0}  \underbrace{\tr{\rho_{E,0}}_{1}} - \frac{i\sqrt{\epsilon} t}{\hbar} \underbrace{\left[ V_S \rho_{S,0} \underbrace{\tr{V_E\rho_{E,0}}}_{\bra{\psi}_{E,0} V_E\ket{\psi}_{E,0} = 0} - \rho_{S,0}V_S  \underbrace{\tr{\rho_{E,0}V_E}}_{\bra{\psi}_{E,0} V_E\ket{\psi}_{E,0} = 0} \right]}_0 \\
& - \frac{\epsilon t^2}{2\hbar^2} \left[ V_S^2\rho_{S,0}\tr{V_E^2 \rho_{E,0}} + \rho_{S,0} V_S^2 \tr{\rho_{E,0}V_E^2} - 2 V_S\rho_{S,0}V_S\tr{V_E \rho_{E,0}V_E}\right] \\
& = \rho_{S,0} - \frac{\gamma}{2} \left[ V_S^2\rho_{S,0} + \rho_{S,0} V_S^2  - 2 V_S\rho_{S,0}V_S\right]
\end{align}\end{split}\]

where the coefficient in front of the second part is by our initial
assumption very small
\(\gamma := \frac{\epsilon t^2}{2\hbar^2}\tr{V_E^2 \rho_{E,0}} \ll 1\).
This evolution happens to be approximately equal to a Kraus map with
operators
\(K_1 := I - \frac{\gamma}{2} V_S^2, K_2:= \sqrt{\gamma} V_S\):


\[\begin{align}
\rho_S \to \rho_S' &= K_1\rho K_1^\dagger + K_2\rho K_2^\dagger
 = \rho - \frac{\gamma}{2}\left[ V_S^2 \rho + \rho V_S^2\right] + \gamma V_S\rho_S V_S + O(\gamma^2)
\end{align}\]

This agrees to \(O(\epsilon^{3/2})\) with the result of our
derivation above. This type of derivation can be extended to many other
cases with little complication and a very similar argument is used to
derive the Lindblad master
equation [https://en.wikipedia.org/wiki/Lindblad_equation].






Noisy Gates on the Rigetti QVM

As of today, users of our Forest API can annotate their QUIL programs by
certain pragma statements that inform the QVM that a particular gate on
specific target qubits should be replaced by an imperfect realization
given by a Kraus map.

The QVM propagates pure states — so how does it simulate noisy gates?
It does so by yielding the correct outcomes in the average over many
executions of the QUIL program: When the noisy version of a gate
should be applied the QVM makes a random choice which Kraus operator is
applied to the current state with a probability that ensures that the
average over many executions is equivalent to the Kraus map. In
particular, a particular Kraus operator \(K_j\) is applied to
\(\ket{\psi}_S\)


\[\ket{\psi'}_S = \frac{1}{\sqrt{p_j}} K_j \ket{\psi}_S\]

with probability
\(p_j:= \bra{\psi}_S K_j^\dagger K_j \ket{\psi}_S\). In the average
over many execution \(N \gg 1\) we therefore find that


\[\begin{split}\begin{align}
\overline{\rho_S'} & = \frac{1}{N} \sum_{n=1}^N \ket{\psi'_n}_S\bra{\psi'_n}_S \\
& = \frac{1}{N} \sum_{n=1}^N p_{j_n}^{-1}K_{j_n}\ket{\psi'}_S \bra{\psi'}_SK_{j_n}^\dagger
\end{align}\end{split}\]

where \(j_n\) is the chosen Kraus operator label in the \(n\)-th
trial. This is clearly a Kraus map itself! And we can group identical
terms and rewrite it as


\[\begin{align}
\overline{\rho_S'} & =
  \sum_{\ell=1}^n \frac{N_\ell}{N}  p_{\ell}^{-1}K_{\ell}\ket{\psi'}_S \bra{\psi'}_SK_{\ell}^\dagger
\end{align}\]

where \(N_{\ell}\) is the number of times that Kraus operator label
\(\ell\) was selected. For large enough \(N\) we know that
\(N_{\ell} \approx N p_\ell\) and therefore


\[\begin{align}
\overline{\rho_S'} \approx \sum_{\ell=1}^n K_{\ell}\ket{\psi'}_S \bra{\psi'}_SK_{\ell}^\dagger
\end{align}\]

which proves our claim. The consequence is that noisy gate simulations
must generally be repeated many times to obtain representative
results.


Getting Started


	Come up with a good model for your noise. We will provide some
examples below and may add more such examples to our public
repositories over time. Alternatively, you can characterize the gate
under consideration using Quantum Process
Tomography [https://arxiv.org/abs/1202.5344] or Gate Set
Tomography [http://www.pygsti.info/] and use the resulting process
matrices to obtain a very accurate noise model for a particular QPU.


	Define your Kraus operators as a list of numpy arrays
kraus_ops = [K1, K2, ..., Km].


	For your QUIL program p, call:

p.define_noisy_gate("MY_NOISY_GATE", [q1, q2], kraus_ops)





where you should replace MY_NOISY_GATE with the gate of interest
and q1, q2 the indices of the qubits.





Scroll down for some examples!

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom
import matplotlib.colors as colors
%matplotlib inline





from pyquil.quil import Program, MEASURE
from pyquil.api.qvm import QVMConnection
from pyquil.job_results import wait_for_job
from pyquil.gates import CZ, H, I, X
from scipy.linalg import expm





cxn = QVMConnection()








Example 1: Amplitude Damping

Amplitude damping channels are imperfect identity maps with Kraus
operators


\[\begin{split}K_1 = \begin{pmatrix}
1 & 0 \\
0 & \sqrt{1-p}
\end{pmatrix} \\
K_2 = \begin{pmatrix}
0 & \sqrt{p} \\
0 & 0
\end{pmatrix}\end{split}\]

where \(p\) is the probability that a qubit in the \(\ket{1}\)
state decays to the \(\ket{0}\) state.

def damping_channel(damp_prob=.1):
    """
    Generate the Kraus operators corresponding to an amplitude damping
    noise channel.

    :params float damp_prob: The one-step damping probability.
    :return: A list [k1, k2] of the Kraus operators that parametrize the map.
    :rtype: list
    """
    damping_op = np.sqrt(damp_prob) * np.array([[0, 1],
                                                [0, 0]])

    residual_kraus = np.diag([1, np.sqrt(1-damp_prob)])
    return [residual_kraus, damping_op]

def append_kraus_to_gate(kraus_ops, g):
    """
    Follow a gate `g` by a Kraus map described by `kraus_ops`.

    :param list kraus_ops: The Kraus operators.
    :param numpy.ndarray g: The unitary gate.
    :return: A list of transformed Kraus operators.
    """
    return [kj.dot(g) for kj in kraus_ops]


def append_damping_to_gate(gate, damp_prob=.1):
    """
    Generate the Kraus operators corresponding to a given unitary
    single qubit gate followed by an amplitude damping noise channel.

    :params np.ndarray|list gate: The 2x2 unitary gate matrix.
    :params float damp_prob: The one-step damping probability.
    :return: A list [k1, k2] of the Kraus operators that parametrize the map.
    :rtype: list
    """
    return append_kraus_to_gate(damping_channel(damp_prob), gate)





%%time

# single step damping probability
damping_per_I = 0.02

# number of program executions
trials = 200

results = []
outcomes = []
lengths = np.arange(0, 201, 10, dtype=int)
for jj, num_I in enumerate(lengths):

    print("{}/{}, ".format(jj, len(lengths)), end="")


    p = Program(X(0))
    # want increasing number of I-gates
    p.inst([I(0) for _ in range(num_I)])
    p.inst(MEASURE(0, [0]))

    # overload identity I on qc 0
    p.define_noisy_gate("I", [0], append_damping_to_gate(np.eye(2), damping_per_I))
    cxn.random_seed = int(num_I)
    res = cxn.run(p, [0], trials=trials)
    results.append([np.mean(res), np.std(res) / np.sqrt(trials)])

results = np.array(results)





0/21, 1/21, 2/21, 3/21, 4/21, 5/21, 6/21, 7/21, 8/21, 9/21, 10/21, 11/21, 12/21, 13/21, 14/21, 15/21, 16/21, 17/21, 18/21, 19/21, 20/21, CPU times: user 138 ms, sys: 19.2 ms, total: 157 ms
Wall time: 6.4 s





dense_lengths = np.arange(0, lengths.max()+1, .2)
survival_probs = (1-damping_per_I)**dense_lengths
logpmf = binom.logpmf(np.arange(trials+1)[np.newaxis, :], trials, survival_probs[:, np.newaxis])/np.log(10)





DARK_TEAL = '#48737F'
FUSCHIA = "#D6619E"
BEIGE = '#EAE8C6'
cm = colors.LinearSegmentedColormap.from_list('anglemap', ["white", FUSCHIA, BEIGE], N=256, gamma=1.5)





plt.figure(figsize=(14, 6))
plt.pcolor(dense_lengths, np.arange(trials+1)/trials, logpmf.T, cmap=cm, vmin=-4, vmax=logpmf.max())
plt.plot(dense_lengths, survival_probs, c=BEIGE, label="Expected mean")
plt.errorbar(lengths, results[:,0], yerr=2*results[:,1], c=DARK_TEAL,
             label=r"noisy qvm, errorbars $ = \pm 2\hat{\sigma}$", marker="o")
cb = plt.colorbar()
cb.set_label(r"$\log_{10} \mathrm{Pr}(n_1; n_{\rm trials}, p_{\rm survival}(t))$", size=20)

plt.title("Amplitude damping model of a single qubit", size=20)
plt.xlabel(r"Time $t$ [arb. units]", size=14)
plt.ylabel(r"$n_1/n_{\rm trials}$", size=14)
plt.legend(loc="best", fontsize=18)
plt.xlim(*lengths[[0, -1]])
plt.ylim(0, 1)
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Example 2: Dephased CZ-gate

Dephasing is usually characterized through a qubit’s \(T_2\) time.
For a single qubit the dephasing Kraus operators are


\[\begin{split}K_1(p) = \sqrt{1-p} I_2 \\
K_2(p) = \sqrt{p} \sigma_Z\end{split}\]

where \(p = 1 - \exp(-T_2/T_{\rm gate})\) is the probability that
the qubit is dephased over the time interval of interest, \(I_2\) is
the \(2\times 2\)-identity matrix and \(\sigma_Z\) is the
Pauli-Z operator.

For two qubits, we must construct a Kraus map that has four different
outcomes:


	No dephasing


	Qubit 1 dephases


	Qubit 2 dephases


	Both dephase




The Kraus operators for this are given by

where we assumed a dephasing probability \(p\) for the first qubit
and \(q\) for the second.

Dephasing is a diagonal error channel and the CZ gate is also
diagonal, therefore we can get the combined map of dephasing and the CZ
gate simply by composing \(U_{\rm CZ}\) the unitary representation
of CZ with each Kraus operator


\[\begin{split}\begin{align}
K^{\rm CZ}_1(p,q) = K_1(p)\otimes K_1(q)U_{\rm CZ} \\
K^{\rm CZ}_2(p,q) = K_2(p)\otimes K_1(q)U_{\rm CZ} \\
K^{\rm CZ}_3(p,q) = K_1(p)\otimes K_2(q)U_{\rm CZ} \\
K^{\rm CZ}_4(p,q) = K_2(p)\otimes K_2(q)U_{\rm CZ}
\end{align}\end{split}\]

Note that this is not always accurate, because a CZ gate is often
achieved through non-diagonal interaction Hamiltonians! However, for
sufficiently small dephasing probabilities it should always provide a
good starting point.

def dephasing_kraus_map(p=.1):
    """
    Generate the Kraus operators corresponding to a dephasing channel.

    :params float p: The one-step dephasing probability.
    :return: A list [k1, k2] of the Kraus operators that parametrize the map.
    :rtype: list
    """
    return [np.sqrt(1-p)*np.eye(2), np.sqrt(p)*np.diag([1, -1])]

def tensor_kraus_maps(k1, k2):
    """
    Generate the Kraus map corresponding to the composition
    of two maps on different qubits.

    :param list k1: The Kraus operators for the first qubit.
    :param list k2: The Kraus operators for the second qubit.
    :return: A list of tensored Kraus operators.
    """
    return [np.kron(k1j, k2l) for k1j in k1 for k2l in k2]


def append_kraus_to_gate(kraus_ops, g):
    """
    Follow a gate `g` by a Kraus map described by `kraus_ops`.

    :param list kraus_ops: The Kraus operators.
    :param numpy.ndarray g: The unitary gate.
    :return: A list of transformed Kraus operators.
    """
    return [kj.dot(g) for kj in kraus_ops]





%%time
# single step damping probabilities
ps = np.linspace(.001, .5, 200)

# number of program executions
trials = 500

results = []

for jj, p in enumerate(ps):

    corrupted_CZ = append_kraus_to_gate(
    tensor_kraus_maps(
        dephasing_kraus_map(p),
        dephasing_kraus_map(p)
    ),
    np.diag([1, 1, 1, -1]))


    print("{}/{}, ".format(jj, len(ps)), end="")

    # make Bell-state
    p = Program(H(0), H(1), CZ(0,1), H(1))

    p.inst(MEASURE(0, [0]))
    p.inst(MEASURE(1, [1]))

    # overload identity I on qc 0
    p.define_noisy_gate("CZ", [0, 1], corrupted_CZ)
    cxn.random_seed = jj
    res = cxn.run(p, [0, 1], trials=trials)
    results.append(res)

results = np.array(results)





0/200, 1/200, 2/200, 3/200, 4/200, 5/200, 6/200, 7/200, 8/200, 9/200, 10/200, 11/200, 12/200, 13/200, 14/200, 15/200, 16/200, 17/200, 18/200, 19/200, 20/200, 21/200, 22/200, 23/200, 24/200, 25/200, 26/200, 27/200, 28/200, 29/200, 30/200, 31/200, 32/200, 33/200, 34/200, 35/200, 36/200, 37/200, 38/200, 39/200, 40/200, 41/200, 42/200, 43/200, 44/200, 45/200, 46/200, 47/200, 48/200, 49/200, 50/200, 51/200, 52/200, 53/200, 54/200, 55/200, 56/200, 57/200, 58/200, 59/200, 60/200, 61/200, 62/200, 63/200, 64/200, 65/200, 66/200, 67/200, 68/200, 69/200, 70/200, 71/200, 72/200, 73/200, 74/200, 75/200, 76/200, 77/200, 78/200, 79/200, 80/200, 81/200, 82/200, 83/200, 84/200, 85/200, 86/200, 87/200, 88/200, 89/200, 90/200, 91/200, 92/200, 93/200, 94/200, 95/200, 96/200, 97/200, 98/200, 99/200, 100/200, 101/200, 102/200, 103/200, 104/200, 105/200, 106/200, 107/200, 108/200, 109/200, 110/200, 111/200, 112/200, 113/200, 114/200, 115/200, 116/200, 117/200, 118/200, 119/200, 120/200, 121/200, 122/200, 123/200, 124/200, 125/200, 126/200, 127/200, 128/200, 129/200, 130/200, 131/200, 132/200, 133/200, 134/200, 135/200, 136/200, 137/200, 138/200, 139/200, 140/200, 141/200, 142/200, 143/200, 144/200, 145/200, 146/200, 147/200, 148/200, 149/200, 150/200, 151/200, 152/200, 153/200, 154/200, 155/200, 156/200, 157/200, 158/200, 159/200, 160/200, 161/200, 162/200, 163/200, 164/200, 165/200, 166/200, 167/200, 168/200, 169/200, 170/200, 171/200, 172/200, 173/200, 174/200, 175/200, 176/200, 177/200, 178/200, 179/200, 180/200, 181/200, 182/200, 183/200, 184/200, 185/200, 186/200, 187/200, 188/200, 189/200, 190/200, 191/200, 192/200, 193/200, 194/200, 195/200, 196/200, 197/200, 198/200, 199/200, CPU times: user 1.17 s, sys: 166 ms, total: 1.34 s
Wall time: 1min 49s





Z1s = (2*results[:,:,0]-1.)
Z2s = (2*results[:,:,1]-1.)
Z1Z2s = Z1s * Z2s

Z1m = np.mean(Z1s, axis=1)
Z2m = np.mean(Z2s, axis=1)
Z1Z2m = np.mean(Z1Z2s, axis=1)





plt.figure(figsize=(14, 6))
plt.axhline(y=1.0, color=FUSCHIA, alpha=.5, label="Bell state")

plt.plot(ps, Z1Z2m, "x", c=FUSCHIA, label=r"$\overline{Z_1 Z_2}$")
plt.plot(ps, 1-2*ps, "--", c=FUSCHIA, label=r"$\langle Z_1 Z_2\rangle_{\rm theory}$")

plt.plot(ps, Z1m, "o", c=DARK_TEAL, label=r"$\overline{Z}_1$")
plt.plot(ps, 0*ps, "--", c=DARK_TEAL, label=r"$\langle Z_1\rangle_{\rm theory}$")

plt.plot(ps, Z2m, "d", c="k", label=r"$\overline{Z}_2$")
plt.plot(ps, 0*ps, "--", c="k", label=r"$\langle Z_2\rangle_{\rm theory}$")

plt.xlabel(r"Dephasing probability $p$", size=18)
plt.ylabel(r"$Z$-moment", size=18)
plt.title(r"$Z$-moments for a Bell-state prepared with dephased CZ", size=18)
plt.xlim(0, .5)
plt.legend(fontsize=18)
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Adding Decoherence Noise

In this example, we investigate how a program might behave on a
near-term device that is subject to T1- and T2-type noise using the convenience function
pyquil.noise.add_decoherence_noise(). The same module also contains some other useful
functions to define your own types of noise models, e.g.,
pyquil.noise.tensor_kraus_maps() for generating multi-qubit noise processes,
pyquil.noise.combine_kraus_maps() for describing the succession of two noise processes and
pyquil.noise.append_kraus_to_gate() which allows appending a noise process to a unitary
gate.

from pyquil.quil import Program
from pyquil.paulis import PauliSum, PauliTerm, exponentiate, exponential_map, trotterize
from pyquil.gates import MEASURE, H, Z, RX, RZ, CZ
import numpy as np






The Task

We want to prepare \(e^{i \theta XY}\) and measure it in the
\(Z\) basis.

from numpy import pi
theta = pi/3
xy = PauliTerm('X', 0) * PauliTerm('Y', 1)








The Idiomatic PyQuil Program

prog = exponential_map(xy)(theta)
print(prog)





H 0
RX(pi/2) 1
CNOT 0 1
RZ(2*pi/3) 1
CNOT 0 1
H 0
RX(-pi/2) 1








The Compiled Program

To run on a real device, we must compile each program to the native gate
set for the device. The high-level noise model is similarly constrained
to use a small, native gate set. In particular, we can use


	\(I\)


	\(RZ(\theta)\)


	\(RX(\pm \pi/2)\)


	\(CZ\)




For simplicity, the compiled program is given below but generally you
will want to use a compiler to do this step for you.

def get_compiled_prog(theta):
    return Program([
        RZ(-pi/2, 0),
        RX(-pi/2, 0),
        RZ(-pi/2, 1),
        RX( pi/2, 1),
        CZ(1, 0),
        RZ(-pi/2, 1),
        RX(-pi/2, 1),
        RZ(theta, 1),
        RX( pi/2, 1),
        CZ(1, 0),
        RX( pi/2, 0),
        RZ( pi/2, 0),
        RZ(-pi/2, 1),
        RX( pi/2, 1),
        RZ(-pi/2, 1),
    ])








Scan Over Noise Parameters

We perform a scan over three levels of noise each at 20 theta points.

Specifically, we investigate T1 values of 1, 3, and 10 us. By default,
T2 = T1 / 2, 1 qubit gates take 50 ns, and 2 qubit gates take 150 ns.

In alignment with the device, \(I\) and parametric \(RZ\) are
noiseless while \(RX\) and \(CZ\) gates experience 1q and 2q
gate noise, respectively.

from pyquil.api import QVMConnection
cxn = QVMConnection()





t1s = np.logspace(-6, -5, num=3)
thetas = np.linspace(-pi, pi, num=20)
t1s * 1e6 # us





array([  1.        ,   3.16227766,  10.        ])





from pyquil.noise import add_decoherence_noise
records = []
for theta in thetas:
    for t1 in t1s:
        prog = get_compiled_prog(theta)
        noisy = add_decoherence_noise(prog, T1=t1).inst([
            MEASURE(0, 0),
            MEASURE(1, 1),
        ])
        bitstrings = np.array(cxn.run(noisy, [0,1], 1000))

        # Expectation of Z0 and Z1
        z0, z1 = 1 - 2*np.mean(bitstrings, axis=0)

        # Expectation of ZZ by computing the parity of each pair
        zz = 1 - (np.sum(bitstrings, axis=1) % 2).mean() * 2

        record = {
            'z0': z0,
            'z1': z1,
            'zz': zz,
            'theta': theta,
            't1': t1,
        }
        records += [record]








Plot the Results

Note that to run the code below you will need to install the pandas and seaborn packages.

%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
sns.set(style='ticks', palette='colorblind')





import pandas as pd
df_all = pd.DataFrame(records)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,4))

for t1 in t1s:
    df = df_all.query('t1 == @t1')

    ax1.plot(df['theta'], df['z0'], 'o-')
    ax2.plot(df['theta'], df['z1'], 'o-')
    ax3.plot(df['theta'], df['zz'], 'o-', label='T1 = {:.0f} us'.format(t1*1e6))

ax3.legend(loc='best')

ax1.set_ylabel('Z0')
ax2.set_ylabel('Z1')
ax3.set_ylabel('ZZ')
ax2.set_xlabel(r'$\theta$')
fig.tight_layout()
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Modeling Readout Noise

Qubit-Readout can be corrupted in a variety of ways. The two most
relevant error mechanisms on the Rigetti QPU right now are:


	Transmission line noise that makes a 0-state look like a 1-state or
vice versa. We call this classical readout bit-flip error. This
type of readout noise can be reduced by tailoring optimal readout
pulses and using superconducting, quantum limited amplifiers to
amplify the readout signal before it is corrupted by classical noise
at the higher temperature stages of our cryostats.


	T1 qubit decay during readout (our readout operations can take more
than a µsecond unless they have been specially optimized), which
leads to readout signals that initially behave like 1-states but then
collapse to something resembling a 0-state. We will call this
T1-readout error. This type of readout error can be reduced by
achieving shorter readout pulses relative to the T1 time, i.e., one
can try to reduce the readout pulse length, or increase the T1 time
or both.





Qubit Measurements

This section provides the necessary theoretical foundation for
accurately modeling noisy quantum measurements on superconducting
quantum processors. It relies on some of the abstractions (density
matrices, Kraus maps) introduced in our notebook on gate noise
models.

The most general type of measurement performed on a single qubit at a
single time can be characterized by some set \(\mathcal{O}\) of
measurement outcomes, e.g., in the simplest case
\(\mathcal{O} = \{0, 1\}\), and some unnormalized quantum channels
(see notebook on gate noise models) that encapsulate 1. the probability
of that outcome 2. how the qubit state is affected conditional on the
measurement outcome.

Here the outcome is understood as classical information that has been
extracted from the quantum system.


Projective, Ideal Measurement

The simplest case that is usually taught in introductory quantum
mechanics and quantum information courses are Born’s rule and the
projection postulate which state that there exist a complete set of
orthogonal projection operators


\[P_{\mathcal{O}} := \{\Pi_x \text{ Projector }\mid x \in \mathcal{O}\},\]

i.e., one for each measurement outcome. Any projection operator must
satisfy \(\Pi_x^\dagger = \Pi_x = \Pi_x^2\) and for an orthogonal
set of projectors any two members satisfy


\[\begin{split}\Pi_x\Pi_y = \delta_{xy} \Pi_x = \begin{cases} 0 & \text{ if } x \ne y \\ \Pi_x & \text{ if } x = y \end{cases}\end{split}\]

and for a complete set we additionally demand that
\(\sum_{x\in\mathcal{O}} \Pi_x = 1\). Following our introduction to
gate noise, we write quantum states as density matrices as this is more
general and in closer correspondence with classical probability theory.

With these the probability of outcome \(x\) is given by
\(p(x) = \tr{\Pi_x \rho \Pi_x} = \tr{\Pi_x^2 \rho} = \tr{\Pi_x \rho}\)
and the post measurement state is


\[\rho_x = \frac{1}{p(x)} \Pi_x \rho \Pi_x,\]

which is the projection postulate applied to mixed states.

If we were a sloppy quantum programmer and accidentally erased the
measurement outcome then our best guess for the post measurement state
would be given by something that looks an awful lot like a Kraus map:


\[\rho_{\text{post measurement}} = \sum_{x\in\mathcal{O}} p(x) \rho_x = \sum_{x\in\mathcal{O}} \Pi_x \rho \Pi_x.\]

The completeness of the projector set ensures that the trace of the
post measurement is still 1 and the Kraus map form of this expression
ensures that \(\rho_{\text{post measurement}}\) is a positive
(semi-)definite operator.




Classical Readout Bit-Flip Error

Consider now the ideal measurement as above, but where the outcome
\(x\) is transmitted across a noisy classical channel that produces
a final outcome \(x'\in \mathcal{O}' = \{0', 1'\}\) according to
some conditional probabilities \(p(x'|x)\) that can be recorded in
the assignment probability matrix


\[\begin{split}P_{x'|x} = \begin{pmatrix}
p(0 | 0) & p(0 | 1) \\
p(1 | 0) & p(1 | 1)
\end{pmatrix}\end{split}\]

Note that this matrix has only two independent parameters as each
column must be a valid probability distribution, i.e. all elements are
non-negative and each column sums to 1.

This matrix allows us to obtain the probabilities
\(\mathbf{p}' := (p(x'=0), p(x'=1))^T\) from the original outcome
probabilities \(\mathbf{p} := (p(x=0), p(x=1))^T\) via
\(\mathbf{p}' = P_{x'|x}\mathbf{p}\). The difference relative to the
ideal case above is that now an outcome \(x' = 0\) does not
necessarily imply that the post measurement state is truly
\(\Pi_{0} \rho \Pi_{0} / p(x=0)\). Instead, the post measurement
state given a noisy outcome \(x'\) must be


\[\begin{split}\begin{aligned}
\rho_{x'} & = \sum_{x\in \mathcal{O}} p(x|x') \rho_x \\
          & = \sum_{x\in \mathcal{O}} p(x'|x)\frac{p(x)}{p(x')} \rho_x \\
          & = \frac{1}{p(x')}\sum_{x\in \mathcal{O}} p(x'|x) \Pi_x \rho \Pi_x
\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
p(x') & = \sum_{x\in\mathcal{O}} p(x'|x) p(x)  \\
& = \tr{\sum_{x\in \mathcal{O}} p(x'|x) \Pi_x \rho \Pi_x} \\
& = \tr{\rho \sum_{x\in \mathcal{O}} p(x'|x)\Pi_x} \\
& = \tr{\rho E_x'}.
\end{aligned}\end{split}\]

where we have exploited the cyclical property of the trace
\(\tr{ABC}=\tr{BCA}\) and the projection property
\(\Pi_x^2 = \Pi_x\). This has allowed us to derive the noisy outcome
probabilities from a set of positive operators


\[E_{x'} := \sum_{x\in \mathcal{O}} p(x'|x)\Pi_x \ge 0\]

that must sum to 1:


\[\sum_{x'\in\mathcal{O}'} E_x' = \sum_{x\in\mathcal{O}}\underbrace{\left[\sum_{x'\in\mathcal{O}'} p(x'|x)\right]}_{1}\Pi_x = \sum_{x\in\mathcal{O}}\Pi_x = 1.\]

The above result is a type of generalized Bayes’ theorem that is
extremely useful for this type of (slightly) generalized measurement and
the family of operators \(\{E_{x'}| x' \in \mathcal{O}'\}\) whose
expectations give the probabilities is called a positive operator
valued measure (POVM). These operators are not generally orthogonal
nor valid projection operators but they naturally arise in this
scenario. This is not yet the most general type of measurement, but it
will get us pretty far.




How to Model \(T_1\) Error

T1 type errors fall outside our framework so far as they involve a
scenario in which the quantum state itself is corrupted during the
measurement process in a way that potentially erases the pre-measurement
information as opposed to a loss of purely classical information. The
most appropriate framework for describing this is given by that of
measurement instruments, but for the practical purpose of arriving at a
relatively simple description, we propose describing this by a T1
damping Kraus map followed by the noisy readout process as described
above.




Further Reading

Chapter 3 of John Preskill’s lecture notes
http://www.theory.caltech.edu/people/preskill/ph229/notes/chap3.pdf








Working with Readout Noise


	Come up with a good guess for your readout noise parameters
\(p(0|0)\) and \(p(1|1)\), the off-diagonals then follow from
the normalization of \(P_{x'|x}\). If your assignment fidelity
\(F\) is given, and you assume that the classical bit flip noise
is roughly symmetric, then a good approximation is to set
\(p(0|0)=p(1|1)=F\).


	For your QUIL program p, and a qubit index q call:

p.define_noisy_readout(q, p00, p11)





where you should replace p00 and p11 with the assumed
probabilities.





Scroll down for some examples!

from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from pyquil.quil import Program, MEASURE, Pragma
from pyquil.api.qvm import QVMConnection
from pyquil.gates import I, X, RX, H, CNOT
from pyquil.noise import (estimate_bitstring_probs, correct_bitstring_probs,
                          bitstring_probs_to_z_moments, estimate_assignment_probs)

DARK_TEAL = '#48737F'
FUSCHIA = '#D6619E'
BEIGE = '#EAE8C6'

cxn = QVMConnection()






Example 1: Rabi Sequence with Noisy Readout

%%time

# number of angles
num_theta = 101

# number of program executions
trials = 200

thetas = np.linspace(0, 2*np.pi, num_theta)

p00s = [1., 0.95, 0.9, 0.8]

results_rabi = np.zeros((num_theta, len(p00s)))

for jj, theta in enumerate(thetas):
    for kk, p00 in enumerate(p00s):
        cxn.random_seed = hash((jj, kk))
        p = Program(RX(theta)(0))
        # assume symmetric noise p11 = p00
        p.define_noisy_readout(0, p00=p00, p11=p00)
        p.measure(0, 0)
        res = cxn.run(p, [0], trials=trials)
        results_rabi[jj, kk] = np.sum(res)





CPU times: user 1.2 s, sys: 73.6 ms, total: 1.27 s
Wall time: 3.97 s





plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):
    plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".format(p00))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)
plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Effect of classical readout noise on Rabi contrast.", size=18)





<matplotlib.text.Text at 0x104314250>
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Example 2: Estimate the Assignment Probabilities

Here we will estimate \(P_{x'|x}\) ourselves!
You can run some simple experiments to estimate the assignment
probability matrix directly from a QPU.

On a perfect quantum computer

estimate_assignment_probs(0, 1000, cxn, Program())





array([[ 1.,  0.],
       [ 0.,  1.]])





On an imperfect quantum computer

cxn.seed = None
header0 = Program().define_noisy_readout(0, .85, .95)
header1 = Program().define_noisy_readout(1, .8, .9)
header2 = Program().define_noisy_readout(2, .9, .85)

ap0 = estimate_assignment_probs(0, 100000, cxn, header0)
ap1 = estimate_assignment_probs(1, 100000, cxn, header1)
ap2 = estimate_assignment_probs(2, 100000, cxn, header2)





print(ap0, ap1, ap2, sep="\n")





[[ 0.84967  0.04941]
 [ 0.15033  0.95059]]
[[ 0.80058  0.09993]
 [ 0.19942  0.90007]]
[[ 0.90048  0.14988]
 [ 0.09952  0.85012]]








Example 3: Correct for Noisy Readout


3a) Correcting the Rabi Signal from Above

ap_last = np.array([[p00s[-1], 1 - p00s[-1]],
                    [1 - p00s[-1], p00s[-1]]])
corrected_last_result = [correct_bitstring_probs([1-p, p], [ap_last])[1] for p in results_rabi[:, -1] / trials]





plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):
    if jj not in [0, 3]:
        continue
    plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".format(p00), alpha=.3)
plt.plot(thetas, corrected_last_result, c="red", label=r"Corrected $p(0|0)=p(1|1)={:g}$".format(p00s[-1]))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)
plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Corrected contrast", size=18)





<matplotlib.text.Text at 0x1055e7310>
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We find that the corrected signal is fairly noisy (and sometimes
exceeds the allowed interval \([0,1]\)) due to the overall very
small number of samples \(n=200\).




3b) Corrupting and Correcting GHZ State Correlations

In this example we will create a GHZ state
\(\frac{1}{\sqrt{2}}\left[\left|000\right\rangle + \left|111\right\rangle \right]\) and
measure its outcome probabilities with and without the above noise model. We will then see how the
Pauli-Z moments that indicate the qubit correlations are corrupted (and corrected) using our API.

ghz_prog = Program(H(0), CNOT(0, 1), CNOT(1, 2),
                   MEASURE(0, 0), MEASURE(1, 1), MEASURE(2, 2))
print(ghz_prog)
results = cxn.run(ghz_prog, [0, 1, 2], trials=10000)





H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]





header = header0 + header1 + header2
noisy_ghz = header + ghz_prog
print(noisy_ghz)
noisy_results = cxn.run(noisy_ghz, [0, 1, 2], trials=10000)





PRAGMA READOUT-POVM 0 "(0.85 0.050000000000000044 0.15000000000000002 0.95)"
PRAGMA READOUT-POVM 1 "(0.8 0.09999999999999998 0.19999999999999996 0.9)"
PRAGMA READOUT-POVM 2 "(0.9 0.15000000000000002 0.09999999999999998 0.85)"
H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]






Uncorrupted probability for \(\left|000\right\rangle\) and \(\left|111\right\rangle\)

probs = estimate_bitstring_probs(results)
probs[0, 0, 0], probs[1, 1, 1]





(0.50419999999999998, 0.49580000000000002)





As expected the outcomes 000 and 111 each have roughly
probability \(1/2\).




Corrupted probability for \(\left|011\right\rangle\) and \(\left|100\right\rangle\)

noisy_probs = estimate_bitstring_probs(noisy_results)
noisy_probs[0, 0, 0], noisy_probs[1, 1, 1]





(0.30869999999999997, 0.3644)





The noise-corrupted outcome probabilities deviate significantly from
their ideal values!




Corrected probability for \(\left|011\right\rangle\) and \(\left|100\right\rangle\)

corrected_probs = correct_bitstring_probs(noisy_probs, [ap0, ap1, ap2])
corrected_probs[0, 0, 0], corrected_probs[1, 1, 1]





(0.50397601453064977, 0.49866843912900716)





The corrected outcome probabilities are much closer to the ideal value.




Estimate \(\langle Z_0^{j} Z_1^{k} Z_2^{\ell}\rangle\) for \(jkl=100, 010, 001\) from non-noisy data

We expect these to all be very small

zmoments = bitstring_probs_to_z_moments(probs)
zmoments[1, 0, 0], zmoments[0, 1, 0], zmoments[0, 0, 1]





(0.0083999999999999631, 0.0083999999999999631, 0.0083999999999999631)








Estimate \(\langle Z_0^{j} Z_1^{k} Z_2^{\ell}\rangle\) for \(jkl=110, 011, 101\) from non-noisy data

We expect these to all be close to 1.

zmoments[1, 1, 0], zmoments[0, 1, 1], zmoments[1, 0, 1]





(1.0, 1.0, 1.0)








Estimate \(\langle Z_0^{j} Z_1^{k} Z_2^{\ell}\rangle\) for \(jkl=100, 010, 001\) from noise-corrected data

zmoments_corr = bitstring_probs_to_z_moments(corrected_probs)
zmoments_corr[1, 0, 0], zmoments_corr[0, 1, 0], zmoments_corr[0, 0, 1]





(0.0071476770049732075, -0.0078641261685578612, 0.0088462563282706852)








Estimate \(\langle Z_0^{j} Z_1^{k} Z_2^{\ell}\rangle\) for \(jkl=110, 011, 101\) from noise-corrected data

zmoments_corr[1, 1, 0], zmoments_corr[0, 1, 1], zmoments_corr[1, 0, 1]





(0.99477496902638118, 1.0008376440216553, 1.0149652015905912)





Overall the correction can restore the contrast in our multi-qubit observables,
though we also see that the correction can lead to slightly non-physical expectations.
This effect is reduced the more samples we take.













          

      

      

    

  

    
      
          
            
  
Source Code Documentation


pyquil.api

Module for facilitating connections to the QVM / QPU.


	
class pyquil.api.QVMConnection(device=None, sync_endpoint='https://api.rigetti.com', async_endpoint='https://job.rigetti.com/beta', api_key=None, user_id=None, use_queue=False, ping_time=0.1, status_time=2, gate_noise=None, measurement_noise=None, random_seed=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a connection to the QVM.


	
expectation(prep_prog, operator_programs=None, needs_compilation=False, isa=None)

	Calculate the expectation value of operators given a state prepared by
prep_program.


	Note

	If the execution of quil_program is non-deterministic, i.e., if it includes
measurements and/or noisy quantum gates, then the final wavefunction from which the
expectation values are computed itself only represents a stochastically generated
sample. The expectations returned from different expectation calls will then
generally be different.





To measure the expectation of a PauliSum, you probably want to
do something like this:

progs, coefs = hamiltonian.get_programs()
expect_coeffs = np.array(cxn.expectation(prep_program, operator_programs=progs))
return np.real_if_close(np.dot(coefs, expect_coeffs))






	Parameters

	
	prep_prog (Program) – Quil program for state preparation.


	operator_programs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of Programs, each specifying an operator whose expectation to compute.
Default is a list containing only the empty Program.


	needs_compilation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preprocesses the job with the compiler.


	isa (ISA) – If set, compiles to this target ISA.






	Returns

	Expectation values of the operators.



	Return type

	List[float [https://docs.python.org/3/library/functions.html#float]]










	
expectation_async(prep_prog, operator_programs=None, needs_compilation=False, isa=None)

	Similar to expectation except that it returns a job id and doesn’t wait for the program to be executed.
See https://go.rigetti.com/connections for reasons to use this method.






	
get_job(job_id)

	Given a job id, return information about the status of the job


	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – job id



	Returns

	Job object with the status and potentially results of the job



	Return type

	Job










	
pauli_expectation(prep_prog, pauli_terms)

	Calculate the expectation value of Pauli operators given a state prepared by prep_program.

If pauli_terms is a PauliSum then the returned value is a single float,
otherwise the returned value is a list of float``s, one for each ``PauliTerm in the
list.


	Note

	If the execution of quil_program is non-deterministic, i.e., if it includes
measurements and/or noisy quantum gates, then the final wavefunction from which the
expectation values are computed itself only represents a stochastically generated
sample. The expectations returned from different expectation calls will then
generally be different.



	Parameters

	
	prep_prog (Program) – Quil program for state preparation.


	pauli_terms (Sequence[PauliTerm]|PauliSum) – A list of PauliTerms or a PauliSum.






	Returns

	If pauli_terms is a PauliSum return its expectation value. Otherwise return
a list of expectation values.



	Return type

	float|List[float [https://docs.python.org/3/library/functions.html#float]]










	
ping()

	




	
run(quil_program, classical_addresses=None, trials=1, needs_compilation=False, isa=None)

	Run a Quil program multiple times, accumulating the values deposited in
a list of classical addresses.


	Parameters

	
	quil_program (Program) – A Quil program.


	classical_addresses (list|range) – A list of addresses.


	trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of shots to collect.


	needs_compilation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preprocesses the job with the compiler.


	isa (ISA) – If set, compiles to this target ISA.






	Returns

	A list of lists of bits. Each sublist corresponds to the values
in classical_addresses.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
run_and_measure(quil_program, qubits, trials=1, needs_compilation=False, isa=None)

	Run a Quil program once to determine the final wavefunction, and measure multiple times.


	Note

	If the execution of quil_program is non-deterministic, i.e., if it includes
measurements and/or noisy quantum gates, then the final wavefunction from which the
returned bitstrings are sampled itself only represents a stochastically generated sample
and the outcomes sampled from different run_and_measure calls generally sample
different bitstring distributions.



	Parameters

	
	quil_program (Program) – A Quil program.


	qubits (list|range) – A list of qubits.


	trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of shots to collect.


	needs_compilation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preprocesses the job with the compiler.


	isa (ISA) – If set, compiles to this target ISA.






	Returns

	A list of a list of bits.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
run_and_measure_async(quil_program, qubits, trials=1, needs_compilation=False, isa=None)

	Similar to run_and_measure except that it returns a job id and doesn’t wait for the program to be executed.
See https://go.rigetti.com/connections for reasons to use this method.






	
run_async(quil_program, classical_addresses=None, trials=1, needs_compilation=False, isa=None)

	Similar to run except that it returns a job id and doesn’t wait for the program to be executed.
See https://go.rigetti.com/connections for reasons to use this method.






	
wait_for_job(job_id, ping_time=None, status_time=None)

	Wait for the results of a job and periodically print status


	Parameters

	
	job_id – Job id


	ping_time – How often to poll the server.
Defaults to the value specified in the constructor. (0.1 seconds)


	status_time – How often to print status, set to False to never print status.
Defaults to the value specified in the constructor (2 seconds)






	Returns

	Completed Job










	
wavefunction(quil_program, classical_addresses=None, needs_compilation=False, isa=None)

	Simulate a Quil program and get the wavefunction back.


	Note

	If the execution of quil_program is non-deterministic, i.e., if it includes
measurements and/or noisy quantum gates, then the final wavefunction from which the
returned bitstrings are sampled itself only represents a stochastically generated sample
and the wavefunctions returned by different wavefunction calls will generally be
different.



	Parameters

	
	quil_program (Program) – A Quil program.


	classical_addresses (list|range) – An optional list of classical addresses.


	needs_compilation – If True, preprocesses the job with the compiler.


	isa – If set, compiles to this target ISA.






	Returns

	A tuple whose first element is a Wavefunction object,
and whose second element is the list of classical bits corresponding
to the classical addresses.



	Return type

	Wavefunction










	
wavefunction_async(quil_program, classical_addresses=None, needs_compilation=False, isa=None)

	Similar to wavefunction except that it returns a job id and doesn’t wait for the program to be executed.
See https://go.rigetti.com/connections for reasons to use this method.










	
class pyquil.api.QPUConnection(device=None, async_endpoint='https://job.rigetti.com/beta', api_key=None, user_id=None, ping_time=0.1, status_time=2, device_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a connection to the QPU (Quantum Processing Unit)


	
get_job(job_id)

	Given a job id, return information about the status of the job


	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – job id



	Returns

	Job object with the status and potentially results of the job



	Return type

	Job










	
run(quil_program, classical_addresses=None, trials=1, needs_compilation=True, isa=None)

	Run a pyQuil program on the QPU and return the values stored in the classical registers
designated by the classical_addresses parameter. The program is repeated according to
the number of trials provided to the run method. This functionality is in beta.

It is important to note that our QPUs currently only allow a single set of simultaneous
readout pulses on all qubits in the QPU at the end of the program. This means that
missing or duplicate MEASURE instructions do not change the pulse program, but instead
only contribute to making a less rich or richer mapping, respectively, between classical
and qubit addresses.


	Parameters

	
	quil_program (Program) – Pyquil program to run on the QPU


	classical_addresses (list|range) – Classical register addresses to return


	trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to run the program (a.k.a. number of shots)


	needs_compilation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preprocesses the job with the compiler.


	isa (ISA) – If set, specifies a custom ISA to compile to. If left unset,
Forest uses the default ISA associated to this QPU device.






	Returns

	A list of a list of classical registers (each register contains a bit)



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
run_and_measure(quil_program, qubits, trials=1, needs_compilation=True, isa=None)

	Similar to run, except for how MEASURE operations are dealt with. With run, users are
expected to include MEASURE operations in the program if they want results back. With
run_and_measure, users provide a pyquil program that does not have MEASURE instructions,
and also provide a list of qubits to measure. All qubits in this list will be measured
at the end of the program, and their results stored in corresponding classical registers.


	Parameters

	
	quil_program (Program) – Pyquil program to run on the QPU


	qubits (list|range) – The list of qubits to measure


	trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to run the program (a.k.a. number of shots)


	needs_compilation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preprocesses the job with the compiler.


	isa (ISA) – If set, specifies a custom ISA to compile to. If left unset,
Forest uses the default ISA associated to this QPU device.






	Returns

	A list of a list of classical registers (each register contains a bit)



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
run_and_measure_async(quil_program, qubits, trials, needs_compilation=True, isa=None)

	Similar to run_and_measure except that it returns a job id and doesn’t wait for the program
to be executed. See https://go.rigetti.com/connections for reasons to use this method.






	
run_async(quil_program, classical_addresses=None, trials=1, needs_compilation=True, isa=None)

	Similar to run except that it returns a job id and doesn’t wait for the program to
be executed. See https://go.rigetti.com/connections for reasons to use this method.






	
wait_for_job(job_id, ping_time=None, status_time=None)

	Wait for the results of a job and periodically print status


	Parameters

	
	job_id – Job id


	ping_time – How often to poll the server.
Defaults to the value specified in the constructor. (0.1 seconds)


	status_time – How often to print status, set to False to never print status.
Defaults to the value specified in the constructor (2 seconds)






	Returns

	Completed Job














	
class pyquil.api.CompilerConnection(device=None, sync_endpoint='https://api.rigetti.com', async_endpoint='https://job.rigetti.com/beta', api_key=None, user_id=None, use_queue=False, ping_time=0.1, status_time=2, isa_source=None, specs_source=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a connection to the Quil compiler.


	
apply_clifford_to_pauli(clifford, pauli_in)

	Given a circuit that consists only of elements of the Clifford group,
return its action on a PauliTerm.

In particular, for Clifford C, and Pauli P, this returns the PauliTerm
representing PCP^{dagger}.


	Parameters

	
	clifford (Program) – A Program that consists only of Clifford operations.


	pauli_in (PauliTerm) – A PauliTerm to be acted on by clifford via conjugation.






	Returns

	A PauliTerm corresponding to pauli_in * clifford * pauli_in^{dagger}










	
compile(quil_program, isa=None)

	Sends a Quil program to the Forest compiler and returns the resulting
compiled Program.


	Parameters

	
	quil_program (Program) – Quil program to be compiled.


	isa (ISA) – An optional ISA to target. This takes precedence over the device or
isa_source arguments to this object’s constructor. If this is not specified,
you must have provided one of the aforementioned constructor arguments.






	Returns

	The compiled Program object.



	Return type

	Program










	
compile_async(quil_program, isa=None)

	Similar to compile except that it returns a job id and doesn’t wait for
the program to be executed.
See https://go.rigetti.com/connections for reasons to use this method.






	
generate_rb_sequence(depth, gateset)

	Construct a randomized benchmarking experiment on the given qubits, decomposing into
gateset.

The JSON payload that is parsed is a list of lists of indices, or Nones. In the
former case, they are the index of the gate in the gateset.


	Parameters

	
	depth (int [https://docs.python.org/3/library/functions.html#int]) – The number of Clifford gates to include in the randomized benchmarking
experiment. This is different than the number of gates in the resulting experiment.


	gateset (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of pyquil gates to decompose the Clifford elements into. These
must generate the clifford group on the qubits of interest. e.g. for one qubit
[RZ(np.pi/2), RX(np.pi/2)].






	Returns

	A list of pyquil programs. Each pyquil program is a circuit that represents an
element of the Clifford group. When these programs are composed, the resulting Program
will be the randomized benchmarking experiment of the desired depth. e.g. if the return
programs are called cliffords then sum(cliffords, Program()) will give the randomized
benchmarking experiment, which will compose to the identity program.










	
get_job(job_id)

	Given a job id, return information about the status of the job


	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – job id



	Returns

	Job object with the status and potentially results of the job



	Return type

	Job










	
wait_for_job(job_id, ping_time=None, status_time=None)

	Wait for the results of a job and periodically print status


	Parameters

	
	job_id – Job id


	ping_time – How often to poll the server.
Defaults to the value specified in the constructor.
(0.1 seconds)


	status_time – How often to print status, set to False to never
print status.
Defaults to the value specified in the constructor
(2 seconds)






	Returns

	Completed Job














	
class pyquil.api.Job(raw, machine)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents the current status of a Job in the Forest queue.

Job statuses are initially QUEUED when QVM/QPU resources are not available
They transition to RUNNING when they have been started
Finally they are marked as FINISHED, ERROR, or CANCELLED once completed


	
compiled_quil()

	If the Quil program associated with the Job was compiled (e.g., to translate it to the
QPU’s natural gateset) return this compiled program.


	Return type

	Optional[Program]










	
decode()

	




	
estimated_time_left_in_queue()

	If the job is queued, this will return how much time left (in seconds) is estimated
before execution.






	
gate_depth()

	If the job has metadata and this contains the gate depth, return this, otherwise None.
The gate depth is a measure of how long a quantum program takes. On a non-fault-tolerant
QPU programs with a low gate depth have a higher chance of succeeding.


	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]










	
gate_volume()

	If the job has metadata and this contains the gate volume, return this,
otherwise None. On a non-fault-tolerant QPU programs with a low gate
volume have a higher chance of succeeding. This is a less sensitive
measure than gate depth.


	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]










	
get()

	




	
is_compiling()

	Is the job actively compiling?






	
is_done()

	Has the job completed yet?






	
is_queued()

	Is the job still in the Forest queue?






	
is_queued_for_compilation()

	Is the job still in the Forest compilation queue?






	
is_running()

	Is the job currently running?






	
job_id

	Job id
:rtype: str






	
multiqubit_gate_depth()

	If the job has metadata and this contains the multiqubit gate depth,
return this, otherwise None.  The multiqubit gate depth is a measure of
how inaccurately a quantum program will behave on nonideal hardware. On
a non-fault-tolerant QPU programs with a low gate depth have a higher
chance of succeeding.


	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]










	
position_in_queue()

	If the job is queued, this will return how many other jobs are ahead of it.
If the job is not queued, this will return None






	
program_fidelity()

	If the job has metadata and this contains a job program fidelity
estimate, return this, otherwise None.  This is a number between 0 and 1;
a higher value means more likely odds of a meaningful answer.


	Return type

	Optional[float [https://docs.python.org/3/library/functions.html#float]]










	
result()

	The result of the job if available
throws ValueError is result is not available yet
throws ApiError if server returned an error indicating program execution was not successful
or if the job was cancelled






	
topological_swaps()

	If the program could not be mapped directly to the QPU because of missing links in the
two-qubit gate connectivity graph, the compiler must insert topological swap gates.
Return the number of such topological swaps.


	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]














	
pyquil.api.get_devices(async_endpoint='https://job.rigetti.com/beta', api_key=None, user_id=None, as_dict=False)

	Get a list of currently available devices. The arguments for this method are the same as those for QPUConnection.
Note that this method will only work for accounts that have QPU access.


	Returns

	Set or Dictionary (keyed by device name) of all available devices.



	Return type

	Set|Dict












pyquil.device


	
class pyquil.device.Device(name, raw)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A device (quantum chip) that can accept programs. Only devices that are online will actively be
accepting new programs. In addition to the self._raw attribute, two other attributes are
optionally constructed from the entries in self._raw – isa and noise_model – which
should conform to the dictionary format required by the .from_dict() methods for ISA
and NoiseModel, respectively.


	Variables

	
	_raw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Raw JSON response from the server with additional information about the device.


	isa (ISA) – The instruction set architecture (ISA) for the device.


	noise_model (NoiseModel) – The noise model for the device.









	
is_online()

	Whether or not the device is online and accepting new programs.


	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_retuning()

	Whether or not the device is currently retuning.


	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
status

	Returns a string describing the device’s status


	online: The device is online and ready for use


	retuning : The device is not accepting new jobs because it is re-calibrating


	offline: The device is not available for use, potentially because you don’t
have the right permissions.













	
class pyquil.device.Edge(targets, type, dead)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
dead

	Alias for field number 2






	
targets

	Alias for field number 0






	
type

	Alias for field number 1










	
pyquil.device.EdgeSpecs

	alias of _QubitQubitSpecs






	
class pyquil.device.ISA

	Bases: pyquil.device._ISA

Basic Instruction Set Architecture specification.


	Variables

	
	qubits (Sequence[Qubit]) – The qubits associated with the ISA.


	edges (Sequence[Edge]) – The multi-qubit gates.









	
static from_dict(d)

	Re-create the ISA from a dictionary representation.


	Parameters

	d (Dict[str [https://docs.python.org/3/library/stdtypes.html#str],Any]) – The dictionary representation.



	Returns

	The restored ISA.



	Return type

	ISA










	
to_dict()

	Create a JSON-serializable representation of the ISA.

The dictionary representation is of the form:

{
    "1Q": {
        "0": {
            "type": "Xhalves"
        },
        "1": {
            "type": "Xhalves",
            "dead": True
        },
        ...
    },
    "2Q": {
        "1-4": {
            "type": "CZ"
        },
        "1-5": {
            "type": "CZ"
        },
        ...
    },
    ...
}






	Returns

	A dictionary representation of self.



	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]














	
class pyquil.device.Qubit(id, type, dead)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
dead

	Alias for field number 2






	
id

	Alias for field number 0






	
type

	Alias for field number 1










	
pyquil.device.QubitSpecs

	alias of _QubitSpecs






	
class pyquil.device.Specs

	Bases: pyquil.device._Specs

Basic specifications for the device, such as gate fidelities and coherence times.


	Variables

	
	qubits_specs (List[QubitSpecs]) – The specs associated with individual qubits.


	edges_specs (List[EdgesSpecs]) – The specs associated with edges, or qubit-qubit pairs.









	
T1s()

	Get a dictionary of T1s (in seconds) from the specs, keyed by qubit index.


	Returns

	A dictionary of T1s, in seconds.



	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]










	
T2s()

	Get a dictionary of T2s (in seconds) from the specs, keyed by qubit index.


	Returns

	A dictionary of T2s, in seconds.



	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]










	
f1QRBs()

	Get a dictionary of single-qubit randomized benchmarking fidelities (normalized to unity)
from the specs, keyed by qubit index.


	Returns

	A dictionary of 1QRBs, normalized to unity.



	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]










	
fBellStates()

	Get a dictionary of two-qubit Bell state fidelities (normalized to unity)
from the specs, keyed by targets (qubit-qubit pairs).


	Returns

	A dictionary of Bell state fidelities, normalized to unity.



	Return type

	Dict[tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]), float [https://docs.python.org/3/library/functions.html#float]]










	
fCPHASEs()

	Get a dictionary of CPHASE fidelities (normalized to unity) from the specs,
keyed by targets (qubit-qubit pairs).


	Returns

	A dictionary of CPHASE fidelities, normalized to unity.



	Return type

	Dict[tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]), float [https://docs.python.org/3/library/functions.html#float]]










	
fCZs()

	Get a dictionary of CZ fidelities (normalized to unity) from the specs,
keyed by targets (qubit-qubit pairs).


	Returns

	A dictionary of CZ fidelities, normalized to unity.



	Return type

	Dict[tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]), float [https://docs.python.org/3/library/functions.html#float]]










	
fROs()

	Get a dictionary of single-qubit readout fidelities (normalized to unity)
from the specs, keyed by qubit index.


	Returns

	A dictionary of RO fidelities, normalized to unity.



	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]










	
static from_dict(d)

	Re-create the Specs from a dictionary representation.


	Parameters

	Any] d (Dict[str [https://docs.python.org/3/library/stdtypes.html#str],) – The dictionary representation.



	Returns

	The restored Specs.



	Return type

	Specs










	
to_dict()

	Create a JSON-serializable representation of the device Specs.

The dictionary representation is of the form:

{
    '1Q': {
        "0": {
            "f1QRB": 0.99,
            "T1": 20e-6,
            ...
        },
        "1": {
            "f1QRB": 0.989,
            "T1": 19e-6,
            ...
        },
        ...
    },
    '2Q': {
        "1-4": {
            "fBellState": 0.93,
            "fCZ": 0.92,
            "fCPHASE": 0.91
        },
        "1-5": {
            "fBellState": 0.9,
            "fCZ": 0.89,
            "fCPHASE": 0.88
        },
        ...
    },
    ...
}






	Returns

	A dctionary representation of self.



	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]














	
pyquil.device.gates_in_isa(isa)

	Generate the full gateset associated with an ISA.


	Parameters

	isa (ISA) – The instruction set architecture for a QPU.



	Returns

	A sequence of Gate objects encapsulating all gates compatible with the ISA.



	Return type

	Sequence[Gate]












pyquil.gates

A lovely bunch of gates and instructions for programming with.  This module is used to provide
Pythonic sugar for Quil instructions.


	
pyquil.gates.AND(classical_reg1, classical_reg2)

	Produce an AND instruction.


	Parameters

	
	classical_reg1 – The first classical register.


	classical_reg2 – The second classical register, which gets modified.






	Returns

	A ClassicalAnd instance.










	
pyquil.gates.CCNOT(*qubits)

	




	
pyquil.gates.CNOT(*qubits)

	




	
pyquil.gates.CPHASE(*params)

	




	
pyquil.gates.CPHASE00(*params)

	




	
pyquil.gates.CPHASE01(*params)

	




	
pyquil.gates.CPHASE10(*params)

	




	
pyquil.gates.CSWAP(*qubits)

	




	
pyquil.gates.CZ(*qubits)

	




	
pyquil.gates.EXCHANGE(classical_reg1, classical_reg2)

	Produce an EXCHANGE instruction.


	Parameters

	
	classical_reg1 – The first classical register, which gets modified.


	classical_reg2 – The second classical register, which gets modified.






	Returns

	A ClassicalExchange instance.










	
pyquil.gates.FALSE(classical_reg)

	Produce a FALSE instruction.


	Parameters

	classical_reg – A classical register to modify.



	Returns

	A ClassicalFalse instance.










	
pyquil.gates.H(*qubits)

	




	
pyquil.gates.I(*qubits)

	




	
pyquil.gates.ISWAP(*qubits)

	




	
pyquil.gates.MEASURE(qubit, classical_reg=None)

	Produce a MEASURE instruction.


	Parameters

	
	qubit – The qubit to measure.


	classical_reg – The classical register to measure into, or None.






	Returns

	A Measurement instance.










	
pyquil.gates.MOVE(classical_reg1, classical_reg2)

	Produce a MOVE instruction.


	Parameters

	
	classical_reg1 – The first classical register.


	classical_reg2 – The second classical register, which gets modified.






	Returns

	A ClassicalMove instance.










	
pyquil.gates.NOT(classical_reg)

	Produce a NOT instruction.


	Parameters

	classical_reg – A classical register to modify.



	Returns

	A ClassicalNot instance.










	
pyquil.gates.OR(classical_reg1, classical_reg2)

	Produce an OR instruction.


	Parameters

	
	classical_reg1 – The first classical register.


	classical_reg2 – The second classical register, which gets modified.






	Returns

	A ClassicalOr instance.










	
pyquil.gates.PHASE(*params)

	




	
pyquil.gates.PSWAP(*params)

	




	
pyquil.gates.RX(*params)

	




	
pyquil.gates.RY(*params)

	




	
pyquil.gates.RZ(*params)

	




	
pyquil.gates.S(*qubits)

	




	
pyquil.gates.SWAP(*qubits)

	




	
pyquil.gates.T(*qubits)

	




	
pyquil.gates.TRUE(classical_reg)

	Produce a TRUE instruction.


	Parameters

	classical_reg – A classical register to modify.



	Returns

	A ClassicalTrue instance.










	
pyquil.gates.X(*qubits)

	




	
pyquil.gates.Y(*qubits)

	




	
pyquil.gates.Z(*qubits)

	






pyquil.noise

Module for creating and verifying noisy gate and readout definitions.


	
class pyquil.noise.KrausModel

	Bases: pyquil.noise._KrausModel

Encapsulate a single gate’s noise model.


	Variables

	
	gate (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the gate.


	params (Sequence[float [https://docs.python.org/3/library/functions.html#float]]) – Optional parameters for the gate.


	targets (Sequence[int [https://docs.python.org/3/library/functions.html#int]]) – The target qubit ids.


	kraus_ops (Sequence[np.array]) – The Kraus operators (must be square complex numpy arrays).


	fidelity (float [https://docs.python.org/3/library/functions.html#float]) – The average gate fidelity associated with the Kraus map relative to the
ideal operation.









	
static from_dict(d)

	Recreate a KrausModel from the dictionary representation.


	Parameters

	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary representing the KrausModel. See to_dict for an
example.



	Returns

	The deserialized KrausModel.



	Return type

	KrausModel










	
to_dict()

	Create a dictionary representation of a KrausModel.

For example:

{
    "gate": "RX",
    "params": np.pi,
    "targets": [0],
    "kraus_ops": [            # In this example single Kraus op = ideal RX(pi) gate
        [[[0,   0],           # element-wise real part of matrix
          [0,   0]],
          [[0, -1],           # element-wise imaginary part of matrix
          [-1, 0]]]
    ],
    "fidelity": 1.0
}






	Returns

	A JSON compatible dictionary representation.



	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str],Any]










	
static unpack_kraus_matrix(m)

	Helper to optionally unpack a JSON compatible representation of a complex Kraus matrix.


	Parameters

	m (Union[list [https://docs.python.org/3/library/stdtypes.html#list],np.array]) – The representation of a Kraus operator. Either a complex
square matrix (as numpy array or nested lists) or a JSON-able pair of real matrices
(as nested lists) representing the element-wise real and imaginary part of m.



	Returns

	A complex square numpy array representing the Kraus operator.



	Return type

	np.array














	
class pyquil.noise.NoiseModel

	Bases: pyquil.noise._NoiseModel

Encapsulate the QPU noise model containing information about the noisy gates.


	Variables

	
	gates (Sequence[KrausModel]) – The tomographic estimates of all gates.


	assignment_probs (Dict[int [https://docs.python.org/3/library/functions.html#int],np.array]) – The single qubit readout assignment
probability matrices keyed by qubit id.









	
static from_dict(d)

	Re-create the noise model from a dictionary representation.


	Parameters

	d (Dict[str [https://docs.python.org/3/library/stdtypes.html#str],Any]) – The dictionary representation.



	Returns

	The restored noise model.



	Return type

	NoiseModel










	
gates_by_name(name)

	Return all defined noisy gates of a particular gate name.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The gate name.



	Returns

	A list of noise models representing that gate.



	Return type

	Sequence[KrausModel]










	
to_dict()

	Create a JSON serializable representation of the noise model.

For example:

{
    "gates": [
        # list of embedded dictionary representations of KrausModels here [...]
    ]
    "assignment_probs": {
        "0": [[.8, .1],
              [.2, .9]],
        "1": [[.9, .4],
              [.1, .6]],
    }
}






	Returns

	A dictionary representation of self.



	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str],Any]














	
exception pyquil.noise.NoisyGateUndefined

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raise when user attempts to use noisy gate outside of currently supported set.






	
pyquil.noise.add_decoherence_noise(prog, T1=3e-05, T2=3e-05, gate_time_1q=5e-08, gate_time_2q=1.5e-07, ro_fidelity=0.95)

	Add generic damping and dephasing noise to a program.

This high-level function is provided as a convenience to investigate the effects of a
generic noise model on a program. For more fine-grained control, please investigate
the other methods available in the pyquil.noise module.

In an attempt to closely model the QPU, noisy versions of RX(+-pi/2) and CZ are provided;
I and parametric RZ are noiseless, and other gates are not allowed. To use this function,
you need to compile your program to this native gate set.

The default noise parameters


	T1 = 30 us


	T2 = 30 us


	1q gate time = 50 ns


	2q gate time = 150 ns




are currently typical for near-term devices.

This function will define new gates and add Kraus noise to these gates. It will translate
the input program to use the noisy version of the gates.


	Parameters

	
	prog – A pyquil program consisting of I, RZ, CZ, and RX(+-pi/2) instructions


	T1 (Union[Dict[int [https://docs.python.org/3/library/functions.html#int],float [https://docs.python.org/3/library/functions.html#float]],float [https://docs.python.org/3/library/functions.html#float]]) – The T1 amplitude damping time either globally or in a
dictionary indexed by qubit id. By default, this is 30 us.


	T2 (Union[Dict[int [https://docs.python.org/3/library/functions.html#int],float [https://docs.python.org/3/library/functions.html#float]],float [https://docs.python.org/3/library/functions.html#float]]) – The T2 dephasing time either globally or in a
dictionary indexed by qubit id. By default, this is also 30 us.


	gate_time_1q (float [https://docs.python.org/3/library/functions.html#float]) – The duration of the one-qubit gates, namely RX(+pi/2) and RX(-pi/2).
By default, this is 50 ns.


	gate_time_2q (float [https://docs.python.org/3/library/functions.html#float]) – The duration of the two-qubit gates, namely CZ.
By default, this is 150 ns.


	ro_fidelity (Union[Dict[int [https://docs.python.org/3/library/functions.html#int],float [https://docs.python.org/3/library/functions.html#float]],float [https://docs.python.org/3/library/functions.html#float]]) – The readout assignment fidelity
\(F = (p(0|0) + p(1|1))/2\) either globally or in a dictionary indexed by qubit id.






	Returns

	A new program with noisy operators.










	
pyquil.noise.append_kraus_to_gate(kraus_ops, gate_matrix)

	Follow a gate gate_matrix by a Kraus map described by kraus_ops.


	Parameters

	
	kraus_ops (list [https://docs.python.org/3/library/stdtypes.html#list]) – The Kraus operators.


	gate_matrix (numpy.ndarray) – The unitary gate.






	Returns

	A list of transformed Kraus operators.










	
pyquil.noise.apply_noise_model(prog, noise_model)

	Apply a noise model to a program and generated a ‘noisy-fied’ version of the program.


	Parameters

	
	prog (Program) – A Quil Program object.


	noise_model (NoiseModel) – A NoiseModel, either generated from an ISA or
from a simple decoherence model.






	Returns

	A new program translated to a noisy gateset and with noisy readout as described by the
noisemodel.



	Return type

	Program










	
pyquil.noise.bitstring_probs_to_z_moments(p)

	Convert between bitstring probabilities and joint Z moment expectations.


	Parameters

	p (np.array) – An array that enumerates bitstring probabilities. When
flattened out p = [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.



	Returns

	z_moments, an np.array with one length-2 axis per qubit which contains the
expectations of all monomials in {I, Z_0, Z_1, ..., Z_{n-1}}. The expectations of each
monomial can be accessed via:

<Z_0^j_0 Z_1^j_1 ... Z_m^j_m> = z_moments[j_0,j_1,...,j_m]









	Return type

	np.array










	
pyquil.noise.combine_kraus_maps(k1, k2)

	Generate the Kraus map corresponding to the composition
of two maps on the same qubits with k1 being applied to the state
after k2.


	Parameters

	
	k1 (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of Kraus operators that are applied second.


	k2 (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of Kraus operators that are applied first.






	Returns

	A combinatorially generated list of composed Kraus operators.










	
pyquil.noise.correct_bitstring_probs(p, assignment_probabilities)

	Given a 2d array of corrupted bitstring probabilities (outer axis iterates over shots, inner
axis over bits) and a list of assignment probability matrices (one for each bit in the readout)
compute the corrected probabilities.


	Parameters

	
	p (np.array) – An array that enumerates bitstring probabilities. When
flattened out p = [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.


	assignment_probabilities (List[np.array]) – A list of assignment probability matrices
per qubit. Each assignment probability matrix is expected to be of the form:

[[p00 p01]
 [p10 p11]]












	Returns

	p_corrected an array with as many dimensions as there are qubits that contains
the noisy-readout-corrected estimated probabilities for each measured bitstring, i.e.,
p[i,j,...,k] gives the estimated probability of bitstring ij...k.



	Return type

	np.array










	
pyquil.noise.corrupt_bitstring_probs(p, assignment_probabilities)

	Given a 2d array of true bitstring probabilities (outer axis iterates over shots, inner axis
over bits) and a list of assignment probability matrices (one for each bit in the readout,
ordered like the inner axis of results) compute the corrupted probabilities.


	Parameters

	
	p (np.array) – An array that enumerates bitstring probabilities. When
flattened out p = [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.


	assignment_probabilities (List[np.array]) – A list of assignment probability matrices
per qubit. Each assignment probability matrix is expected to be of the form:

[[p00 p01]
 [p10 p11]]












	Returns

	p_corrected an array with as many dimensions as there are qubits that contains
the noisy-readout-corrected estimated probabilities for each measured bitstring, i.e.,
p[i,j,...,k] gives the estimated probability of bitstring ij...k.



	Return type

	np.array










	
pyquil.noise.damping_after_dephasing(T1, T2, gate_time)

	Generate the Kraus map corresponding to the composition
of a dephasing channel followed by an amplitude damping channel.


	Parameters

	
	T1 (float [https://docs.python.org/3/library/functions.html#float]) – The amplitude damping time


	T2 (float [https://docs.python.org/3/library/functions.html#float]) – The dephasing time


	gate_time (float [https://docs.python.org/3/library/functions.html#float]) – The gate duration.






	Returns

	A list of Kraus operators.










	
pyquil.noise.damping_kraus_map(p=0.1)

	Generate the Kraus operators corresponding to an amplitude damping
noise channel.


	Parameters

	p (float [https://docs.python.org/3/library/functions.html#float]) – The one-step damping probability.



	Returns

	A list [k1, k2] of the Kraus operators that parametrize the map.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
pyquil.noise.dephasing_kraus_map(p=0.1)

	Generate the Kraus operators corresponding to a dephasing channel.


	Params float p

	The one-step dephasing probability.



	Returns

	A list [k1, k2] of the Kraus operators that parametrize the map.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
pyquil.noise.estimate_assignment_probs(q, trials, cxn, p0=None)

	Estimate the readout assignment probabilities for a given qubit q.
The returned matrix is of the form:

[[p00 p01]
 [p10 p11]]






	Parameters

	
	q (int [https://docs.python.org/3/library/functions.html#int]) – The index of the qubit.


	trials (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples for each state preparation.


	cxn (Union[QVMConnection,QPUConnection]) – The quantum abstract machine to sample from.


	p0 (Program) – A header program to prepend to the state preparation programs.






	Returns

	The assignment probability matrix



	Return type

	np.array










	
pyquil.noise.estimate_bitstring_probs(results)

	Given an array of single shot results estimate the probability distribution over all bitstrings.


	Parameters

	results (np.array) – A 2d array where the outer axis iterates over shots
and the inner axis over bits.



	Returns

	An array with as many axes as there are qubit and normalized such that it sums to one.
p[i,j,...,k] gives the estimated probability of bitstring ij...k.



	Return type

	np.array










	
pyquil.noise.get_noisy_gate(gate_name, params)

	Look up the numerical gate representation and a proposed ‘noisy’ name.


	Parameters

	
	gate_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Quil gate name


	params (Tuple[float [https://docs.python.org/3/library/functions.html#float]]) – The gate parameters.






	Returns

	A tuple (matrix, noisy_name) with the representation of the ideal gate matrix
and a proposed name for the noisy version.



	Return type

	Tuple[np.array, str [https://docs.python.org/3/library/stdtypes.html#str]]










	
pyquil.noise.tensor_kraus_maps(k1, k2)

	Generate the Kraus map corresponding to the composition
of two maps on different qubits.


	Parameters

	
	k1 (list [https://docs.python.org/3/library/stdtypes.html#list]) – The Kraus operators for the first qubit.


	k2 (list [https://docs.python.org/3/library/stdtypes.html#list]) – The Kraus operators for the second qubit.






	Returns

	A list of tensored Kraus operators.












pyquil.parametric

Module for creating and defining parametric programs.


	
class pyquil.parametric.ParametricProgram(program_constructor)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


Note

Experimental



A class representing Programs with changeable gate parameters.


	
fuse(other)

	
Note

Experimental



Fuse another program to this one.


	Parameters

	other – A Program or ParametricProgram.



	Returns

	A new ParametricProgram.



	Return type

	ParametricProgram














	
pyquil.parametric.argument_count(thing)

	Get the number of arguments a callable has.


	Parameters

	thing – A callable.



	Returns

	The number of arguments it takes.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
pyquil.parametric.parametric(decorated_function)

	
Note

Experimental



A decorator to change a function into a ParametricProgram.


	Parameters

	decorated_function – The function taking parameters producing a Program object.



	Returns

	a callable ParametricProgram



	Return type

	ParametricProgram












pyquil.paulis

Module for working with Pauli algebras.


	
pyquil.paulis.ID()

	The identity Pauli Term.






	
class pyquil.paulis.PauliSum(terms)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A sum of one or more PauliTerms.


	
get_programs()

	Get a Pyquil Program corresponding to each term in the PauliSum and a coefficient
for each program


	Returns

	(programs, coefficients)










	
get_qubits()

	The support of all the operators in the PauliSum object.


	Returns

	A list of all the qubits in the sum of terms.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
simplify()

	Simplifies the sum of Pauli operators according to Pauli algebra rules.










	
class pyquil.paulis.PauliTerm(op, index, coefficient=1.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A term is a product of Pauli operators operating on different qubits.


	
copy()

	Properly creates a new PauliTerm, with a completely new dictionary
of operators






	
classmethod from_list(terms_list, coefficient=1.0)

	Allocates a Pauli Term from a list of operators and indices. This is more efficient than
multiplying together individual terms.


	Parameters

	terms_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of tuples, e.g. [(“X”, 0), (“Y”, 1)]



	Returns

	PauliTerm










	
get_qubits()

	Gets all the qubits that this PauliTerm operates on.






	
id(sort_ops=True)

	Returns an identifier string for the PauliTerm (ignoring the coefficient).

Don’t use this to compare terms. This function will not work with qubits that
aren’t sortable.


	Parameters

	sort_ops – Whether to sort operations by qubit. This is True by default for
backwards compatibility but will change in pyQuil 2.0. Callers should never rely
on comparing id’s for testing equality. See operations_as_set instead.



	Returns

	A string representation of this term’s operations.



	Return type

	string [https://docs.python.org/3/library/string.html#module-string]










	
operations_as_set()

	Return a frozenset of operations in this term.

Use this in place of id() if the order of operations in the term does not
matter.


	Returns

	frozenset of strings representing Pauli operations










	
pauli_string(qubits=None)

	Return a string representation of this PauliTerm mod its phase, as a concatenation of the string representation
of the
>>> p = PauliTerm(“X”, 0) * PauliTerm(“Y”, 1, 1.j)
>>> p.pauli_string()
“XY”
>>> p.pauli_string([0])
“X”
>>> p.pauli_string([0, 2])
“XI”


	Parameters

	qubits (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of qubits to represent, given as ints. If None, defaults to all qubits in this
PauliTerm.



	Returns

	The string representation of this PauliTerm, modulo its phase.



	Return type

	String










	
program

	








	
exception pyquil.paulis.UnequalLengthWarning(*args, **kwargs)

	Bases: Warning [https://docs.python.org/3/library/exceptions.html#Warning]






	
pyquil.paulis.ZERO()

	The zero Pauli Term.






	
pyquil.paulis.check_commutation(pauli_list, pauli_two)

	Check if commuting a PauliTerm commutes with a list of other terms by natural calculation.
Derivation similar to arXiv:1405.5749v2 fo the check_commutation step in
the Raesi, Wiebe, Sanders algorithm (arXiv:1108.4318, 2011).


	Parameters

	
	pauli_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of PauliTerm objects


	pauli_two_term (PauliTerm) – A PauliTerm object






	Returns

	True if pauli_two object commutes with pauli_list, False otherwise



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
pyquil.paulis.commuting_sets(pauli_terms)

	Gather the Pauli terms of pauli_terms variable into commuting sets

Uses algorithm defined in (Raeisi, Wiebe, Sanders, arXiv:1108.4318, 2011)
to find commuting sets. Except uses commutation check from arXiv:1405.5749v2


	Parameters

	pauli_terms (PauliSum) – A PauliSum object



	Returns

	List of lists where each list contains a commuting set



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
pyquil.paulis.exponential_map(term)

	Creates map alpha -> exp(-1j*alpha*term) represented as a Program.


	Parameters

	term (PauliTerm) – Tests is a PauliTerm is the identity operator



	Returns

	Program



	Return type

	Function










	
pyquil.paulis.exponentiate(term)

	Creates a pyQuil program that simulates the unitary evolution exp(-1j * term)


	Parameters

	term (PauliTerm) – Tests is a PauliTerm is the identity operator



	Returns

	A Program object



	Return type

	Program










	
pyquil.paulis.exponentiate_commuting_pauli_sum(pauli_sum)

	Returns a function that maps all substituent PauliTerms and sums them into a program. NOTE: Use
this function with care. Substituent PauliTerms should commute.


	Parameters

	pauli_sum (PauliSum) – PauliSum to exponentiate.



	Returns

	A function that parametrizes the exponential.



	Return type

	function










	
pyquil.paulis.is_identity(term)

	Check if Pauli Term is a scalar multiple of identity


	Parameters

	term (PauliTerm) – A PauliTerm object



	Returns

	True if the PauliTerm is a scalar multiple of identity, false otherwise



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
pyquil.paulis.is_zero(pauli_object)

	Tests to see if a PauliTerm or PauliSum is zero.


	Parameters

	pauli_object – Either a PauliTerm or PauliSum



	Returns

	True if PauliTerm is zero, False otherwise



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
pyquil.paulis.sI(q)

	A function that returns the identity operator on a particular qubit.


	Parameters

	qubit_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the qubit



	Returns

	A PauliTerm object



	Return type

	PauliTerm










	
pyquil.paulis.sX(q)

	A function that returns the sigma_X operator on a particular qubit.


	Parameters

	qubit_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the qubit



	Returns

	A PauliTerm object



	Return type

	PauliTerm










	
pyquil.paulis.sY(q)

	A function that returns the sigma_Y operator on a particular qubit.


	Parameters

	qubit_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the qubit



	Returns

	A PauliTerm object



	Return type

	PauliTerm










	
pyquil.paulis.sZ(q)

	A function that returns the sigma_Z operator on a particular qubit.


	Parameters

	qubit_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the qubit



	Returns

	A PauliTerm object



	Return type

	PauliTerm










	
pyquil.paulis.simplify_pauli_sum(pauli_sum)

	




	
pyquil.paulis.suzuki_trotter(trotter_order, trotter_steps)

	Generate trotterization coefficients for a given number of Trotter steps.

U = exp(A + B) is approximated as exp(w1*o1)exp(w2*o2)… This method returns
a list [(w1, o1), (w2, o2), … , (wm, om)] of tuples where o=0 corresponds
to the A operator, o=1 corresponds to the B operator, and w is the
coefficient in the exponential. For example, a second order Suzuki-Trotter
approximation to exp(A + B) results in the following
[(0.5/trotter_steps, 0), (1/trotteri_steps, 1),
(0.5/trotter_steps, 0)] * trotter_steps.


	Parameters

	
	trotter_order (int [https://docs.python.org/3/library/functions.html#int]) – order of Suzuki-Trotter approximation


	trotter_steps (int [https://docs.python.org/3/library/functions.html#int]) – number of steps in the approximation






	Returns

	List of tuples corresponding to the coefficient and operator
type: o=0 is A and o=1 is B.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
pyquil.paulis.term_with_coeff(term, coeff)

	Change the coefficient of a PauliTerm.


	Parameters

	
	term (PauliTerm) – A PauliTerm object


	coeff (Number) – The coefficient to set on the PauliTerm






	Returns

	A new PauliTerm that duplicates term but sets coeff



	Return type

	PauliTerm










	
pyquil.paulis.trotterize(first_pauli_term, second_pauli_term, trotter_order=1, trotter_steps=1)

	Create a Quil program that approximates exp( (A + B)t) where A and B are
PauliTerm operators.


	Parameters

	
	first_pauli_term (PauliTerm) – PauliTerm denoted A


	second_pauli_term (PauliTerm) – PauliTerm denoted B


	trotter_order (int [https://docs.python.org/3/library/functions.html#int]) – Optional argument indicating the Suzuki-Trotter
approximation order–only accepts orders 1, 2, 3, 4.


	trotter_steps (int [https://docs.python.org/3/library/functions.html#int]) – Optional argument indicating the number of products
to decompose the exponential into.






	Returns

	Quil program



	Return type

	Program












pyquil.quil

Module for creating and defining Quil programs.


	
class pyquil.quil.Program(*instructions)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
alloc()

	Get a new qubit.


	Returns

	A qubit.



	Return type

	Qubit










	
dagger(inv_dict=None, suffix='-INV')

	Creates the conjugate transpose of the Quil program. The program must not
contain any irreversible actions (measurement, control flow, qubit allocation).


	Returns

	The Quil program’s inverse



	Return type

	Program










	
defgate(name, matrix, parameters=None)

	Define a new static gate.


Note

The matrix elements along each axis are ordered by bitstring. For two qubits the order
is 00, 01, 10, 11, where the the bits are ordered in reverse by the qubit index,
i.e., for qubits 0 and 1 the bitstring 01 indicates that qubit 0 is in the state 1.
See also the related documentation section in the QVM Overview.




	Parameters

	
	name (string [https://docs.python.org/3/library/string.html#module-string]) – The name of the gate.


	matrix (array-like) – List of lists or Numpy 2d array.


	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of parameters that are used in this gate






	Returns

	The Program instance.



	Return type

	Program










	
define_noisy_gate(name, qubit_indices, kraus_ops)

	Overload a static ideal gate with a noisy one defined in terms of a Kraus map.


Note

The matrix elements along each axis are ordered by bitstring. For two qubits the order
is 00, 01, 10, 11, where the the bits are ordered in reverse by the qubit index,
i.e., for qubits 0 and 1 the bitstring 01 indicates that qubit 0 is in the state 1.
See also the related documentation section in the QVM Overview.




	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the gate.


	qubit_indices (tuple|list) – The qubits it acts on.


	kraus_ops (tuple|list) – The Kraus operators.






	Returns

	The Program instance



	Return type

	Program










	
define_noisy_readout(qubit, p00, p11)

	For this program define a classical bit flip readout error channel parametrized by
p00 and p11. This models the effect of thermal noise that corrupts the readout
signal after it has interrogated the qubit.


	Parameters

	
	qubit (int|QubitPlaceholder) – The qubit with noisy readout.


	p00 (float [https://docs.python.org/3/library/functions.html#float]) – The probability of obtaining the measurement result 0 given that the qubit
is in state 0.


	p11 (float [https://docs.python.org/3/library/functions.html#float]) – The probability of obtaining the measurement result 1 given that the qubit
is in state 1.






	Returns

	The Program with an appended READOUT-POVM Pragma.



	Return type

	Program










	
defined_gates

	A list of defined gates on the program.






	
gate(name, params, qubits)

	Add a gate to the program.


Note

The matrix elements along each axis are ordered by bitstring. For two qubits the order
is 00, 01, 10, 11, where the the bits are ordered in reverse by the qubit index,
i.e., for qubits 0 and 1 the bitstring 01 indicates that qubit 0 is in the state 1.
See also the related documentation section in the QVM Overview.




	Parameters

	
	name (string [https://docs.python.org/3/library/string.html#module-string]) – The name of the gate.


	params (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameters to send to the gate.


	qubits (list [https://docs.python.org/3/library/stdtypes.html#list]) – Qubits that the gate operates on.






	Returns

	The Program instance



	Return type

	Program










	
get_qubits(indices=True)

	Returns all of the qubit indices used in this program, including gate applications and
allocated qubits. e.g.

>>> p = Program()
>>> p.inst(("H", 1))
>>> p.get_qubits()
{1}
>>> q = p.alloc()
>>> p.inst(H(q))
>>> len(p.get_qubits())
2






	Parameters

	indices – Return qubit indices as integers intead of the
wrapping Qubit object



	Returns

	A set of all the qubit indices used in this program



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
if_then(classical_reg, if_program, else_program=None)

	If the classical register at index classical reg is 1, run if_program, else run
else_program.

Equivalent to the following construction:

IF [c]:
   instrA...
ELSE:
   instrB...
=>
  JUMP-WHEN @THEN [c]
  instrB...
  JUMP @END
  LABEL @THEN
  instrA...
  LABEL @END






	Parameters

	
	classical_reg (int [https://docs.python.org/3/library/functions.html#int]) – The classical register to check as the condition


	if_program (Program) – A Quil program to execute if classical_reg is 1


	else_program (Program) – A Quil program to execute if classical_reg is 0. This
argument is optional and defaults to an empty Program.






	Returns

	The Quil Program with the branching instructions added.



	Return type

	Program










	
inst(*instructions)

	Mutates the Program object by appending new instructions.

This function accepts a number of different valid forms, e.g.

>>> p = Program()
>>> p.inst(H(0)) # A single instruction
>>> p.inst(H(0), H(1)) # Multiple instructions
>>> p.inst([H(0), H(1)]) # A list of instructions
>>> p.inst(H(i) for i in range(4)) # A generator of instructions
>>> p.inst(("H", 1)) # A tuple representing an instruction
>>> p.inst("H 0") # A string representing an instruction
>>> q = Program()
>>> p.inst(q) # Another program






	It can also be chained:

	>>> p = Program()
>>> p.inst(H(0)).inst(H(1))










	Parameters

	instructions – A list of Instruction objects, e.g. Gates



	Returns

	self for method chaining










	
instructions

	Fill in any placeholders and return a list of quil AbstractInstructions.






	
is_protoquil()

	Protoquil programs may only contain gates, no classical instructions and no jumps.


	Returns

	True if the Program is Protoquil, False otherwise










	
measure(qubit_index, classical_reg=None)

	Measures a qubit at qubit_index and puts the result in classical_reg


	Parameters

	
	qubit_index (int [https://docs.python.org/3/library/functions.html#int]) – The address of the qubit to measure.


	classical_reg (int [https://docs.python.org/3/library/functions.html#int]) – The address of the classical bit to store the result.






	Returns

	The Quil Program with the appropriate measure instruction appended, e.g.
MEASURE 0 [1]



	Return type

	Program










	
measure_all(*qubit_reg_pairs)

	Measures many qubits into their specified classical bits, in the order
they were entered. If no qubit/register pairs are provided, measure all qubits present in
the program into classical addresses of the same index.


	Parameters

	qubit_reg_pairs (Tuple) – Tuples of qubit indices paired with classical bits.



	Returns

	The Quil Program with the appropriate measure instructions appended, e.g.





MEASURE 0 [1]
MEASURE 1 [2]
MEASURE 2 [3]






	Return type

	Program










	
no_noise()

	Prevent a noisy gate definition from being applied to the immediately following Gate
instruction.


	Returns

	Program










	
out()

	Serializes the Quil program to a string suitable for submitting to the QVM or QPU.






	
pop()

	Pops off the last instruction.


	Returns

	The instruction that was popped.



	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
while_do(classical_reg, q_program)

	While a classical register at index classical_reg is 1, loop q_program

Equivalent to the following construction:

WHILE [c]:
   instr...
=>
  LABEL @START
  JUMP-UNLESS @END [c]
  instr...
  JUMP @START
  LABEL @END






	Parameters

	
	classical_reg (int [https://docs.python.org/3/library/functions.html#int]) – The classical register to check


	q_program (Program) – The Quil program to loop.






	Returns

	The Quil Program with the loop instructions added.



	Return type

	Program














	
pyquil.quil.address_qubits(program, qubit_mapping=None)

	Takes a program which contains placeholders and assigns them all defined values.

Either all qubits must be defined or all undefined. If qubits are
undefined, you may provide a qubit mapping to specify how placeholders get mapped
to actual qubits. If a mapping is not provided, integers 0 through N are used.

This function will also instantiate any label placeholders.


	Parameters

	
	program – The program.


	qubit_mapping – A dictionary-like object that maps from QubitPlaceholder
to Qubit or int (but not both).






	Returns

	A new Program with all qubit and label placeholders assigned to real qubits and labels.










	
pyquil.quil.get_classical_addresses_from_program(program)

	Returns a sorted list of classical addresses found in the MEASURE instructions in the program.


	Parameters

	program (Program) – The program from which to get the classical addresses.



	Returns

	A list of integer classical addresses.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
pyquil.quil.get_default_qubit_mapping(program)

	Takes a program which contains qubit placeholders and provides a mapping to the integers
0 through N-1.

The output of this function is suitable for input to address_qubits().


	Parameters

	program – A program containing qubit placeholders



	Returns

	A dictionary mapping qubit placeholder to an addressed qubit from 0 through N-1.










	
pyquil.quil.instantiate_labels(instructions)

	Takes an iterable of instructions which may contain label placeholders and assigns
them all defined values.


	Returns

	list of instructions with all label placeholders assigned to real labels.










	
pyquil.quil.merge_programs(prog_list)

	Merges a list of pyQuil programs into a single one by appending them in sequence


	Parameters

	prog_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of pyquil programs



	Returns

	a single pyQuil program



	Return type

	Program












pyquil.quilbase

Contains the core pyQuil objects that correspond to Quil instructions.


	
class pyquil.quilbase.AbstractInstruction

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract class for representing single instructions.


	
out()

	








	
class pyquil.quilbase.BinaryClassicalInstruction(left, right)

	Bases: pyquil.quilbase.AbstractInstruction

The abstract class for binary classical instructions.


	
out()

	








	
class pyquil.quilbase.ClassicalAnd(left, right)

	Bases: pyquil.quilbase.BinaryClassicalInstruction


	
op = 'AND'

	








	
class pyquil.quilbase.ClassicalExchange(left, right)

	Bases: pyquil.quilbase.BinaryClassicalInstruction


	
op = 'EXCHANGE'

	








	
class pyquil.quilbase.ClassicalFalse(target)

	Bases: pyquil.quilbase.UnaryClassicalInstruction


	
op = 'FALSE'

	








	
class pyquil.quilbase.ClassicalMove(left, right)

	Bases: pyquil.quilbase.BinaryClassicalInstruction


	
op = 'MOVE'

	








	
class pyquil.quilbase.ClassicalNot(target)

	Bases: pyquil.quilbase.UnaryClassicalInstruction


	
op = 'NOT'

	








	
class pyquil.quilbase.ClassicalOr(left, right)

	Bases: pyquil.quilbase.BinaryClassicalInstruction


	
op = 'OR'

	








	
class pyquil.quilbase.ClassicalTrue(target)

	Bases: pyquil.quilbase.UnaryClassicalInstruction


	
op = 'TRUE'

	








	
class pyquil.quilbase.DefGate(name, matrix, parameters=None)

	Bases: pyquil.quilbase.AbstractInstruction

A DEFGATE directive.


	Parameters

	
	name (string [https://docs.python.org/3/library/string.html#module-string]) – The name of the newly defined gate.


	matrix (array-like) – {list, nparray, np.matrix} The matrix defining this gate.


	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of parameters that are used in this gate









	
get_constructor()

	
	Returns

	A function that constructs this gate on variable qubit indices. E.g.
mygate.get_constructor()(1) applies the gate to qubit 1.










	
num_args()

	
	Returns

	The number of qubit arguments the gate takes.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
out()

	Prints a readable Quil string representation of this gate.


	Returns

	String representation of a gate



	Return type

	string [https://docs.python.org/3/library/string.html#module-string]














	
class pyquil.quilbase.Gate(name, params, qubits)

	Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a quantum gate instruction.


	
get_qubits(indices=True)

	




	
out()

	








	
class pyquil.quilbase.Halt

	Bases: pyquil.quilbase.SimpleInstruction

The HALT instruction.


	
op = 'HALT'

	








	
class pyquil.quilbase.Jump(target)

	Bases: pyquil.quilbase.AbstractInstruction

Representation of an unconditional jump instruction (JUMP).


	
out()

	








	
class pyquil.quilbase.JumpConditional(target, condition)

	Bases: pyquil.quilbase.AbstractInstruction

Abstract representation of an conditional jump instruction.


	
out()

	








	
class pyquil.quilbase.JumpTarget(label)

	Bases: pyquil.quilbase.AbstractInstruction

Representation of a target that can be jumped to.


	
out()

	








	
class pyquil.quilbase.JumpUnless(target, condition)

	Bases: pyquil.quilbase.JumpConditional

The JUMP-UNLESS instruction.


	
op = 'JUMP-UNLESS'

	








	
class pyquil.quilbase.JumpWhen(target, condition)

	Bases: pyquil.quilbase.JumpConditional

The JUMP-WHEN instruction.


	
op = 'JUMP-WHEN'

	








	
class pyquil.quilbase.Measurement(qubit, classical_reg=None)

	Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a Quil measurement instruction.


	
get_qubits(indices=True)

	




	
out()

	








	
class pyquil.quilbase.Nop

	Bases: pyquil.quilbase.SimpleInstruction

The RESET instruction.


	
op = 'NOP'

	








	
class pyquil.quilbase.Pragma(command, args=(), freeform_string='')

	Bases: pyquil.quilbase.AbstractInstruction

A PRAGMA instruction.

This is printed in QUIL as:

PRAGMA <command> <arg1> <arg2> ... <argn> "<freeform_string>"






	
out()

	








	
class pyquil.quilbase.RawInstr(instr_str)

	Bases: pyquil.quilbase.AbstractInstruction

A raw instruction represented as a string.


	
out()

	








	
class pyquil.quilbase.Reset

	Bases: pyquil.quilbase.SimpleInstruction

The RESET instruction.


	
op = 'RESET'

	








	
class pyquil.quilbase.SimpleInstruction

	Bases: pyquil.quilbase.AbstractInstruction

Abstract class for simple instructions with no arguments.


	
out()

	








	
class pyquil.quilbase.UnaryClassicalInstruction(target)

	Bases: pyquil.quilbase.AbstractInstruction

The abstract class for unary classical instructions.


	
out()

	








	
class pyquil.quilbase.Wait

	Bases: pyquil.quilbase.SimpleInstruction

The WAIT instruction.


	
op = 'WAIT'

	










pyquil.slot

Contains Slot pyQuil placeholders for constructing Quil template programs.


	
class pyquil.slot.Slot(value=0.0, func=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A placeholder for a parameter value.


Arithmetic operations: +-*/

Logical: abs, max, <, >, <=, >=, !=, ==

Arbitrary functions are not supported




	Parameters

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – A value to initialize to. Defaults to 0.0


	func (function) – An initial function to determine the final parameterized value.









	
value()

	Computes the value of this Slot parameter.












pyquil.wavefunction

Module containing the Wavefunction object and methods for working with wavefunctions.


	
class pyquil.wavefunction.Wavefunction(amplitude_vector, classical_memory=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Encapsulate a wavefunction representing a quantum state as returned by the QVM.


Note

The elements of the wavefunction are ordered by bitstring. E.g., for two qubits the order
is 00, 01, 10, 11, where the the bits are ordered in reverse by the qubit index,
i.e., for qubits 0 and 1 the bitstring 01 indicates that qubit 0 is in the state 1.
See also the related documentation section in the QVM Overview.




	
static from_bit_packed_string(coef_string, classical_addresses)

	From a bit packed string, unpacks to get the wavefunction and classical measurement results
:param bytes coef_string:
:param list classical_addresses:
:return:






	
get_outcome_probs()

	Parses a wavefunction (array of complex amplitudes) and returns a dictionary of
outcomes and associated probabilities.


	Returns

	A dict with outcomes as keys and probabilities as values.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
static ground(qubit_num)

	




	
plot(qubit_subset=None)

	Plots a bar chart with bitstring on the x axis and probability on the y axis.


	Parameters

	qubit_subset (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional parameter used for plotting a subset of the Hilbert space.










	
pretty_print(decimal_digits=2)

	Returns a string repr of the wavefunction, ignoring all outcomes with approximately zero
amplitude (up to a certain number of decimal digits) and rounding the amplitudes to
decimal_digits.


	Parameters

	decimal_digits (int [https://docs.python.org/3/library/functions.html#int]) – The number of digits to truncate to.



	Returns

	A dict with outcomes as keys and complex amplitudes as values.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
pretty_print_probabilities(decimal_digits=2)

	Prints outcome probabilities, ignoring all outcomes with approximately zero probabilities
(up to a certain number of decimal digits) and rounding the probabilities to decimal_digits.


	Parameters

	decimal_digits (int [https://docs.python.org/3/library/functions.html#int]) – The number of digits to truncate to.



	Returns

	A dict with outcomes as keys and probabilities as values.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
probabilities()

	Returns an array of probabilities in lexicographical order






	
sample_bitstrings(n_samples)

	Sample bitstrings from the distribution defined by the wavefunction.


	Parameters

	n_samples – The number of bitstrings to sample



	Returns

	An array of shape (n_samples, n_qubits)










	
static zeros(qubit_num)

	Constructs the groundstate wavefunction for a given number of qubits.


	Parameters

	qubit_num (int [https://docs.python.org/3/library/functions.html#int]) – 



	Returns

	A Wavefunction in the ground state



	Return type

	Wavefunction














	
pyquil.wavefunction.get_bitstring_from_index(index, qubit_num)

	Returns the bitstring in lexical order that corresponds to the given index in 0 to 2^(qubit_num)
:param int index:
:param int qubit_num:
:return: the bitstring
:rtype: str











          

      

      

    

  

    
      
          
            
  
Changelog


v1.9 (June 6, 2018)

We’re happy to announce the release of Pyquil 1.9. Pyquil is Rigetti’s toolkit for constructing
and running quantum programs. This release is the latest in our series of regular releases,
and it’s filled with convenience features, enhancements, bug fixes, and documentation improvements.

Special thanks to community members sethuiyer, vtomole, rht, akarazeev, ejdanderson, markf94,
playadust, and kadora626 for contributing to this release!


Qubit placeholders

One of the focuses of this release is a re-worked concept of “Qubit Placeholders”. These are
logical qubits that can be used to construct programs. Now, a program containing qubit placeholders
must be “addressed” prior to running on a QPU or QVM. The addressing stage involves mapping
each qubit placeholder to a physical qubit (represented as an integer). For example, if you have
a 3 qubit circuit that you want to run on different sections of the Agave chip, you now can
prepare one Program and address it to many different subgraphs of the chip topology.
Check out the QubitPlaceholder example notebook for more.

To support this idea, we’ve refactored parts of Pyquil to remove the assumption that qubits
can be “sorted”. While true for integer qubit labels, this probably isn’t true in general.
A notable change can be found in the construction of a PauliSum: now terms will stay in the
order they were constructed.


	PauliTerm now remembers the order of its operations. sX(1)*sZ(2) will compile
to different Quil code than sZ(2)*sX(1), although the terms will still be equal according
to the __eq__ method. During PauliSum combination
of like terms, a warning will be emitted if two terms are combined that have different orders
of operation.


	PauliTerm.id() takes an optional argument sort_ops which defaults to True for
backwards compatibility. However, this function should not be used for comparing term-type like
it has been used previously. Use PauliTerm.operations_as_set() instead. In the future,
sort_ops will default to False and will eventually be removed.


	Program.alloc() has been deprecated. Please instantiate QubitPlaceholder()
directly or request a “register” (list) of n placeholders by using the class constructor
QubitPlaceholder.register(n)().


	Programs must contain either (1) all instantiated qubits with integer indexes or (2) all
placeholder qubits of type QubitPlaceholder. We have found that most users use
(1) but (2) will become useful with larger and more diverse devices.


	Programs that contain qubit placeholders must be explicitly addressed prior to execution.
Previously, qubits would be assigned “under the hood” to integers 0…N. Now, you must use
address_qubits() which returns a new program with all qubits indexed depending
on the qubit_mapping argument. The original program is unaffected and can be “readdressed”
multiple times.


	PauliTerm can now accept QubitPlaceholder in addition to integers.


	QubitPlaceholder is no longer a subclass of Qubit.
LabelPlaceholder is no longer a subclass of Label.


	QuilAtom subclasses’ hash functions have changed.







Randomized benchmarking sequence generation

Pyquil now includes support for performing a simple benchmarking routine - randomized
benchmarking. There is a new method in the CompilerConnection that will return
sequences of pyquil programs, corresponding to elements of the Clifford group. These programs
are uniformly randomly sampled, and have the property that they compose to the identity. When
concatenated and run as one program, these programs can be used in a procedure called randomized
benchmarking to gain insight about the fidelity of operations on a QPU.

In addition, the CompilerConnection has another new method,
apply_clifford_to_pauli(), which conjugates PauliTerms by
:py:class:`Program`s that are composed of Clifford gates. That is to say, given a circuit C,
that contains only gates corresponding to elements of the Clifford group, and a tensor product of
elements P, from the Pauli group, this method will compute $PCP^{dagger}$. Such a procedure can
be used in various ways. An example is predicting the effect a Clifford circuit will have on an
input state modeled as a density matrix, which can be written as a sum of Pauli matrices.




Ease of Use

This release includes some quality-of-life improvements such as the ability to initialize
programs with generator expressions, sensible defaults for Program.measure_all(),
and sensible defaults for classical_addresses in run() methods.


	Program can be initiated with a generator expression.


	Program.measure_all() (with no arguments) will measure all qubits in a program.


	classical_addresses is now optional in QVM and QPU run() methods. By default,
any classical addresses targeted by MEASURE will be returned.


	QVMConnection.pauli_expectation() accepts PauliSum as arguments. This offers
a more sensible API compared to QVMConnection.expectation().


	pyQuil will now retry jobs every 10 seconds if the QPU is re-tuning.


	CompilerConnection.compile() now takes an optional argument isa that allows
per-compilation specification of the target ISA.


	An empty program will trigger an exception if you try to run it.







Supported versions of Python

We strongly support using Python 3 with Pyquil. Although this release works with Python 2,
we are dropping official support for this legacy language and moving to community support for
Python 2. The next major release of Pyquil will introduce Python 3.5+ only features and will
no longer work without modification for Python 2.




Bug fixes


	shift_quantum_gates has been removed. Users who relied on this
functionality should use QubitPlaceholder and address_qubits() to
achieve the same result. Users should also double-check data resulting from use of this function
as there were several edge cases which would cause the shift to be applied incorrectly resulting
in badly-addressed qubits.


	Slightly perturbed angles when performing RX gates under a Kraus noise model could result in
incorrect behavior.


	The quantum die example returned incorrect values when n = 2^m.
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      	add_decoherence_noise() (in module pyquil.noise)


      	address_qubits() (in module pyquil.quil)


      	alloc() (pyquil.quil.Program method)
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