
pyqg Documentation
Release 0.1

PyQG team

October 23, 2015

Contents

1 Contents 3
1.1 Installation . 3
1.2 Equations Solved . 6
1.3 Examples . 11
1.4 API . 27
1.5 Development . 33
1.6 What’s New . 35

Python Module Index 37

i

ii

pyqg Documentation, Release 0.1

pyqg is a python solver for quasigeostrophic systems. Quasigeostophic equations are an approximation to the full
fluid equations of motion in the limit of strong rotation and stratitifcation and are most applicable to geophysical fluid
dynamics problems.

Students and researchers in ocean and atmospheric dynamics are the intended audience of pyqg. The model is simple
enough to be used by students new to the field yet powerful enough for research. We strive for clear documentation
and thorough testing.

pyqg supports a variety of different configurations using the same computational kernel. The different configurations
are evolving and are described in detail in the documentation. The kernel, implement in cython, uses a pseudo-spectral
method which is heavily dependent of the fast Fourier transform. For this reason, pyqg tries to use pyfftw and the
FFTW Fourier Transform library. (If pyfftw is not available, it falls back on numpy.fft) With pyfftw, the kernel is
multi-threaded but does not support mpi. Optimal performance will be achieved on a single system with many cores.

Contents 1

http://github.com/hgomersall/pyFFTW
http://www.fftw.org/

pyqg Documentation, Release 0.1

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Requirements

The only requirements are

• Python 2.7. (Python 3 support is in the works)

• numpy (1.6 or later)

Because pyqg is a pseudo-spectral code, it realies heavily on fast-Fourier transforms (FFTs), which are the main
performance bottlneck. For this reason, we try to use fftw (a fast, multithreaded, open source C library) and pyfftw
(a python wrapper around fftw). These packages are optional, but they are strongly recommended for anyone doing
high-resolution, numerically demanding simulations.

• fftw (3.3 or later)

• pyfftw (0.9.2 or later)

If pyqg can’t import pyfftw at compile time, it will fall back on numpy‘s fft routines.

1.1.2 Instructions

In our opinion, the best way to get python and numpy is to use a distribution such as Anaconda (recommended)
or Canopy. These provide robust package management and come with many other useful packages for scientific
computing. The pyqg developers are mostly using anaconda.

Note: If you don’t want to use pyfftw and are content with numpy’s slower performance, you can skip ahead to
Installing pyqg.

Installing fftw and pyfftw can be slightly painful. Hopefully the instructions below are sufficient. If not, please send
feedback.

Installing fftw and pyfftw

Once you have installed pyfftw via one of these paths, you can proceed to Installing pyqg.

3

http://www.numpy.org/
http://www.fftw.org/
http://github.com/hgomersall/pyFFTW
http://www.fftw.org/
http://github.com/hgomersall/pyFFTW
http://www.numpy.org/
https://store.continuum.io/cshop/anaconda
https://www.enthought.com/products/canopy
http://github.com/pyqg/pyqg/issues
http://github.com/pyqg/pyqg/issues

pyqg Documentation, Release 0.1

The easy way: installing with conda

If you are using Anaconda, we have discovered that you can easily install pyffw using the conda command. Although
pyfftw is not part of the main Anaconda distribution, it is distributed as a conda pacakge through several user channels.

There is a useful blog post describing how the pyfftw conda package was created. There are currently 13 pyfftw user
packages hosted on anaconda.org. Each has different dependencies and platform support (e.g. linux, windows, mac.)
The mforbes channel version was selected for this documentation because its pyfftw package is compatible with the
latest version of numpy (1.9.2) and both linux and mac platforms. We don’t know who mforbes is, but we are greatful
to him/her.

To install pyfftw from the mforbes channel, open a terminal and run the command

$ conda install -c mforbes pyfftw

If this doesn’t work for you, or if it asks you to upgrade / downgrade more of your core pacakges (e.g. numpy) than
you would like, you can easily try replacing mforbes with one of the other channels.

The hard way: installing from source

This is the most difficult step for new users. You will probably have to build FFTW3 from source. However, if you are
using Ubuntu linux, you can save yourself some trouble by installing fftw using the apt package manager

$ sudo apt-get install libfftw3-dev libfftw3-doc

Otherwise you have to build FFTW3 from source. Your main resource for the FFTW homepage. Below we summarize
the steps

First download the source code.

$ wget http://www.fftw.org/fftw-3.3.4.tar.gz
$ tar -xvzf fftw-3.3.4.tar.gz
$ cd fftw-3.3.4

Then run the configure command

$./configure --enable-threads --enable-shared

Note: If you don’t have root privileges on your computer (e.g. on a shared cluster) the best approach is to ask your
system administrator to install FFTW3 for you. If that doesn’t work, you will have to install the FFTW3 libraries into
a location in your home directory (e.g. $HOME/fftw) and add the flag --prefix=$HOME/fftw to the configure
command above.

Then build the software

$ make

Then install the software

$ sudo make install

This will install the FFTW3 libraries into you system’s library directory. If you don’t have root privileges (see note
above), remove the sudo. This will install the libraries into the prefix location you specified.

You are not done installing FFTW yet. pyfftw requires special versions of the FFTW library specialized to different
data types (32-bit floats and double-long floars). You need to-configure and re-build FFTW two more times with extra
flags.

4 Chapter 1. Contents

https://store.continuum.io/cshop/anaconda
http://docs.continuum.io/anaconda/pkg-docs
https://anaconda.org/
https://dranek.com/blog/2014/Feb/conda-binstar-and-fftw/
https://anaconda.org/search?q=pyfftw
https://anaconda.org/search?q=pyfftw
https://anaconda.org/mforbes
https://anaconda.org/search?q=pyfftw
http://www.fftw.org/
http://www.fftw.org/download.html

pyqg Documentation, Release 0.1

$./configure --enable-threads --enable-shared --enable-float
$ make
$ sudo make install
$./configure --enable-threads --enable-shared --enable-long-double
$ make
$ sudo make install

At this point, you FFTW installation is complete. We now move on to pyfftw. pyfftw is a python wrapper around the
FFTW libraries. The easiest way to install it is using pip:

$ pip install pyfftw

or if you don’t have root privileges

$ pip install pyfftw --user

If this fails for some reason, you can manually download and install it according to the instructions on github. First
clone the repository:

$ git clone https://github.com/hgomersall/pyFFTW.git

Then install it

$ cd pyFFTW
$ python setup.py install

or

$ python setup.py install --user

if you don’t have root privileges. If you installed FFTW in a non-standard location (e.g. $HOME/fftw), you might
have to do something tricky at this point to make sure pyfftw can find FFTW. (I figured this out once, but I can’t
remember how.)

Installing pyqg

With pyfftw installed, you can now install pyqg. The easiest way is with pip:

$ pip install pyqg

You can also clone the pyqg git repository to use the latest development version.

$ git clone https://github.com/pyqg/pyqg.git

Then install pyqg on your system:

$ python setup.py install [--user]

(The --user flag is optional–use it if you don’t have root privileges.)

If you want to make changes in the code, set up the development mode:

$ python setup.py develop

pyqg is a work in progress, and we really encourage users to contribute to its Development

1.1. Installation 5

https://github.com/hgomersall/pyFFTW#building
https://github.com/pyqg/pyqg

pyqg Documentation, Release 0.1

1.2 Equations Solved

A detailed description of the equations solved by the various pyqg models

1.2.1 Layered quasigeostrophic model

𝑞𝑖𝑡 + J (𝜓𝑖 , 𝑞𝑖) + 𝑈𝑖𝑞𝑖𝑥 + 𝑉𝑖𝑞𝑖𝑦 +𝑄𝑖𝑦𝜓𝑖𝑥 −𝑄𝑖𝑥𝜓𝑖𝑦 = ssd − 𝑟𝑒𝑘𝛿𝑖N∇2𝜓𝑖 , 𝑖 = 1,N ,

where

𝑞𝑖 = ∇2𝜓𝑖 +
𝑓20
𝐻𝑖

(︂
𝜓𝑖−1 − 𝜓𝑖

𝑔′𝑖−1

− 𝜓𝑖 − 𝜓𝑖+1

𝑔′𝑖

)︂
, 𝑖 = 2,N − 1 ,

𝑎𝑛𝑑

𝑞1 = ∇2𝜓1 +
𝑓20
𝐻1

(︂
𝜓2 − 𝜓1

𝑔′1

)︂
, 𝑖 = 1 ,

𝑞N = ∇2𝜓N +
𝑓20
𝐻N

(︂
𝜓N−1 − 𝜓N

𝑔′N

)︂
+

𝑓0
𝐻N

ℎ𝑏 , 𝑖 = N ,

𝑤ℎ𝑒𝑟𝑒𝑡ℎ𝑒𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑔𝑟𝑎𝑣𝑖𝑡𝑦, 𝑜𝑟𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦𝑗𝑢𝑚𝑝, 𝑖𝑠

𝑔′𝑖 ≡ 𝑔
𝜌𝑖+1 − 𝜌𝑖

𝜌𝑖
.

The inversion relationship in spectral space is

𝑞𝑖 =
(︀
S − 𝜅2I

)︀⏟ ⏞
≡A

𝜓𝑖 ,

where the “stretching matrix” is

S ≡ 𝑓20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
𝑔′
1𝐻1

1
𝑔′
1𝐻1

0 . . .

0
...

.
1

𝑔′
𝑖−1𝐻𝑖

−
(︁

1
𝑔′
𝑖−1𝐻𝑖

+ 1
𝑔′
𝑖𝐻𝑖

)︁
1

𝑔′
𝑖𝐻𝑖

.

. . . 0 1
𝑔′

N−1
𝐻N

− 1
𝑔′

N−1
𝐻N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The forced-dissipative equations in Fourier space are

𝑞𝑖𝑡 + 𝑖𝑘 𝜓𝑖𝑄𝑦 − 𝑖𝑙 𝜓𝑖𝑄𝑥 + (𝑖𝑘𝑈𝑖 + 𝑖𝑙𝑉𝑖)𝑞𝑖 + Ĵ
(︁
𝜓𝑖 , 𝑞𝑖 + 𝛿𝑖N

𝑓0
𝐻N
ℎ𝑏

)︁
= ssd , 𝑖 = 1,N ,

where the mean potential vorticy gradients are

Q𝑥 = SV Q𝑦 = 𝛽 I − SU ,

𝑤ℎ𝑒𝑟𝑒𝑡ℎ𝑒𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑠

V⃗(𝑧) = (U,V).

6 Chapter 1. Contents

pyqg Documentation, Release 0.1

1.2.2 Energy balance

The equation for the energy spectrum,

𝐸(𝑘, 𝑙) ≡ 1

2𝐻

N∑︁
𝑖=1

𝐻𝑖𝜅
2|𝜓𝑖|2⏟ ⏞

kinetic energy

+
1

2𝐻

N−1∑︁
𝑖=1

𝑓20
𝑔′𝑖

|𝜓𝑖 − 𝜓𝑖+1|2⏟ ⏞
potential energy

,

is

𝑑

𝑑𝑡
𝐸(𝑘, 𝑙) =

1

𝐻

N∑︁
𝑖=1

𝐻𝑖Re[𝜓⋆
𝑖 Ĵ(𝜓𝑖,∇2𝜓𝑖)]⏟ ⏞

𝐼

+
1

𝐻

N∑︁
𝑖=1

𝐻𝑖Re[𝜓⋆
𝑖 Ĵ(𝜓𝑖, (S𝜓)𝑖)]⏟ ⏞

𝐼𝐼

+
1

𝐻

N∑︁
𝑖=1

𝐻𝑖(𝑘𝑈𝑖 + 𝑙𝑉𝑖) Re[𝑖 𝜓⋆
𝑖 (S𝜓𝑖)]⏟ ⏞

𝐼𝐼𝐼

−𝑟𝑒𝑘
𝐻N

𝐻
𝜅2|𝜓N|2⏟ ⏞

𝐼𝑉

.

where 𝜅2 = 𝑘2 + 𝑙2 and the terms above represent

I: Spectral divergence of the kinetic energy flux

II: Spectral divergence of the potential energy flux

III: The rate of potential energy generation

IV: The rate of energy dissipation through bottom friction

Using the notation of the two-layer model, the particular case N = 2 is

𝑑

𝑑𝑡
𝐸(𝑘, 𝑙) =

1

𝐻
Re[𝐻1𝜓

⋆
1 Ĵ(𝜓1,∇2𝜓1) +𝐻2𝜓

⋆
2 Ĵ(𝜓2,∇2𝜓2)]⏟ ⏞

𝐼

+
𝐻1𝐻2

𝐻2
Re[(𝜓1 − 𝜓2)⋆Ĵ(𝜓1, 𝜓2])⏟ ⏞

𝐼𝐼

+
𝐻1𝐻2

𝐻2

[︁
(𝑈1 − 𝑈2) Re[𝑖𝑘 (𝜓⋆

1 + 𝜓⋆
2)(𝜓2 − 𝜓1)]

]︁
+ (𝑉1 − 𝑉2) Re[𝑖𝑙 (𝜓⋆

1 + 𝜓⋆
2)(𝜓2 − 𝜓1)⏟ ⏞

𝐼𝐼𝐼

−𝑟𝑒𝑘
𝐻1

𝐻
𝜅2|𝜓N|2⏟ ⏞

𝐼𝑉

.

1.2.3 Vertical modes

Standard vertical modes are the eigenvectors, 𝜑𝑛(𝑧), of the “stretching matrix”

S𝜑𝑛 = −𝑚2
𝑛 𝜑𝑛 ,

where the n’th deformation radius is

𝑅𝑛 ≡ 𝑚−1
𝑛 .

1.2.4 Linear stability analysis

With ℎ𝑏 = 0, the linear eigenproblem is

AΦ = 𝜔 BΦ ,

where

A ≡ B(U 𝑘 + V 𝑙) + I (𝑘Q𝑦 − 𝑙Q𝑥) + I 𝛿NN 𝑖 𝑟𝑒𝑘 𝜅
2 ,

where 𝛿NN = [0, 0, . . . , 0, 1] , and

B ≡ S− I𝜅2 .

𝑇ℎ𝑒𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒𝑖𝑠𝐼𝑚 : 𝑚𝑎𝑡ℎ : ‘{𝜔}‘.

1.2. Equations Solved 7

pyqg Documentation, Release 0.1

1.2.5 Equations For Two-Layer QG Model

The two-layer quasigeostrophic evolution equations are (1)

𝜕𝑡 𝑞1 + J (𝜓1 , 𝑞1) + 𝛽 𝜓1𝑥 = ssd ,

and (2)

𝜕𝑡 𝑞2 + J (𝜓2 , 𝑞2) + 𝛽 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd ,

where the horizontal Jacobian is J (𝐴 ,𝐵) = 𝐴𝑥𝐵𝑦−𝐴𝑦𝐵𝑥. Also in (1) and (2) ssd denotes small-scale dissipation (in
turbulence regimes, ssd absorbs enstrophy that cascates towards small scales). The linear bottom drag in (2) dissipates
large-scale energy.

The potential vorticities are (3)

𝑞1 = ∇2𝜓1 + 𝐹1 (𝜓2 − 𝜓1) ,

and (4)

𝑞2 = ∇2𝜓2 + 𝐹2 (𝜓1 − 𝜓2) ,

where

𝐹1 ≡ 𝑘2𝑑
1 + 𝛿2

, and 𝐹2 ≡ 𝛿 𝐹1 ,

with the deformation wavenumber

𝑘2𝑑 ≡ 𝑓20
𝑔

𝐻1 +𝐻2

𝐻1𝐻2
,

where 𝐻 = 𝐻1 +𝐻2 is the total depth at rest.

Forced-dissipative equations

We are interested in flows driven by baroclinic instabilty of a base-state shear 𝑈1 − 𝑈2. In this case the evolution
equations (1) and (2) become (5)

𝜕𝑡 𝑞1 + J (𝜓1 , 𝑞1) + 𝛽1 𝜓1𝑥 = ssd ,

and (6)

𝜕𝑡 𝑞2 + J (𝜓2 , 𝑞2) + 𝛽2 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd ,

where the mean potential vorticity gradients are (9,10)

𝛽1 = 𝛽 + 𝐹1 (𝑈1 − 𝑈2) , and 𝛽2 = 𝛽 − 𝐹2 (𝑈1 − 𝑈2) .

Equations in Fourier space

We solve the two-layer QG system using a pseudo-spectral doubly-peridioc model. Fourier transforming the evolution
equations (5) and (6) gives (7)

𝜕𝑡 𝑞1 = −Ĵ (𝜓1 , 𝑞1) − i 𝑘 𝛽1 𝜓1 + ˆssd ,

and

𝜕𝑡 𝑞2 = Ĵ (𝜓2 , 𝑞2) − 𝛽2 i 𝑘 𝜓2 + 𝑟𝑒𝑘 𝜅
2 𝜓2 + ˆssd ,

8 Chapter 1. Contents

pyqg Documentation, Release 0.1

where, in the pseudo-spectral spirit, Ĵ means the Fourier transform of the Jacobian i.e., we compute the products in
physical space, and then transform to Fourier space.

In Fourier space the “inversion relation” (3)-(4) is[︂
−(𝜅2 + 𝐹1) 𝐹1

𝐹2 − (𝜅2 + 𝐹2)

]︂
⏟ ⏞

≡M2

[︂
𝜓1

𝜓2

]︂
=

[︂
𝑞1
𝑞2

]︂
,

or equivalently [︂
𝜓1

𝜓2

]︂
=

1

det M2

[︂
−(𝜅2 + 𝐹2) − 𝐹1

−𝐹2 − (𝜅2 + 𝐹1)

]︂
⏟ ⏞

=M2
−1

[︂
𝑞1
𝑞2

]︂
,

where

detM2 = 𝜅2
(︀
𝜅2 + 𝐹1 + 𝐹2

)︀
.

Marching forward

We use a third-order Adams-Bashford scheme

𝑞𝑛+1
𝑖 = 𝐸𝑓 ×

[︂
𝑞𝑛𝑖 +

∆𝑡

2

(︁
23 𝑄̂𝑛

𝑖 − 16𝑄̂𝑛−1
𝑖 + 5𝑄̂𝑛−2

𝑖

)︁]︂
,

where

𝑄̂𝑛
𝑖 ≡ −Ĵ (𝜓𝑛

𝑖 , 𝑞
𝑛
𝑖) − i 𝑘 𝛽𝑖 𝜓𝑛

𝑖 , 𝑖 = 1, 2 .

The AB3 is initialized with a first-order AB (or forward Euler)

𝑞1𝑖 = 𝐸𝑓 ×
[︁
𝑞0𝑖 + ∆𝑡𝑄̂0

𝑖

]︁
,

The second step uses a second-order AB scheme

𝑞2𝑖 = 𝐸𝑓 ×
[︂
𝑞1𝑖 +

∆𝑡

2

(︁
3 𝑄̂1

𝑖 − 𝑄̂0
𝑖

)︁]︂
.

The small-scale dissipation is achieve by a highly-selective exponential filter

𝐸𝑓 =

{︃
e−23.6 (𝜅⋆−𝜅𝑐)

4

: 𝜅 ≥ 𝜅𝑐

1 : otherwise .

where the non-dimensional wavenumber is

𝜅⋆ ≡
√︀

(𝑘∆𝑥)2 + (𝑙∆𝑦)2 ,

and 𝜅𝑐 is a (non-dimensional) wavenumber cutoff here taken as 65% of the Nyquist scale 𝜅⋆𝑛𝑦 = 𝜋. The parameter
−23.6 is obtained from the requirement that the energy at the largest wanumber (𝜅⋆ = 𝜋) be zero whithin machine
double precision:

log 10−15

(0.35𝜋)4
≈ −23.5 .

For experiments with |𝑞𝑖| << 𝒪(1) one can use a smaller constant.

1.2. Equations Solved 9

pyqg Documentation, Release 0.1

Diagnostics

The kinetic energy is

𝐸 = 1
𝐻 𝑆

∫︁
1
2𝐻1 |∇𝜓1|2 + 1

2𝐻2 |∇𝜓2|2 𝑑𝑆 .

The potential enstrophy is

𝑍 = 1
𝐻 𝑆

∫︁
1
2𝐻1 𝑞

2
1 + 1

2𝐻2 𝑞
2
2 𝑑𝑆 .

We can use the enstrophy to estimate the eddy turn-over timescale

𝑇𝑒 ≡
2𝜋√
𝑍
.

1.2.6 Equations For Equivalent Barotropic QG Model

The equivalent barotropic quasigeostrophy evolution equations is

𝜕𝑡 𝑞 + J (𝜓 , 𝑞) + 𝛽 𝜓𝑥 = ssd .

The potential vorticity anomaly is

𝑞 = ∇2𝜓 − 𝜅2𝑑𝜓 ,

where 𝜅2𝑑 is the deformation wavenumber. With 𝜅𝑑 = 𝛽 = 0 we recover the 2D vorticity equation.

The inversion relationship in Fourier space is

𝑞 = −
(︀
𝜅+ 𝜅2𝑑

)︀
𝜓 .

The system is marched forward in time similarly to the two-layer model.

1.2.7 Surface Quasi-geostrophic Model

Surface quasi-geostrophy (SQG) is a relatively simple model that describes surface intensified flows due to buoyancy.
One of it’s advantages is that it only has two spatial dimensions but describes a three-dimensional solution.

The evolution equation is

𝜕𝑡𝑏+ 𝐽(𝜓, 𝑏) = 0 , at 𝑧 = 0 ,

where 𝑏 = 𝜓𝑧 is the buoyancy.

The interior potential vorticity is zero. Hence

𝜕

𝜕𝑧

(︂
𝑓20
𝑁2

𝜕𝜓

𝜕𝑧

)︂
+ ∇2𝜓 = 0 ,

where 𝑁 is the buoyancy frequency and 𝑓0 is the Coriolis parameter. In the SQG model both 𝑁 and 𝑓0 are constants.
The boundary conditions for this elliptic problem in a semi-infinite vertical domain are

𝑏 = 𝜓𝑧 , and 𝑧 = 0 ,

and

𝜓 = 0, at 𝑧 → −∞ ,

The solutions to the elliptic problem above, in horizontal Fourier space, gives the inversion relationship between
surface buoyancy and surface streamfunction

𝜓 =
𝑓0
𝑁

1

𝜅
𝑏̂ , at 𝑧 = 0 ,

The SQG evolution equation is marched forward similarly to the two-layer model.

10 Chapter 1. Contents

pyqg Documentation, Release 0.1

1.3 Examples

1.3.1 Barotropic Model

Here will will use pyqg to reproduce the results of the paper: J. C. Mcwilliams (1984). The emergence of isolated
coherent vortices in turbulent flow. Journal of Fluid Mechanics, 146, pp 21-43 doi:10.1017/S0022112084001750

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pyqg

McWilliams performed freely-evolving 2D turbulence (𝑅𝑑 = ∞, 𝛽 = 0) experiments on a 2𝜋 × 2𝜋 periodic box.

create the model object
m = pyqg.BTModel(L=2.*np.pi, nx=256,

beta=0., H=1., rek=0., rd=None,
tmax=40, dt=0.001, taveint=1,
ntd=4)

in this example we used ntd=4, four threads
if your machine has more (or fewer) cores available, you could try changing it

Initial condition

The initial condition is random, with a prescribed spectrum

|𝜓|2 = 𝐴𝜅−1

[︂
1 +

(︁𝜅
6

)︁4
]︂−1

,

where 𝜅 is the wavenumber magnitude. The constant A is determined so that the initial energy is 𝐾𝐸 = 0.5.

generate McWilliams 84 IC condition

fk = m.wv != 0
ckappa = np.zeros_like(m.wv2)
ckappa[fk] = np.sqrt(m.wv2[fk]*(1. + (m.wv2[fk]/36.)**2))**-1

nhx,nhy = m.wv2.shape

Pi_hat = np.random.randn(nhx,nhy)*ckappa +1j*np.random.randn(nhx,nhy)*ckappa

Pi = m.ifft(Pi_hat[np.newaxis,:,:])
Pi = Pi - Pi.mean()
Pi_hat = m.fft(Pi)
KEaux = m.spec_var(m.wv*Pi_hat)

pih = (Pi_hat/np.sqrt(KEaux))
qih = -m.wv2*pih
qi = m.ifft(qih)

initialize the model with that initial condition
m.set_q(qi)

define a quick function for plotting and visualize the initial condition
def plot_q(m, qmax=40):

fig, ax = plt.subplots()

1.3. Examples 11

http://dx.doi.org/10.1017/S0022112084001750

pyqg Documentation, Release 0.1

pc = ax.pcolormesh(m.x,m.y,m.q.squeeze(), cmap='RdBu_r')
pc.set_clim([-qmax, qmax])
ax.set_xlim([0, 2*np.pi])
ax.set_ylim([0, 2*np.pi]);
ax.set_aspect(1)
plt.colorbar(pc)
plt.title('Time = %g' % m.t)
plt.show()

plot_q(m)

Runing the model

Here we demonstrate how to use the run_with_snapshots feature to periodically stop the model and perform
some action (in this case, visualization).

for _ in m.run_with_snapshots(tsnapstart=0, tsnapint=10):
plot_q(m)

t= 1, tc= 1000: cfl=0.104428, ke=0.496432737
t= 1, tc= 2000: cfl=0.110651, ke=0.495084591
t= 2, tc= 3000: cfl=0.101385, ke=0.494349348
t= 3, tc= 4000: cfl=0.113319, ke=0.493862801
t= 5, tc= 5000: cfl=0.112978, ke=0.493521035
t= 6, tc= 6000: cfl=0.101435, ke=0.493292057
t= 7, tc= 7000: cfl=0.092574, ke=0.493114415
t= 8, tc= 8000: cfl=0.096229, ke=0.492987232
t= 9, tc= 9000: cfl=0.097924, ke=0.492899499

12 Chapter 1. Contents

pyqg Documentation, Release 0.1

t= 9, tc= 10000: cfl=0.103278, ke=0.492830631
t= 10, tc= 11000: cfl=0.102686, ke=0.492775849
t= 11, tc= 12000: cfl=0.099865, ke=0.492726644
t= 12, tc= 13000: cfl=0.110933, ke=0.492679673
t= 13, tc= 14000: cfl=0.102899, ke=0.492648562
t= 14, tc= 15000: cfl=0.102052, ke=0.492622263
t= 15, tc= 16000: cfl=0.106399, ke=0.492595449
t= 16, tc= 17000: cfl=0.122508, ke=0.492569708
t= 17, tc= 18000: cfl=0.120618, ke=0.492507272
t= 19, tc= 19000: cfl=0.103734, ke=0.492474633

1.3. Examples 13

pyqg Documentation, Release 0.1

t= 20, tc= 20000: cfl=0.113210, ke=0.492452605
t= 21, tc= 21000: cfl=0.095246, ke=0.492439588
t= 22, tc= 22000: cfl=0.092449, ke=0.492429553
t= 23, tc= 23000: cfl=0.115412, ke=0.492419773
t= 24, tc= 24000: cfl=0.125958, ke=0.492407434
t= 25, tc= 25000: cfl=0.098588, ke=0.492396021
t= 26, tc= 26000: cfl=0.103689, ke=0.492387002
t= 27, tc= 27000: cfl=0.103893, ke=0.492379606
t= 28, tc= 28000: cfl=0.108417, ke=0.492371082
t= 29, tc= 29000: cfl=0.112969, ke=0.492361675

14 Chapter 1. Contents

pyqg Documentation, Release 0.1

t= 30, tc= 30000: cfl=0.127132, ke=0.492352666
t= 31, tc= 31000: cfl=0.122900, ke=0.492331664
t= 32, tc= 32000: cfl=0.110486, ke=0.492317502
t= 33, tc= 33000: cfl=0.101901, ke=0.492302225
t= 34, tc= 34000: cfl=0.099996, ke=0.492294952
t= 35, tc= 35000: cfl=0.106513, ke=0.492290743
t= 36, tc= 36000: cfl=0.121426, ke=0.492286228
t= 37, tc= 37000: cfl=0.125573, ke=0.492283246
t= 38, tc= 38000: cfl=0.108975, ke=0.492280378
t= 38, tc= 39000: cfl=0.110105, ke=0.492278000

1.3. Examples 15

pyqg Documentation, Release 0.1

t= 39, tc= 40000: cfl=0.104794, ke=0.492275760

The genius of McWilliams (1984) was that he showed that the initial random vorticity field organizes itself into strong
coherent vortices. This is true in significant part of the parameter space. This was previously suspected but unproven,
mainly because people did not have computer resources to run the simulation long enough. Thirty years later we can
perform such simulations in a couple of minutes on a laptop!

Also, note that the energy is nearly conserved, as it should be, and this is a nice test of the model.

Plotting spectra

energy = m.get_diagnostic('KEspec')
enstrophy = m.get_diagnostic('Ensspec')

this makes it easy to calculate an isotropic spectrum
from pyqg import diagnostic_tools as tools
kr, energy_iso = tools.calc_ispec(m,energy.squeeze())
_, enstrophy_iso = tools.calc_ispec(m,enstrophy.squeeze())

ks = np.array([3.,80])
es = 5*ks**-4
plt.loglog(kr,energy_iso)
plt.loglog(ks,es,'k--')
plt.text(2.5,.0001,r'k^{-4}',fontsize=20)
plt.ylim(1.e-10,1.e0)
plt.xlabel('wavenumber')
plt.title('Energy Spectrum')

<matplotlib.text.Text at 0x10c1b1a90>

16 Chapter 1. Contents

pyqg Documentation, Release 0.1

ks = np.array([3.,80])
es = 5*ks**(-5./3)
plt.loglog(kr,enstrophy_iso)
plt.loglog(ks,es,'k--')
plt.text(5.5,.01,r'$k^{-5/3}$',fontsize=20)
plt.ylim(1.e-3,1.e0)
plt.xlabel('wavenumber')
plt.title('Enstrophy Spectrum')

<matplotlib.text.Text at 0x10b5d2f50>

1.3. Examples 17

pyqg Documentation, Release 0.1

1.3.2 Surface Quasi-Geostrophic (SQG) Model

Here will will use pyqg to reproduce the results of the paper: I. M. Held, R. T. Pierrehumbert, S. T. Garner and
K. L. Swanson (1985). Surface quasi-geostrophic dynamics. Journal of Fluid Mechanics, 282, pp 1-20 [doi::
http://dx.doi.org/10.1017/S0022112095000012)

import matplotlib.pyplot as plt
import numpy as np
from numpy import pi
%matplotlib inline
from pyqg import sqg_model

Surface quasi-geostrophy (SQG) is a relatively simple model that describes surface intensified flows due to buoyancy.
One of it’s advantages is that it only has two spatial dimensions but describes a three-dimensional solution.

If we define 𝑏 to be the buoyancy, then the evolution equation for buoyancy at each the top and bottom surface is

𝜕𝑡𝑏+ 𝐽(𝜓, 𝑏) = 0.

The invertibility relation between the streamfunction, 𝜓, and the buoyancy, 𝑏, is hydrostatic balance

𝑏 = 𝜕𝑧𝜓.

Using the fact that the Potential Vorticity is exactly zero in the interior of the domain and that the domain is semi-
infinite, yields that the inversion in Fourier space is,

𝑏̂ = 𝐾𝜓.

Held et al. studied several different cases, the first of which was the nonlinear evolution of an elliptical vortex. There
are several other cases that they studied and people are welcome to adapt the code to study those as well. But here we
focus on this first example for pedagogical reasons.

18 Chapter 1. Contents

http://dx.doi.org/10.1017/S0022112095000012

pyqg Documentation, Release 0.1

create the model object
year = 1.
m = sqg_model.SQGModel(L=2.*pi,nx=512, tmax = 26.005,

beta = 0., Nb = 1., H = 1., rek = 0., rd = None, dt = 0.005,
taveint=1, ntd=4)

in this example we used ntd=4, four threads
if your machine has more (or fewer) cores available, you could try changing it

Initial condition

The initial condition is an elliptical vortex,

𝑏 = 0.01 exp(−(𝑥2 + (4𝑦)2)/(𝐿/𝑦)2

where 𝐿 is the length scale of the vortex in the 𝑥 direction. The amplitude is 0.01, which sets the strength and speed
of the vortex. The aspect ratio in this example is 4 and gives rise to an instability. If you reduce this ratio sufficiently
you will find that it is stable. Why don’t you try it and see for yourself?

Choose ICs from Held et al. (1995)
case i) Elliptical vortex
x = np.linspace(m.dx/2,2*np.pi,m.nx) - np.pi
y = np.linspace(m.dy/2,2*np.pi,m.ny) - np.pi
x,y = np.meshgrid(x,y)

qi = -np.exp(-(x**2 + (4.0*y)**2)/(m.L/6.0)**2)

initialize the model with that initial condition
m.set_q(qi[np.newaxis,:,:])

Plot the ICs
plt.rcParams['image.cmap'] = 'RdBu'
plt.clf()
p1 = plt.imshow(m.q.squeeze() + m.beta * m.y)
plt.title('b(x,y,t=0)')
plt.colorbar()
plt.clim([-1, 0])
plt.xticks([])
plt.yticks([])
plt.show()

1.3. Examples 19

pyqg Documentation, Release 0.1

Runing the model

Here we demonstrate how to use the run_with_snapshots feature to periodically stop the model and perform
some action (in this case, visualization).

for snapshot in m.run_with_snapshots(tsnapstart=0, tsnapint=400*m.dt):
plt.clf()
p1 = plt.imshow(m.q.squeeze() + m.beta * m.y)
#plt.clim([-30., 30.])
plt.title('t='+str(m.t))
plt.colorbar()
plt.clim([-1, 0])
plt.xticks([])
plt.yticks([])
plt.show()

20 Chapter 1. Contents

pyqg Documentation, Release 0.1

t= 4, tc= 1000: cfl=0.239869, ke=0.005206463

1.3. Examples 21

pyqg Documentation, Release 0.1

22 Chapter 1. Contents

pyqg Documentation, Release 0.1

t= 10, tc= 2000: cfl=0.267023, ke=0.005206261

1.3. Examples 23

pyqg Documentation, Release 0.1

t= 15, tc= 3000: cfl=0.251901, ke=0.005199422

24 Chapter 1. Contents

pyqg Documentation, Release 0.1

t= 20, tc= 4000: cfl=0.259413, ke=0.005189615

1.3. Examples 25

pyqg Documentation, Release 0.1

t= 24, tc= 5000: cfl=0.255257, ke=0.005176248

26 Chapter 1. Contents

pyqg Documentation, Release 0.1

Compare these results with Figure 2 of the paper. In this simulation you see that as the cyclone rotates it develops thin
arms that spread outwards and become unstable because of their strong shear. This is an excellent example of how
smaller scale vortices can be generated from a mesoscale vortex.

You can modify this to run it for longer time to generate the analogue of their Figure 3.

1.4 API

1.4.1 Base Model Class

This is the base class from which all other models inherit. All of these initialization arguments are available to all of
the other model types. This class is not called directly.

class pyqg.Model(nx=64, ny=None, L=1000000.0, W=None, dt=7200.0, twrite=1000.0,
tmax=1576800000.0, tavestart=315360000.0, taveint=86400.0, f=10000.0, hb=None,
useAB2=False, rek=5.787e-07, filterfac=23.6, diagnostics_list=’all’, ntd=1,
quiet=False, logfile=None)

A generic pseudo-spectral inversion model.

1.4. API 27

pyqg Documentation, Release 0.1

Attributes

q (real array) Potential vorticity in real space
qh (complex array) Potential vorticity in spectral space
ph (complex array) Streamfunction in spectral space
u, v (real arrays) Velocity anomaly components in real space
ufull, vfull (real arrays) Full velocity components in real space
uh, vh (complex arrays) Velocity anomaly components in spectral space
nx, ny (int) Number of grid points in the x and y directions
L, W (float) Domain length in x and y directions
rek (float) Linear drag in lower layer
filterfac (float) Amplitdue of the spectral spherical filter
dt (float) Numerical timstep
twrite (int) Interval for cfl writeout (units: number of timesteps)
tmax (float) Total time of integration (units: model time)
tavestart (float) Start time for averaging (units: model time)
tsnapstart (float) Start time for snapshot writeout (units: model time)
taveint (float) Time interval for accumulation of diagnostic averages. (units: model time)
tsnapint (float) Time interval for snapshots (units: model time)
ntd (int) Number of threads to use. Should not exceed the number of cores on your machine.

Note: All of the test cases use nx==ny. Expect bugs if you choose these parameters to be different.

Note: All time intervals will be rounded to nearest dt interval.

Parameters nx : int

Number of grid points in the x direction.

ny : int

Number of grid points in the y direction (default: nx).

L : number

Domain length in x direction. Units: meters.

W :

Domain width in y direction. Units: meters (default: L).

rek : number

linear drag in lower layer. Units: seconds -1.

filterfac : number

amplitdue of the spectral spherical filter (originally 18.4, later changed to 23.6).

dt : number

Numerical timstep. Units: seconds.

twrite : int

Interval for cfl writeout. Units: number of timesteps.

tmax : number

Total time of integration. Units: seconds.

28 Chapter 1. Contents

pyqg Documentation, Release 0.1

tavestart : number

Start time for averaging. Units: seconds.

tsnapstart : number

Start time for snapshot writeout. Units: seconds.

taveint : number

Time interval for accumulation of diagnostic averages. Units: seconds. (For perfor-
mance purposes, averaging does not have to occur every timestep)

tsnapint : number

Time interval for snapshots. Units: seconds.

ntd : int

Number of threads to use. Should not exceed the number of cores on your machine.

describe_diagnostics()
Print a human-readable summary of the available diagnostics.

run()
Run the model forward without stopping until the end.

run_with_snapshots(tsnapstart=0.0, tsnapint=432000.0)
Run the model forward, yielding to user code at specified intervals.

Parameters tsnapstart : int

The timestep at which to begin yielding.

tstapint : int

The interval at which to yield.

spec_var(ph)
compute variance of p from Fourier coefficients ph

stability_analysis(bottom_friction=False)
Baroclinic instability analysis

vertical_modes()
Calculate standard vertical modes. Simply the eigenvectors of the stretching matrix S

1.4.2 Specific Model Types

These are the actual models which are run.

class pyqg.QGModel(beta=1.5e-11, rd=15000.0, delta=0.25, H1=500, U1=0.025, U2=0.0, V1=0.0,
V2=0.0, **kwargs)

Two layer quasigeostrophic model.

This model is meant to representflows driven by baroclinic instabilty of a base-state shear 𝑈1 − 𝑈2. The upper
and lower layer potential vorticity anomalies 𝑞1 and 𝑞2 are

𝑞1 = ∇2𝜓1 + 𝐹1(𝜓2 − 𝜓1)

𝑞2 = ∇2𝜓2 + 𝐹2(𝜓1 − 𝜓2)

1.4. API 29

pyqg Documentation, Release 0.1

with

𝐹1 ≡ 𝑘2𝑑
1 + 𝛿2

𝐹2 ≡ 𝛿𝐹1 .

The layer depth ratio is given by 𝛿 = 𝐻1/𝐻2. The total depth is 𝐻 = 𝐻1 +𝐻2.

The background potential vorticity gradients are

𝛽1 = 𝛽 + 𝐹1(𝑈1 − 𝑈2)

𝛽2 = 𝛽 − 𝐹2(𝑈1 − 𝑈2) .

The evolution equations for 𝑞1 and 𝑞2 are

𝜕𝑡 𝑞1 + 𝐽(𝜓1 , 𝑞1) + 𝛽1 𝜓1𝑥 = ssd

𝜕𝑡 𝑞2 + 𝐽(𝜓2 , 𝑞2) + 𝛽2 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd .

where ssd represents small-scale dissipation and 𝑟𝑒𝑘 is the Ekman friction parameter.

Parameters beta : number

Gradient of coriolis parameter. Units: meters -1 seconds -1

rek : number

Linear drag in lower layer. Units: seconds -1

rd : number

Deformation radius. Units: meters.

delta : number

Layer thickness ratio (H1/H2)

U1 : number

Upper layer flow. Units: m/s

U2 : number

Lower layer flow. Units: m/s

layer2modal()
calculate modal streamfunction and PV

set_U1U2(U1, U2)
Set background zonal flow.

Parameters U1 : number

Upper layer flow. Units: m/s

U2 : number

Lower layer flow. Units: m/s

set_q1q2(q1, q2, check=False)
Set upper and lower layer PV anomalies.

Parameters q1 : array-like

Upper layer PV anomaly in spatial coordinates.

q1 : array-like

30 Chapter 1. Contents

pyqg Documentation, Release 0.1

Lower layer PV anomaly in spatial coordinates.

class pyqg.BTModel(beta=0.0, rd=0.0, H=1.0, U=0.0, V=0.0, **kwargs)
Single-layer (barotropic) quasigeostrophic model. This class can represent both pure two-dimensional flow and
also single reduced-gravity layers with deformation radius rd.

The equivalent-barotropic quasigeostrophic evolution equations is

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) + 𝛽𝜓𝑥 = ssd

The potential vorticity anomaly is

𝑞 = ∇2𝜓 − 𝜅2𝑑𝜓

Parameters beta : number, optional

Gradient of coriolis parameter. Units: meters -1 seconds -1

rd : number, optional

Deformation radius. Units: meters.

U : number, optional

Upper layer flow. Units: meters.

set_UV(U, V)
Set background zonal flow.

Parameters U : number

Upper layer flow. Units meters.

class pyqg.SQGModel(beta=0.0, Nb=1.0, rd=0.0, H=1.0, U=0.0, V=0.0, **kwargs)
Surface quasigeostrophic model.

Parameters beta : number

Gradient of coriolis parameter. Units: meters -1 seconds -1

Nb : number

Buoyancy frequency. Units: seconds -1.

U : number

Background zonal flow. Units: meters.

set_UV(U, V)
Set background zonal flow

1.4.3 Lagrangian Particles

class pyqg.LagrangianParticleArray2D(x0, y0, periodic_in_x=False, periodic_in_y=False, xmin=-
inf, xmax=inf, ymin=-inf, ymax=inf, particle_dtype=’f8’)

A class for keeping track of a set of lagrangian particles in two-dimensional space. Tries to be fast.

Parameters x0, y0 : array-like

Two arrays (same size) representing the particle initial positions.

periodic_in_x : bool

Whether the domain wraps in the x direction.

periodic_in_y : bool

1.4. API 31

pyqg Documentation, Release 0.1

Whether the domain ‘wraps’ in the y direction.

xmin, xmax : numbers

Maximum and minimum values of x coordinate

ymin, ymax : numbers

Maximum and minimum values of y coordinate

particle_dtype : dtype

Data type to use for particles

step_forward_with_function(uv0fun, uv1fun, dt)
Advance particles using a function to determine u and v.

Parameters uv0fun : function

Called like uv0fun(x,y). Should return the velocity field u, v at time t.

uv1fun(x,y) : function

Called like uv1fun(x,y). Should return the velocity field u, v at time t + dt.

dt : number

Timestep.

class pyqg.GriddedLagrangianParticleArray2D(x0, y0, Nx, Ny, grid_type=’A’, **kwargs)
Lagrangian particles with velocities given on a regular cartesian grid.

Parameters x0, y0 : array-like

Two arrays (same size) representing the particle initial positions.

Nx, Ny: int

Number of grid points in the x and y directions

grid_type: {‘A’}

Arakawa grid type specifying velocity positions.

interpolate_gridded_scalar(x, y, c, order=1, pad=1, offset=0)
Interpolate gridded scalar C to points x,y.

Parameters x, y : array-like

Points at which to interpolate

c : array-like

The scalar, assumed to be defined on the grid.

order : int

Order of interpolation

pad : int

Number of pad cells added

offset : int

???

Returns ci : array-like

The interpolated scalar

32 Chapter 1. Contents

pyqg Documentation, Release 0.1

step_forward_with_gridded_uv(U0, V0, U1, V1, dt, order=1)
Advance particles using a gridded velocity field. Because of the Runga-Kutta timestepping, we need two
velocity fields at different times.

Parameters U0, V0 : array-like

Gridded velocity fields at time t - dt.

U1, V1 : array-like

Gridded velocity fields at time t.

dt : number

Timestep.

order : int

Order of interpolation.

1.4.4 Diagnostic Tools

Utility functions for pyqg model data.

pyqg.diagnostic_tools.calc_ispec(model, ph)
Compute isotropic spectrum phr of ph from 2D spectrum.

Parameters model : pyqg.Model instance

The model object from which ph originates

ph : complex array

The field on which to compute the variance

Returns kr : array

isotropic wavenumber

phr : array

isotropic spectrum

pyqg.diagnostic_tools.spec_var(model, ph)
Compute variance of p from Fourier coefficients ph.

Parameters model : pyqg.Model instance

The model object from which ph originates

ph : complex array

The field on which to compute the variance

Returns var_dens : float

The variance of ph

1.5 Development

1.5.1 Team

• Malte Jansen, University of Chicago

1.5. Development 33

http://geosci.uchicago.edu/people/malte-jansen/

pyqg Documentation, Release 0.1

• Ryan Abernathey, Columbia University / LDEO

• Cesar Rocha, Scripps Institution of Oceanography / UCSD

• Francis Poulin, University of Waterloo

1.5.2 History

The numerical approach of pyqg was originally inspired by a MATLAB code by Glenn Flierl of MIT, who was a
teacher and mentor to Ryan and Malte. It would be hard to find anyone in the world who knows more about this sort
of model than Glenn. Malte implemented a python version of the two-layer model while at GFDL. In the summer of
2014, while both were at the WHOI GFD Summer School, Ryan worked with Malte refactor the code into a proper
python package. Cesar got involved and brought pyfftw into the project. Ryan implemented a cython kernel. Cesar
and Francis implement the barotropic and sqg models.

1.5.3 Future

By adopting open-source best practices, we hope pyqg will grow into a widely used, communited-based project. We
know that many other research groups have their own “in house” QG models. You can get involved by trying out the
model, filing issues if you find problems, and making pull requests if you make improvements.

1.5.4 Develpment Workflow

Anyone interested in helping to develop pyqg needs to create their own fork of our git repository. (Follow the github
forking instructions. You will need a github account.)

Clone your fork on your local machine.

$ git clone git@github.com:USERNAME/pyqg

(In the above, replace USERNAME with your github user name.)

Then set your fork to track the upstream pyqg repo.

$ cd pyqg
$ git remote add upstream git://github.com/pyqg/pyqg.git

You will want to periodically sync your master branch with the upstream master.

$ git fetch upstream
$ git rebase upstream/master

Never make any commits on your local master branch. Instead open a feature branch for every new development task.

$ git checkout -b cool_new_feature

(Replace cool_new_feature with an appropriate description of your feature.) At this point you work on your new
feature, using git add to add your changes. When your feature is complete and well tested, commit your changes

$ git commit -m 'did a bunch of great work'

and push your branch to github.

$ git push origin cool_new_feature

34 Chapter 1. Contents

http://ryan.actualscience.net
http://crocha700.github.io/
https://uwaterloo.ca/poulin-research-group/
http://eaps-www.mit.edu/paoc/people/glenn-r-flierl
https://www.whoi.edu/gfd/
https://github.com/pyqg/pyqg/issues
https://github.com/pyqg/pyqg/pulls
https://help.github.com/articles/fork-a-repo/

pyqg Documentation, Release 0.1

At this point, you go find your fork on github.com and create a pull request. Clearly describe what you have done in
the comments. If your pull request fixes an issue or adds a useful new feature, the team will gladly merge it.

After your pull request is merged, you can switch back to the master branch, rebase, and delete your feature branch.
You will find your new feature incorporated into pyqg.

$ git checkout master
$ git fetch upstream
$ git rebase upstream/master
$ git branch -d cool_new_feature

1.5.5 Virtual Environment

This is how to create a virtual environment into which to test-install pyqg, install it, check the version, and tear down
the virtual environment.

$ conda create --yes -n test_env python=2.7 pip nose numpy cython scipy nose
$ conda install --yes -n test_env -c mforbes pyfftw
$ source activate test_env
$ pip install pyqg
$ python -c 'import pyqg; print(pyqg.__version__);'
$ source deactivate
$ conda env remove --yes -n test_env

1.6 What’s New

1.6.1 v0.1.4 (? ? 2015)

Fixed bug related to the sign of advection terms (GH86).

Added new diagnostics. Those include time-averages of u, v, vq, and the spectral divergence of enstrophy flux.

Added topography.

Added new printout that leverages on standard python logger.

Added automated linear stability analysis.

Added multi layer model subclass.

Fixed bug in _calc_diagnostics (GH75). Now diagnostics start being averaged at tavestart.

1.6.2 v0.1.3 (4 Sept 2015)

Fixed bug in setup.py that caused openmp check to not work.

1.6.3 v0.1.2 (2 Sept 2015)

Package was not building properly through pip/pypi. Made some tiny changes to setup script. pypi forces you to
increment the version number.

1.6. What’s New 35

https://help.github.com/articles/using-pull-requests/
https://github.com/pyqg/pyqg/issues/86
https://github.com/pyqg/pyqg/issues/75

pyqg Documentation, Release 0.1

1.6.4 v0.1.1 (2 Sept 2015)

A bug-fix release with no api or feature changes. The kernel has been modified to support numpy fft routines.

• Removed pyfftw depenency (GH53)

• Cleaning of examples

1.6.5 v0.1 (1 Sept 2015)

Initial release.

36 Chapter 1. Contents

https://github.com/pyqg/pyqg/issues/53

Python Module Index

p
pyqg, 27
pyqg.diagnostic_tools, 33

37

pyqg Documentation, Release 0.1

38 Python Module Index

Index

B
BTModel (class in pyqg), 31

C
calc_ispec() (in module pyqg.diagnostic_tools), 33

D
describe_diagnostics() (pyqg.Model method), 29

G
GriddedLagrangianParticleArray2D (class in pyqg), 32

I
interpolate_gridded_scalar()

(pyqg.GriddedLagrangianParticleArray2D
method), 32

L
LagrangianParticleArray2D (class in pyqg), 31
layer2modal() (pyqg.QGModel method), 30

M
Model (class in pyqg), 27

P
pyqg (module), 27
pyqg.diagnostic_tools (module), 33

Q
QGModel (class in pyqg), 29

R
run() (pyqg.Model method), 29
run_with_snapshots() (pyqg.Model method), 29

S
set_q1q2() (pyqg.QGModel method), 30
set_U1U2() (pyqg.QGModel method), 30
set_UV() (pyqg.BTModel method), 31

set_UV() (pyqg.SQGModel method), 31
spec_var() (in module pyqg.diagnostic_tools), 33
spec_var() (pyqg.Model method), 29
SQGModel (class in pyqg), 31
stability_analysis() (pyqg.Model method), 29
step_forward_with_function()

(pyqg.LagrangianParticleArray2D method), 32
step_forward_with_gridded_uv()

(pyqg.GriddedLagrangianParticleArray2D
method), 32

V
vertical_modes() (pyqg.Model method), 29

39

	Contents
	Installation
	Equations Solved
	Examples
	API
	Development
	What's New

	Python Module Index

