

Welcome to PyQRCodeNG’s documentation!

The PyQRCodeNG module is a QR code generator that is simple to use and written
in pure python. The module is compatible with Python 2.6, 2.7, and 3.x. The
module automates most of the building process for you. Generally, QR codes can
be created using only two lines of code!

Unlike many other generators, all of the automation can be controlled manually.
You are free to set any or all of the properties of your QR code.

QR codes can be saved as SVG, EPS, PNG (by using the
pypng [https://pypi.org/project/pypng/] module), and plain text. PIL is
not used to render the image files. You can also display a QR code directly in
a compatible terminal.

The PyQRCodeNG module attempts to follow the QR code standard as closely as
possible. The terminology and the encodings used in pyqrcode come directly
from the standard. This module also follows the algorithm laid out in the
standard.

Contents:

	QR Code creation from the command line

	Creating QR Codes

	Encoding Data

	Rendering QR Codes

	PyQRCodeNG Module Documentation

	Glossary

Requirements

The PyQRCodeNG module only requires Python 2.6, 2.7, 3.x. You may want to
install pypng [https://pypi.org/project/pypng/] in order to render PNG
files, but it is optional. Note, pypng is a pure python PNG writer which does
not require any other libraries.

Installation

Installation is simple. PyQRCodeNG can be installed from pip using the
following command:

$ pip install -U pyqrcodeng

Replacing PyQRCode with PyQRCodeNG

PyQRCodeNG is a fork of PyQRCode since the latter seems to be unmaintained.
The API is mainly compatible to PyQRCode. In your code you can use the following
import without changing the QR Code generation code:

>>> import pyqrcodeng as pyqrcode

Usage

The PyQRCodeNG module aims to be as simple to use as possible. Below is a simple
example of creating a QR code for a URL. The code is rendered out as a black
and white scalable vector graphics file.

>>> import pyqrcodeng
>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg('uca-url.svg', scale=8)
>>> print(url.terminal(quiet_zone=1))

The PyQRCodeNG module, while easy to use, is powerful. You can set all of the
properties of the QR code. If you install the optional pypng library, you can
also render the code as a PNG image. Below is a more complex example:

>>> big_code = pyqrcodeng.create('0987654321', error='L', version=27, mode='binary')
>>> big_code.png('code.png', scale=6, module_color=[0, 0, 0, 128], background=[0xff, 0xff, 0xcc])

Developer Documentation

	PyQRCodeNG Module Documentation

	Special QR Codes

Indices and tables

	Index

	Module Index

	Search Page

QR Code creation from the command line

The command line script “pyqr” can be used to print QR Codes to the command
line or to serialize QR Codes.

Usage

Output the QR Code to the terminal:

$ pyqr "Little wing"

Version

If the version parameter is not provided, pyqr chooses the minimal version
for the QR Code automatically. The version may be specified as an integer.

The content ‘Layla’ would fit into a version 1 QR Code, but the following commands
enforce version 5:

$ pyqr --version=5 Layla
$ pyqr -v=5 Layla

Error correction level

The default error correction level is “H”, use the error parameter to change
it:

$ pyqr --error=q "Ain't no grave"
$ pyqr -e=m "Heart of Gold"

QR Code serialization

Printing the QR Codes to the terminal is nice but the output parameter
serializes the QR Code in one of the supported file formats:

$ pyqr --output=white-room.png "White Room"
$ pyqr -o=satellite.svg "Satellite Of Love"
$ pyqr --output=mrs.eps "Mrs. Robinson"

Scaling QR Codes

If the resulting QR Code is too small, scale can be used to create a more
appropriate output:

$ pyqr --scale=10 --output=money-talks.png "Money Talks"
$ pyqr -s 10 --output=private-investigations.svg Private Investigations

If the serializer does not support a scaling factor (i.e. text output), this
parameter is ignored.

Changing the size of the quiet zone

The generated QR Codes will have a recommended quiet zone around the
symbol. To change the size of the quiet zone, quietzone can be utilized:

$ pyqr --quietzone=0 --output=black-magic-woman.svg "Black Magic Woman"
$ pyqr --qz=10 --output=diamond.png "Shine On You Crazy Diamond"

Creating QR Codes

The QRCode object is designed to be smart about how it constructs QR codes.
It can automatically figure out what mode and version to use to construct a
QR code, based on the data and the amount error correction. The error correction
level defaults to the highest possible level of error correction.

Below are some examples of creating QR Codes using the automatated system.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> url = pyqrcodeng.create('http://uca.edu', error='L')

There are many situations where you might wish to have more
fine grained control over how the QR Code is generated. You can specify all the
properties of your QR code through the optional parameters of the
pyqrcodeng.create() function. There are three main properties to a QR code.

The error parameter sets the error correction level of the code. Each
level has an associated name given by a letter: L, M, Q, or H; each level can
correct up to 7, 15, 25, or 30 percent of the data respectively. There are
several ways to specify the level, see pyqrcodeng.tables.error_level
for all the possible values. By default this parameter is set to ‘H’ which is
the highest possible error correction, but it has the smallest available data
capacity for a given version.

The version parameter specifies the size and data capacity of the
code. Versions are any integer between 1 and 40. Where version 1 is
the smallest QR code, and version 40 is the largest. By default, the object
uses the data’s encoding and error correction level to calculate the smallest
possible version. You may want to specify this parameter for consistency when
generating several QR codes with varying amounts of data. That way all of the
generated codes would have the same size.

Finally, the mode parameter sets how the contents will be encoded.
Three of the four possible encodings are available. By default, the object uses
the most efficient encoding for the contents. You can override this behavior
by setting this parameter. See pyqrcodeng.tables.modes for a list of
possible values for this parameter. A much longer discussion on modes can be
found in the next section Encoding Data.

The code below constructs a QR code with 25% error correction, size 27, and
forces the encoding to be binary (rather than numeric).

>>> big_code = pyqrcodeng.create('0987654321', error='L', version=27, mode='binary')

Encoding Data

The standard calls the data’s encoding its mode. The QR code standard
defines how to encode any given piece of data. There are
four possible modes. This module supports three of them:
numeric, alphanumeric, and binary.

Each mode is worse at encoding the QR code’s
contents. In other words, each mode will require more room in the QR code to
store the data. How much data a code version can hold is dependent on what
mode is used and the error correction level. For example, the binary encoding
always requires more code words than the numeric encoding.

Because of this, it is generally better to allow the QRCode object to
auto-select the most efficient mode for the code’s contents.

Note

The QRCode object can automatically choose the best mode based on the data
to be encoded. In general, it is best to just let the object figure it out
for you.

Numeric Encoding

The numeric type is the most efficient way to encode digits. Problematically,
the standard make no provisions for encoding negative or fractional numbers.
This encoding is better than Alphanumeric, when you only have a list of
digits.

To use this encoding, simply specify a string of digits as the data.
You can also use a positive integer as the code’s contents.

>>> number = pyqrcodeng.create(123456789012345)
 >>> number2 = pyqrcodeng.create('0987654321')

Alphanumeric

The alphanumeric type is very limited in that it can only encode some ASCII
characters. It encodes:

	Uppercase letters

	Digits 0-9

	The horizontal space

	Eight punctuation characters: $, %, *, +, -, ., /, and :

A complete list of the possible characters can be found in the
pyqrcodeng.tables.ascii_codes dictionary. While limited, this encoding
is much more efficient than using the binary encoding, in many cases. Luckily,
the available characters will let you encode a URL.

>>> url = pyqrcodeng.create('http://uca.edu'.upper())

Kanji

The final mode allows for the encoding of Kanji characters. Denso Wave, the
creators of the QR code, is a Japenese company. Hence, they made special
provisions for using QR codes with Japenese text.

Only one python string encoding for Kanji characters is supported, shift-jis.
The auto-detection algorithm will try to encode the given string as shift-jis.
if the characters are supported, then the mode will be set to kanji.
Alternatively, you can explicitly define the data’s encoding.

>>> utf8 = 'モンティ'.encode('utf-8')
>>> monty = pyqrcodeng.create(utf8, encoding='utf-8')
>>> python = pyqrcodeng.create('錦蛇')

Binary

When all else fails the data can be encoded in pure binary. This encoding does
not change the data in any way. Instead its pure bytes are represented
directly in the QR code. This is the least efficient way to store data in a
QR code. You should only use this as a last resort.

The quotation below must be encoded in binary because of the apostrophe,
exclamation point, and the new line character. Notice, that the string’s
characters will not have their case changed.

>>> life = pyqrcodeng.create('''MR. CREOSOTE: Better get a bucket. I'm going to throw up.
 MAITRE D: Uh, Gaston! A bucket for monsieur. There you are, monsieur.''')

Rendering QR Codes

There are five possible formats for rendering the QR Code. The first is
to render it as a string of 1’s and 0’s. Next, the code can be displayed
directly in compatible terminals. There are also three image based
renderers. All, but the first, allow you to set the colors used. They also
take a scaling factor, that way each module is not rendered as 1 pixel.

Text Based Rendering

The PyQRCodeNG module includes a basic text renderer. This will return a string
containing the QR code as a string of 1’s and 0’s, with each row of the code on
a new line. A data module in the QR Code is represented by a 1.
Likewise, 0 is used to represent the background of the code.

The purpose of this renderer is to allow users to create their own renderer if
none of the built in renderers are satisfactory.

>>> number = pyqrcodeng.create(123)
>>> print(number.text())
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00001111111011110011111110000
00001000001000101010000010000
00001011101001010010111010000
00001011101010011010111010000
00001011101000100010111010000
00001000001001001010000010000
00001111111010101011111110000
00000000000001011000000000000
00000010111011010100010010000
00001011110001111101010010000
00000111111011100101001000000
00001001100011010011110010000
00001111111001101011001110000
00000000000010000000001100000
00001111111000111100100100000
00001000001011010110001100000
00001011101010110000101010000
00001011101001111111010100000
00001011101011101001011010000
00001000001001011001110000000
00001111111000011011011010000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000

Terminal Rendering

QR codes can be directly rendered to a compatible terminal in a
manner readable by QR code scanners. The rendering is done using ASCII escape
codes. Hence, most Linux terminals are supported.

>>> text = pyqrcodeng.create('Example')
>>> text.term()

Image Rendering

There are four ways to get an image of the generated QR code. All of the
renderers have a few things in common.

Each renderer takes a file path or writable stream and draws the QR
code there. The methods should auto-detect which is which.

Each renderer takes a scale parameter. This parameter sets the size of a single
data module in pixels. Setting this parameter to one, will
result in each data module taking up 1 pixel. In other words, the QR
code would be too small to scan. What scale to use depends on how you plan to
use the QR code. Generally, three, four, or five will result in small but
scanable QR codes.

QR codes are also supposed to have a quiet zone around them. This area
is four modules wide on each side. The purpose of the quiet zone is to make
scanning a printed area more reliable. For electronic usages, this may be
unnecessary depending on how the code is being displayed. Each of the renderers
allows you to set the size of the quiet zone.

Many of the renderers, also, allow you to set the module and background
colors. Although, how the colors are represented are renderer specific.

XBM Rendering

The XBM file format is a simple black and white image format. The image data
takes the form of a valid C header file. XBM rendering is handled via the
pyqrcodeng.QRCode.xbm() method.

XMB’s are natively supported by Tkinter. This makes displaying QR codes in a
Tkinter application very simple.

>>> import pyqrcodeng
>>> import tkinter
>>> # Create and render the QR code
>>> code = pyqrcodeng.create('Knights who say ni!')
>>> code_xbm = code.xbm(scale=5)
>>> # Create a tk window
>>> top = tkinter.Tk()
>>> # Make generate the bitmap image from the redered code
>>> code_bmp = tkinter.BitmapImage(data=code_xbm)
>>> # Set the code to have a white background,
>>> # instead of transparent
>>> code_bmp.config(background="white")
>>> # Bitmaps are accepted by lots of Widgets
>>> label = tkinter.Label(image=code_bmp)
>>> # The QR code is now visible
>>> label.pack()

Scalable Vector Graphic (SVG)

The SVG renderer outputs the QR code as a scalable vector graphic using
the pyqrcodeng.QRCode.svg() method.

The method draws the QR code using a set of paths. By default, no background is
drawn, i.e. the resulting code has a transparent background. The
default foreground (module) color is black.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg('uca.svg', scale=4)
>>> # in-memory stream is also supported
>>> buffer = io.BytesIO()
>>> url.svg(buffer)
>>> # do whatever you want with buffer.getvalue()
>>> print(list(buffer.getvalue()))

You can change the colors of the data-modules using the module_color
parameter. Likewise, you can specify a background using the background
parameter. Each of these parameters take a HTML style color.

>>> url.svg('uca.svg', scale=4, background="white", module_color="#7D007D")

You can also suppress certain parts of the SVG document. In other words you
can create a SVG fragment.

Encapsulated PostScript (EPS)

The EPS renderer outputs the QR code an encapsulated PostScript document using
the pyqrcodeng.QRCode.eps() method. This renderer does not require any
external modules.

The method draws the EPS document using lines of contiguous modules. By default,
no background is drawn, i.e. the resulting code has a transparent background.
The default module color is black. Note, that a scale of 1 equates to a module
being drawn at 1 point (1/72 of an inch).

>>> qr = pyqrcodeng.create('Hello world')
>>> qr.eps('hello-world.eps', scale=2.5, module_color='#36C')
>>> qr.eps('hello-world2.eps', background='#eee')
>>> out = io.StringIO()
>>> qr.eps(out, module_color=(.4, .4, .4))

Portable Network Graphic (PNG)

The PNG renderer outputs the QR code as a portable network graphic file using
the pyqrcodeng.QRCode.png() method.

Note

This renderer requires the PyPNG [https://pypi.org/project/pypng/]
module.

>>> url = pyqrcodeng.create('http://uca.edu')
>>> with open('code.png', 'w') as fstream:
... url.png(fstream, scale=5)
>>> # same as above
>>> url.png('code.png', scale=5)
>>> # in-memory stream is also supported
>>> buffer = io.BytesIO()
>>> url.png(buffer)
>>> # do whatever you want with buffer.getvalue()
>>> print(list(buffer.getvalue()))

Colors should be a list or tuple containing numbers between zero an 255. The
lists should be of length three (for RGB) or four (for RGBA). The color (0,0,0)
represents black and the color (255,255,255) represents white. A value of zero
for the fourth element, represents full transparency. Likewise, a value of 255
for the fourth element represents full opacity.

By default, the renderer creates a QR code with the data modules colored
black, and the background modules colored white.

>>> url.png('uca-colors.png', scale=6,
... module_color=[0, 0, 0, 128],
... background=[0xff, 0xff, 0xcc])

PyQRCodeNG Module Documentation

This module is used to create QR Codes. It is designed to be as simple and
as possible. It does this by using sane defaults and autodetection to make
creating a QR Code very simple.

It is recommended that you use the pyqrcodeng.create() function to build
the QRCode object. This results in cleaner looking code.

	Examples:

	>>> import pyqrcodeng
>>> import sys
>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = pyqrcodeng.create(123456789012345)
>>> number.png('big-number.png')

	
pyqrcodeng.create(content, error='H', version=None, mode=None, encoding=None)

	When creating a QR code only the content to be encoded is required,
all the other properties of the code will be guessed based on the
contents given. This function will return a QRCode object.

Unless you are familiar with QR code’s inner workings
it is recommended that you just specify the content and nothing else.
However, there are cases where you may want to specify the various
properties of the created code manually, this is what the other
parameters do. Below, you will find a lengthy explanation of what
each parameter is for. Note, the parameter names and values are taken
directly from the standards. You may need to familiarize yourself
with the terminology of QR codes for the names and their values to
make sense.

The error parameter sets the error correction level of the code. There
are four levels defined by the standard. The first is level ‘L’ which
allows for 7% of the code to be corrected. Second, is level ‘M’ which
allows for 15% of the code to be corrected. Next, is level ‘Q’ which
is the most common choice for error correction, it allow 25% of the
code to be corrected. Finally, there is the highest level ‘H’ which
allows for 30% of the code to be corrected. There are several ways to
specify this parameter, you can use an upper or lower case letter,
a float corresponding to the percentage of correction, or a string
containing the percentage. See tables.modes for all the possible
values. By default this parameter is set to ‘H’ which is the highest
possible error correction, but it has the smallest available data
capacity.

The version parameter specifies the size and data capacity of the
code. Versions are any integer between 1 and 40. Where version 1 is
the smallest QR code, and version 40 is the largest. If this parameter
is left unspecified, then the contents and error correction level will
be used to guess the smallest possible QR code version that the
content will fit inside of. You may want to specify this parameter
for consistency when generating several QR codes with varying amounts
of data. That way all of the generated codes would have the same size.

The mode parameter specifies how the contents will be encoded. By
default, the best possible mode for the contents is guessed. There
are four possible modes. First, is ‘numeric’ which is
used to encode integer numbers. Next, is ‘alphanumeric’ which is
used to encode some ASCII characters. This mode uses only a limited
set of characters. Most problematic is that it can only use upper case
English characters, consequently, the content parameter will be
subjected to str.upper() before encoding. See tables.ascii_codes for
a complete list of available characters. The is ‘kanji’ mode can be
used for Japanese characters, but only those that can be understood
via the shift-jis string encoding. Finally, we then have ‘binary’ mode
which just encodes the bytes directly into the QR code (this encoding
is the least efficient).

The encoding parameter specifies how the content will be interpreted.
This parameter only matters if the content is a string, unicode, or
byte array type. This parameter must be a valid encoding string or None.
It will be passed the content’s encode/decode methods.

	
class pyqrcodeng.QRCode(content, error='H', version=None, mode=None, encoding=None)

	This class represents a QR code. To use this class simply give the
constructor a string representing the data to be encoded, it will then
build a code in memory. You can then save it in various formats. Note,
codes can be written out as PNG files but this requires the PyPNG module.
You can find the PyPNG module at http://packages.python.org/pypng/.

	Examples:

	>>> from pyqrcodeng import QRCode
>>> import sys
>>> url = QRCode('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = QRCode(123456789012345)
>>> number.png('big-number.png')

Note

For what all of the parameters do, see the pyqrcodeng.create()
function.

	
eps(file, scale=1, module_color=(0, 0, 0), background=None, quiet_zone=4)

	This method writes the QR code out as an EPS document. The
code is drawn by only writing the data modules corresponding to a 1.
They are drawn using a line, such that contiguous modules in a row
are drawn with a single line.

The file parameter is used to specify where to write the document
to. It can either be a writable (text) stream or a file path.

The scale parameter sets how large to draw a single module. By
default one point (1/72 inch) is used to draw a single module. This may
make the code to small to be read efficiently. Increasing the scale
will make the code larger. This method will accept fractional scales
(e.g. 2.5).

The module_color parameter sets the color of the data modules. The
background parameter sets the background (page) color to use. They
are specified as either a triple of floats, e.g. (0.5, 0.5, 0.5), or a
triple of integers, e.g. (128, 128, 128). The default module_color is
black. The default background color is no background at all.

The quiet_zone parameter sets how large to draw the border around
the code. As per the standard, the default value is 4 modules.

	Examples:

	>>> qr = pyqrcodeng.create('Hello world')
>>> qr.eps('hello-world.eps', scale=2.5, module_color='#36C')
>>> qr.eps('hello-world2.eps', background='#eee')
>>> out = io.StringIO()
>>> qr.eps(out, module_color=(.4, .4, .4))

	
get_png_size(scale=1, quiet_zone=4)

	DEPRECATED, use pyqrcodeng.QRCode.symbol_size()

This is method helps users determine what scale to use when
creating a PNG of this QR code. It is meant mostly to be used in the
console to help the user determine the pixel size of the code
using various scales.

This method will return an integer representing the width and height of
the QR code in pixels, as if it was drawn using the given scale.
Because QR codes are square, the number represents both the width
and height dimensions.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

Deprecated since version 1.3.0.

	Example:

	>>> code = pyqrcodeng.QRCode("I don't like spam!")
>>> print(code.symbol_size(1))
(31, 31)
>>> print(code.symbol_size(5))
(155, 155)

	
png(file, scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	This method writes the QR code out as an PNG image. The resulting
PNG has a bit depth of 1. The file parameter is used to specify where
to write the image to. It can either be an writable stream or a
file path.

This method will write the given file out as a PNG file. The file
can be either a string file path, or a writable stream. The file
will not be automatically closed if a stream is given.

The scale parameter sets how large to draw a single module. By
default one pixel is used to draw a single module. This may make the
code too small to be read efficiently. Increasing the scale will make
the code larger. Only integer scales are usable. This method will
attempt to coerce the parameter into an integer (e.g. 2.5 will become 2,
and ‘3’ will become 3). You can use the symbol_size() method
to calculate the actual pixel size of the resulting PNG image.

The module_color parameter sets what color to use for the encoded
modules (the black part on most QR codes). The background parameter
sets what color to use for the background (the white part on most
QR codes). If either parameter is set, then both must be
set or a ValueError is raised. Colors should be specified as either
a list or a tuple of length 3 or 4. The components of the list must
be integers between 0 and 255. The first three member give the RGB
color. The fourth member gives the alpha component, where 0 is
transparent and 255 is opaque. Note, many color
combinations are unreadable by scanners, so be judicious.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

	Example:

	>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> code.png('swallow.png', scale=5)
>>> code.png('swallow.png', scale=5,
 module_color=(0x66, 0x33, 0x0), # Dark brown
 background=(0xff, 0xff, 0xff, 0x88)) # 50% transparent white

	
png_as_base64_str(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	DEPRECATED, use pyqrcodeng.QRCode.png_data_uri().

This method uses the png render and returns the PNG image encoded as
base64 string. This can be useful for creating dynamic PNG images for
web development, since no file needs to be created.

	Example:

	>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> image_as_str = code.png_as_base64_str(scale=5)
>>> html_img = ''.format(image_as_str)

The parameters are passed directly to the png() method. Refer
to that method’s documentation for the meaning behind the parameters.

Deprecated since version 1.3.0.

Note

This method depends on the Segno package to actually create the
PNG image.

	
png_data_uri(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	Converts the QR Code into a PNG data URI.

Uses the same keyword parameters as the usual PNG serializer,
see QRCode.png() for details.

	Return type

	str

	
show(wait=1.2, scale=10, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	Displays this QR code.

This method is mainly intended for debugging purposes.

This method saves the output of the png() method (with a default
scaling factor of 10) to a temporary file and opens it with the
standard PNG viewer application or within the standard webbrowser. The
temporary file is deleted afterwards.

If this method does not show any result, try to increase the wait
parameter. This parameter specifies the time in seconds to wait till
the temporary file is deleted. Note, that this method does not return
until the provided amount of seconds (default: 1.2) has passed.

The other parameters are simply passed on to the png method.

	
svg(file, scale=1, module_color='#000', background=None, quiet_zone=4, xmldecl=True, svgns=True, title=None, svgclass='pyqrcode', lineclass='pyqrline', omithw=False, debug=False)

	This method writes the QR code out as an SVG document. The
code is drawn by drawing only the modules corresponding to a 1. They
are drawn using a line, such that contiguous modules in a row
are drawn with a single line.

The file parameter is used to specify where to write the document
to. It can either be a writable stream or a file path.

The scale parameter sets how large to draw
a single module. By default one pixel is used to draw a single
module. This may make the code too small to be read efficiently.
Increasing the scale will make the code larger. Unlike the png() method,
this method will accept fractional scales (e.g. 2.5).

Note, three things are done to make the code more appropriate for
embedding in a HTML document. The “white” part of the code is actually
transparent. The code itself has a class given by svgclass parameter.
The path making up the QR code uses the class set using the lineclass.
These should make the code easier to style using CSS.

By default the output of this function is a complete SVG document. If
only the code itself is desired, set the xmldecl to false. This will
result in a fragment that contains only the “drawn” portion of the code.
Likewise, you can set the title of the document. The SVG name space
attribute can be suppressed by setting svgns to False.

When True the omithw indicates if width and height attributes should
be omitted. If these attributes are omitted, a viewBox attribute
will be added to the document.

You can also set the colors directly using the module_color and
background parameters. The module_color parameter sets what color to
use for the data modules (the black part on most QR codes). The
background parameter sets what color to use for the background (the
white part on most QR codes). The parameters can be set to any valid
SVG or HTML color. If the background is set to None, then no background
will be drawn, i.e. the background will be transparent. Note, many color
combinations are unreadable by scanners, so be careful.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

	Example:

	>>> code = pyqrcodeng.create('Hello. Uhh, can we have your liver?')
>>> code.svg('live-organ-transplants.svg', 3.6)
>>> code.svg('live-organ-transplants.svg', scale=4,
 module_color='brown', background='0xFFFFFF')

	
symbol_size(scale=1, quiet_zone=4)

	Returns the symbol size (width x height) with the provided border and
scaling factor.

	Parameters

	
	scale (int or float) – Indicates the size of a single module (default: 1).
The size of a module depends on the used output format; i.e.
in a PNG context, a scaling factor of 2 indicates that a module
has a size of 2 x 2 pixel. Some outputs (i.e. SVG) accept
floating point values.

	quiet_zone (int) – The size of the quiet zone.

	Return type

	tuple (width, height)

	
term(file=None, quiet_zone=4)

	This method prints the QR code to the terminal.

The file parameter is used to specify where to write the document
to. It can either be a writable (text) stream or a file path.
If file is None (default) the code is written to sys.stdout.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> code.term()

	
terminal(module_color='default', background='reverse', quiet_zone=4)

	DEPRECATED, use term()

This method returns a string containing ASCII escape codes,
such that if printed to a compatible terminal, it will display
a vaild QR code. The code is printed using ASCII escape
codes that alter the coloring of the background.

The module_color parameter sets what color to
use for the data modules (the black part on most QR codes).
Likewise, the background parameter sets what color to use
for the background (the white part on most QR codes).

There are two options for colors. The first, and most widely
supported, is to use the 8 or 16 color scheme. This scheme uses
eight to sixteen named colors. The following colors are
supported the most widely supported: black, red, green,
yellow, blue, magenta, and cyan. There are an some additional
named colors that are supported by most terminals: light gray,
dark gray, light red, light green, light blue, light yellow,
light magenta, light cyan, and white.

There are two special named colors. The first is the
“default” color. This color is the color the background of
the terminal is set to. The next color is the “reverse”
color. This is not really a color at all but a special
property that will reverse the current color. These two colors
are the default values for module_color and background
respectively. These values should work on most terminals.

Finally, there is one more way to specify the color. Some
terminals support 256 colors. The actual colors displayed in the
terminal is system dependent. This is the least transportable option.
To use the 256 color scheme set module_color and/or
background to a number between 0 and 256.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

Deprecated since version 1.3.0.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> text = code.terminal()
>>> print(text)

	
text(scale=1, quiet_zone=4)

	This method returns a string based representation of the QR code.
The data modules are represented by 1’s and the background modules are
represented by 0’s. The main purpose of this method is to act a
starting point for users to create their own renderers.

The scale parameter sets how large to draw a single module. By
default one value (“0” for a light module or “1” for a dark module)
is used to draw a single module.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> text = code.text()
>>> print(text)

	
xbm(scale=1, quiet_zone=4)

	Returns a string representing an XBM image of the QR code.
The XBM format is a black and white image format that looks like a
C header file.

Because displaying QR codes in Tkinter is the
primary use case for this renderer, this method does not take a file
parameter. Instead it retuns the rendered QR code data as a string.

	Example of using this renderer with Tkinter:

	>>> import pyqrcodeng
>>> import tkinter
>>> code = pyqrcodeng.create('Knights who say ni!')
>>> code_xbm = code.xbm(scale=5)
>>>
>>> top = tkinter.Tk()
>>> code_bmp = tkinter.BitmapImage(data=code_xbm)
>>> code_bmp.config(foreground="black")
>>> code_bmp.config(background="white")
>>> label = tkinter.Label(image=code_bmp)
>>> label.pack()

The scale parameter sets how large to draw a single module. By
default one pixel is used to draw a single module. This may make the
code too small to be read efficiently. Increasing the scale will make
the code larger. Only integer scales are usable. This method will
attempt to coerce the parameter into an integer (e.g. 2.5 will become 2,
and ‘3’ will become 3). You can use the symbol_size() method
to calculate the actual pixel size of this image when displayed.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

Glossary

	error	error level

	QR codes can use one of four possible error correction values. They
are referred to by the letters: L, M, Q, and H. The L error correction
level corresponds to 7% of the code can be corrected.
The M error correction level corresponds to 15% of the code can be
corrected. The Q error correction level corresponds to 25% of the code
can be corrected. The H error correction level corresponds to 30% of
the code can be corrected.

	mode

	The encoding used to represent the data in a QR code. There are four
possible encodings: binary, numeric, alphanumeric, kanji.

	module	data module

	A square dot on a QR code. Generally, only the “black” dots count. The
“white” squares are considered part of the background.

	quiet zone

	An empty area around the QR code. The area is the background module
in color. According to the standard this area should be four modules
wide.

	QR code	Quick Response code

	A two dimensional barcode developed by Denso Wave.

	version

	A version is one of 40 different possible sizes a QR code comes in. The
version of a QR Code determines it maximum possible data capacity.

 PyQRCodeNG Module Documentation

PyQRCodeNG Module Documentation

This module is used to create QR Codes. It is designed to be as simple and
as possible. It does this by using sane defaults and autodetection to make
creating a QR Code very simple.

It is recommended that you use the pyqrcodeng.create() function to build
the QRCode object. This results in cleaner looking code.

	Examples:

	>>> import pyqrcodeng
>>> import sys
>>> url = pyqrcodeng.create('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = pyqrcodeng.create(123456789012345)
>>> number.png('big-number.png')

	
pyqrcodeng.create(content, error='H', version=None, mode=None, encoding=None)

	When creating a QR code only the content to be encoded is required,
all the other properties of the code will be guessed based on the
contents given. This function will return a QRCode object.

Unless you are familiar with QR code’s inner workings
it is recommended that you just specify the content and nothing else.
However, there are cases where you may want to specify the various
properties of the created code manually, this is what the other
parameters do. Below, you will find a lengthy explanation of what
each parameter is for. Note, the parameter names and values are taken
directly from the standards. You may need to familiarize yourself
with the terminology of QR codes for the names and their values to
make sense.

The error parameter sets the error correction level of the code. There
are four levels defined by the standard. The first is level ‘L’ which
allows for 7% of the code to be corrected. Second, is level ‘M’ which
allows for 15% of the code to be corrected. Next, is level ‘Q’ which
is the most common choice for error correction, it allow 25% of the
code to be corrected. Finally, there is the highest level ‘H’ which
allows for 30% of the code to be corrected. There are several ways to
specify this parameter, you can use an upper or lower case letter,
a float corresponding to the percentage of correction, or a string
containing the percentage. See tables.modes for all the possible
values. By default this parameter is set to ‘H’ which is the highest
possible error correction, but it has the smallest available data
capacity.

The version parameter specifies the size and data capacity of the
code. Versions are any integer between 1 and 40. Where version 1 is
the smallest QR code, and version 40 is the largest. If this parameter
is left unspecified, then the contents and error correction level will
be used to guess the smallest possible QR code version that the
content will fit inside of. You may want to specify this parameter
for consistency when generating several QR codes with varying amounts
of data. That way all of the generated codes would have the same size.

The mode parameter specifies how the contents will be encoded. By
default, the best possible mode for the contents is guessed. There
are four possible modes. First, is ‘numeric’ which is
used to encode integer numbers. Next, is ‘alphanumeric’ which is
used to encode some ASCII characters. This mode uses only a limited
set of characters. Most problematic is that it can only use upper case
English characters, consequently, the content parameter will be
subjected to str.upper() before encoding. See tables.ascii_codes for
a complete list of available characters. The is ‘kanji’ mode can be
used for Japanese characters, but only those that can be understood
via the shift-jis string encoding. Finally, we then have ‘binary’ mode
which just encodes the bytes directly into the QR code (this encoding
is the least efficient).

The encoding parameter specifies how the content will be interpreted.
This parameter only matters if the content is a string, unicode, or
byte array type. This parameter must be a valid encoding string or None.
It will be passed the content’s encode/decode methods.

	
class pyqrcodeng.QRCode(content, error='H', version=None, mode=None, encoding=None)

	This class represents a QR code. To use this class simply give the
constructor a string representing the data to be encoded, it will then
build a code in memory. You can then save it in various formats. Note,
codes can be written out as PNG files but this requires the PyPNG module.
You can find the PyPNG module at http://packages.python.org/pypng/.

	Examples:

	>>> from pyqrcodeng import QRCode
>>> import sys
>>> url = QRCode('http://uca.edu')
>>> url.svg(sys.stdout, scale=1)
>>> url.svg('uca.svg', scale=4)
>>> number = QRCode(123456789012345)
>>> number.png('big-number.png')

Note

For what all of the parameters do, see the pyqrcodeng.create()
function.

	
eps(file, scale=1, module_color=(0, 0, 0), background=None, quiet_zone=4)

	This method writes the QR code out as an EPS document. The
code is drawn by only writing the data modules corresponding to a 1.
They are drawn using a line, such that contiguous modules in a row
are drawn with a single line.

The file parameter is used to specify where to write the document
to. It can either be a writable (text) stream or a file path.

The scale parameter sets how large to draw a single module. By
default one point (1/72 inch) is used to draw a single module. This may
make the code to small to be read efficiently. Increasing the scale
will make the code larger. This method will accept fractional scales
(e.g. 2.5).

The module_color parameter sets the color of the data modules. The
background parameter sets the background (page) color to use. They
are specified as either a triple of floats, e.g. (0.5, 0.5, 0.5), or a
triple of integers, e.g. (128, 128, 128). The default module_color is
black. The default background color is no background at all.

The quiet_zone parameter sets how large to draw the border around
the code. As per the standard, the default value is 4 modules.

	Examples:

	>>> qr = pyqrcodeng.create('Hello world')
>>> qr.eps('hello-world.eps', scale=2.5, module_color='#36C')
>>> qr.eps('hello-world2.eps', background='#eee')
>>> out = io.StringIO()
>>> qr.eps(out, module_color=(.4, .4, .4))

	
get_png_size(scale=1, quiet_zone=4)

	DEPRECATED, use pyqrcodeng.QRCode.symbol_size()

This is method helps users determine what scale to use when
creating a PNG of this QR code. It is meant mostly to be used in the
console to help the user determine the pixel size of the code
using various scales.

This method will return an integer representing the width and height of
the QR code in pixels, as if it was drawn using the given scale.
Because QR codes are square, the number represents both the width
and height dimensions.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

Deprecated since version 1.3.0.

	Example:

	>>> code = pyqrcodeng.QRCode("I don't like spam!")
>>> print(code.symbol_size(1))
(31, 31)
>>> print(code.symbol_size(5))
(155, 155)

	
png(file, scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	This method writes the QR code out as an PNG image. The resulting
PNG has a bit depth of 1. The file parameter is used to specify where
to write the image to. It can either be an writable stream or a
file path.

This method will write the given file out as a PNG file. The file
can be either a string file path, or a writable stream. The file
will not be automatically closed if a stream is given.

The scale parameter sets how large to draw a single module. By
default one pixel is used to draw a single module. This may make the
code too small to be read efficiently. Increasing the scale will make
the code larger. Only integer scales are usable. This method will
attempt to coerce the parameter into an integer (e.g. 2.5 will become 2,
and ‘3’ will become 3). You can use the symbol_size() method
to calculate the actual pixel size of the resulting PNG image.

The module_color parameter sets what color to use for the encoded
modules (the black part on most QR codes). The background parameter
sets what color to use for the background (the white part on most
QR codes). If either parameter is set, then both must be
set or a ValueError is raised. Colors should be specified as either
a list or a tuple of length 3 or 4. The components of the list must
be integers between 0 and 255. The first three member give the RGB
color. The fourth member gives the alpha component, where 0 is
transparent and 255 is opaque. Note, many color
combinations are unreadable by scanners, so be judicious.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

	Example:

	>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> code.png('swallow.png', scale=5)
>>> code.png('swallow.png', scale=5,
 module_color=(0x66, 0x33, 0x0), # Dark brown
 background=(0xff, 0xff, 0xff, 0x88)) # 50% transparent white

	
png_as_base64_str(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	DEPRECATED, use pyqrcodeng.QRCode.png_data_uri().

This method uses the png render and returns the PNG image encoded as
base64 string. This can be useful for creating dynamic PNG images for
web development, since no file needs to be created.

	Example:

	>>> code = pyqrcodeng.create('Are you suggesting coconuts migrate?')
>>> image_as_str = code.png_as_base64_str(scale=5)
>>> html_img = ''.format(image_as_str)

The parameters are passed directly to the png() method. Refer
to that method’s documentation for the meaning behind the parameters.

Deprecated since version 1.3.0.

Note

This method depends on the Segno package to actually create the
PNG image.

	
png_data_uri(scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	Converts the QR Code into a PNG data URI.

Uses the same keyword parameters as the usual PNG serializer,
see QRCode.png() for details.

	Return type

	str

	
show(wait=1.2, scale=10, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4)

	Displays this QR code.

This method is mainly intended for debugging purposes.

This method saves the output of the png() method (with a default
scaling factor of 10) to a temporary file and opens it with the
standard PNG viewer application or within the standard webbrowser. The
temporary file is deleted afterwards.

If this method does not show any result, try to increase the wait
parameter. This parameter specifies the time in seconds to wait till
the temporary file is deleted. Note, that this method does not return
until the provided amount of seconds (default: 1.2) has passed.

The other parameters are simply passed on to the png method.

	
svg(file, scale=1, module_color='#000', background=None, quiet_zone=4, xmldecl=True, svgns=True, title=None, svgclass='pyqrcode', lineclass='pyqrline', omithw=False, debug=False)

	This method writes the QR code out as an SVG document. The
code is drawn by drawing only the modules corresponding to a 1. They
are drawn using a line, such that contiguous modules in a row
are drawn with a single line.

The file parameter is used to specify where to write the document
to. It can either be a writable stream or a file path.

The scale parameter sets how large to draw
a single module. By default one pixel is used to draw a single
module. This may make the code too small to be read efficiently.
Increasing the scale will make the code larger. Unlike the png() method,
this method will accept fractional scales (e.g. 2.5).

Note, three things are done to make the code more appropriate for
embedding in a HTML document. The “white” part of the code is actually
transparent. The code itself has a class given by svgclass parameter.
The path making up the QR code uses the class set using the lineclass.
These should make the code easier to style using CSS.

By default the output of this function is a complete SVG document. If
only the code itself is desired, set the xmldecl to false. This will
result in a fragment that contains only the “drawn” portion of the code.
Likewise, you can set the title of the document. The SVG name space
attribute can be suppressed by setting svgns to False.

When True the omithw indicates if width and height attributes should
be omitted. If these attributes are omitted, a viewBox attribute
will be added to the document.

You can also set the colors directly using the module_color and
background parameters. The module_color parameter sets what color to
use for the data modules (the black part on most QR codes). The
background parameter sets what color to use for the background (the
white part on most QR codes). The parameters can be set to any valid
SVG or HTML color. If the background is set to None, then no background
will be drawn, i.e. the background will be transparent. Note, many color
combinations are unreadable by scanners, so be careful.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

	Example:

	>>> code = pyqrcodeng.create('Hello. Uhh, can we have your liver?')
>>> code.svg('live-organ-transplants.svg', 3.6)
>>> code.svg('live-organ-transplants.svg', scale=4,
 module_color='brown', background='0xFFFFFF')

	
symbol_size(scale=1, quiet_zone=4)

	Returns the symbol size (width x height) with the provided border and
scaling factor.

	Parameters

	
	scale (int or float) – Indicates the size of a single module (default: 1).
The size of a module depends on the used output format; i.e.
in a PNG context, a scaling factor of 2 indicates that a module
has a size of 2 x 2 pixel. Some outputs (i.e. SVG) accept
floating point values.

	quiet_zone (int) – The size of the quiet zone.

	Return type

	tuple (width, height)

	
term(file=None, quiet_zone=4)

	This method prints the QR code to the terminal.

The file parameter is used to specify where to write the document
to. It can either be a writable (text) stream or a file path.
If file is None (default) the code is written to sys.stdout.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> code.term()

	
terminal(module_color='default', background='reverse', quiet_zone=4)

	DEPRECATED, use term()

This method returns a string containing ASCII escape codes,
such that if printed to a compatible terminal, it will display
a vaild QR code. The code is printed using ASCII escape
codes that alter the coloring of the background.

The module_color parameter sets what color to
use for the data modules (the black part on most QR codes).
Likewise, the background parameter sets what color to use
for the background (the white part on most QR codes).

There are two options for colors. The first, and most widely
supported, is to use the 8 or 16 color scheme. This scheme uses
eight to sixteen named colors. The following colors are
supported the most widely supported: black, red, green,
yellow, blue, magenta, and cyan. There are an some additional
named colors that are supported by most terminals: light gray,
dark gray, light red, light green, light blue, light yellow,
light magenta, light cyan, and white.

There are two special named colors. The first is the
“default” color. This color is the color the background of
the terminal is set to. The next color is the “reverse”
color. This is not really a color at all but a special
property that will reverse the current color. These two colors
are the default values for module_color and background
respectively. These values should work on most terminals.

Finally, there is one more way to specify the color. Some
terminals support 256 colors. The actual colors displayed in the
terminal is system dependent. This is the least transportable option.
To use the 256 color scheme set module_color and/or
background to a number between 0 and 256.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

Deprecated since version 1.3.0.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> text = code.terminal()
>>> print(text)

	
text(scale=1, quiet_zone=4)

	This method returns a string based representation of the QR code.
The data modules are represented by 1’s and the background modules are
represented by 0’s. The main purpose of this method is to act a
starting point for users to create their own renderers.

The scale parameter sets how large to draw a single module. By
default one value (“0” for a light module or “1” for a dark module)
is used to draw a single module.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications.

	Example:

	>>> code = pyqrcodeng.create('Example')
>>> text = code.text()
>>> print(text)

	
xbm(scale=1, quiet_zone=4)

	Returns a string representing an XBM image of the QR code.
The XBM format is a black and white image format that looks like a
C header file.

Because displaying QR codes in Tkinter is the
primary use case for this renderer, this method does not take a file
parameter. Instead it retuns the rendered QR code data as a string.

	Example of using this renderer with Tkinter:

	>>> import pyqrcodeng
>>> import tkinter
>>> code = pyqrcodeng.create('Knights who say ni!')
>>> code_xbm = code.xbm(scale=5)
>>>
>>> top = tkinter.Tk()
>>> code_bmp = tkinter.BitmapImage(data=code_xbm)
>>> code_bmp.config(foreground="black")
>>> code_bmp.config(background="white")
>>> label = tkinter.Label(image=code_bmp)
>>> label.pack()

The scale parameter sets how large to draw a single module. By
default one pixel is used to draw a single module. This may make the
code too small to be read efficiently. Increasing the scale will make
the code larger. Only integer scales are usable. This method will
attempt to coerce the parameter into an integer (e.g. 2.5 will become 2,
and ‘3’ will become 3). You can use the symbol_size() method
to calculate the actual pixel size of this image when displayed.

The quiet_zone parameter sets how wide the quiet zone around the code
should be. According to the standard this should be 4 modules. It is
left settable because such a wide quiet zone is unnecessary in many
applications where the QR code is not being printed.

 Special QR Codes

Special QR Codes

Generation of special-purpose text for Qr codes.

	
class pyqrcodeng.qrspecial.QrGeolocation(lat=None, lon=None, query=None)

	QrSpecial-derived geolocation.

	
classmethod from_str(text, strict=True, strip=True)

	Construct a QrSpecial object from its QR-ready text.

This is conceptually the inverse operation of the ‘to_str’ method.

	Args:

	text (str|unicode): The input text.
strict (bool): Raises an error if tags are missing.
strip (bool): Strip from whitespaces before parsing.

	Returns:

	obj (QrSpecial): The QrSpecial object.

	
class pyqrcodeng.qrspecial.QrMeCard(name=None, reading=None, tel=None, telav=None, email=None, memo=None, birthday=None, address=None, url=None, nickname=None, company=None)

	QrSpecial-derived contact information (MeCard).

	
class pyqrcodeng.qrspecial.QrShortMessage(number=None, text=None)

	QrSpecial-derived short message (SMS).

	
class pyqrcodeng.qrspecial.QrSpecial(**kws)

	Special-purpose text for QR codes.

Implements the special text generated by the ZXing project for QR codes.
Likely, these are correctly handled by software using the this library.

Of note:

	the Event special text is not supported here, but it can be handled by
using the icalendar package [https://pypi.python.org/pypi/icalendar].

	the vCard contact format is not supported here (only MeCard),
but a number of packages for handling vCards are available in PyPI.

	
classmethod from_str(text, strict=True, strip=True)

	Construct a QrSpecial object from its QR-ready text.

This is conceptually the inverse operation of the ‘to_str’ method.

	Args:

	text (str|unicode): The input text.
strict (bool): Raises an error if tags are missing.
strip (bool): Strip from whitespaces before parsing.

	Returns:

	obj (QrSpecial): The QrSpecial object.

	
static parse(text)

	Construct a QrSpecial-derived object from a text.

This can be useful for determining whether a given input is a valid
QrSpecial-derived object.

	Args:

	text (str|unicode): The input text.

	Returns:

	obj (QrSpecial): The QrSpecial-derived object.

	
class pyqrcodeng.qrspecial.QrWifi(ssid=None, security=None, password=None, hidden=None)

	QrSpecial-derived WiFi network.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyqrcodeng	

 	
 	
 pyqrcodeng.qrspecial	

 Index

Index

 C
 | D
 | E
 | F
 | G
 | M
 | P
 | Q
 | S
 | T
 | V
 | X

C

 	
 	create() (in module pyqrcodeng)

D

 	
 	data module

E

 	
 	eps() (pyqrcodeng.QRCode method)

 	
 	error

 	error level

F

 	
 	from_str() (pyqrcodeng.qrspecial.QrGeolocation class method)

 	(pyqrcodeng.qrspecial.QrSpecial class method)

G

 	
 	get_png_size() (pyqrcodeng.QRCode method)

M

 	
 	mode

 	
 	module

P

 	
 	parse() (pyqrcodeng.qrspecial.QrSpecial static method)

 	png() (pyqrcodeng.QRCode method)

 	png_as_base64_str() (pyqrcodeng.QRCode method)

 	
 	png_data_uri() (pyqrcodeng.QRCode method)

 	pyqrcodeng (module)

 	pyqrcodeng.qrspecial (module)

Q

 	
 	QR code

 	QRCode (class in pyqrcodeng)

 	QrGeolocation (class in pyqrcodeng.qrspecial)

 	QrMeCard (class in pyqrcodeng.qrspecial)

 	
 	QrShortMessage (class in pyqrcodeng.qrspecial)

 	QrSpecial (class in pyqrcodeng.qrspecial)

 	QrWifi (class in pyqrcodeng.qrspecial)

 	Quick Response code

 	quiet zone

S

 	
 	show() (pyqrcodeng.QRCode method)

 	
 	svg() (pyqrcodeng.QRCode method)

 	symbol_size() (pyqrcodeng.QRCode method)

T

 	
 	term() (pyqrcodeng.QRCode method)

 	
 	terminal() (pyqrcodeng.QRCode method)

 	text() (pyqrcodeng.QRCode method)

V

 	
 	version

X

 	
 	xbm() (pyqrcodeng.QRCode method)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyQRCodeNG’s documentation!

 		
 QR Code creation from the command line

 		
 Usage

 		
 Version

 		
 Error correction level

 		
 QR Code serialization

 		
 Scaling QR Codes

 		
 Changing the size of the quiet zone

 		
 Creating QR Codes

 		
 Encoding Data

 		
 Numeric Encoding

 		
 Alphanumeric

 		
 Kanji

 		
 Binary

 		
 Rendering QR Codes

 		
 Text Based Rendering

 		
 Terminal Rendering

 		
 Image Rendering

 		
 XBM Rendering

 		
 Scalable Vector Graphic (SVG)

 		
 Encapsulated PostScript (EPS)

 		
 Portable Network Graphic (PNG)

 		
 PyQRCodeNG Module Documentation

 		
 Glossary

 		
 PyQRCodeNG Modu