
PyQRCodeNG Documentation

Author

Jul 07, 2019

Contents

1 QR Code creation from the command line 3

2 Creating QR Codes 5

3 Encoding Data 7

4 Rendering QR Codes 9

5 PyQRCodeNG Module Documentation 13

6 Glossary 21

7 Requirements 23

8 Installation 25

9 Replacing PyQRCode with PyQRCodeNG 27

10 Usage 29

11 Developer Documentation 31

12 Indices and tables 33

Python Module Index 35

Index 37

i

ii

PyQRCodeNG Documentation

The PyQRCodeNG module is a QR code generator that is simple to use and written in pure python. The module is
compatible with Python 2.6, 2.7, and 3.x. The module automates most of the building process for you. Generally, QR
codes can be created using only two lines of code!

Unlike many other generators, all of the automation can be controlled manually. You are free to set any or all of the
properties of your QR code.

QR codes can be saved as SVG, EPS, PNG (by using the pypng module), and plain text. PIL is not used to render the
image files. You can also display a QR code directly in a compatible terminal.

The PyQRCodeNG module attempts to follow the QR code standard as closely as possible. The terminology and the
encodings used in pyqrcode come directly from the standard. This module also follows the algorithm laid out in the
standard.

Contents:

Contents 1

https://pypi.org/project/pypng/

PyQRCodeNG Documentation

2 Contents

CHAPTER 1

QR Code creation from the command line

The command line script “pyqr” can be used to print QR Codes to the command line or to serialize QR Codes.

1.1 Usage

Output the QR Code to the terminal:

$ pyqr "Little wing"

1.1.1 Version

If the version parameter is not provided, pyqr chooses the minimal version for the QR Code automatically. The
version may be specified as an integer.

The content ‘Layla’ would fit into a version 1 QR Code, but the following commands enforce version 5:

$ pyqr --version=5 Layla
$ pyqr -v=5 Layla

1.1.2 Error correction level

The default error correction level is “H”, use the error parameter to change it:

$ pyqr --error=q "Ain't no grave"
$ pyqr -e=m "Heart of Gold"

3

PyQRCodeNG Documentation

1.1.3 QR Code serialization

Printing the QR Codes to the terminal is nice but the output parameter serializes the QR Code in one of the supported
file formats:

$ pyqr --output=white-room.png "White Room"
$ pyqr -o=satellite.svg "Satellite Of Love"
$ pyqr --output=mrs.eps "Mrs. Robinson"

1.1.4 Scaling QR Codes

If the resulting QR Code is too small, scale can be used to create a more appropriate output:

$ pyqr --scale=10 --output=money-talks.png "Money Talks"
$ pyqr -s 10 --output=private-investigations.svg Private Investigations

If the serializer does not support a scaling factor (i.e. text output), this parameter is ignored.

1.1.5 Changing the size of the quiet zone

The generated QR Codes will have a recommended quiet zone around the symbol. To change the size of the quiet
zone, quietzone can be utilized:

$ pyqr --quietzone=0 --output=black-magic-woman.svg "Black Magic Woman"
$ pyqr --qz=10 --output=diamond.png "Shine On You Crazy Diamond"

4 Chapter 1. QR Code creation from the command line

CHAPTER 2

Creating QR Codes

The QRCode object is designed to be smart about how it constructs QR codes. It can automatically figure out what
mode and version to use to construct a QR code, based on the data and the amount error correction. The error correction
level defaults to the highest possible level of error correction.

Below are some examples of creating QR Codes using the automatated system.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> url = pyqrcodeng.create('http://uca.edu', error='L')

There are many situations where you might wish to have more fine grained control over how the QR Code is generated.
You can specify all the properties of your QR code through the optional parameters of the pyqrcodeng.create()
function. There are three main properties to a QR code.

The error parameter sets the error correction level of the code. Each level has an associated name given by a letter:
L, M, Q, or H; each level can correct up to 7, 15, 25, or 30 percent of the data respectively. There are several ways to
specify the level, see pyqrcodeng.tables.error_level for all the possible values. By default this parameter
is set to ‘H’ which is the highest possible error correction, but it has the smallest available data capacity for a given
version.

The version parameter specifies the size and data capacity of the code. Versions are any integer between 1 and 40.
Where version 1 is the smallest QR code, and version 40 is the largest. By default, the object uses the data’s encoding
and error correction level to calculate the smallest possible version. You may want to specify this parameter for
consistency when generating several QR codes with varying amounts of data. That way all of the generated codes
would have the same size.

Finally, the mode parameter sets how the contents will be encoded. Three of the four possible encodings are available.
By default, the object uses the most efficient encoding for the contents. You can override this behavior by setting
this parameter. See pyqrcodeng.tables.modes for a list of possible values for this parameter. A much longer
discussion on modes can be found in the next section Encoding Data.

The code below constructs a QR code with 25% error correction, size 27, and forces the encoding to be binary (rather
than numeric).

>>> big_code = pyqrcodeng.create('0987654321', error='L', version=27, mode='binary')

5

PyQRCodeNG Documentation

6 Chapter 2. Creating QR Codes

CHAPTER 3

Encoding Data

The standard calls the data’s encoding its mode. The QR code standard defines how to encode any given piece of data.
There are four possible modes. This module supports three of them: numeric, alphanumeric, and binary.

Each mode is worse at encoding the QR code’s contents. In other words, each mode will require more room in the
QR code to store the data. How much data a code version can hold is dependent on what mode is used and the error
correction level. For example, the binary encoding always requires more code words than the numeric encoding.

Because of this, it is generally better to allow the QRCode object to auto-select the most efficient mode for the code’s
contents.

Note: The QRCode object can automatically choose the best mode based on the data to be encoded. In general, it is
best to just let the object figure it out for you.

3.1 Numeric Encoding

The numeric type is the most efficient way to encode digits. Problematically, the standard make no provisions for
encoding negative or fractional numbers. This encoding is better than Alphanumeric, when you only have a list of
digits.

To use this encoding, simply specify a string of digits as the data. You can also use a positive integer as the code’s
contents.

>>> number = pyqrcodeng.create(123456789012345)
>>> number2 = pyqrcodeng.create('0987654321')

3.2 Alphanumeric

The alphanumeric type is very limited in that it can only encode some ASCII characters. It encodes:

7

PyQRCodeNG Documentation

• Uppercase letters

• Digits 0-9

• The horizontal space

• Eight punctuation characters: $, %, *, +, -, ., /, and :

A complete list of the possible characters can be found in the pyqrcodeng.tables.ascii_codes dictionary.
While limited, this encoding is much more efficient than using the binary encoding, in many cases. Luckily, the
available characters will let you encode a URL.

>>> url = pyqrcodeng.create('http://uca.edu'.upper())

3.3 Kanji

The final mode allows for the encoding of Kanji characters. Denso Wave, the creators of the QR code, is a Japenese
company. Hence, they made special provisions for using QR codes with Japenese text.

Only one python string encoding for Kanji characters is supported, shift-jis. The auto-detection algorithm will try to
encode the given string as shift-jis. if the characters are supported, then the mode will be set to kanji. Alternatively,
you can explicitly define the data’s encoding.

>>> utf8 = ''.encode('utf-8')
>>> monty = pyqrcodeng.create(utf8, encoding='utf-8')
>>> python = pyqrcodeng.create('')

3.4 Binary

When all else fails the data can be encoded in pure binary. This encoding does not change the data in any way. Instead
its pure bytes are represented directly in the QR code. This is the least efficient way to store data in a QR code. You
should only use this as a last resort.

The quotation below must be encoded in binary because of the apostrophe, exclamation point, and the new line
character. Notice, that the string’s characters will not have their case changed.

>>> life = pyqrcodeng.create('''MR. CREOSOTE: Better get a bucket. I'm going to throw
→˓up.

MAITRE D: Uh, Gaston! A bucket for monsieur. There you are, monsieur.''')

8 Chapter 3. Encoding Data

CHAPTER 4

Rendering QR Codes

There are five possible formats for rendering the QR Code. The first is to render it as a string of 1’s and 0’s. Next, the
code can be displayed directly in compatible terminals. There are also three image based renderers. All, but the first,
allow you to set the colors used. They also take a scaling factor, that way each module is not rendered as 1 pixel.

4.1 Text Based Rendering

The PyQRCodeNG module includes a basic text renderer. This will return a string containing the QR code as a string
of 1’s and 0’s, with each row of the code on a new line. A data module in the QR Code is represented by a 1. Likewise,
0 is used to represent the background of the code.

The purpose of this renderer is to allow users to create their own renderer if none of the built in renderers are satisfac-
tory.

>>> number = pyqrcodeng.create(123)
>>> print(number.text())
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00001111111011110011111110000
00001000001000101010000010000
00001011101001010010111010000
00001011101010011010111010000
00001011101000100010111010000
00001000001001001010000010000
00001111111010101011111110000
00000000000001011000000000000
00000010111011010100010010000
00001011110001111101010010000
00000111111011100101001000000
00001001100011010011110010000
00001111111001101011001110000

(continues on next page)

9

PyQRCodeNG Documentation

(continued from previous page)

00000000000010000000001100000
00001111111000111100100100000
00001000001011010110001100000
00001011101010110000101010000
00001011101001111111010100000
00001011101011101001011010000
00001000001001011001110000000
00001111111000011011011010000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000

4.2 Terminal Rendering

QR codes can be directly rendered to a compatible terminal in a manner readable by QR code scanners. The rendering
is done using ASCII escape codes. Hence, most Linux terminals are supported.

>>> text = pyqrcodeng.create('Example')
>>> text.term()

4.3 Image Rendering

There are four ways to get an image of the generated QR code. All of the renderers have a few things in common.

Each renderer takes a file path or writable stream and draws the QR code there. The methods should auto-detect which
is which.

Each renderer takes a scale parameter. This parameter sets the size of a single data module in pixels. Setting this
parameter to one, will result in each data module taking up 1 pixel. In other words, the QR code would be too small
to scan. What scale to use depends on how you plan to use the QR code. Generally, three, four, or five will result in
small but scanable QR codes.

QR codes are also supposed to have a quiet zone around them. This area is four modules wide on each side. The pur-
pose of the quiet zone is to make scanning a printed area more reliable. For electronic usages, this may be unnecessary
depending on how the code is being displayed. Each of the renderers allows you to set the size of the quiet zone.

Many of the renderers, also, allow you to set the module and background colors. Although, how the colors are
represented are renderer specific.

4.3.1 XBM Rendering

The XBM file format is a simple black and white image format. The image data takes the form of a valid C header
file. XBM rendering is handled via the pyqrcodeng.QRCode.xbm() method.

XMB’s are natively supported by Tkinter. This makes displaying QR codes in a Tkinter application very simple.

>>> import pyqrcodeng
>>> import tkinter
>>> # Create and render the QR code
>>> code = pyqrcodeng.create('Knights who say ni!')

(continues on next page)

10 Chapter 4. Rendering QR Codes

PyQRCodeNG Documentation

(continued from previous page)

>>> code_xbm = code.xbm(scale=5)
>>> # Create a tk window
>>> top = tkinter.Tk()
>>> # Make generate the bitmap image from the redered code
>>> code_bmp = tkinter.BitmapImage(data=code_xbm)
>>> # Set the code to have a white background,
>>> # instead of transparent
>>> code_bmp.config(background="white")
>>> # Bitmaps are accepted by lots of Widgets
>>> label = tkinter.Label(image=code_bmp)
>>> # The QR code is now visible
>>> label.pack()

4.3.2 Scalable Vector Graphic (SVG)

The SVG renderer outputs the QR code as a scalable vector graphic using the pyqrcodeng.QRCode.svg()
method.

The method draws the QR code using a set of paths. By default, no background is drawn, i.e. the resulting code has a
transparent background. The default foreground (module) color is black.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg('uca.svg', scale=4)
>>> # in-memory stream is also supported
>>> buffer = io.BytesIO()
>>> url.svg(buffer)
>>> # do whatever you want with buffer.getvalue()
>>> print(list(buffer.getvalue()))

You can change the colors of the data-modules using the module_color parameter. Likewise, you can specify a
background using the background parameter. Each of these parameters take a HTML style color.

>>> url.svg('uca.svg', scale=4, background="white", module_color="#7D007D")

You can also suppress certain parts of the SVG document. In other words you can create a SVG fragment.

4.3.3 Encapsulated PostScript (EPS)

The EPS renderer outputs the QR code an encapsulated PostScript document using the pyqrcodeng.QRCode.
eps() method. This renderer does not require any external modules.

The method draws the EPS document using lines of contiguous modules. By default, no background is drawn, i.e. the
resulting code has a transparent background. The default module color is black. Note, that a scale of 1 equates to a
module being drawn at 1 point (1/72 of an inch).

>>> qr = pyqrcodeng.create('Hello world')
>>> qr.eps('hello-world.eps', scale=2.5, module_color='#36C')
>>> qr.eps('hello-world2.eps', background='#eee')
>>> out = io.StringIO()
>>> qr.eps(out, module_color=(.4, .4, .4))

4.3. Image Rendering 11

PyQRCodeNG Documentation

4.3.4 Portable Network Graphic (PNG)

The PNG renderer outputs the QR code as a portable network graphic file using the pyqrcodeng.QRCode.png()
method.

Note: This renderer requires the PyPNG module.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> with open('code.png', 'w') as fstream:
... url.png(fstream, scale=5)
>>> # same as above
>>> url.png('code.png', scale=5)
>>> # in-memory stream is also supported
>>> buffer = io.BytesIO()
>>> url.png(buffer)
>>> # do whatever you want with buffer.getvalue()
>>> print(list(buffer.getvalue()))

Colors should be a list or tuple containing numbers between zero an 255. The lists should be of length three (for RGB)
or four (for RGBA). The color (0,0,0) represents black and the color (255,255,255) represents white. A value of zero
for the fourth element, represents full transparency. Likewise, a value of 255 for the fourth element represents full
opacity.

By default, the renderer creates a QR code with the data modules colored black, and the background modules colored
white.

>>> url.png('uca-colors.png', scale=6,
... module_color=[0, 0, 0, 128],
... background=[0xff, 0xff, 0xcc])

12 Chapter 4. Rendering QR Codes

https://pypi.org/project/pypng/

CHAPTER 5

PyQRCodeNG Module Documentation

This module is used to create QR Codes. It is designed to be as simple and as possible. It does this by using sane
defaults and autodetection to make creating a QR Code very simple.

It is recommended that you use the pyqrcodeng.create() function to build the QRCode object. This results in
cleaner looking code.

Examples:

>>> import pyqrcodeng
>>> import sys
>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = pyqrcodeng.create(123456789012345)
>>> number.png('big-number.png')

pyqrcodeng.create(content, error=’H’, version=None, mode=None, encoding=None)
When creating a QR code only the content to be encoded is required, all the other properties of the code will be
guessed based on the contents given. This function will return a QRCode object.

Unless you are familiar with QR code’s inner workings it is recommended that you just specify the content and
nothing else. However, there are cases where you may want to specify the various properties of the created
code manually, this is what the other parameters do. Below, you will find a lengthy explanation of what each
parameter is for. Note, the parameter names and values are taken directly from the standards. You may need to
familiarize yourself with the terminology of QR codes for the names and their values to make sense.

The error parameter sets the error correction level of the code. There are four levels defined by the standard.
The first is level ‘L’ which allows for 7% of the code to be corrected. Second, is level ‘M’ which allows for 15%
of the code to be corrected. Next, is level ‘Q’ which is the most common choice for error correction, it allow
25% of the code to be corrected. Finally, there is the highest level ‘H’ which allows for 30% of the code to be
corrected. There are several ways to specify this parameter, you can use an upper or lower case letter, a float
corresponding to the percentage of correction, or a string containing the percentage. See tables.modes for all the
possible values. By default this parameter is set to ‘H’ which is the highest possible error correction, but it has
the smallest available data capacity.

13

PyQRCodeNG Documentation

The version parameter specifies the size and data capacity of the code. Versions are any integer between 1 and
40. Where version 1 is the smallest QR code, and version 40 is the largest. If this parameter is left unspecified,
then the contents and error correction level will be used to guess the smallest possible QR code version that the
content will fit inside of. You may want to specify this parameter for consistency when generating several QR
codes with varying amounts of data. That way all of the generated codes would have the same size.

The mode parameter specifies how the contents will be encoded. By default, the best possible mode for the
contents is guessed. There are four possible modes. First, is ‘numeric’ which is used to encode integer numbers.
Next, is ‘alphanumeric’ which is used to encode some ASCII characters. This mode uses only a limited set
of characters. Most problematic is that it can only use upper case English characters, consequently, the content
parameter will be subjected to str.upper() before encoding. See tables.ascii_codes for a complete list of available
characters. The is ‘kanji’ mode can be used for Japanese characters, but only those that can be understood via
the shift-jis string encoding. Finally, we then have ‘binary’ mode which just encodes the bytes directly into the
QR code (this encoding is the least efficient).

The encoding parameter specifies how the content will be interpreted. This parameter only matters if the content
is a string, unicode, or byte array type. This parameter must be a valid encoding string or None. It will be passed
the content’s encode/decode methods.

class pyqrcodeng.QRCode(content, error=’H’, version=None, mode=None, encoding=None)
This class represents a QR code. To use this class simply give the constructor a string representing the data
to be encoded, it will then build a code in memory. You can then save it in various formats. Note, codes
can be written out as PNG files but this requires the PyPNG module. You can find the PyPNG module at
http://packages.python.org/pypng/.

Examples:

>>> from pyqrcodeng import QRCode
>>> import sys
>>> url = QRCode('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = QRCode(123456789012345)
>>> number.png('big-number.png')

Note: For what all of the parameters do, see the pyqrcodeng.create() function.

eps(file, scale=1, module_color=(0, 0, 0), background=None, quiet_zone=4)
This method writes the QR code out as an EPS document. The code is drawn by only writing the data
modules corresponding to a 1. They are drawn using a line, such that contiguous modules in a row are
drawn with a single line.

The file parameter is used to specify where to write the document to. It can either be a writable (text)
stream or a file path.

The scale parameter sets how large to draw a single module. By default one point (1/72 inch) is used to
draw a single module. This may make the code to small to be read efficiently. Increasing the scale will
make the code larger. This method will accept fractional scales (e.g. 2.5).

The module_color parameter sets the color of the data modules. The background parameter sets the back-
ground (page) color to use. They are specified as either a triple of floats, e.g. (0.5, 0.5, 0.5), or a triple
of integers, e.g. (128, 128, 128). The default module_color is black. The default background color is no
background at all.

The quiet_zone parameter sets how large to draw the border around the code. As per the standard, the
default value is 4 modules.

Examples:

14 Chapter 5. PyQRCodeNG Module Documentation

http://packages.python.org/pypng/

PyQRCodeNG Documentation

>>> qr = pyqrcodeng.create('Hello world')
>>> qr.eps('hello-world.eps', scale=2.5, module_color='#36C')
>>> qr.eps('hello-world2.eps', background='#eee')
>>> out = io.StringIO()
>>> qr.eps(out, module_color=(.4, .4, .4))

get_png_size(scale=1, quiet_zone=4)
DEPRECATED, use pyqrcodeng.QRCode.symbol_size()

This is method helps users determine what scale to use when creating a PNG of this QR code. It is meant
mostly to be used in the console to help the user determine the pixel size of the code using various scales.

This method will return an integer representing the width and height of the QR code in pixels, as if it was
drawn using the given scale. Because QR codes are square, the number represents both the width and
height dimensions.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications where the QR code is not being printed.

Deprecated since version 1.3.0.

Example:

>>> code = pyqrcodeng.QRCode("I don't like spam!")
>>> print(code.symbol_size(1))
(31, 31)
>>> print(code.symbol_size(5))
(155, 155)

png(file, scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)
This method writes the QR code out as an PNG image. The resulting PNG has a bit depth of 1. The file
parameter is used to specify where to write the image to. It can either be an writable stream or a file path.

This method will write the given file out as a PNG file. The file can be either a string file path, or a writable
stream. The file will not be automatically closed if a stream is given.

The scale parameter sets how large to draw a single module. By default one pixel is used to draw a single
module. This may make the code too small to be read efficiently. Increasing the scale will make the code
larger. Only integer scales are usable. This method will attempt to coerce the parameter into an integer
(e.g. 2.5 will become 2, and ‘3’ will become 3). You can use the symbol_size() method to calculate
the actual pixel size of the resulting PNG image.

The module_color parameter sets what color to use for the encoded modules (the black part on most QR
codes). The background parameter sets what color to use for the background (the white part on most
QR codes). If either parameter is set, then both must be set or a ValueError is raised. Colors should be
specified as either a list or a tuple of length 3 or 4. The components of the list must be integers between
0 and 255. The first three member give the RGB color. The fourth member gives the alpha component,
where 0 is transparent and 255 is opaque. Note, many color combinations are unreadable by scanners, so
be judicious.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications where the QR code is not being printed.

Example:

>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> code.png('swallow.png', scale=5)

(continues on next page)

15

PyQRCodeNG Documentation

(continued from previous page)

>>> code.png('swallow.png', scale=5,
module_color=(0x66, 0x33, 0x0), # Dark brown
background=(0xff, 0xff, 0xff, 0x88)) # 50% transparent white

png_as_base64_str(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255),
quiet_zone=4)

DEPRECATED, use pyqrcodeng.QRCode.png_data_uri().

This method uses the png render and returns the PNG image encoded as base64 string. This can be useful
for creating dynamic PNG images for web development, since no file needs to be created.

Example:

>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> image_as_str = code.png_as_base64_str(scale=5)
>>> html_img = ''.format(image_as_str)

The parameters are passed directly to the png() method. Refer to that method’s documentation for the
meaning behind the parameters.

Deprecated since version 1.3.0.

Note: This method depends on the Segno package to actually create the PNG image.

png_data_uri(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255),
quiet_zone=4)

Converts the QR Code into a PNG data URI.

Uses the same keyword parameters as the usual PNG serializer, see QRCode.png() for details.

Return type str

show(wait=1.2, scale=10, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255),
quiet_zone=4)

Displays this QR code.

This method is mainly intended for debugging purposes.

This method saves the output of the png() method (with a default scaling factor of 10) to a temporary file
and opens it with the standard PNG viewer application or within the standard webbrowser. The temporary
file is deleted afterwards.

If this method does not show any result, try to increase the wait parameter. This parameter specifies the
time in seconds to wait till the temporary file is deleted. Note, that this method does not return until the
provided amount of seconds (default: 1.2) has passed.

The other parameters are simply passed on to the png method.

svg(file, scale=1, module_color=’#000’, background=None, quiet_zone=4, xmldecl=True, svgns=True,
title=None, svgclass=’pyqrcode’, lineclass=’pyqrline’, omithw=False, debug=False)
This method writes the QR code out as an SVG document. The code is drawn by drawing only the modules
corresponding to a 1. They are drawn using a line, such that contiguous modules in a row are drawn with
a single line.

The file parameter is used to specify where to write the document to. It can either be a writable stream or
a file path.

The scale parameter sets how large to draw a single module. By default one pixel is used to draw a single
module. This may make the code too small to be read efficiently. Increasing the scale will make the code
larger. Unlike the png() method, this method will accept fractional scales (e.g. 2.5).

16 Chapter 5. PyQRCodeNG Module Documentation

PyQRCodeNG Documentation

Note, three things are done to make the code more appropriate for embedding in a HTML document. The
“white” part of the code is actually transparent. The code itself has a class given by svgclass parameter.
The path making up the QR code uses the class set using the lineclass. These should make the code easier
to style using CSS.

By default the output of this function is a complete SVG document. If only the code itself is desired, set
the xmldecl to false. This will result in a fragment that contains only the “drawn” portion of the code.
Likewise, you can set the title of the document. The SVG name space attribute can be suppressed by
setting svgns to False.

When True the omithw indicates if width and height attributes should be omitted. If these attributes are
omitted, a viewBox attribute will be added to the document.

You can also set the colors directly using the module_color and background parameters. The module_color
parameter sets what color to use for the data modules (the black part on most QR codes). The background
parameter sets what color to use for the background (the white part on most QR codes). The parameters
can be set to any valid SVG or HTML color. If the background is set to None, then no background will
be drawn, i.e. the background will be transparent. Note, many color combinations are unreadable by
scanners, so be careful.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications where the QR code is not being printed.

Example:

>>> code = pyqrcodeng.create('Hello. Uhh, can we have your liver?')
>>> code.svg('live-organ-transplants.svg', 3.6)
>>> code.svg('live-organ-transplants.svg', scale=4,

module_color='brown', background='0xFFFFFF')

symbol_size(scale=1, quiet_zone=4)
Returns the symbol size (width x height) with the provided border and scaling factor.

Parameters

• scale (int or float) – Indicates the size of a single module (default: 1). The size
of a module depends on the used output format; i.e. in a PNG context, a scaling factor of 2
indicates that a module has a size of 2 x 2 pixel. Some outputs (i.e. SVG) accept floating
point values.

• quiet_zone (int) – The size of the quiet zone.

Return type tuple (width, height)

term(file=None, quiet_zone=4)
This method prints the QR code to the terminal.

The file parameter is used to specify where to write the document to. It can either be a writable (text)
stream or a file path. If file is None (default) the code is written to sys.stdout.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications.

Example:

>>> code = pyqrcodeng.create('Example')
>>> code.term()

17

PyQRCodeNG Documentation

terminal(module_color=’default’, background=’reverse’, quiet_zone=4)
DEPRECATED, use term()

This method returns a string containing ASCII escape codes, such that if printed to a compatible terminal,
it will display a vaild QR code. The code is printed using ASCII escape codes that alter the coloring of the
background.

The module_color parameter sets what color to use for the data modules (the black part on most QR codes).
Likewise, the background parameter sets what color to use for the background (the white part on most QR
codes).

There are two options for colors. The first, and most widely supported, is to use the 8 or 16 color scheme.
This scheme uses eight to sixteen named colors. The following colors are supported the most widely
supported: black, red, green, yellow, blue, magenta, and cyan. There are an some additional named colors
that are supported by most terminals: light gray, dark gray, light red, light green, light blue, light yellow,
light magenta, light cyan, and white.

There are two special named colors. The first is the “default” color. This color is the color the background
of the terminal is set to. The next color is the “reverse” color. This is not really a color at all but a special
property that will reverse the current color. These two colors are the default values for module_color and
background respectively. These values should work on most terminals.

Finally, there is one more way to specify the color. Some terminals support 256 colors. The actual colors
displayed in the terminal is system dependent. This is the least transportable option. To use the 256 color
scheme set module_color and/or background to a number between 0 and 256.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications.

Deprecated since version 1.3.0.

Example:

>>> code = pyqrcodeng.create('Example')
>>> text = code.terminal()
>>> print(text)

text(scale=1, quiet_zone=4)
This method returns a string based representation of the QR code. The data modules are represented by 1’s
and the background modules are represented by 0’s. The main purpose of this method is to act a starting
point for users to create their own renderers.

The scale parameter sets how large to draw a single module. By default one value (“0” for a light module
or “1” for a dark module) is used to draw a single module.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications.

Example:

>>> code = pyqrcodeng.create('Example')
>>> text = code.text()
>>> print(text)

xbm(scale=1, quiet_zone=4)
Returns a string representing an XBM image of the QR code. The XBM format is a black and white image
format that looks like a C header file.

18 Chapter 5. PyQRCodeNG Module Documentation

PyQRCodeNG Documentation

Because displaying QR codes in Tkinter is the primary use case for this renderer, this method does not
take a file parameter. Instead it retuns the rendered QR code data as a string.

Example of using this renderer with Tkinter:

>>> import pyqrcodeng
>>> import tkinter
>>> code = pyqrcodeng.create('Knights who say ni!')
>>> code_xbm = code.xbm(scale=5)
>>>
>>> top = tkinter.Tk()
>>> code_bmp = tkinter.BitmapImage(data=code_xbm)
>>> code_bmp.config(foreground="black")
>>> code_bmp.config(background="white")
>>> label = tkinter.Label(image=code_bmp)
>>> label.pack()

The scale parameter sets how large to draw a single module. By default one pixel is used to draw a single
module. This may make the code too small to be read efficiently. Increasing the scale will make the code
larger. Only integer scales are usable. This method will attempt to coerce the parameter into an integer
(e.g. 2.5 will become 2, and ‘3’ will become 3). You can use the symbol_size() method to calculate
the actual pixel size of this image when displayed.

The quiet_zone parameter sets how wide the quiet zone around the code should be. According to the
standard this should be 4 modules. It is left settable because such a wide quiet zone is unnecessary in
many applications where the QR code is not being printed.

19

PyQRCodeNG Documentation

20 Chapter 5. PyQRCodeNG Module Documentation

CHAPTER 6

Glossary

error

error level QR codes can use one of four possible error correction values. They are referred to by the letters: L, M,
Q, and H. The L error correction level corresponds to 7% of the code can be corrected. The M error correction
level corresponds to 15% of the code can be corrected. The Q error correction level corresponds to 25% of the
code can be corrected. The H error correction level corresponds to 30% of the code can be corrected.

mode The encoding used to represent the data in a QR code. There are four possible encodings: binary, numeric,
alphanumeric, kanji.

module

data module A square dot on a QR code. Generally, only the “black” dots count. The “white” squares are considered
part of the background.

quiet zone An empty area around the QR code. The area is the background module in color. According to the
standard this area should be four modules wide.

QR code

Quick Response code A two dimensional barcode developed by Denso Wave.

version A version is one of 40 different possible sizes a QR code comes in. The version of a QR Code determines it
maximum possible data capacity.

21

PyQRCodeNG Documentation

22 Chapter 6. Glossary

CHAPTER 7

Requirements

The PyQRCodeNG module only requires Python 2.6, 2.7, 3.x. You may want to install pypng in order to render PNG
files, but it is optional. Note, pypng is a pure python PNG writer which does not require any other libraries.

23

https://pypi.org/project/pypng/

PyQRCodeNG Documentation

24 Chapter 7. Requirements

CHAPTER 8

Installation

Installation is simple. PyQRCodeNG can be installed from pip using the following command:

$ pip install -U pyqrcodeng

25

PyQRCodeNG Documentation

26 Chapter 8. Installation

CHAPTER 9

Replacing PyQRCode with PyQRCodeNG

PyQRCodeNG is a fork of PyQRCode since the latter seems to be unmaintained. The API is mainly compatible to
PyQRCode. In your code you can use the following import without changing the QR Code generation code:

>>> import pyqrcodeng as pyqrcode

27

PyQRCodeNG Documentation

28 Chapter 9. Replacing PyQRCode with PyQRCodeNG

CHAPTER 10

Usage

The PyQRCodeNG module aims to be as simple to use as possible. Below is a simple example of creating a QR code
for a URL. The code is rendered out as a black and white scalable vector graphics file.

>>> import pyqrcodeng
>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg('uca-url.svg', scale=8)
>>> print(url.terminal(quiet_zone=1))

The PyQRCodeNG module, while easy to use, is powerful. You can set all of the properties of the QR code. If you
install the optional pypng library, you can also render the code as a PNG image. Below is a more complex example:

>>> big_code = pyqrcodeng.create('0987654321', error='L', version=27, mode='binary')
>>> big_code.png('code.png', scale=6, module_color=[0, 0, 0, 128], background=[0xff,
→˓0xff, 0xcc])

29

PyQRCodeNG Documentation

30 Chapter 10. Usage

CHAPTER 11

Developer Documentation

11.1 Special QR Codes

Generation of special-purpose text for Qr codes.

class pyqrcodeng.qrspecial.QrGeolocation(lat=None, lon=None, query=None)
QrSpecial-derived geolocation.

classmethod from_str(text, strict=True, strip=True)
Construct a QrSpecial object from its QR-ready text.

This is conceptually the inverse operation of the ‘to_str’ method.

Args: text (str|unicode): The input text. strict (bool): Raises an error if tags are missing. strip (bool):
Strip from whitespaces before parsing.

Returns: obj (QrSpecial): The QrSpecial object.

class pyqrcodeng.qrspecial.QrMeCard(name=None, reading=None, tel=None, telav=None,
email=None, memo=None, birthday=None, ad-
dress=None, url=None, nickname=None, com-
pany=None)

QrSpecial-derived contact information (MeCard).

class pyqrcodeng.qrspecial.QrShortMessage(number=None, text=None)
QrSpecial-derived short message (SMS).

class pyqrcodeng.qrspecial.QrSpecial(**kws)
Special-purpose text for QR codes.

Implements the special text generated by the ZXing project for QR codes. Likely, these are correctly handled
by software using the this library.

Of note:

• the Event special text is not supported here, but it can be handled by using the icalendar package [https:
//pypi.python.org/pypi/icalendar].

31

https://pypi.python.org/pypi/icalendar
https://pypi.python.org/pypi/icalendar

PyQRCodeNG Documentation

• the vCard contact format is not supported here (only MeCard), but a number of packages for handling
vCards are available in PyPI.

classmethod from_str(text, strict=True, strip=True)
Construct a QrSpecial object from its QR-ready text.

This is conceptually the inverse operation of the ‘to_str’ method.

Args: text (str|unicode): The input text. strict (bool): Raises an error if tags are missing. strip (bool):
Strip from whitespaces before parsing.

Returns: obj (QrSpecial): The QrSpecial object.

static parse(text)
Construct a QrSpecial-derived object from a text.

This can be useful for determining whether a given input is a valid QrSpecial-derived object.

Args: text (str|unicode): The input text.

Returns: obj (QrSpecial): The QrSpecial-derived object.

class pyqrcodeng.qrspecial.QrWifi(ssid=None, security=None, password=None, hid-
den=None)

QrSpecial-derived WiFi network.

32 Chapter 11. Developer Documentation

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

33

PyQRCodeNG Documentation

34 Chapter 12. Indices and tables

Python Module Index

p
pyqrcodeng, 13
pyqrcodeng.qrspecial, 31

35

PyQRCodeNG Documentation

36 Python Module Index

Index

C
create() (in module pyqrcodeng), 13

D
data module, 21

E
eps() (pyqrcodeng.QRCode method), 14
error, 21
error level, 21

F
from_str() (pyqrcodeng.qrspecial.QrGeolocation

class method), 31
from_str() (pyqrcodeng.qrspecial.QrSpecial class

method), 32

G
get_png_size() (pyqrcodeng.QRCode method), 15

M
mode, 21
module, 21

P
parse() (pyqrcodeng.qrspecial.QrSpecial static

method), 32
png() (pyqrcodeng.QRCode method), 15
png_as_base64_str() (pyqrcodeng.QRCode

method), 16
png_data_uri() (pyqrcodeng.QRCode method), 16
pyqrcodeng (module), 13
pyqrcodeng.qrspecial (module), 31

Q
QR code, 21
QRCode (class in pyqrcodeng), 14
QrGeolocation (class in pyqrcodeng.qrspecial), 31
QrMeCard (class in pyqrcodeng.qrspecial), 31

QrShortMessage (class in pyqrcodeng.qrspecial), 31
QrSpecial (class in pyqrcodeng.qrspecial), 31
QrWifi (class in pyqrcodeng.qrspecial), 32
Quick Response code, 21
quiet zone, 21

S
show() (pyqrcodeng.QRCode method), 16
svg() (pyqrcodeng.QRCode method), 16
symbol_size() (pyqrcodeng.QRCode method), 17

T
term() (pyqrcodeng.QRCode method), 17
terminal() (pyqrcodeng.QRCode method), 17
text() (pyqrcodeng.QRCode method), 18

V
version, 21

X
xbm() (pyqrcodeng.QRCode method), 18

37

	QR Code creation from the command line
	Creating QR Codes
	Encoding Data
	Rendering QR Codes
	PyQRCodeNG Module Documentation
	Glossary
	Requirements
	Installation
	Replacing PyQRCode with PyQRCodeNG
	Usage
	Developer Documentation
	Indices and tables
	Python Module Index
	Index

