

Py++11 package

What is Py++11?

	Definition:

	Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

Py++11 uses a few different programming paradigms to help you expose C++
declarations in Python. This code generator will guide you through the whole
process, raising warnings in the case you are doing something wrong, with a link
to the explanation. And the most importantly: it
will save you time. You will not have to update the code generator script every
time the source code is changed.

Code generation process

The code generation process consists of a few steps. The following paragraphs
will tell you more about each step.

“read declarations”

Py++11 does not reinvent the wheel. It uses GCC C++ compiler [http://www.gnu.org/software/gcc] to parse C++
source files. To be more precise, the tool chain looks like this:

	Source code is passed to GCC-XML [http://www.gccxml.org]

	GCC-XML [http://www.gccxml.org] passes it to GCC C++ compiler [http://www.gnu.org/software/gcc]

3. GCC-XML [http://www.gccxml.org] generates an XML description of the C++ program from GCC’s
internal representation.

4. Py++11 uses pygccxml
package to read the GCC-XML [http://www.gccxml.org] generated file.

The bottom line - you can be sure that all your declarations are read correctly.

“build module”

Only very small and simple projects can be exported as is. Most of the projects
still require human invocation. Basically there are 2 questions that you should
answer:

	Which declarations should be exported?

	How this specific declaration should be exported? Or, if I change the
question a little, what code should be written in order for me to get
access from Python to that functionality?

Of course, Py++11 cannot answer those question, but it provides as much help
as it can.

How can Py++11 help you with the first question? Py++11 provides very a
powerful and simple query interface. For example, in one line of code you can
select all free functions that have two arguments, where the first argument has
type int & and the type of the second argument is of any type:

mb = module_builder_t(...) # module_builder_t is the main class that
 # will help you with code generation process
mb.free_functions(arg_types=['int &', None])

Another example - the developer wants to exclude all protected functions from
being exported:

mb = module_builder_t(...)
mb.calldefs(access_type_matcher_t('protected')).exclude()

The developer can create custom criteria, for example exclude all declarations
with an ‘impl’ (implementation) string within the name:

mb = module_builder_t(...)
mb.decls(lambda decl: 'impl' in decl.name).exclude()

Note the way the queries were built. You can think about those queries as
the rules, which will continue to work even after exported C++ code was changed.
It means that you don’t have to change the code generator source code every
time.

So far, so good. What about the second question? Well, by default Py++11
generates code that will satisfy almost all developers. Py++11 could be
configured in many ways to satisfy your needs. But sometimes this is still not
enough. There are use cases when you need full control over the generated code.
One of the biggest problems with code generators in general is modifying
generated code and preserving changes. How many code generators did you use or
know that allow you to put your code anywhere or to reorder generated code as
you wish? Py++11 allows you to do that.

Py++11 introduces new concepts: code creator and code creator tree. You can
think about the code creator tree as some kind of AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]. The only difference is
that code creator trees provide more specific functionality. For example
include_t code creator is responsible to create C++ include directive
code. You have full control over the code creator tree, before it is written to
disc. Here is an UML diagram of almost all code creators: class diagram.

At the end of this step you have the code creator tree, which is ready to be
written to disc.

“write code to files”

During this step Py++11 reads the code creator tree and writes the code to
disc. The code generation process result should not be different from the one a
human would have created. For small projects, writing all code into single file
is a good approach, however, for big ones the code should be splitted into
multiple files. Py++11 implements both strategies.

Features list

	Py++11 will supports almost all features found in pybind11 [http://pybind11.readthedocs.org/en/latest/] library. It
currently generates Boost.Python code.

	You can develop extension modules simultaneously using Py++11, especially
when they share code.

	Py++11 generates code, which will help you:

	understand compiler generated error messages

	minimize project built time

	Py++11 has a couple of modes of writing code into files:

	single file

	multiple files

	fixed set of multiple files

	multiple files, where single class code is split to few files

	You have full control over generated code. Your code could be inserted almost
anywhere.

	Your license is written at the top of every generated file.

	Py++11 will check the “completeness” of the bindings. It will check for you
that the exposed declarations don’t have references to unexposed ones.

	Py++11 provides enough functionality to extract source code documentation
and write it as Python documentation string.

	Py++11 provides a simple and powerful framework to create a wrapper for
functions, which could not be exposed “as is” to Python [http://www.python.org].

	...

License

Boost Software License [http://boost.org/more/license_info.html].

Documentation contents

	Tutorials

	Users and quotes

	Download & Install

	Documentation

	Examples

	Links

	Compare Py++ to ...

	TODO

	Boost.Python - lessons learned

	Development history

Tutorials

What is Py++?

Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

Graphical interface

Py++ includes a graphical interface. Graphical interface is invoked
with the pyplusplus_gui command, or with pyplusplus_gui.pyw from the
scripts subdirectory, of the Python [http://www.python.org] installation directory.

My advise to you - start with graphical interface, because:

	you don’t have to learn new API

	few clicks with mouse and you have Boost.Python [http://www.boost.org/libs/python/doc/index.html] code for your file(s)

	it is very easy to evaluate Py++ using it

	you can check whether GCC-XML [http://www.gccxml.org] is able to compile your code or not

	you can use it as a guide to Boost.Python [http://www.boost.org/libs/python/doc/index.html] library

	it is able to generate Py++ code for you

Getting started

I suppose you decided to do some coding with Py++.
Module builder tutorials will help you.

Advanced

To be written. I think I should cover here the usage of code creators and code
creators tree. Meanwhile you can take a look on the content of
examples/custom_code_creator directory. It contains example, which shows how
to create your own code creator. To be more specific, it exposes get* and
set* methods as a single property.

Users and quotes

What do they say?

”... If you can, use pyplusplus over pyste. I say that for ALL users of
pyste, pyplusplus is now mature enough to be useful as well as being
actively developed. It can also do quite a few tricks pyste cannot. “

Niall Douglas, the author of TnFOX [http://www.nedprod.com/TnFOX/] library

”... On a related note, I highly suggest that any users out there that have
tried/used Pyste but have found it to be too lacking in power should
really give pyplusplus a try. It has allowed me to do everything I
ever wanted to do with Pyste and couldn’t and then some. It is really
a great tool and I can’t thank Roman enough for taking the time to
create it and make it available. “

Allen Bierbaum, the author of PyOpenSG [https://realityforge.vrsource.org/trac/pyopensg] library

”... This rule based approach is amazing for maintenance, as it reduces the
turnaround for binding new code. If the new Ogre API’s follow similar rules and
standards as previously defined, the same set of rules will appropriately bind
the new API without any effort on the part of the maintainers. “

” ... In general, I’ve really liked working with pyplusplus. I’ve probably spent
20-30 hours working on these bindings, and they are very close to being equivalent
to the PyOgre bindings (when I last used them). “

Lakin Wecker, the author of Python-OGRE [http://www.python-ogre.org] project

”... Py++ allows the wrappers to be “automagically” created, which means it’s much
easier to keep things up to date (the maintenance on the Py++ based wrapper is
tiny compared to any other system I’ve used). It also allows us to wrap other
libraries fairly easily. “

Andy Miller, a developer of Python-OGRE [http://www.python-ogre.org] project

”... I tried Py++ and it indeed automatically handles the case I outlined above
concerning C-array members, and with much less tedious writing of registration
code. I also found it convenient to use to insert some other C++ code for each
of my structures that normally I wrote by hand. The API docs and examples on your
webpage were very helpful. “

David Carpman

”... I started a few months ago to develop a set of Python bindings for
OpenCascade modeling/visualization library. After a quick tour to evaluate
different solutions, my choice lead me to Py++, which is a very convenient
tool : I was able to achieve the first release of my project only two weeks after
the project start !”

Paviot Thomas

Who is using Py++?

	European Space Agency - ReSP [http://www.resp-sim.org/?page_id=2] project

ReSP [http://www.resp-sim.org/?page_id=2] is an Open-Source hardware simulation platform targeted for
multiprocessor systems. ReSP will provide a framework for composing a
system by connecting components chosen from a given repository or
developped by the designer. ReSP will provide also also a framework for
fault injection campaigns for the analysis of the reliability level of the
system.

ReSP [http://www.resp-sim.org/?page_id=2] engineers are developping the simulator core in Python language for exploiting
reflective capabilities (missing in a pure C++ environment) that can be
exploited for connecting components in a dynamic way and for enabling
non-intrusive fault injection activity. Components will be described in
SystemC and TLM libraries that are high level hardware description
languages based on C++.

	Allen Bierbaum, the author of PyOpenSG [https://realityforge.vrsource.org/trac/pyopensg] project, is using Py++ to create
Python bindings for OpenSG [http://opensg.vrsource.org/trac]

OpenSG [http://opensg.vrsource.org/trac] - is a portable scenegraph system to create realtime graphics
programs, e.g. for virtual reality applications.

	Matthias Baas, the author of Python Computer Graphics Kit [http://cgkit.sourceforge.net/] project, is using
Py++ to create Python bindings for Maya C++ SDK [http://www.highend3d.com/maya].

	Lakin Wecker, the author of Python-OGRE [http://www.python-ogre.org] project, is using Py++ to
create Python bindings for OGRE [http://www.ogre3d.org/index.php?option=com_content&task=view&id=19&Itemid=79].

OGRE [http://www.ogre3d.org/index.php?option=com_content&task=view&id=19&Itemid=79] - is a scene-oriented, flexible 3D engine written in C++ designed to
make it easier and more intuitive for developers to produce applications
utilizing hardware-accelerated 3D graphics.

	Andy Miller, another developer of Python-OGRE [http://www.python-ogre.org] project, is using Py++ to
create Python bindings for:

	CEGUI [http://www.cegui.org.uk/wiki/index.php/Main_Page] - a free library providing windowing and widgets for graphics
APIs / engines where such functionality is not available, or severely lacking.

	ODE [http://www.ode.org/] - an open source, high performance library for simulating rigid body
dynamics.

	OIS [http://www.wreckedgames.com/forum/] - an object oriented input system.

	All in all, Python-OGRE [http://www.python-ogre.org] project contains bindings for more than 30 libraries.
You can find code generation scripts here: https://python-ogre.svn.sourceforge.net/svnroot/python-ogre/trunk/python-ogre/code_generators/

	Rising Sun Pictures [http://open.rsp.com.au/] company is using Py++ to create Python bindings for
Apple Shake API [http://www.apple.com/shake/]. PyShake [http://open.rsp.com.au/projects/pyshake] enables running of Python code from within Shake
and by exposing the Shake API to Python.

	Paviot Thomas, the author of pythonOCC [http://www.minerva-plm.org/pythonOCC/] project, is using Py++ to create
Python bindings for OpenCascade [http://www.opencascade.org/], a 3D modeling & numerical simulation library.

	Adrien Saladin, the author of PTools [http://www.biomedcentral.com/1472-6807/9/27/abstract] project, is using Py++
to create an opensource molecular docking library.

	I am :-). I created Python bindings for the following libraries:

	Boost.Date_Time [http://boost.org/doc/html/date_time.html]

	Boost.CRC [http://boost.org/libs/crc/index.html]

	Boost.Rational [http://boost.org/libs/rational/index.html]

	Boost.Random [http://boost.org/libs/random/index.html]

You can download the bindings from https://sourceforge.net/project/showfiles.php?group_id=118209 .

Download & Install

Py++ on SourceForge

Py++ project is hosted on SourceForge. Using SourceForge services you
can:

	get access to source code

	get access to latest release version of Py++

Subversion access

http://sourceforge.net/svn/?group_id=118209

Download

https://sourceforge.net/project/showfiles.php?group_id=118209

Installation

In command prompt or shell change current directory to be “pyplusplus-X.Y.Z”.
“X.Y.Z” is version of Py++. Type the following command:

python setup.py install

After this command complete, you should have installed Py++ package.

Boost.Python installation

Users of Microsoft Windows can enjoy from simple installer for Boost Libraries [http://www.boost-consulting.com/products/free].
You can find it here [http://www.boost-consulting.com/products/free]. Take a look on new getting started guide [http://boost.cvs.sourceforge.net/*checkout*/boost/boost/more/getting_started.html] for Boost
libraries.

Another very valuable link related to Boost is http://engineering.meta-comm.com/boost.aspx .
You will find hourly snapshots of the source code and the documentation for all
Boost libraries.

Dependencies

	pygccxml

Documentation

Help needed!

Py++ documentation is always under active development. It is not an easy
task to create and maintain it. I will appreciate any help!

How can you help?

	Lets face it: today it is not possible to use Py++ without eventually
looking into source code. Py++ uses Sphinx to generate documentation
from source files. So, if you found some undocumented piece of code and you
understand what it does, please write documentation string.

	You are reading documentation and my English cause you to scream? Please, fix
those errors and send me new version of the document. I will integrate the
changes.

	Do you think, that the documentation is not clear, I will be glad to improve it,
just point me to the place.

Overview

Examples

Graphical interface

Py++ has nice, small and simple graphical interface.
Consider to read tutorials for more information.

pyeasybmp

EasyBMP is a small cross-platform library that provide you functionality
needed to work with Windows bitmap (BMP) image files. I took me only few minutes
to create Python bindings for the library. Read more here.

boost libraries

Boost provides free peer-reviewed portable C++ source libraries. Using Py++ I
created Python bindings for few libraries:

	Boost.Date_Time [http://boost.org/doc/html/date_time.html]

	Boost.CRC [http://boost.org/libs/crc/index.html]

	Boost.Rational [http://boost.org/libs/rational/index.html]

	Boost.Random [http://boost.org/libs/random/index.html]

This is not “just another example”. I went father and created new package:
pyboost. This is fully working Python package, with almost all unit test from
the libraries ported to Python. For more information please read pyboost
package documentation.

Links

Wiki

Thanks to Allen Bierbaum Py++ now has wiki [https://realityforge.vrsource.org/view/PyppApi/WebHome]. We use it primary to
discuss new features, which will be introduced in future versions.

Reading

	Building Hybrid Systems with Boost.Python [http://www.boost-consulting.com/writing/bpl.html]

	A rationale for semantically enhanced library languages [http://www.research.att.com/~bs/SELLrationale.pdf]

”.. A Semantically Enhanced Library Language (a SEL language or a SELL) is a
dialect created by supersetting a language using a library and then subsetting
the result using a tool that understands the syntax and semantics of both
the underlying language and the library. ...”

Py++ + Boost.Python is a SELL!

	Aspect oriented programming [http://en.wikipedia.org/wiki/Aspect-oriented_programming]

Py++ borrowed few ideas from this programming paradigm.

Help resources

	http://www.google.com :-)

This site uses Google custom search engine, turned to provide better results
when you search for materials related to Boost.Python [http://www.boost.org/libs/python/doc/index.html] library.

	http://boost.org/libs/python/doc/index.html - tutorials, FAQs, reference
manuals

	Boost.Python wiki [http://wiki.python.org/moin/boost%2epython?action=show&redirect=boost+2epython]

	http://boost.cvs.sourceforge.net/boost/boost/libs/python/test/ - Boost.Python [http://www.boost.org/libs/python/doc/index.html]
unit tests. They could be very, very helpful.

	http://pygccxml.svn.sourceforge.net/viewvc/pygccxml/pyplusplus_dev/unittests/ - Py++
unit tests. They could be even more helpful!

Mailing lists

	C++-sig [http://mail.python.org/mailman/listinfo/c++-sig/] - development of Python/C++ bindings

	Py++ mailing list [http://sourceforge.net/mail/?group_id=118209]

Libraries inspired by Boost.Python

	Luabind [http://www.rasterbar.com/products/luabind/docs.html] - interfacing C++ and Lua [http://www.lua.org/]

	Pyd [http://pyd.dsource.org/index.html] - interfacing C++ and D programming language [http://www.digitalmars.com/d/]

	Sq Plus [http://wiki.squirrel-lang.org/default.aspx/SquirrelWiki/SqPlus.html] - interfacing C++ and Squirrel [http://wiki.squirrel-lang.org/]

Projects inspired by Py++ :-)

	PyBindGen [https://launchpad.net/pybindgen] - a new project for producing Python extensions

Blogs

	http://www.shocksolution.com/math_tools/boost.python/index.html - this site
contains few useful Boost.Python examples and tutorials.

Build systems

http://www.scons.org/wiki/GCCXMLBuilder - Joseph Lisee shows how to integrate
Py++ scripts with Scons.

Compare Py++ to ...

Pyste

Pyste [http://www.boost.org/libs/python/doc/index.html] is the Boost.Python code generator, which is not under active development
any more. Nevertheless, users request to compare Py++ and Pyste [http://www.boost.org/libs/python/doc/index.html]. You
can read here the comparison.

SWIG & SIP

The document, that compares SIP, SWIG and Py++ is under construction.
May be you are editing it right now, by evaluating these tools :-). I did not use
SWIG and SIP, so I cannot provide you with fair comparison. I will let the open
source project(s) “to talk”:

	Python-OGRE [http://www.python-ogre.org]:

The impression of Lakin Wecker, after spending 30 hours working working with
Py++: http://www.ogre3d.org/phpBB2addons/viewtopic.php?t=1478&sid=4d77585146aabbc54f4b31ec50874d86

Python-OGRE [http://www.python-ogre.org] project is reached the state, when it has all functionality
provided by similar one - PyOgre [http://www.ogre3d.org/wiki/index.php/PyOgre]. PyOgre [http://www.ogre3d.org/wiki/index.php/PyOgre] is developed using SWIG.
I suggest you to compare the amount of code, written by Python-Ogre [http://www.python-ogre.org]
developers and PyOgre [http://www.ogre3d.org/wiki/index.php/PyOgre] ones:

	PyOgre [http://www.ogre3d.org/wiki/index.php/PyOgre] sources: http://svn.berlios.de/viewcvs/pyogre/trunk/pyogre/ogre/

	Python-Ogre [http://www.python-ogre.org] sources:

http://python-ogre.svn.sourceforge.net/viewvc/python-ogre/trunk/python-ogre/code_generators/ogre/

http://python-ogre.svn.sourceforge.net/viewvc/python-ogre/trunk/python-ogre/code_generators/common_utils/

Pay attention: functionality defined in “common_utils” package is used by
other scripts too.

Some other links, which compares Boost.Python, SWIG, SIP and other tools:

	Evaluation of Python/C++ interfacing packages [http://seal.web.cern.ch/seal/work-packages/scripting/evaluation-report.html]

	Integrating Python, C and C++ [http://www.suttoncourtenay.org.uk/duncan/accu/integratingpython.html]

	Python Wrapper Tools: A Performance Study [http://people.web.psi.ch/geus/talks/europython2004_geus.pdf]

TODO

Description

This page is an official Py++ “TODO” page.

For small features, the description of the feature and it’s implementation will
be written here. Big features will get their own page.

Boost.Python - lessons learned

Preamble

Software development is an interactive process. During Py++ development
I see many interesting problems and even more interesting solutions.

On this page you will find my collection of the solutions to some of the problems.

Development history

Contributors

Thanks to all the people that have contributed patches, bug reports and suggestions:

	My wife - Yulia

	John Pallister

	Matthias Baas

	Allen Bierbaum

	Lakin Wecker

	Georgiy Dernovoy

	Gottfried Ganssauge

	Andy Miller

	Martin Preisler

	Meghana Haridev

	Julian Scheid

	Oliver Schweitzer

	Hernán Ordiales

	Bernd Fritzke

	Andrei Vermel

	Carsten(spom.spom)

	Pertti Kellomäki

	Benoît Leveau

	Nikolaus Rath

SVN Version

	The bug related to exposing free operators was fixed. Many thanks to Andrei Vermel.

	Few bugs were fixed for 64Bit platform. Many thanks to Carsten.

	ctypes [https://docs.python.org/2/library/ctypes.html#module-ctypes] backend was introduced - Py++ is able to
generate Python code, which uses ctypes [https://docs.python.org/2/library/ctypes.html#module-ctypes] package to call functions in
DLLs or shared libraries.

Massive refactoring, which preserve backward compatibility to previous releases,
was done.

	From now on, Py++ will use Sphinx [http://sphinx.pocoo.org/]
for all documentation.

	Indexing Suite V2 introduces
few backward compatibility changes. The indexing suite became “headers only”
library and doesn’t requier Boost.Python library patching.
See “C++ containers support” document for more information.

	Support for std::hash_map<...> and std::hash_set<...> containers was added.

	The bug related to transformed virtual function was fixed. Many thanks to Pertti Kellomäki.

	Thanks to Benoît Leveau, the “Function Transformation” documentation
is much better now.

	The following transformers were added:

	inout_static_array

	input_static_matrix

	output_static_matrix

	inout_static_matrix

Many thanks to Benoît Leveau.

	Numerous bugs in “ctypes code generator” were fixed. Many thanks to Nikolaus Rath.

Version 1.0

	The algorithm, which calculates what member functions should be redefined in
derived class wrappers, was improved. Many thanks to Julian Scheid for the bug
fix.

The change explanation.

struct A{
 virtual void foo() {}
};

class B: public A{
};

Previous version of Py++ didn’t generate wrapper for class B, even
though B inherits A‘s virtual function. Now if you have the following
Python code:

class C(B):
 def __init__(self):
 B.__init__(self)
 def foo(self):
 print "C.foo"

then when foo is invoked on this instance on the C++ side of things, the
Python code won’t be executed as the wrapper was missing.

Warning! There is a possibility that your generated code will not work!
Keep reading.

If you use “function transformation” functionality, than it is possible the
generated code will NOT work. Consider the following example:

struct A{
 virtual void foo(int& i) {/*do smth*/}
};

class B: public A{
 virtual void foo(int& i) {/*do smth else*/}
};

The Py++ code:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder_t(...)
foo = mb.mem_funs('foo')
foo.add_transformation(FT.output(0))

The generated code, for class B, is:

namespace bp = boost::python;

struct B_wrapper : B, bp::wrapper< B > {
 virtual void foo(int & i) const { ... }

 static boost::python::tuple default_foo(::B const & inst)
 { ... }

 virtual void foo(int & i) const
 { ... }

 static boost::python::object default_foo(::A const & inst)
 { ... }
};
...
bp::class_< B_wrapper, bp::bases< A > >("B")
 .def("foo", (boost::python::tuple (*)(::B const &))(&B_wrapper::default_foo))
 .def("foo", (boost::python::object (*)(::A const &))(&B_wrapper::default_foo));

As you can see, after applying the transformation both functions have same
signature. Do you know what function will be called in some situation? I do -
the wrong one :-(.

Unfortunately, there is no easy work around or some trick that you can use,
which will not break the existing code. I see few solutions to the problem:

	change the alias of the functions

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder_t(...)
foo = mb.mem_funs('::A::foo').add_transformation(FT.output(0), alias="foo_a")
foo = mb.mem_funs('::B::foo').add_transformation(FT.output(0), alias="foo_b")

	use inout transformation - it preserves a function signature

	Py++ can introduce a configuration, that will preserve the previous behaviour.
I think this is a wrong way to go and doing the API changes is the ‘right’
longer term solution.

If you absolutely need to preserve API backward compatible, contact me
and I will introduce such configuration option.

Sorry for inconvenience.

	Few bugs, related to Indexing Suite 2, were fixed. Many thanks to Oliver Schweitzer
for reporting them.

	New and highly experimental feature was introduced -
Boost.Python and ctypes integration.

	Support for boost::python::make_constructor functionality was added.

	Support for unions and unnamed classes was added.

	Doxygen documentation extractor was improved. Many thanks to Hernán Ordiales.

	Py++ documentation was improved. Many thanks to Bernd Fritzke.

Version 0.9.5

	Bug fixes:
	Py++ will not expose free operators, if at least one of the classes, it works
on, is not exposed.
Many thanks to Meghana Haridev for reporting the bug.

	Added ability to completely disable warnings reporting.

	All logging is now done to stderr instead of stdout.

	Generated code improvements:
	default_call_policies is not generated

	return_internal_reference call policies - default arguments are not
generated

	STD containers are generated without default arguments. For example instead
of std::vector< int, std::allocator< int > >, in many cases Py++ will
generate std::vector< int >.

	create_with_signature algorithm was improved.
Py++ will generate correct code in one more use case.

	Added ability to exclude declarations from being exposed, if they will cause
compilation to fail.

	Starting from this version, Py++ provides a complete solution for
multi-module development.

	Classes, which expose C arrays will be registered only once.

	Starting from this version, Py++ supports a code generation with different
encodings.

	There is a new strategy to split code into files. It is IDE friendly. Be sure
to read the updated documentation.

Version 0.9.0

	Bug fixes:
	Declaration of virtual functions that have an exception specification with
an empty throw was fixed. Now the exception specification is generated properly.
Many thanks to Martin Preisler for reporting the bug.

	Added exposing of copy constructor, operator= and operator<<.
	operator= is exposed under “assign” name

	operator<< is exposed under “__str__” name

	Added new call policies:
	as_tuple

	custom_call_policies

	return_range

	Added an initial support for multi-module development. Now you can mark your
declarations as already_exposed and Py++ will do the rest. For more
information read multi-module development guide.

	input_c_buffer - new functions
transformation, which allows to pass a Python sequence to function, instead of pair of arguments: pointer to buffer and size.

	Added ability to control generated “include” directives. Now you can ask Py++
to include a header file, when it generates code for some declaration. For more
information refers to inserting code guide.

	Code generation improvements: system header files (Boost.Python or Py++ defined)
will be included from the generated files only in case the generated code
depends on them.

	Performance improvements: Py++ runs 1.5 - 2 times faster, than the previous one.

	Added ability to add code before overridden and default function calls.
For more information refer to member function API documentation.

	Py++ will generate documentation for automatically constructed properties.
For more information refer to properties guide.

	Added iteration functionality to Boost.Python Indexing Suite V2 std::map
and std::multimap containers.

Version 0.8.5

	Added Function Transformation feature.

	“Py++” introduces new functionality, which allows you to control messages and
warnings: how to disable warnings?.

	Added new algorithm, which controls the registration order of the functions.
See registration order document

	New “Py++” defined return_pointee_value
call policy was introduced.

	Support for opaque types was added. Read more about this feature here.

	It is possible to configure “Py++” to generate faster (compilation time)
code for indexing suite version 2. See API documentation.

	The algorithm, which finds all class properties was improved. It provides
user with a better way to control properties creation. A property that would
hide another exposed declaration will not be registered\created.

	Work around for “custom smart pointer as member variable” Boost.Python bug
was introduced.

	Bugs fixes and documentation improvement.

Version 0.8.2

	Interface changes:
	module_builder.module_builder_t.build_code_creator method:
argument create_casting_constructor was removed and deprecation warning
was introduced.

	Performance improvements. In some cases you can get x10 performance boost.
Many thanks to Allen Bierbaum! Saving and reusing results of different
pygccxml algorithms and type traits functions achieved this.

	Convenience API for registering exception translator was introduced.

	Py++ can generate code that uses BOOST_PYTHON_FUNCTION_OVERLOADS and
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS macros.

	Treatment to previously generated and no more in-use files was added. By
default Py++ will delete these files, but of course you can redefine this
behaviour.

	Generated code changes:
	default_call_policies should not be generated any more.

	For functions that have return_value_policy< return_opaque_pointer >
call policy, Py++ will automatically generate BOOST_PYTHON_OPAQUE_SPECIALIZED_TYPE_ID
macro. Thank you very much for Gottfried Ganssauge for this idea.

	Support for Boost.Python properties was introduced. Py++ implements small
algorithm, that will automatically discover properties, base on naming conventions.

	decl_wrappers.class_t has new function: is_wrapper_needed. This
function explains why Py++ creates class wrapper for exposed class.

	Python type traits module was introduce. Today it contains only single function:
	is_immutable - returns True if exposed type is Python immutable type

Version 0.8.1

	Georgiy Dernovoy contributed a patch, which allows Py++ GUI to
save\load last used header file.

	Py++ improved a lot functionality related to providing feedback to user:
	every package has its own logger

	only important user messages are written to stdout

	user messages are clear

	Support for Boost.Python indexing suite version 2 was implemented.

	Every code creator class took parent argument in __init__ method.
This argument was removed. adopt_creator and remove_creator will
setunset reference to parent.

	Generated code for member and free functions was changed. This changed was
introduced to fix compilation errors on msvc 7.1 compiler.

	Py++ generates “stable” code. If header files were not changed,
Py++ will not change any file.

	Support for huge classes was added. Py++ is able to split registration
code for the class to multiple cpp files.

	User code could be added almost anywhere, without use of low level API.

	Generated source files include only header files you passes as an argument
to module builder.

	Bug fixes.

	Documentation was improved.

Project name changed

In this version the project has been renamed from “pyplusplus” to “Py++”.
There were few reasons to this:

	I like “Py++” more then “pyplusplus”.

	“Py++” was the original name of the project: http://mail.python.org/pipermail/c++-sig/2005-July/009280.html

	Users always changed the name of the projects. I saw at least 6 different names.

Version 0.8.0

	Py++ “user guide” functionality has been improved. Now Py++
can answer few questions:
	why this declaration could not be exported

	why this function could not be overridden from Python

	Py++ can suggest an alias for exported classes.

	Small redesign has been done - now it is much easier to understand and
maintain code creators, which creates code for C++ functions.

	Exception specification is taken into account, when Py++ exports
member functions.

	Member variables, that are pointers exported correctly.

	Added experimental support for vector_indexing_suite.

	Bug fixes.

Version 0.7.0

Many thanks to Matthias Baas and Allen Bierbaum! They contributed so much to
Py++, especially Matthias:

	New high-level API: Py++ has simple and powerful API

	Documentation: Matthias and Allen added a lot of documentation strings

	Bug fixes and performance improvements

	New GUI features:

	It is possible now to see XML generated by GCC-XML.

	It is possible to use GUI as wizard. It will help you to start with
Py++, by generating Py++ code.

	Attention - non backward compatible change.

module_creator.creator_t.__init__ method has been changed. decls
argument could be interpreted as

	list of all declaration to be exported

	list of top-level declarations. creator_t should export all
declarations recursively.

In order to clarify the use of decls argument new argument recursive
has been added. By default new value of recursive is False.

Guide for users/upgraders: if use are exporting all declaration without
filtering, you should set recursive argument to True. If you use
pygccxml.declarations.filtering.* functions, you have nothing to do.

Sorry for the inconvenience :-(.

	Better split of extension module to files. From now the following declarations will
have dedicated file:

	named enumerations, defined within namespace

	unnamed enumerations and global variables

	free functions

This functionality will keep the number of instantiated templates within
one file, main.cpp, to be very low. Also it is possible to implement
solution, where main.cpp file does not contain templates instantiations
at all.

	Only constant casting operators could be used with implicitly_convertible.
This bug has been fixed.

	Bug exporting non copyable class has been fixed.

	Small bug fix - from now file with identical content will not be overwritten.

	Boost.Python optional is now supported and used when a constructor has a
a default argument.

	Py++ now generates correct code for hierarchy of abstract classes:

struct abstract1{
 virtual void do_smth() = 0;
}

struct abstract2 : public abstract1{
 virtual void do_smth_else() = 0;
}

struct concrete : public abstract2{
 virtual void do_smth(){};
 virtual void do_smth_else(){};
}

	Logging functionality has been added

	New packages module_builder, decl_wrappers and _logging_ has
been added.

	...

http://boost.org/libs/python/doc/v2/init.html#optional-spec

Version 0.6.0

	Code repository has been introduced. This repository contains classes
and functions that will help users to export different C++ classes and
declarations. Right now this repository contains two classes:

	array_1_t

	const_array_1_t

Those classes helps to export static, single dimension arrays.

	Code generation has been improved.

	Code generation speed has been improved.

	If you have Niall Douglas void* patch, then you can enjoy from
automatically set call policies.

	Bit fields can be accessed from Python

	Creating custom code creator example has been added.

	Comparison to Pyste has been wrote.

	Using this version it is possible to export most of TnFOX Python bindings.

Version 0.5.1

	operator() is now supported.

	Special casting operators are renamed(__int__, __str__, ...).

	Few bug fixes

Index

Pyste & Py++ comparison

What is Py++?

Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

What is Pyste?

Pyste [http://www.boost.org/libs/python/doc/index.html] is a Boost.Python [http://www.boost.org/libs/python/doc/index.html] code generator. The user specifies the classes and
functions to be exported using a simple interface file, which following the
Boost.Python [http://www.boost.org/libs/python/doc/index.html]‘s philosophy, is simple Python [http://www.python.org] code. Pyste [http://www.boost.org/libs/python/doc/index.html] then uses
GCC-XML [http://www.gccxml.org] to parse all the headers and extract the necessary information to
automatically generate C++ code.

Preamble

If you are reading this document, I can assume that you know what Boost.Python [http://www.boost.org/libs/python/doc/index.html],
Pyste [http://www.boost.org/libs/python/doc/index.html] and Py++ are. This document compares Pyste [http://www.boost.org/libs/python/doc/index.html] and Py++.
I am going to compare:

	user interface

	design

	dependencies

	features list:

	supported Boost.Python [http://www.boost.org/libs/python/doc/index.html] components

	nice features

I did not develop Pyste [http://www.boost.org/libs/python/doc/index.html], so it is possible I made few mistakes in my
analyzes. If you identify one, please report it. I will try to fix it, as quick
as possible. In the past, I created bindings to few projects using Pyste [http://www.boost.org/libs/python/doc/index.html].
Code, generated by Pyste [http://www.boost.org/libs/python/doc/index.html], was pretty good and gave me a good start both with
my projects and with Boost.Python [http://www.boost.org/libs/python/doc/index.html] library. As for me, there are two main
problems with Pyste [http://www.boost.org/libs/python/doc/index.html]:

	It is time-consuming operation to maintain Pyste [http://www.boost.org/libs/python/doc/index.html] scripts in a big,
dynamic project.

	It is very difficult to customize generated code. I will provide few
examples later.

I tried to fix Pyste [http://www.boost.org/libs/python/doc/index.html]. At first, I developed pygccxml and tried to replace
relevant Pyste [http://www.boost.org/libs/python/doc/index.html] functionality. I did not like the result. After this, I dropped
the idea to fix Pyste [http://www.boost.org/libs/python/doc/index.html] and decided to develop new code generator - Py++.
Later you will find few points, which explains, why I decided not to fix Pyste [http://www.boost.org/libs/python/doc/index.html].

Have a nice reading.

User interface

Pyste

Carefully read Pyste [http://www.boost.org/libs/python/doc/index.html] definition -

”... The user specifies the classes and functions to be exported using a simple
interface file, which following the Boost.Python [http://www.boost.org/libs/python/doc/index.html]‘s philosophy, is simple
Python [http://www.python.org] code. ...”

Simple interface file is an advantage and a disadvantage at the same time. The
advantage is obvious: it is easy to start to use. The disadvantage is less
obvious - you cannot work on whole exported library at once.

	Try to exclude all functions, that nth argument has some specific type.

	Try to exclude\leave all classes, which belongs to some namespace.

	Maintenance. Every time you add new file\class to your project you should
modify\create Pyste [http://www.boost.org/libs/python/doc/index.html] interface files.

	Try to set call policies to functions based on some detail\fact.

First and second example could be solved, but it is neither easy, nor obvious.
You should understand Pyste [http://www.boost.org/libs/python/doc/index.html] implementation details. Third example is solvable
if you are lucky and ready to write few Python [http://www.python.org]\shell scripts.

”... AllFromHeader is broken in some cases. Until it is fixed, use at you own
risk. ...”

 DSL challenge

DSL challenge

Introduction

More or less formal definition of DSL could be found here [http://en.wikipedia.org/wiki/Domain_Specific_Language].

Py++ has been created to solve single and well-defined problem: to create
Python bindings for C++ projects. The good news - Py++ achieved the goal,
the bad news - users are forced to read the documentation. DSL cannot completely
solve the problem, but it can eliminate the need to read documentation in 80% of
the cases.

Py++ user interface

I will use the following C++ code as an example:

namespace geometry{
 struct Point{
 Point();
 Point(int x, int y);
 Point(const Point&);

 Point* create_new(){ return *this; }

 int x, y;
 int private_data;
 };
}

In order to export this class, we need:

	to set “call policies” to create_new member function

	to exclude private_data member variable

	to rename x and y to X and Y

Today, in order to configure this class, the user has to write the following code:

mb = module_builder_t(...)
Point = mb.class_('Point')
Point.member_function('create_new').call_policies = ...
Point.member_variable('private_data').exclude()
Point.member_variable('x').rename('X')
Point.member_variable('Y').rename('Y')
#or
for mvar in Point.member_variables():
 mvar.rename(mvar.name.upper())

If class Point is not unique, than user will have to write a little bit
different code:

Point = mb.global_ns.namespace('geometry').class('Point')

The current approach is pretty readable and simple. The drawbacks of this approach
are:

	before the user starts with Py++ he is forced to read a lot of documentation

	verbosity - in order to complete the task, the user have to write “a lot” of
code

Better API (B-API)

mb = module_builder_t(...)
Point = mb.module.geometry.Point
Point.create_new.call_policies = ...
Point.private_data.exclude()
Point.x.rename('X')
Point.y.rename('Y')

What you see here is DSL!

Comparison

I don’t argue, that the second way is better. I would like to expose you to few
problems it has.

Rule based approach

B-API does not allow to use “rule based” approach and to work on the whole
declarations tree!

Special syntax

Special syntax should be introduce to support

	template instantiations

B-API does not work for template instantiated classes and functions. If we change
class Point to be template, the special syntax should be introduced:

template < class Numeric >
struct Point{
 ...
};

PointTmpl = mb.module.template('Point')
Point = PointTmpl('int')

This is a trivial example, which is why it looks great. Consider the following class:

template< class String, class Allocator >
class regex{ ... }

The code the user will need to write is:

regex_tmpl = mb.module.geometry.template('regex')
#white spaces and scope resolution(::) are important
regex_std_string = regex_tmpl(
 '::std::basic_string<char,std::char_traits<char>,std::allocator<char> >'
 , '::std::allocator<char>')

Using current Py++ interface the user can get reference to the class
instantiation in one line of code:

regex_std_string = mb.class_(
 lambda decl: decl.name.startswith('regex') and 'wchar_t' not in decl.name)

	overloaded functions resolution

There are use cases, when overloaded functions should be treated differently.
It is not possible to distinguish between different functions, using B-API syntax.

	C++ operators

They also require special syntax.

Readability counts

It is not clear from the script, on how many and on what declarations
configuration is applied. It is possible to introduce a bug. Using current Py++
API the user always states, whether he expects a declaration to be unique or not
and its type.

Full name

Using B-API the user is forced to write full declaration name, otherwise he faces
the following problem:

Point = mb.module.Point

Lets analyze what the Point value:

	It could be reference to a declaration, that has name “Point” and it is
defined under global namespace.

	It could be a set of declarations that has “Point” as a name from all classes
and namespaces. In our case it will contain at lease reference to class
“Point” declaration and its constructors.

There are a lot of use cases, when the user has to add some code to the class:

Point.add_registration_code(...)

Constructor declaration does not define add_registration_code method.
According to Python rules: “Errors should never pass silently”, exception
should be raised.

Another Python rule says: “In the face of ambiguity, refuse the temptation to guess”.

Action item

I think, it should be obvious to you, that we cannot drop current Py++ user
interface. The only solution I see, is to build B-API on top of it. The reason
the project does not have B-API is simple. I don’t feel comfortable to introduce
it, while I am aware to all these problems.

The title of this section should be Your action item :-). I will be glad
to implement B-API, if we can solve all the problems. Consider to contribute your
experience and knowledge to fix the situation. I am sure together we will build
very powerful and easy to use code generator.

 Splitting generated code to files

Splitting generated code to files

Introduction

Py++ provides 4 different strategies for splitting the generated code into files:

	single file

	multiple files

	fixed set of multiple files

	multiple files, where single class code is split to few files

Single file

If you just start with Py++ or you are developing small module, than you should
start with this strategy. It is simple - all source code generated to a single file.

Of course this solution has it’s price - every time you change the code you will
have to recompile it. If you expose 2 or more declarations, this is annoying and
time-consuming operation. In some cases you even will not be able to compile the
generated code, because of its size.

Usage example

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
mb.build_code_creator(...)
mb.write_module(<<<file name>>>)

Multiple files

I believe this is the most widely used strategy. Py++ splits generated code
as follows:

	every class has it’s own source & header file

	the following declarations are split to separate source files:
	named & unnamed enumerations

	free functions

	global variables

	“main” file - the file, which contains complete module registration

The main advantage of this mode is that you don’t have to recompile the whole
project if only single declaration was changed. Thus this mode suites well huge
projects.

There are few problems with this mode:

	There are use cases, when the generated file name is too long. Py++
uses class name as a basis for the file name. So in case of template
instantiations the file name could be really long, very long.

	This mode doesn’t play nicely with IDEs. Every time you add/remove classes in
your project the list of generated files will be changed. So, you will have
to maintain your IDE environment file.

This problem was addressed in “fixed set of multiple files” mode. Keep
reading :-).

	If your project has pretty big class, than it is possible that the generated
code will be too big and it take huge amount of time to compile it (GCC) or
even to fail to compile it (MSVC 7.1).

This problem was addressed in “multiple files, where single class code is
split to few files” mode.

Usage example

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
mb.build_code_creator(...)
mb.split_module(<<<directory name>>>)

Multiple files, where single class code is split to few files

This mode solves the problem, I mentioned earlier - you have to expose huge class
and you have problems to compile generated code.

Py++ will split huge class to files using the following strategy:

	every generated source file can contain maximum 20 exposed declarations

	the following declarations are split to separate source files:
	enumerations

	unnamed enumerations

	classes

	member functions

	virtual member functions

	pure virtual member functions

	protected member functions

	“main” class file - the file, which contains complete definition/registration
of the generated file

Usage example

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
mb.build_code_creator(...)
mb.split_module(<<<directory name>>>, [<<<list of huge classes names>>>])

Fixed set of multiple files

This mode was born to play nicely with IDEs. It also can solve the problem with
long file names. The scheme used to name files doesn’t use class name.

In this mode you define the number of generated source files for classes.

Usage example

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
mb.build_code_creator(...)
mb.balanced_split_module(<<<directory name>>>, <<<number of generated source files>>>)

Precompiled header

Usage of precompiled header file reduces overall compilation time. Not all
compilers support the feature, moreover some of them can’t handle presence of
“boost/python.hpp” header in precompiled header file.

Py++ doesn’t provide user-friendly API to add/define precompiled header file
to the generated code. The main reason is that I don’t have a good idea how to
integrate/add this functionality to Py++. Nevertheless, you can enjoy from
this time-saving feature:

from pyplusplus import module_builder
from pyplusplus import code_creators

mb = module_builder_t(...)
mb.build_code_creator(...)

precompiled_header = code_creators.include_t('your file name')
mb.code_creator.adopt_creator(precompiled_header, 0)

mb.split_module(...)

API summary

Class module_builder_t contains 3 functions, related to file generation:

	def write_module(file_name)

	def split_module(self
 , dir_name
 , huge_classes=None
 , on_unused_file_found=os.remove
 , use_files_sum_repository=True)

	dir_name - directory name the generated files will be put in

	huge_classes - list of names of huge classes

	on_unused_file_found - callable object, which is called every time
Py++ found that previously generated file is not in use anymore.

	use_files_sum_repository
Py++ is able to store md5 sum of the generated files in a file. Next
time you will generate code, Py++ will compare generated file content
against the sum, instead of loading the content of the previously generated
file from the disk and comparing against it.

“<your module name>.md5.sum” is the file, that will be generated in the
dir_name directory.

Enabling this functionality should give you 10-15% of performance boost.

Warning: If you changed manually some of the files - don’t forget to delete
the relevant line from “md5.sum” file. You can also delete the whole file.
If the file is missing, Py++ will use old plain method of comparing content
of the files. It will not re-write “unchanged” files and you will not be
forced to recompile the whole project.

	def balanced_split_module(self
 , dir_name
 , number_of_files
 , on_unused_file_found=os.remove
 , use_files_sum_repository=True)

	number_of_files - the desired number of generated source files

 Properties

Properties

Introduction

Boost.Python [http://www.boost.org/libs/python/doc/index.html] allows users to specify class properties. You can read about
this functionality in the tutorials [http://boost.org/libs/python/doc/tutorial/doc/html/python/exposing.html#python.class_properties] or in the reference manual [http://boost.org/libs/python/doc/v2/class.html]. Since
version 0.8.2 Py++ provides a convenient API to specify class properties.

Usage example

struct number{
 ...
 float value() const;
 void set_value(float);
 ...
private:
 float m_value;
}

mb = module_builder_t(...)
number = mb.class_('number')
number.add_property('ro_value', number.member_function('value'))
number.add_property('value'
 , number.member_function('value')
 , number.member_function('set_value'))

This is rather the hard way to add properties to the class. Py++ comes with
built-in algorithm, which automatically recognizes properties and adds them to the
class:

mb = module_builder_t(...)
number = mb.class_('number')
number.add_properties(exclude_accessors=False) #accessors will be exposed

Small advise to you: try add_properties algorithm first, it should work.
If it doesn’t than:

	Please, bring your use case to the developers of Py++, so we could improve
it

	Switch to the add_property method for a while

Call policies

Consider the following use case:

struct nested{ ... };

struct data{
 ...
 const nested& get_nested() const
 { return m_nested; }
 ...
private:
 nested m_nested;
};

In order to expose get_nested member function you have to specify its
call policies [http://boost.org/libs/python/doc/tutorial/doc/html/python/functions.html#python.call_policies]. Same precondition holds for exposing member function as
property:

mb = module_builder_t(...)
get_nested = mb.member_function('get_nested')
get_nested.call_policies = call_policies.return_internal_reference()
mb.class_('data').add_properties()

Py++ will take the call policies [http://boost.org/libs/python/doc/tutorial/doc/html/python/functions.html#python.call_policies] information from the relevant accessor.

Property recognition algorithm

Description

In general the algorithm is very simple. Py++ understands few coding
conventions. It is aware of few widely used get\set prefixes. It scans the class
and its base classes for accessors and after this it tries to match between
“get” and “set” accessors. If there is “set” accessors, but there is no “get”
accessor, property will not be constructed. At least one accessor should belong
to the class. In new property will override an existing exposed declarations
property will not be created and warning will be written.

Find accessors

This part of the algorithm is responsible for finding all functions, which meet
get\set accessors criteria.

“get” accessor criteria

	It does not have arguments.

	It has return other than void.

	It does not modify the instance - has const attribute.

	It does not have an overload.

“set” accessor criteria

	It has only 1 argument.

	Its return type is void.

	It do modify the instance - doesn’t have const attribute.

There are also few rules that applies on both accessor types:

	Accessor should be included.

	Accessor should be “public”.

	It should not be static.

	It should not be pure virtual.

Recognize property

This part of the algorithm is responsible to recognize the pair of “get” and “set”
accessors, which constructs the property. Py++ does it by analyzing name and
type of the accessors.

Py++ understands the following coding conventions:

	lowercase_with_underscores

	UpperCamel

	lowCamel

It is also aware of few common prefixes for set\get accessors: get, is, has, set,
<<empty prefix for get accessor>>.

Documentation

You can use doc attribute to specify the property documentation. If you
don’t, than Py++ will construct documentation, which will describe from what
functions this property was built from.

 Documentation string

Documentation string

Introduction

Py++ provides a convenient way to export documentation from C++ source
files as Python [http://www.python.org] documentation string [http://docs.python.org/tut/node6.html#SECTION006760000000000000000]

API description

mb = module_builder_t(...)
my_class = mb.class_('my_class')
my_class.documentation = '"very helpful documentation string"'
my_class.member_function("do_nothing").documentation = \
 '"This function does nothing."'

In Py++ every class, which describes C++ declarations has documentation
property. This property should contain valid C++ string or None.

Boost.Python [http://www.boost.org/libs/python/doc/index.html] not always provides functionality, which exports documentation string.
In those cases, Py++ will not generate documentation string.

Also the previous method is pretty clear, it is not practical. There should be a
better way, to complete the task. Lets take a look on
module_builder_t.build_code_creator method. One of the arguments of this method
is doc_extractor.

doc_extractor is a callable object, which takes one argument - reference to declaration.

def doc_extractor(decl):
 ...

How it could help? Every declaration has location information:

	decl.location.file_name - absolute file name, where this declaration
has been declared.

	decl.location.line - line number.

So, you can go to the source file and to extract declaration from it.
Py++ will call doc_extractor on every exported declaration.

Now, when I think you understand what functionality Py++ provides.
It is a time to say what functionality is missing. Py++ does not
provide any documentation extractor. It is not completely true. You can find
document extractor for doxygen [http://www.stack.nl/~dimitri/doxygen/] format in contrib/doc_extractors directory.
Georgiy Dernovoy has contributed it.

 Indexing Suite V2

Indexing Suite V2

 Multi-module development

Multi-module development

Introduction

It is a common practices to construct final program or a package from few
different dependent or independent C++ libraries. Many time these libraries
reuse classes\functions defined in some other library. I think this is a must
requirement from a code generator to be able to expose these libraries to Python [http://www.python.org] ,
without “re-exposing” the class\functions definition twice.

This functionality is new in version “0.8.6”.

Use case introduction

Lets say that you have to expose few libraries, which deal with image processing:

	core library - defines base class for all image classes - image_i

	png library - defines class png_image_t, which derives from
core::image_i and implements functionality for “png” image format.

The code:

namespace core{
 class image_i{
 ...
 virtual void load() = 0;
 };
} //core

namespace png{
 class png_image_t : public core::image_i{
 ...
 virtual void load();
 };
}

The desired goal is to expose every class in its own package.

already_exposed

Every Py++ declaration has already_exposed property. This property says
to Py++ that the declaration is already exposed in another module:

#generate_code.py script

mb_core = module_builder_t(...)
mb_core.class_('image_i').include()
mb_core.build_code_creator('core')
mb.write_module('core.cpp')

mb_png = module_builder_t(...)
mb_png.class_('::core::image_i').already_exposed = True
mb_png.class_('::png::png_image_t').include()
mb_core.build_code_creator('png')
mb.write_module('png.cpp')

Py++ will generate code very similar to the the following one:

//file core.cpp
namespace bp = boost::python;

struct image_i_wrapper : core::image_i, bp::wrapper< core::image_i > {
 image_i_wrapper()
 : core::image_i(), bp::wrapper< core::image_i >()
 {}

 virtual void load(){
 bp::override func_load = this->get_override("load");
 func_load();
 }
 ...
};

BOOST_PYTHON_MODULE(core){
 bp::class_< image_i_wrapper, boost::noncopyable >("image_i")
 ...
 .def("load", bp::pure_virtual(&::core::image_i::load));
}

//file png.cpp
struct png_image_t_wrapper : png::png_image_t, bp::wrapper< png::png_image_t > {

 png_image_t_wrapper()
 : png::png_image_t(), bp::wrapper< png::png_image_t >()
 {}

 virtual void load() {
 if(bp::override func_load = this->get_override("load"))
 func_load();
 else
 this->png::png_image_t::load();
 }

 void default_load() {
 png::png_image_t::load();
 }
};

BOOST_PYTHON_MODULE(pyplusplus){
 bp::class_< png_image_t_wrapper, bp::bases< core::image_i > >("png_image_t")
 //-------------------------------^^^^^^^^^^^^^^^^^^^^^^^^^^
 ...
 .def("load", &::png::png_image_t::load, &png_image_t_wrapper::default_load);
}

As you can see “png.cpp” file doesn’t contains code, which exposes core::image_i
class.

Semi-automatic solution

already_exposed solution is pretty good when you mix hand-written modules with
the Py++ generated ones. It doesn’t work/scale for “true” multi-module development.
This is exactly the reason why Py++ offers “semi automatic” solution.

For every exposed module, Py++ generates “exposed_decl.pypp.txt” file. This
file contains the list of all parsed declarations and whether they were included
or excluded. Later, when you work on another module, you can tell Py++ that
the current module depends on the previously generated one. Py++ will load
“exposed_decl.pypp.txt” file and update the declarations.

Usage example:

mb = module_builder_t(...)
mb.register_module_dependency(<<<other module generated code directory>>>)

Caveat

You should import module “core”, before “png”. Boost.Python [http://www.boost.org/libs/python/doc/index.html] requires definition
of any base class to be exposed\registered before a derive one.

 Inserting code

Inserting code

Introduction

Py++ is not a magician! Sometimes there is a need to add code to
generated file(s). This document will describe how you can insert your code to
almost any place.

Insert code to module

Almost every Boost.Python module has the following structure:

//declarations code
...
BOOST_PYTHON_MODULE(X)
{
 //registrations code
 ...
}

Using module_builder_t you can add code to declaration and registration
sections. More over you can add the code to head or tail of the section.
module_builder_t class provides API, which will help you to complete the task:

	add_declaration_code(self, code, tail=True)

This function will add a code to the declaration section. If you want to add
the code to the head of the section, pass tail=False to the method.

	add_registration_code(self, code, tail=True)

This function will add a code to the registration section. If you want to add
the code to the head of the section, pass tail=False to the method.

Example

mb = module_builder_t(...)
mb.build_code_creator(...)
mb.add_declaration_code('//just a comment')
mb.add_registration_code('//another comment', False) #adding code to the head

Insert code to class

class_t declaration defines few methods, which add user code to the generated one.
Lets take a look on the following use case:

struct window_t{
 ...
 void get_size(int& height, int& width) const;
 ...
};

int is immutable type in Python. So you cannot expose get_size member
function as is. You need to create a wrapper and expose it.

In the near future Py++ will eliminate the need of creating hand
written wrapper for this use case.

boost::python::tuple get_window_size(const window_t& win){
 int h(0), w(0);
 win.get_size(h, w);
 return boost::python::make_tuple(h, w);
}

Now you have to register it:

using boost::python;
class_< window_t >(...)
 .def("get_size", &::get_window_size)
 ...
;

How it could be achieved with Py++? Class declaration, has also two
functions:

	add_declaration_code(self, code)

This method will add the code to the declaration section within the module.

If you split your module to few files, Py++ will add this code to the
“cpp” file, class registration code will be written in.

Attention: there is no defined order between wrapper code and declaration section
code. If you have dependencies between code from declaration section and class
wrapper, consider to move declaration code to class wrapper.

	add_registration_code(self, code, works_on_instance=True)

This method will add the code to the registration section of the class.

What is works_on_instance argument for? In our case, we added new method
to the class. The first argument of the call will be self.

#From Python user can call this method like this:
win = window_t()
height, width = win.get_size()

If you will pass works_on_instance=False the following code will be generated:

{
 class_< window_t > window_exporter("window_t");
 scope window_scope(window_exporter);
 ...
 def("get_size", &::get_window_size);
}

And in this case, user will be forced to pass reference to window_t object:

win = window_t()
height, width = window_t.get_size(win)

Example

mb = module_builder_t(...)
window = mb.class_('window_t')
window.add_declaration_code(get_window_size definition)
window.add_registration_code('def("get_size", &::get_window_size)')
#Py++ will add ';' if needed

Insert code to class wrapper

There are use cases, when you have to add code to class wrapper [http://boost.org/libs/python/doc/tutorial/doc/html/python/exposing.html#python.class_virtual_functions]. Please take a
look on the following thread: http://mail.python.org/pipermail/c++-sig/2006-June/010791.html .

The short description is the following: there are classes with parent/child relationship.
Parent keeps child class instances using raw pointer. When parent die, it also
destroys children classes. It is not an option to switch to boost::shared_ptr.

The solution Niall Douglas found was to implement small lifetime manager. For
this solution he needed:

	to add to every constructor of class wrapper some code that registers the
instance of the class within the manager

	to add to destructor of class wrapper some code, that will destroy the instance
if needed.

	to add to class wrapper new variable

Solution

def inject_code(cls):
 constructors = cls.constructors()
 constructors.body = class instance registration code
 #if you need to add code to default or copy constructor only
 #than you can you the following shortcuts
 cls.null_constructor_body = <<<your code>>>
 cls.copy_constructor_body = <<<your code>>>
 #which will update the appropriate ``body`` property.

 #If you want to add code to the class destructor,
 #use ``add_destructor_code`` method
 cls.add_destructor_code(<<<your code>>>)

 #If you need to add new class variables:
 cls.add_wrapper_code(<<<variable declaration>>>)

mb = module_builder_t(...)
for cls in mb.classes(<<<relevant classes only>>>):
 inject_code(cls)

Header files

Now, when you know how to add your code to a generated one, I think you also should
now how to add your own set of include directives to the generated files. There
are few ways to do this.

	The easiest and the most effective one - tell to Py++ that generated code
for the declaration should include additional files:

mb = module_builder_t(...)
my_class = mb.class_(...)
my_class.include_files.append("vector")

Every declaration has include_files property. This is a list of header files,
you want to include from the generated file(s).

	Other approach is a little bit low level, but it allows you to add your header
files to every generated file:

mb = module_builder_t(...)
...
mb.build_code_creator(...)
mb.code_creator.add_include("iostream")

You can also replace all (to be) generated header files with your own set:

mb.code_creator.replace_included_headers(["stdafx.h"])

Of course you can, and may be should, use both approaches.

I suggest you to spend some time and to tweak Py++ to generate source code
with as little as possible include directives. This will save you huge amount of
time later.

 Architecture

Architecture

Introduction

This document will describe an architecture behind Py++.

Py++ & pygccxml integration

C++

C++ is very powerful programming language. The power brings complexity. It is
not an easy task to parse C++ source files and to create in memory representation
of declarations tree. The declarations tree is worth nothing, if a user is not
able to explorer it, to run queries against it or to find out traits of a
declaration or a type.

On the earlier stage of the development, I realized, that all this functionality
does not belong to code generator and should be implemented out side of it.
pygccxml project was born. pygccxml made the code generator to be smaller
and C++ parser independent. It provides the following services:

	definition of classes, that describe C++ declaration and types, and their
analyzers (type traits)

	C++ source files parsing and caching functionality

Py++ uses those services to:

	extract declarations from source files and to provide powerful query interface

	find out a declaration default configuration:
	call policies for functions

	indexing suite parameters

	generate warnings/hints

	...

Integration details

Py++ uses different approaches to expose these services to the user.

Parsing integration

Py++ provides it’s own “API” to configure pygccxml parsing services. The
“API” I am talking about, is arguments to module_builder.__init__ method.
We think, that exposing those services via Py++ simplifies its usage.

Declarations tree integration

Declarations tree API consists from 3 parts:

	interface definition:
	declaration_t and all classes that derive from it

	type_t and all classes that derive from it

	type traits

	query engine API

The user should be familiar with these parts and relevant API. In my opinion,
wrapping or hiding the API will not provide an additional value. The interface
of all those services is pretty simple and well polished.

Before I explain how these services are integrated, take a look on the following source
code:

mb = module_builder_t(...)

details = mb.namespace('details')
details.exclude()

my_class = mb.class_('my_class')
my_class.rename("MyClass")

What you see here, is a common pattern, that will appear in all projects, that
use Py++:

	find the declaration(s)

	give the instruction(s) to the code generator engine

What is the point of this example? From the user point of view it is perfectly
good, it makes a lot of sense to configure the code generation engine, using
the declarations tree. How does Py++ add missing functionality to
pygccxml.declarations classes? There were few possible solutions to the
problem. The following one was implemented:

	pygccxml.parser package interface was extended. Instead of creating
a concrete instance of declaration classes, pygccxml.parser package uses
a factory.

	pyplusplus.decl_wrappers package defines classes, which derive from
pygccxml.declarations classes and defines the factory.

The implemented solution is not the simplest one, but it provides an additional
value to the project:

	the code generation engine configuration and declarations tree are tightly
coupled

	the functionality provided by pygccxml.declarations and pygccxml.parser
packages is available for pyplusplus.decl_wrappers classes

	classes defined in pyplusplus.decl_wrappers package implement the following
functionality:
	setting reasonable defaults for the code generation engine(call policies,
indexing suite, ...)

	provides user with additional information(warnings and hints)

	as a bonus, pygccxml remained to be stand-alone project

Code generation engine

Code generation for Boost.Python [http://www.boost.org/libs/python/doc/index.html] library is a difficult process. There are two
different problems the engine should solve:

	What code should be created in order to export a declaration?

	How it should be written to files?

Remember, Py++ is targeting big projects. It cannot generate all code
in one file - this will not work, not at all.

Code creators and file writers provides solution for both problems.

Code creators

Do you know how many ways exist to export member function? If you will try to
answer the question, consider the following function characteristics and their mix:

	virtuality(non virtual, virtual or pure virtual)

	access level(public, protected or private)

	static\non static

	overloads

As you see, there are a lot of use cases. How do code creators solve the problem?

Definition

Code creator is an in-memory fragment of a C++ code.

Also, code creator can represent an arbitrary C++ code, in practice it
represents logically complete block.

Example of code creators:

	code_creators.enum_t generates registration code for an enumeration

	code_creators.mem_fun_pv_t generates registration code for public, pure
virtual function

	code_creators.mem_fun_pv_wrapper_t generates declaration code for public,
pure virtual function

	code_creators.include_t generates include directives

	code_creators.custom_text_t adds some custom(read user) text\code to
the generated code

There are primary two groups of code creators: declaration based and others.

Declaration based code creator keeps reference to the declaration (
pyplusplus.decl_wrapper.* class instance). During code generation process,
it reads its settings(the code generation engine instructions) from the
declaration. Declaration based code creators also divided into two groups.
The first group creates registration code, where the second one creates
wrapper\helper declaration code.

I will reuse this example [http://boost.org/libs/python/doc/tutorial/doc/html/python/exposing.html#python.virtual_functions_with_default_implementations], from Boost.Python [http://www.boost.org/libs/python/doc/index.html] tutorials.

	BaseWrap::f, BaseWrap::default_f - declaration code is created by
code_creators.mem_fun_v_wrapper_t

	f registration code is created by code_creators.mem_fun_v_t. This
code creator also keeps reference to the relevant instance of
code_creators.mem_fun_v_wrapper_t class.

Composite code creator is a creator, which contains other creators. Composite
code creator embeds the code, created by internal code creators, within
the code it creates. For example:

	code_creators.class_t:

First of all it creates class registration code (class_<...>), after
this it appends to it code generated by internal creators.

	code_creators.module_body_t:

Here is “cut & paste” of the relevant code from the source file:

def _create_impl(self):
 result = []
 result.append("BOOST_PYTHON_MODULE(%s){" % self.name)
 result.append(compound.compound_t.create_internal_code(self.creators))
 result.append("}")
 return os.linesep.join(result)

Code creators tree

code_creators.module_t class is a top level code creator. Take a look on
the following possible “snapshot” of the code creators tree:

<module_t ...>
 <license_t ...>
 <include_t ...>
 <include_t ...>
 <class_wrapper_t ...>
 <mem_fun_v_wrapper_t ...>
 <mem_fun_v_wrapper_t ...>
 <module_body_t ...>
 <enum_t ...>
 <class_t ...>
 <mem_fun_v_t ...>
 <member_variable_t ...>
 <free_function_t ...>
 <...>

You can think about code creators tree as some kind of AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree].

Code creators tree construction

pyplusplus.creators_factory package is responsible for the tree construction.
pyplusplus.creators_factory.creator_t is the main class of the package. It
creates the tree in few steps:

	It builds set of exposed declarations.

	It sort the set. Boost.Python [http://www.boost.org/libs/python/doc/index.html] has few rules, that forces the user to export
a declaration before another one.

	It creates code creators and put them into the right place within the tree.

	If a declaration describes C++ class, it applies these steps to it.

Another responsibility of creator_t class, is to analyze declarations and
their dependency graphs. As a result, this class can:

	find out a class HeldType

	find out smart pointers conversion, which should be registered

	find out STD containers, which should be exported

	warn user, if some declaration is not exported and it used somewhere in
exported declarations (not implemented)

File writers

File writers classes are responsible for writing code creators tree into
the files. Py++ implements the following strategies of writing code creators tree
into files:

	single file

	multiple files - provides a solution to compilation time and memory usage problem [http://www.boost.org/libs/python/doc/v2/faq.html#slow_compilation]

	multiple files, with huge classes are written into multiple files - provides a
solution for compiler limit [http://www.boost.org/libs/python/doc/v2/faq.html#c1204] problem.

The more sophisticated approach, the better understanding of code creators
is required from the file writers.

module_builder package

This package provides an interface to all code generator engine services.

Conclusion

It safe to use Py++ for big and small projects!

 C++ containers support

C++ containers support

Introduction

C++ has a bunch of container classes:

	list

	deque

	queue

	priority_queue

	vector

	stack

	map

	multimap

	hash_map

	hash_multimap

	set

	hash_set

	multiset

	hash_multiset

It is not a trivial task to expose C++ container to Python. Boost.Python has
a functionality that will help you to expose some of STL containers to Python [http://www.python.org].
This functionality called - “indexing suite”. If you want, you can read more
about indexing suite here [http://boost.org/libs/python/doc/v2/indexing.html].

Boost.Python, out of the box, supports only vector, map and hash_map
containers. In October 2003, Raoul Gough implemented support for the rest of
containers. Well, actually he did much more - he implemented new framework.
This framework provides support for almost all C++ containers and also an easy
way to add support for custom ones. You’d better read his post [http://mail.python.org/pipermail/cplusplus-sig/2003-October/005453.html] to
Boost.Python [http://www.boost.org/libs/python/doc/index.html] mailing list or documentation for the new indexing suite.

Now, I am sure you have the following question: if this suite is so good, why it is not
in the main branch? The short answer is that this suite has some problems on
MSVC 6.0 compiler and there are few users, that still use that compiler.
The long answer is here:

	http://mail.python.org/pipermail/c++-sig/2006-June/010830.html

	http://mail.python.org/pipermail/c++-sig/2006-June/010835.html

Py++ and indexing suites

Py++ implements support for both indexing suites. More over, you can
freely mix indexing suites. For example you can expose std::vector<int> using
Boost.Python [http://www.boost.org/libs/python/doc/index.html] built-in indexing suite and std::map< int, std::string> using
Raoul Gough’s indexing suite.

How does it work?

In both cases, Py++ provides almost “hands free” solution.
Py++ keeps track of all exported functions and variables,
and if it sees that there is a usage of stl container, it exports the container.
In both cases, Py++ analyzes the container value_type
(or in case of mapping container mapped_type), in order to set reasonable
defaults, when it generates the code.

Indexing suite version 2 installation

None :-)

Py++ version 1.1, introduceds few breaking changes to this indexing suite:

	the suite implements all functionality in the header files only. Few .cpp files
were dropped

	header files include directive was changed from

#include "boost/python/suite/indexing/..."

to

#include "indexing_suite/..."

The change was done to simplify the indexing suite installation and redistribution.
The gain list:

	no need to deal with patching and rebuilding Boost

	it is possible to use Boost libraries, which comes with your system

	you can put the library anywhere you want - just update the include paths in
your build script

	it is easier to redistribute it - just include the library with your sources

	If you are a happy Py++ user:

	Py++ will generate the indexing suite source files
in the “generated code” directory, under indexing_suite directory.

	Py++ will take care to upgrade the files

The bottom line: Py++ makes C++ STL containers handling fully
transparent for its users.

Indexing suites API

By default, Py++ works with built-in indexing suite. If you want to use
indexing suite version 2, you should tell this to the module_builder_t.__init__
method:

mb = module_builder_t(..., indexing_suite_version=2)

Every declared class has indexing_suite property. If the class is an
instantiation of STL container, this property contains reference to an instance
of indexing_suite1_t or indexing_suite2_t class.

How does Py++ know, that a class represents STL container instantiation?
Well, it uses pygccxml.declarations.container_traits to find out this.
pygccxml.declarations.container_traits class, provides all functionality
needed to identify container and to find out its value_type
(mapped_type).

Built-in indexing suite API

Py++ defines indexing_suite1_t class. This class allows configure
any detail of generated code:

	no_proxy - a boolean, if value_type is one of the the following types

	fundamental type

	enumeration

	std::string or std::wstring

	boost::shared_ptr<?>

then, no_proxy will be set to True, otherwise to False.

	derived_policies - a string, that will be added as is to generated code

	element_type - is a reference to container value_type or mapped_type.

Indexing suite version 2 API

In this case there is no single place, where you can configure exported container
functionality. Please take a look on the following C++ code:

struct item{
 ...
private:
 bool operator==(const item&) const;
 bool operator<(const item&) const;
};

struct my_data{
 std::vector<item> items;
 std::map< std::string, item > name2item_mapping;
};

Py++ declarations tree will contains item, my_data,
vector<item> and map<string,item> class declarations.

If value_type does not support “equal” or “less than” functionality, sort
and search functionality could not be exported.

Py++ class declaration has two properties: equality_comparable and
less_than_comparable. The value of those properties is calculated on first
invocation. If Py++ can find operator==, that works on value_type,
then, equality_comparable property value will be set to True, otherwise
to False. Same process is applied on less_than_comparable property.

In our case, Py++ will set both properties to False, thus sort and
search functionality will not be exported.

It is the time to introduce indexing_suite2_t class:

	container_class - read only property, returns reference to container class
declaration

	container_traits - read only property, returns reference to the relevant
container traits class. Container traits classes are defined in
pygccxml.declarations package.

	element_type - is a reference to container value_type or mapped_type.

	call_policies - read/write property, in near future I will add code to
Py++ that will analyze container value_type and will decide about
default call policies. Just an example: for non-copy constructable classes
call_policies should be set to return_internal_reference.

	[disable|enable]_method - new indexing suite, allows to configure
functionality exported to Python, using simple bitwise operations on predefined
flags. Py++ allows you to specify what methods you want to disable
or enable. indexing_suite2_t.METHODS contains names of all supported methods.

	[disable|enable]_methods_group - almost same as above, but allows you
to specify what group of methods you want to disable or enable.
indexing_suite2_t.METHOD_GROUPS contains names of all supported groups.

Small tips/hints

	If you set equality_comparable or less_than_comparable to False.
The indexing suite will disable relevant functionality. You don’t have
explicitly to disable method or methods group.

	The documentation of new indexing suite contains few small mistakes.
I hope, I will have time to fix them. Any way, Py++ generates
correct code.

 Py++ warnings

Py++ warnings

Introduction

Py++ has been created with few goals in mind:

	to allow users create Python [http://www.python.org] bindings for large projects using the Boost.Python [http://www.boost.org/libs/python/doc/index.html]
library

	to minimize maintenance time

	to serve as a user’s guide for Boost.Python [http://www.boost.org/libs/python/doc/index.html] library

Those goals all have something in common. In order to achieve them, Py++ must
give useful feedback to the user. Because Py++ understands the declarations
it exports, it can scan declarations for potential problems, report them and in
some cases provide hints about how to resolve the problem. Few examples:

	struct Y{ ... };

struct X{
 ...
 virtual Y& do_smth();
};

Member function do_smth cannot be overridden in Python because

	struct window{
 ...
 void get_size(int& height, int& width) const;
};

Member function get_size can be exposed to Python, but it will not be callable because

	In order to expose free/member function that takes more than 10 arguments user
should define BOOST_PYTHON_MAX_ARITY macro.

	struct X{
 ...
};

void do_smth(X x);

If you expose do_smth function and don’t expose struct X, Py++
will tell you that struct X is used in exported declaration, but was not
exposed.

For these problems and many other Py++ gives a nice explanation
and sometimes a link to the relevant information on the Internet.

I don’t know what about you, but I found these messages pretty useful. They allow
me to deliver Python bindings with higher quality.

How it works?

In previous paragraph, I described some pretty useful functionality but what should you
do to enable it? - Nothing! By default, Py++ only prints the
important messages to stdout. More over, it prints them only for to be exposed
declarations.

Py++ uses the python logging [http://docs.python.org/lib/module-logging.html] package to write all user messages. By
default, messages with DEBUG level will be skipped, all other messages will
be reported.

Warnings

Example of the warning:

WARNING: containers::item_t [struct]
> warning W1020: Py++ will generate class wrapper - hand written code
> should be added to the wrapper class

Almost every warning reported by Py++ consists from 3 parts:

	description of the declaration it refers to: “containers::item_t [struct]”

	warning unique identifier: “W1020”

	short explanation of the problem: “Py++ will generate class wrapper - hand
written code should be added to the wrapper class”

API Description

How to disable warning(s)?

Every warning has unique identifier. In the example I gave it was W1020.

from pyplusplus import messages
from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
xyz = mb.class_(XYZ)
xyz.disable_warnings(messages.W1020)

It is also possible to disable warnings for all declarations. pyplusplus.messages
package defines DISABLE_MESSAGES variable. This variable(list) keeps
all warnings, which should not be reported. Use messages.disable function to
edit it:

messages.disable(messages.W1020)

#you also can disable warnings reporting at all:
messages.disable(*messages.all_warning_msgs)

Logging API

If you are here, it probably means that you are not pleased with default configuration
and want to change it, right?

	If you simply want to change the logging message level:

import logging
from pyplusplus import module_builder

module_builder.set_logger_level(logging.DEBUG)

	But what if you want to disable some messages and leave others? This is also possible.
Py++ and pygccxml do not use a single logger. Almost every internal
package has its own logger. So you can enable one logger and disable another one.

The pygccxml package defines all loggers in the pygccxml.utils package.

The Py++ package defines all loggers in the pyplusplus._logging_ package.

Both packages define a loggers class. Those classes keep references to
different loggers. The loggers classes look very similar to the following class:

import logging #standard Python package

def _create_logger_(name):
 logger = logging.getLogger(name)
 ...
 return logger

class loggers:
 file_writer = _create_logger_('pyplusplus.file_writer')
 declarations = _create_logger_('pyplusplus.declarations')
 module_builder = _create_logger_('pyplusplus.module_builder')
 root = logging.getLogger('pyplusplus')
 all = [root, file_writer, module_builder, declarations]

You can use these references in the logging package to complete
your task of adjusting individual loggers.

One more thing, Py++ automatically splits long message, where line
length defaults to 70 characters. Thus it is very convenient to read them on your screen.
If you want to use different tools to monitor those messages, consider to use
standard Formatter [http://docs.python.org/lib/node422.html] class, instead of multi_line_formatter_t one.

Declarations API

Every declaration class has the following methods:

	why_not_exportable(self)

This method explains why a declaration could not be exported. The return value
is a string or None. None is returned if the declaration is exportable.

Property exportable will be set to True if declaration is exportable,
and to False otherwise.

	readme(self)

This method gives you access to all tips/hints/warnings Py++ has about
the declaration. This methods returns a list of strings. If the declaration is
not exportable, than first message within the list is an explanation, why it
is not exportable.

 Functions & operators

Functions & operators

Preamble

Boost.Python [http://www.boost.org/libs/python/doc/index.html] provides very rich interface to expose functions and operators.
This section of documentation will explain how to configure Py++ in order
to export your functions, using desired Boost.Python [http://www.boost.org/libs/python/doc/index.html] functionality.

Contents

 Overloading

Overloading

Introduction

Things get a little bit complex, when you have to export overloaded functions.
In general the solution is to explicitly say to compiler what function you
want to export, by specifying its type. Before we proceed, please take a look
on the following class:

struct X
{
 bool f(int a)
 {
 return true;
 }

 bool f(int a, double b)
 {
 return true;
 }

 bool f(int a, double b, char c)
 {
 return true;
 }
};

This class has been taken from Boost.Python [http://www.boost.org/libs/python/doc/index.html] tutorials [http://boost.org/libs/python/doc/tutorial/doc/html/python/functions.html#python.overloading].

There are few approaches, which you can use in order to export the functions.

Do nothing approach

I am sure you will like “do nothing” approach. Py++ recognize that you want to
export an overloaded function and will generate the right code:

namespace bp = boost::python;

BOOST_PYTHON_MODULE(pyplusplus){
 bp::class_< X >("X")
 .def(
 "f"
 , (bool (::X::*)(int))(&::X::f)
 , (bp::arg("a")))
 .def(
 "f"
 , (bool (::X::*)(int,double))(&::X::f)
 , (bp::arg("a"), bp::arg("b")))
 .def(
 "f"
 , (bool (::X::*)(int,double,char))(&::X::f)
 , (bp::arg("a"), bp::arg("b"), bp::arg("c")));
}

“create_with_signature” approach

Well, while previous approach is very attractive it does not work in all cases
and have a weakness.

Overloaded template function

I am sure you already know the following fact, but still I want to remind it:

	GCC-XML [http://www.gccxml.org] doesn’t report about un-instantiated templates

It is very important to understand it. Lets take a look on the following source code:

struct Y{

 void do_smth(int);

 template< class T>
 void do_smth(T t);

};

If you didn’t instantiate(use) do_smth member function, than GCC-XML [http://www.gccxml.org]
will not report it. As a result, Py++ will not be aware of the fact that
do_smth is an overloaded function. To make the long story short, the generated
code will not compile. You have to instruct Py++ to generate code, which
contains function type:

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
y = mb.class_('Y')
y.member_function('do_smth').create_with_signature = True
#------------------------------^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Every Py++ class, which describes C++ function\operator has create_with_signature
property. You have to set it to True. Default value of the property is
computed. If the exported function is overloaded, then its value is True
otherwise it will be False.

Do nothing approach weakness

Code modification - the weakness of the “do nothing” approach. We live in the
dynamic world. You can create bindings for a project, but a month letter, the
project developers will add a new function to the exported class. Lets assume
that the new function will introduce overloading. If create_with_signature
has False as a value, than the previously generated code will not compile
and you will have to run code generator one more time.

Consider to explicitly set create_with_signature to True. It will save
your and your users time in future.

mb = module_builder_t(...)
mb.calldefs().create_with_signature = True

Overloading using macros

Boost.Python [http://www.boost.org/libs/python/doc/index.html] provides two macros, which help you to deal with overloaded
functions:

	BOOST_PYTHON_FUNCTION_OVERLOADS

	BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS

Boost.Python [http://www.boost.org/libs/python/doc/index.html] tutorials contain an explanation [http://boost.org/libs/python/doc/tutorial/doc/html/python/functions.html#python.auto_overloading] about this macros.

You can instruct Py++ to generate code, which will use the macros:

import module_builder

mb = module_builder.module_builder_t(...)
x = mb.class_("X")
x.member_functions("f").use_overload_macro = True
#-------------------------^^^^^^^^^^^^^^^^^^^^^^^^^

Member and free functions declaration classes have use_overload_macro property.
The default value of the property is False.

You don’t really have to use the macros, unless you have “registration order”
problem. The problem and work around described in default arguments document.

 Registration order

Registration order

Introduction

”... I would very much like to pass booleans from Python to C++ and have them
accepted as boils. However I cannot seem to do this. ...”

”... My class has 2 “append” functions. The first one, has single argument with
type “const char*”, the second one also has single argument with type “char”.
It seems, that I am not able to call the first function. ...”

If you have problem similar to described ones, than I am almost sure you have
registration order problem.

Example

struct tester_t{
 tester_t() {}

 const char* append(const char*)
 { return "append(const char *)"; }

 const char* append(const char)
 { return "append(const char)"; }

 const char* do_smth(bool)
 { return "do_smth(bool)"; }

 const char* do_smth(int)
 { return "do_smth(int)"; }
};

Py++ generates code, that register functions in the order they appear in the
source code:

namespace bp = boost::python;

BOOST_PYTHON_MODULE(my_module){
 bp::class_< tester_t >("tester_t")
 .def(bp::init< >())
 .def("append"
 , (char const * (::tester_t::*)(char const *))(&::tester_t::append))
 .def("append"
 , (char const * (::tester_t::*)(char const))(&::tester_t::append))
 .def("do_smth"
 , (char const * (::tester_t::*)(bool))(&::tester_t::do_smth))
 .def("do_smth"
 , (char const * (::tester_t::*)(int))(&::tester_t::do_smth));
}

Registration order pitfalls

Do you want to guess what is the output of the following program:

import my_module
tester = my_module.tester_t()
print tester.do_smth(True)
print tester.do_smth(10)
print tester.append("Hello world!")

?

The output is:

do_smth(int)

do_smth(int)

append(const char)

Unexpected, right? The registration order of exposed overloaded functions is
important. Boost.Python [http://www.boost.org/libs/python/doc/index.html] tries overloads in reverse order of definition.

If I understand right, Boost.Python [http://www.boost.org/libs/python/doc/index.html] tries to match in reverse order the
overloaded functions, if it can convert Python [http://www.python.org] arguments to C++ ones, it does
this and calls the function.

Now, when you understand the behavior, it should be pretty simple to provide
a correct functionality:

	You can change alias of the function, by mangling the type of the argument
into it:

mb = module_builder_t(...)
for f in mb.class_('tester_t').member_functions():
 f.alias = f.alias + f.arguments[0].type.decl_string

	You can reorder the declarations within the source file.

	You can ask Py++ to generate code, which takes into account the order of
declarations:

from pyplusplus.creators_factory import sort_algorithms

sort_algorithms.USE_CALLDEF_ORGANIZER = True
The functionality is available from version 0.8.3

	The last and the perfect solution. Py++ will let you know, when your code
has such problem. The functionality is available from version 0.8.3. After
this you can change the aliases of the functions. The third step is to create
small “dispatch” function in Python:

import my_module

def tester_t_do_smth(self, value):
 if isinstance(value, bool):
 self.do_smth_bool(value):
 else:
 self.do_smth_int(value)

tester_t.do_smth = tester_t_do_smth

The technique shown here described pretty good in Boost.Python [http://www.boost.org/libs/python/doc/index.html]
Extending Wrapped Objects in Python tutorials [http://boost.org/libs/python/doc/tutorial/doc/html/python/techniques.html#python.extending_wrapped_objects_in_python] .

May be in future, Py++ will generate this code for you. Anyway, if you have
a lot of use cases like this consider to generate Python [http://www.python.org] code and not to
write it manually.

 make_constructor

make_constructor

Introduction

Boost.Python [http://www.boost.org/libs/python/doc/index.html] allows us to register some function as Python [http://www.python.org] class __init__
method. This could be done using make_constructor [http://www.boost.org/doc/libs/1_35_0/libs/python/doc/v2/make_function.html#make_constructor-spec] functionality.

Not every function could be registered as __init__ method. The function return
type should be a pointer or a smart pointer to the new class instance.

Usage example

I am going to use the following code to demonstrate the functionality:

#include <memory>

namespace mc{

struct number_t{

 static std::auto_ptr<number_t> create(int i, int j);

 int x;
};

std::auto_ptr<number_t> create(int i);

}//namespace mc

The code is pretty simple - it defines two create functions, which construct
new class number_t instances.

Py++ configuration is pretty simple:

from pyplusplus import module_builder

mb = module_builder.module_builder_t(...)
mc = mb.namespace('mc ')
number = mc.class_('number_t')
number.add_fake_constructors(mc.calldefs('create'))
#------^^

Basically you associate with the class the functions, you want to register as
the class __init__ method.

The method add_fake_constructors takes as argument a reference to “create”
function or a list of such.

The generated code is pretty boring and the only thing I would like to mention
is that the function will not be exposed as a standalone function.

The usage code is even more boring:

from your_module import number_t

number = number_t(1)
print number.x
number = number_t(1, 2)
print number.x

 Default arguments

Default arguments

Introduction

There is more than one way to export function with default arguments. Before we
proceed, please take a look on the following class:

struct X
{
 bool f(int a=12)
 {
 return true;
 }
};

Do nothing approach

By default Py++ exposes function with its default arguments.

namespace bp = boost::python;

BOOST_PYTHON_MODULE(pyplusplus){
 bp::class_< X >("X")
 .def(
 "f"
 , &::X::f
 , (bp::arg("a")=(int)(12)));
}

The additional value of the approach is keyword arguments. You will be able to
call function f like this:

x = X()
x.f(a=13)

Default values, using macros

BOOST_PYTHON_FUNCTION_OVERLOADS and BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS
macros can help to deal with default values too. You can turn use_overload_macro
to True:

import module_builder

mb = module_builder.module_builder_t(...)
x = mb.class_("X")
x.member_function("f").use_overload_macro = True
#------------------------^^^^^^^^^^^^^^^^^^^^^^^^^

Registration order problem

There is different trades-off between these approaches. In general you should
use the first one, until you have “registration order” problem:

struct S1;
struct S2;

struct S1{
 void do_smth(S2* s2=0);
};

struct S2{
 void do_smth(S1 s1=S1());
};

BOOST_PYTHON_MODULE(...){
 using namespace boost::python;

 class_< S2 >("S2")
 .def("do_smth", &S2::do_smth, (arg("s1")=S1()));

 class_< S1 >("S1")
 .def("do_smth", &S1::do_smth, (arg("s2")=object()));

}

The good news is that it is very easy to identify the problem: the module could
not be loaded. The main reason is that expression arg("s1")=S1() requires
S1 struct to be registered. GCC-XML [http://www.gccxml.org] reports default arguments as strings.
Py++ doesn’t have enough information to generate code with the right class
registration order. In this case you have to instruct Py++ to use macros:

import module_builder

mb = module_builder.module_builder_t(...)
s2 = mb.class_("S2")
s2.member_function("do_smth").use_overload_macro = True

When you switch to macros, than:

	You will not be able to override virtual functions in Python [http://www.python.org].

	You will not be able to use “named” arguments.

	You will not be able to set the functions documentation.

Special case

Class constructors are special case:

struct S1;
struct S2;

struct S1{
 S1(S2* s2=0);
};

struct S2{
 S2(S1 s1=S1());
};

You cannot use same work around and Py++ (version 0.8.2) could not help you.
The use case presented here is a little bit esoteric. If you have such use case
and you cannot change the source code, consider contacting Py++ developers.
I am sure we will be able to help you.

 custom_call_policies

custom_call_policies

Definition

custom_call_policies is a special call policy, which allows you to integrate
the call policies, you defined, with Py++

Example

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

mb = module_builder.module_builder_t(...)
mb.free_function(...).call_policies \
 = call_policies.custom_call_policies(<<<your call policies code>>>)

Optionally you can specify name of the header file, which should be included:

mb.free_function(...).call_policies \
 = call_policies.custom_call_policies(<<<your call policies code>>>, "xyz.hpp")

 return_addressof

return_addressof

Definition

Class return_addressof is a model of ResultConverterGenerator [http://boost.org/libs/python/doc/v2/ResultConverter.html#ResultConverterGenerator-concept] which
can be used to wrap C++ functions returning any pointer, such that the pointer
value is converted to unsigned int and it is copied into a new Python object.

This call policy was created to be used with ctypes package and provide access
to some raw\low level data, without creating wrappers.

Pay attention: you have to manage the memory by your own.

Example

int* get_value(){
 static int buffer[] = { 0,1,2,3,4 };
 return buffer;
}

namespace bpl = boost::python;
BOOST_PYTHON_MODULE(my_module){
 def("get_value"
 , bpl::return_value_policy< pyplusplus::call_policies::return_addressof<> >());
}

The Py++ code is not that different from what you already know:

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

mb = module_builder.module_builder_t(...)
mb.free_function(return_type='float *').call_policies \
 = call_policies.return_value_policy(call_policies.return_addressof)

Python code:

import ctypes
import my_module

buffer_type = ctypes.c_int * 5
buffer = buffer_type.from_address(my_module.get_value())
assert [0,1,2,3,4] == list(buffer)

 Call policies

Call policies

Introduction

Boost.Python [http://www.boost.org/libs/python/doc/index.html] has a nice introduction [http://boost.org/libs/python/doc/tutorial/doc/html/python/functions.html#python.call_policies] to call policies. “Call policies concept” [http://boost.org/libs/python/doc/v2/CallPolicies.html#CallPolicies-concept]
document will provide you with formal definition.

Syntax

The call policies in Py++ are named exactly as in Boost.Python [http://www.boost.org/libs/python/doc/index.html], only the
syntax is slightly different. For instance, this call policy:

return_internal_reference< 1, with_custodian_and_ward<1, 2> >()

becomes in Py++

return_internal_reference(1, with_custodian_and_ward(1, 2))

Py++ supports all call policies presented in Boost.Python [http://www.boost.org/libs/python/doc/index.html].

Usage example

Every “callable” object in Py++ has call_policies property.

C++ code:

struct data{...};
const data& do_smth(const data& d, int x);

void return_second_arg(int x, int y);

typedef struct opaque_ *opaque_pointer;
opaque_pointer get_opaque();

Python code:

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

mb = module_builder.module_builder_t(...)
mb.free_function('return_second_arg').call_policies = call_policies.return_arg(2)
#---------------------------------------^^^

mb.member_function('do_smth').call_policies = call_policies.return_self()
#-------------------------------^^^

mb.calldef('get_opaque').call_policies
 = call_policies.return_value_policy(call_policies.return_opaque_pointer)

Defaults

Py++ is able to “guess” few call policies, base on analysis of return type
and\or callable name:

	default_call_policies:

	Python [http://www.python.org] immutable type returned by value: C++ fundamental types, std::string, enumerations

	user-defined type (class) returned by value

	return type is const char*

	return_value_policy

	return_opaque_pointer

	return type is void*

	return type is const void*

	return type is T* and T is a user defined opaque type

class_t and class_declaration_t classes have opaque property.
You have to set it to True, if you want Py++ to create this call
policy automatically for all functions, that use T* as return type.

	copy_const_reference

	return type is const T&

	for member operator[] that returns const reference to immutable type

	return_by_value

	return type is const wchar_t*

	copy_non_const_reference

	return type is T&, for member operator[] that returns reference to immutable type

	return_internal_reference

	return type is T&, for member operator[]

	return_self

This call policy will be used for operator=.

Missing call policies

If you don’t specify call policy for a function and it needs one, few things will
happen:

	Py++ prints a warning message

	Py++ generates code with

/* undefined call policies */

comment, instead of call policy. If Py++ was wrong and function doesn’t
need call policy the generate code will compile fine, otherwise you will get a
compilation error.

Special case

Before you read this paragraph consider to read Boost.Python [http://www.boost.org/libs/python/doc/index.html] return_opaque_pointer documentation [http://boost.org/libs/python/doc/v2/return_opaque_pointer.html].

return_value_policy(return_opaque_pointer) is a special policy for Boost.Python [http://www.boost.org/libs/python/doc/index.html].
In this case, it requires from you to define specialization for the
boost::python::type_id function on the type pointed to by returned pointer.
Py++ will generate the required code.

Actually you should define boost::python::type_id specialization also in case
a function takes the opaque type as an argument. Py++ can do it for you, all
you need is to mark a declaration as opaque.

Example:

struct identity_impl_t{};
typedef identity_impl_t* identity;

struct world_t{

 world_t(identity id);

 identity get_id() const;

 ...
};

Py++ code:

mb = module_builder_t(...)
mb.class_('identity_impl_t').opaque = True

Py++ defined call policies

Py++ defines few call policies. I hope you will find them useful. I don’t mind
to contribute them to Boost.Python [http://www.boost.org/libs/python/doc/index.html] library, but I don’t have enough free time
to “boostify” them.

 as_tuple

as_tuple

Definition

Class as_tuple is a model of ResultConverterGenerator [http://boost.org/libs/python/doc/v2/ResultConverter.html#ResultConverterGenerator-concept] which
can be used to wrap C++ functions returning a pointer to arrays with fixed size.
The policy will construct a Python tuple from the array and handle the array memory.

Example

 struct vector3{
 ...

 float* clone_raw_data() const{
 float* values = new float[3];
 //copy values
 return values;
 }

 const flow* get_raw_data() const{
 return m_values;
 }

 private:
 float m_values[3];
 };

namespace bpl = boost::python;
namespace pypp_cp = pyplusplus::call_policies;
BOOST_PYTHON_MODULE(my_module){
 bpl::class_< vector3 >("vector3")
 .def("clone_raw_data"
 , &::vector3::clone_raw_data
 , bpl::return_value_policy< pypp_cp::arrays::as_tuple< 3, pypp_cp::memory_managers::delete_ > >())
 .def("get_raw_data"
 , &::vector3::get_raw_data
 , bpl::return_value_policy< pypp_cp::arrays::as_tuple< 3, pypp_cp::memory_managers::none > >()));
}

as_tuple class

as_tuple is a template class that takes few arguments:

	the array size - compile time constant

	memory management policy - a class, which will manage the return value.
There are two built-in memory managers:
	delete_ - the array will be deleted after it was copied to tuple, using
operator delete[]

	none - do nothing

The Py++ code is slightly different from the C++ one, but it is definitely shorter:

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

mb = module_builder.module_builder_t(...)
mb.member_function('clone_raw_data').call_policies \
 = call_policies.convert_array_to_tuple(3, call_policies.memory_managers.delete_)
mb.member_function('get_raw_data').call_policies \
 = call_policies.convert_array_to_tuple(3, call_policies.memory_managers.none)

 return_range

return_range

Definition

Class return_range is a model of CallPolicies [http://www.boost.org/libs/python/doc/v2/CallPolicies.html#CallPolicies-concept], which can be used to wrap
C++ functions that return a pointer to some array. The new call policy constructs
object, which provides a regular Python [http://www.python.org] sequence [http://docs.python.org/lib/typesseq.html] interface.

Example

struct image_t{

 ...

 const unsigned char* get_data() const{
 return m_raw_data;
 }

 ssize_t get_width() const{
 return m_width;
 }

 ssize_t get_height() const{
 return m_height;
 }

private:
 unsigned long m_width;
 unsigned long m_height;
 unsigned char* m_raw_data;
};

Before introducing the whole solution, I would like to describe “return_range”
interface.

return_range class

template < typename TGetSize
 , typename TValueType
 , typename TValuePolicies=boost::python::default_call_policies >
struct return_range : boost::python::default_call_policies
{ ... };

Boost.Python [http://www.boost.org/libs/python/doc/index.html] call policies are stateless classes, which do not care any
information about the invoked function or object. In our case we have to pass
the following information:

	the array size

	the array type

	“__getitem__” call policies for the array elements

TGetSize parameter

TGetSize is a class, which is responsible to find out the size of the returned
array.

TGetSize class must have:

	default constructor

	call operator with the following signature:

ssize_t operator()(boost::python::tuple args);

args is a tuple of arguments, the function was called with.

Pay attention: this operator will be invoked after the function. This
call policy is not thread-safe!

For our case, the following class could be defined:

struct image_data_size_t{
 ssize_t operator()(boost::python::tuple args){
 namespace bpl = boost::python;
 bpl::object self = args[0];
 image_t& img = bpl::extract< image_t& >(self);
 return img.get_width() * img.get_height();
 }
};

Passing all arguments, instead of single “self” argument gives you an ability
to treat functions, where the user asked to get access to the part of the array.

struct image_t{
 ...
 const unsigned char* get_data(ssize_t offset) const{
 //check that offset represents a legal value
 ...
 return &m_raw_data[offset];
 }
 ...
};

The following “get size” class treats this situation:

struct image_data_size_t{
 ssize_t operator()(boost::python::tuple args){
 namespace bpl = boost::python;
 bpl::object self = args[0];
 image_t& img = bpl::extract< image_t& >(self);
 bpl::object offset_obj = args[1];
 ssize_t offset = bpl::extract< ssize_t >(offset_obj);
 return img.get_width() * img.get_height() - offset;
 }
};

TValueType parameter

TValueType is a type of array element. In our case it is unsigned char.

TValuePolicies parameter

TValuePolicies is a “call policy” class, which will be applied when the array
element is returned to Python [http://www.python.org]. This is a call policy for “__getitem__” function.

unsigned char is mapped to immutable type in Python [http://www.python.org], so I have to use
default_call_policies. default_call_policies is a default value for
TValuePolicies parameter.

I think, now you are ready to see the whole solution:

namespace bpl = boost::python;
namespace ppc = pyplusplus::call_policies;

BOOST_PYTHON_MODULE(my_module){
 bpl::class_< image_t >("image_t")
 .def("get_width", &image_t::get_width)
 .def("get_height", &image_t::get_height)
 .def("get_raw_data", ppc::return_range< image_size_t, unsigned char >());
}

Py++ integration

The Py++ code is not that different from what you already know:

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

image_size_code = \
"""
struct image_data_size_t{
 ssize_t operator()(boost::python::tuple args){
 namespace bpl = boost::python;
 bpl::object self = args[0];
 image_t& img = bpl::extract< image_t& >(self);
 return img.get_width() * img.get_height();
 }
};
"""

mb = module_builder.module_builder_t(...)
image = mb.class_('image_t')
image.add_declaration_code(image_size_code)
get_raw_data = image.mem_fun('get_raw_data')
get_raw_data.call_policies \
 = call_policies.return_range(get_raw_data, "image_data_size_t")

call_policies.return_range arguments:

	A reference to function. Py++ will extract by itself the type of the array
element.

	A name of “get size” class.

	A call policies for “__getitem__” function. Py++ will analyze the array
element type. If the type is mapped to immutable type, than default_call_policies
is used, otherwise you have to specify call policies.

Python usage code:

from my_module import *

img = image_t(...)
for p in img.get_raw_data():
 print p

Dependencies

The new call policy depends on new indexing suite and Py++ :-).

 return_pointee_value

return_pointee_value

Definition

Class return_pointee_value is a model of ResultConverterGenerator [http://boost.org/libs/python/doc/v2/ResultConverter.html#ResultConverterGenerator-concept] which
can be used to wrap C++ functions, that return a pointer to a C++ object. The
policy implements the following logic:

if(<<<return value is NULL pointer>>>){
 return None;
}
else{
 return boost::python::object(*<<<return value>>>);
}

The return type of the function should be T*.

It passes the value of the pointee to Python [http://www.python.org], thus the conversion for T
is used. This call policy could be used to return pointers to Python [http://www.python.org], which
types are not known to Boost.Python [http://www.boost.org/libs/python/doc/index.html], but only a conversion for the pointees.

Therefore this policy should be used to return pointers to objects, whose types
were wrapped with other tools, such as SWIGSIP.

Another usage of this call policy is to return to Python new object, which contains
copy of (*return value).

Please note: This policy does not take ownership of the wrapped pointer. If the
object pointed to is deleted in C++, the python-object will become invalid too,
if your custom conversion depends on the original object.

Examples

Unknown type

This technique and example was contributed by Maximilian Matthe.

struct int_wrapper{
 int_wrapper(int v)
 : val(v)
 {}

 int val;
};

//we will expose the following function
int_wrapper* return_int_wrapper(){
 static int_wrapper w(42);
 return &w;
}

//the Boost.Python custom converter
struct convert_int_wrapper{
 static PyObject* convert(int_wrapper const& w){
 boost::python::object value(w.val);
 return boost::python::incref(value.ptr());
 }
};

BOOST_PYTHON_MODULE(my_module){
 using namespace boost::python;
 //register our custom converter
 to_python_converter<int_wrapper, convert_int_wrapper, false>();

 def("return_int_wrapper"
 , &return_int_wrapper
 , return_value_policy<return_pointee_value>());
}

Python code:

import my_module

assert 42 == my_module.return_int_wrapper()

Return pointee value

float* get_value(){
 static float value = 0.5;
 return &value;
}

float* get_null_value(){
 return (float*)(0);
}

namespace bpl = boost::python;
BOOST_PYTHON_MODULE(my_module){
 def("get_value"
 , bpl::return_value_policy< pyplusplus::call_policies::return_pointee_value<> >());

 def("get_null_value"
 , bpl::return_value_policy< pyplusplus::call_policies::return_pointee_value<> >());
}

The Py++ code is not that different from what you already know:

from pyplusplus import module_builder
from pyplusplus.module_builder import call_policies

mb = module_builder.module_builder_t(...)
mb.free_function(return_type='float *').call_policies \
 = call_policies.return_value_policy(call_policies.return_pointee_value)

Python code:

import my_module

assert 0.5 == my_module.get_value()
assert None is my_module.get_null_value()

 Function transformation

Function transformation

Introduction

During the development of Python [http://www.python.org] bindings for some C++ library, it might get
necessary to write custom wrapper code for a particular function in order to
make that function usable from Python [http://www.python.org].

An often mentioned example that demonstrates the problem is the get_size()
member function of a fictitious image class:

void get_size(int& width, int& height);

This member function cannot be exposed with standard Boost.Python [http://www.boost.org/libs/python/doc/index.html] mechanisms.
The main reasons for this is that int is immutable type in Python [http://www.python.org].
An instance of immutable type could not be changed after construction. The only
way to expose this function to Python [http://www.python.org] is to create small wrapper, which will
return a tuple. In Python [http://www.python.org], the above function would instead be invoked like this:

width, height = img.get_size()

and the wrapper could look like this:

boost::python::tuple get_size(const image_t& img){
 int width;
 int height;
 img.get_size(width, height);
 return boost::python::make_tuple(width, height);
}

As you can see this function is simply invokes the original get_size() member
function and return the output values as a tuple.

Unfortunately, C++ source code cannot describe the semantics of an argument so
there is no way for a code generator tool such as Py++ to know whether an
argument that has a reference type is actually an output argument, an input
argument or an input/output argument. That’s why the user will always have to
“enhance” the C++ code and tell the code generator tool about the missing
information.

Note: C++ fundamental types, enumerations and string are all mapped to Python [http://www.python.org]
immutable types.

Instead of forcing you to write the entire wrapper function, Py++ allows you
to provide the semantics of an argument(s) and then it will take care of
producing the correct code:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
get_size = mb.mem_fun('image_t::get_size')
get_size.add_transformation(FT.output(0), FT.output(1))
#the following line has same effect
get_size.add_transformation(FT.output('width'), FT.output('height'))

Py++ will generate a code, very similar to one found in
boost::python::tuple get_size(const image_t& img) function.

Thanks to

A thanks goes to Matthias Baas for his efforts and hard work. He did a research,
implemented the initial working version and wrote a lot of documentation.

Transformers contents

Py++ comes with few predefined transformers:

The set doesn’t cover all common use cases, but it will grow with every new
version of Py++. If you created your own transformer consider to contribute
it to the project.

I suggest you to start reading output transformer. It is pretty simple and
well explained.

All built-in transformers could be applied on any function, except constructors
and pure virtual functions. The support for them be added in future releases.

You don’t have to worry about call policies. You can set the call policy and
Py++ will generate the correct code.

You don’t have to worry about the number of arguments, transformers or return
value. Py++ handles pretty well such use cases.

 input_static_matrix transformer

input_static_matrix transformer

Definition

“input_static_matrix” transformer works on native static 2D arrays. It
handles the translation between Python [http://www.python.org] object, passed as argument
that represent a sequence of sequences, and the matrix. The number of rows
and columns should be known in advance.

“input_static_matrix” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer” type.
The second and the third arguments specify rows and columns size.

Limitations

This transformer could not be applied on virtual functions.

Example

template< int rows, int columns >
int sum_impl(const int m[rows][columns]){
 int result = 0;
 for(int r = 0; r < rows; ++r){
 for(int c = 0; c < columns; ++c){
 result += m[r][c];
 }
 }
 return result;
}

int sum(int m[2][3]){
 return sum_impl<2, 3>(m);
}

In order to expose sum function we need to create a small wrapper:
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
sum = mb.free_fun('sum')
sum.add_transformation(FT.input_static_matrix('m', rows=2, columns=3))

What you see below is the relevant pieces of generated code:

#include "__convenience.pypp.hpp" //Py++ header file, which contains few convenience function

namespace bp = boost::python;

static boost::python::object sum_d4475c1b6a0ff117f0754ec5ecacdda3(boost::python::object m){
 int native_m[2][3];
 pyplus_conv::ensure_uniform_sequence< boost::python::list >(m, 2);
 for(size_t row = 0; row < 2; ++row){
 pyplus_conv::ensure_uniform_sequence< int >(m[row], 3);
 pyplus_conv::copy_sequence(m[row], pyplus_conv::array_inserter(native_m[row], 3));
 }
 int result = ::ft::sum(native_m);
 return bp::object(result);
}

BOOST_PYTHON_MODULE(...){
 ...
 typedef boost::python::object (*sum_function_type)(boost::python::object);

 bp::def(
 "sum"
 , sum_function_type(&sum_d4475c1b6a0ff117f0754ec5ecacdda3)
 , (bp::arg("m")));
}

 output_static_matrix transformer

output_static_matrix transformer

Definition

“output_static_matrix” transformer works on native 2D static arrays.
It handles the translation between a matrix and Python [http://www.python.org] list object.
The matrix row and column sizes should be known in advance.

“output_static_matrix” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer”
type. The second and the third arguments specify rows and columns size.

Limitations

This transformer could not be applied on virtual functions.

Example

void filler(int m[2][3], int value){
 for(int r = 0; r < 2; ++r){
 for(int c = 0; c < 3; ++c){
 m[r][c] = value;
 }
 }
}

In order to expose filler function we need to create a small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
filler = mb.free_fun('filler')
filler.add_transformation(ft.output_static_matrix('m', rows=2, columns=3))

What you see below is the relevant pieces of generated code:

#include "__convenience.pypp.hpp" //Py++ header file, which contains few convenience function

namespace bp = boost::python;

static boost::python::object filler_7b0a7cb8f4000f0474aa44d21c2e4917(int value){
 int native_m[2][3];
 boost::python::list py_m;
 ::ft::filler(native_m, value);
 for (int row = 0; row < 2; ++row){
 boost::python::list pyrow;
 pyplus_conv::copy_container(native_m[row]
 , native_m[row] + 3
 , pyplus_conv::list_inserter(pyrow));
 py_m.append(pyrow);
 }
 return bp::object(py_m);
}

BOOST_PYTHON_MODULE(...){
 ...
 typedef boost::python::object (*filler_function_type)(int);

 bp::def(
 "filler"
 , filler_function_type(&filler_7b0a7cb8f4000f0474aa44d21c2e4917)
 , (bp::arg("value")));
}

 inout_static_matrix transformer

inout_static_matrix transformer

Definition

inout_static_matrix transformer is a combination of input
and output transformers.
It allows to call a C++ function, which takes 2D array using Python list class

“input_static_matrix” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer” type.
The second and the third arguments specify rows and columns sizes.

Limitations

This transformer could not be applied on virtual functions.

Example

int sum_and_fill(int m[2][3], int value){
 int result = 0;
 for(int r = 0; r < 2; ++r){
 for(int c = 0; c < 3; ++c){
 result += m[r][c];
 m[r][c] *= value;
 }
 }
 return result;
}

In order to expose sum_and_fill function we need to create a small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
sum_and_fill = mb.free_fun('sum_and_fill')
sum_and_fill.add_transformation(ft.inout_static_matrix('m', rows=2, columns=3))

What you see below is the relevant pieces of generated code:

static boost::python::tuple sum_and_fill_ec4892ec81f672fe151a0a2caa3215f4(boost::python::object m, int value){
 int native_m[2][3];
 boost::python::list py_m;
 pyplus_conv::ensure_uniform_sequence< boost::python::list >(m, 2);
 for(size_t row = 0; row < 2; ++row){
 pyplus_conv::ensure_uniform_sequence< int >(m[row], 3);
 pyplus_conv::copy_sequence(m[row], pyplus_conv::array_inserter(native_m[row], 3));
 }
 int result = ::ft::sum_and_fill(native_m, value);
 for (int row2 = 0; row2 < 2; ++row2){
 boost::python::list pyrow;
 pyplus_conv::copy_container(native_m[row2]
 , native_m[row2] + 3
 , pyplus_conv::list_inserter(pyrow));
 py_m.append(pyrow);
 }
 return bp::make_tuple(result, py_m);
}

BOOST_PYTHON_MODULE(ft_inout_static_matrix){
 { //::ft::sum_and_fill

 typedef boost::python::tuple (*sum_and_fill_function_type)(boost::python::object,int);

 bp::def(
 "sum_and_fill"
 , sum_and_fill_function_type(&sum_and_fill_ec4892ec81f672fe151a0a2caa3215f4)
 , (bp::arg("m"), bp::arg("value")));

 }
}

 Name mangling

Name mangling

Definition

Wikipedia has a nice explanation [http://en.wikipedia.org/wiki/Name_mangling] what name mangling is.

Why?

I am sure you want to ask why and where Py++ uses name mangling? Py++ uses
name mangling to create function-wrappers for overloaded and\or free functions.
Consider the following use case:

void get_distance(long&);
void get_distance(double&);

In order to expose get_distance functions you have to create 2 function
wrappers:

long get_distance_as_long(){...}
double get_distance_as_double(){...}

You have to give them distinguish names - C++ does not allow overloading, base
on return type only. You also have to exposes them under different aliases,
otherwise they will not be callable from Python [http://www.python.org]:

namespace bp = boost::python;
BOOST_PYTHON_MODULE(...){
 bp::def("get_distance_as_long", &get_distance_as_long);
 bp::def("get_distance_as_double", &get_distance_as_double);
}

The solution

Py++ implements a solution to the problem. The generated wrapper names are
unique in the whole project. However, they are pretty ugly:

	get_distance_610ef0e8a293a62001a25cd3dc59b769 for get_distance(long&)
function

	get_distance_702c7b971ac4e91b12f260ac85b36d84 for get_distance(double&)
function

The good news - they will not be changed between different runs of the code
generator.

If you are exposing an overloaded function, in that case Py++ uses the ugly
function-wrapper name as an alias. It is up to you to change the alias:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
get_distance_as_long = mb.mem_fun('get_distance', arg_types=['long &'])
get_distance_as_long.add_transformation(FT.output(0), alias="get_distance_as_long")

There are two main reasons for such implementation\behaviour:

	The generated code will always compile and be correct.

	If you forgot to give an alias to a function, your users will still be able
to call the function. So no need to rush and create new release.

 output_static_array transformer

output_static_array transformer

Definition

“output_static_array” transformer works on native static arrays. It handles the
translation between array and Python [http://www.python.org] list object. Size of array should be predefined.

“output_static_array” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer” type.
The second argument should an integer value, which represents array size.

Example

struct vector3{

 void get_values(int values[3]){
 values[0] = x;
 values[1] = y;
 values[2] = z;
 }

 int x,y,z;
};

In order to expose get_values member function we need to create small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
v3 = mb.class_('vector3')
v3.mem_fun('get_values').add_transformation(FT.output_static_array(0, 3))

What you see below is the relevant pieces of generated code:

#include "__convenience.pypp.hpp" //Py++ header file, which contains few convenience function

namespace bp = boost::python;

static boost::python::object get_values_22786c66e5973b70f714e7662e2aecd2(::ft::vector3 & inst){
 int native_values[3];
 boost::python::list py_values;
 inst.get_values(native_values);
 pyplus_conv::copy_container(native_values, native_values + 3, pyplus_conv::list_inserter(py_values));
 return bp::object(py_values);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::class_< ft::vector3 >("vector3", "documentation")
 .def("get_values"
 , &get_values_22786c66e5973b70f714e7662e2aecd2
 , (bp::arg("inst")))
 .def_readwrite("x", &ft::vector3::x)
 .def_readwrite("y", &ft::vector3::y)
 .def_readwrite("z", &ft::vector3::z);
}

 input_c_buffer transformer

input_c_buffer transformer

Definition

“input_c_buffer” transformer works on C buffers. It handles the translation
between a Python [http://www.python.org] sequence object and the buffer.

“input_c_buffer” transformer takes as first argument name or index of the
“buffer” argument. The argument should have “array” or “pointer” type.
The second argument should be name or index of another original function argument,
which represents array size.

Example

struct file_t{
 void write(char* buffer, int size) const;
};

In order to expose write member function we need to create small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
f = mb.class_('file_t')
f.mem_fun('write').add_transformation(FT.input_c_buffer('buffer', 'size'))

What you see below is the relevant pieces of generated code:

#include "__convenience.pypp.hpp" //Py++ header file, which contains few convenience function

#include <vector>

#include <iterator>

namespace bp = boost::python;

static void write_8883fea8925bad9911e6c5a4015ed106(::file_t const & inst, boost::python::object buffer){
 int size2 = boost::python::len(buffer);
 std::vector< char > native_buffer;
 native_buffer.reserve(size2);
 pyplus_conv::ensure_uniform_sequence< char >(buffer);
 pyplus_conv::copy_sequence(buffer, std::back_inserter(native_buffer), boost::type< char >());
 inst.write(&native_buffer[0], size2);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::class_< file_t >("file_t")
 .def(
 "write"
 , (void (*)(::file_t const &,boost::python::object))(&write_8883fea8925bad9911e6c5a4015ed106)
 , (bp::arg("inst"), bp::arg("buffer")));
}

 input_static_array transformer

input_static_array transformer

Definition

“input_static_array” transformer works on native static arrays. It handles the
translation between Python [http://www.python.org] object, passed as argument that represent a sequence,
and the array. Size of array should be predefined.

“input_static_array” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer” type.
The second argument should be an integer value, which represents array size.

Example

struct vector3{

 void init(int values[3]){
 x = values[0];
 y = values[1];
 z = values[2];
 }

 int x,y,z;
};

In order to expose init member function we need to create small wrapper:
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
v3 = mb.class_('vector3')
v3.mem_fun('init').add_transformation(FT.input_static_array(0, 3))

What you see below is the relevant pieces of generated code:

#include "__convenience.pypp.hpp" //Py++ header file, which contains few convenience function

namespace bp = boost::python;

static void init_418e52f4a347efa6b7e123b96f32a73c(::ft::vector3 & inst, boost::python::object values){
 int native_values[3];
 pyplus_conv::ensure_uniform_sequence< int >(values, 3);
 pyplus_conv::copy_sequence(values, pyplus_conv::array_inserter(native_values, 3));
 inst.init(native_values);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::class_< ft::vector3 >("vector3", "documentation")
 .def("init"
 , &init_418e52f4a347efa6b7e123b96f32a73c
 , (bp::arg("inst"), bp::arg("values")))
 .def_readwrite("x", &ft::vector3::x)
 .def_readwrite("y", &ft::vector3::y)
 .def_readwrite("z", &ft::vector3::z);
}

 output transformer

output transformer

Definition

“output” transformer removes an argument from the function definition and adds
the “returned”, by the original function, value to the return statement of the
function-wrapper.

“output” transformer takes as argument name or index of the original function
argument. The argument should have “reference” type. Support for “pointer” type
will be added pretty soon.

Example

#include <string>

inline void hello_world(std::string& hw){
 hw = "hello world!";
}

Lets say that you need to expose hello_world function. As you know
std::string is mapped to Python [http://www.python.org] string, which is immutable type, so you
have to create small wrapper for the function. The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
hw = mb.mem_fun('hello_world')
hw.add_transformation(FT.output(0))

What you see below is the relevant pieces of generated code:

namespace bp = boost::python;

static boost::python::object hello_world_a3478182294a057b61508c30b1361318(){
 std::string hw2;
 ::hello_world(hw2);
 return bp::object(hw2);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::def("hello_world", &hello_world_a3478182294a057b61508c30b1361318);
 }

 from_address transformer

from_address transformer

Definition

“from_address” transformer allows integration with ctypes [https://docs.python.org/2/library/ctypes.html#module-ctypes] package.
Basically it handles the translation between size_t value, which
represents a pointer to some data and the exposed code. Thus you can
use ctypes [https://docs.python.org/2/library/ctypes.html#module-ctypes] package to create the data and than pass it to the
Boost.Python [http://www.boost.org/libs/python/doc/index.html] exposed function.

“from_address” transformer takes as first argument name or index of the
“data” argument. The argument should have “reference” or “pointer” type.

Example

unsigned long
sum_matrix(unsigned int* matrix, unsigned int rows, unsigned int columns){
 if(!matrix){
 throw std::runtime_error("matrix is null");
 }
 unsigned long result = 0;
 for(unsigned int r = 0; r < rows; ++r){
 for(unsigned int c = 0; c < columns; ++c){
 result += *matrix;
 ++matrix;
 }
 }
 return result;
}

In order to expose sum_matrix function we need to create a small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
mb.free_function('sum_matrix').add_transformation(FT.from_address(0))

What you see below is the relevant pieces of generated code:

static boost::python::object sum_matrix_515b62fca9176ae4fffaf5fb118855dc(unsigned int matrix, unsigned int rows, unsigned int columns){
 long unsigned int result = ::sum_matrix(reinterpret_cast< unsigned int * >(matrix), rows, columns);
 return bp::object(result);
}

BOOST_PYTHON_MODULE(...){
 { //::sum_matrix

 typedef boost::python::object (*sum_matrix_function_type)(unsigned int,unsigned int,unsigned int);

 bp::def(
 "sum_matrix"
 , sum_matrix_function_type(&sum_matrix_515b62fca9176ae4fffaf5fb118855dc)
 , (bp::arg("matrix"), bp::arg("rows"), bp::arg("columns"))
 , "documentation");
 }
}

And now the Python usage example:

import ctypes
import mymodule

rows = 10
columns = 7
matrix_type = ctypes.c_uint * columns * rows
sum = 0
counter = 0
matrix = matrix_type()
for r in range(rows):
 for c in range(columns):
 matrix[r][c] = counter
 sum += counter
 counter += 1
result = module.sum_matrix(ctypes.addressof(matrix), rows, columns)

 transfer_ownership transformer

transfer_ownership transformer

Definition

“transfer_ownership” transformer changes type of the function argument, from
T* to std::auto_ptr<T>. This transformer was born to provide the answer
to How can I wrap a function which needs to take ownership of a raw pointer? [http://boost.org/libs/python/doc/v2/faq.html#ownership]
FAQ.

“transfer_ownership” transformer takes one argument, name or index of the
original function argument. The argument type should be “pointer”.

New in version greater than 0.8.5.

Example

struct resource_t{...};

void do_smth(resource_t* r){
 ...
}

Lets say that you need to expose “do_smth” function. According to the FAQ, you
have to create small wrapper, which will take std::auto_ptr as an argument.
The following Py++ code does it for you:

from pygccxml import declarations
from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)

resource = mb.class_('resource_t')
resource.held_type = 'std::auto_ptr< %s >' % resource.decl_string
do_smth = mb.free_fun('do_smth')
do_smth.add_transformation(FT.transfer_ownership(0))

What you see below is the relevant pieces of generated code:

namespace bp = boost::python;

static void do_smth_4cf7cde5fca92efcdb8519f8c1a4bccd(std::auto_ptr< ::resource_t > r){
 ::do_smth(r.release());
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::def("do_smth", &do_smth_4cf7cde5fca92efcdb8519f8c1a4bccd, (bp::arg("r")));
}

 input transformer

input transformer

Definition

“input” transformer removes a “reference” type from the function argument.

“input” transformer takes as argument name or index of the original function
argument. The argument should have “reference” type. Support for “pointer” type
will be added pretty soon.

Example

#include <string>

inline void hello_world(std::string& hw){
 hw = "hello world!";
}

Lets say that you need to expose hello_world function. As you know
std::string is mapped to Python [http://www.python.org] string, which is immutable type, so you
have to create small wrapper for the function. The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
hw = mb.mem_fun('hello_world')
hw.add_transformation(FT.input(0))

What you see below is the relevant pieces of generated code:

namespace bp = boost::python;

static void hello_world_a3478182294a057b61508c30b1361318(::std::string hw){
 ::hello_world(hw);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::def("hello_world", &hello_world_a3478182294a057b61508c30b1361318);
}

 inout_static_array transformer

inout_static_array transformer

Definition

inout_static_array transformer is a combination of input
and output transformers.
It allows to call a C++ function, which takes an array using Python list class

“inout_static_array” transformer takes as first argument name or index of the
original function argument. The argument should have “array” or “pointer” type.
The second argument specifies the array size.

Example

int sum_and_fill(int v[3], int value){
 int result = v[0] + v[1] + v[2];
 v[0] = value;
 v[1] = value;
 v[2] = value;
 return result;
}

In order to expose sum_and_fill function we need to create a small wrapper.
The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
sum_and_fill = mb.free_fun('sum_and_fill')
sum_and_fill.add_transformation(ft.inout_static_array('v', 3))

What you see below is the relevant pieces of generated code:

static boost::python::tuple sum_and_fill_2dd285a3344dbf7d71ffb7c78dd614c5(boost::python::object v, int value){
 int native_v[3];
 boost::python::list py_v;
 pyplus_conv::ensure_uniform_sequence< int >(v, 3);
 pyplus_conv::copy_sequence(v, pyplus_conv::array_inserter(native_v, 3));
 int result = ::sum_and_fill(native_v, value);
 pyplus_conv::copy_container(native_v, native_v + 3, pyplus_conv::list_inserter(py_v));
 return bp::make_tuple(result, py_v);
}

BOOST_PYTHON_MODULE(ft_inout_static_array){
 { //::ft::sum_and_fill

 typedef boost::python::tuple (*sum_and_fill_function_type)(boost::python::object,int);

 bp::def(
 "sum_and_fill"
 , sum_and_fill_function_type(&sum_and_fill_2dd285a3344dbf7d71ffb7c78dd614c5)
 , (bp::arg("v"), bp::arg("value")));
 }
}

 modify_type transformer

modify_type transformer

Definition

“modify_type” transformer changes type of the function argument.

“modify_type” transformer takes two arguments:

	name or index of the original function argument

	a callable, which takes as argument reference to type and returns new type

New in version greater than 0.8.5.

Pay attention!

If implicit conversion between new type and the old one does not exist
“reinterpret_cast” will be used.

Example

#include <string>

inline void hello_world(std::string& hw){
 hw = "hello world!";
}

Lets say that you need to expose hello_world function. As you know
std::string is mapped to Python [http://www.python.org] string, which is immutable type, so you
have to create small wrapper for the function. The following Py++ code does it for you:

from pygccxml import declarations
from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
hw = mb.mem_fun('hello_world')
hw.add_transformation(FT.modify_type(0, declarations.remove_reference))

What you see below is the relevant pieces of generated code:

namespace bp = boost::python;

static void hello_world_a3478182294a057b61508c30b1361318(::std::string hw){
 ::hello_world(hw);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::def("hello_world", &hello_world_a3478182294a057b61508c30b1361318);
}

 inout transformer

inout transformer

Definition

inout transformer is a combination of input and output transformers.
It removes a “reference” type from the function argument and then adds the
“returned”, by the original function, value to the return statement of the
function-wrapper.

inout transformer takes as argument name or index of the original function
argument. The argument should have “reference” type. Support for “pointer” type
will be added pretty soon.

Example

#include <string>

inline void hello_world(std::string& hw){
 hw = "hello world!";
}

Lets say that you need to expose hello_world function. As you know
std::string is mapped to Python [http://www.python.org] string, which is immutable type, so you
have to create small wrapper for the function. The following Py++ code does it for you:

from pyplusplus import module_builder
from pyplusplus import function_transformers as FT

mb = module_builder.module_builder_t(...)
hw = mb.mem_fun('hello_world')
hw.add_transformation(FT.inout(0))

What you see below is the relevant pieces of generated code:

namespace bp = boost::python;

static boost::python::object hello_world_a3478182294a057b61508c30b1361318(::std::string hw){
 ::hello_world(hw);
 return bp::object(hw);
}

BOOST_PYTHON_MODULE(...){
 ...
 bp::def("hello_world", &hello_world_a3478182294a057b61508c30b1361318);
}

 Terminology

Terminology

Function transformation

Py++ sub-system\framework, which allows you to create function wrappers
and to keep smile.

The operation of changing one function into another in accordance with some
rules. Especially: a change of return type and\or arguments and their mapping
to the original ones.

Function wrapper (or just wrapper)

C++ function, which calls some other function.

Immutable type

An instance of this type could not be modified after construction

Transformer

An object that applies predefined set of rules on a function, during
function-wrapper construction process.

Function alias (or just alias)

Name under which Python [http://www.python.org] users see the exposed function

 C++ union

C++ union

Introduction

Boost.Python [http://www.boost.org/libs/python/doc/index.html] does not help you to expose a variable, which has a union type.
In this document, I am going to show you a complete example how to get access
to the data, stored in the variable.

Py++ will not expose a union - it is impossible using Boost.Python [http://www.boost.org/libs/python/doc/index.html],
instead it will expose the address of the variable and the rest is done from the
Python [http://www.python.org] using ctypes [http://docs.python.org/lib/module-ctypes.html] package.

Example

For this example I am going to use the following code:

struct data_t{
 union actual_data_t{
 int i;
 double d;
 };
 actual_data_t data;
};

As in many other cases, Py++ does the job automatically:

mb = module_builder_t(...)
mb.class_('data_t').include()

no special code, to achieve the desired result, was written.

The generated code is boring, so I will skip it and will continue to the usage
example:

import ctypes
from <<<your module>>> import data_t

#lets define our union
class actual_data_t(ctypes.Union):
 fields = [("i", ctypes.c_int), ('d', ctypes.c_double)]

obj = data_t()
actual_data = actual_data_t.from_address(obj.data)
#you can set\get data
actual_data.i = 18
prit actual_data.i
actual_data.d = 12.12
print actual_data.d

That’s all. Everything should work fine. You can add few getters and setters to
class data_t, so you could verify the results. I did this for a tester, that
checks this functionality.

 ctypes integration

ctypes integration

Introduction

Boost.Python [http://www.boost.org/libs/python/doc/index.html] is really a very powerful library, but if you are working
with code written in plain “C” - you’ve got a problem. You have to create
wrappers for almost every function or variable.

In general, if you want to work with plain “C” code from Python [http://www.python.org]
you don’t have to create any wrapper - you can use ctypes [http://docs.python.org/lib/module-ctypes.html] package.

About ctypes

ctypes [http://docs.python.org/lib/module-ctypes.html] is a foreign function library for Python. It provides C
compatible data types, and allows to call functions in dlls/shared
libraries. It can be used to wrap these libraries in pure Python.

The idea

The idea behind “ctypes integration” functionality is really simple: you
configure Py++ to expose address of the variable\return value, and than you
you use ctypes [http://docs.python.org/lib/module-ctypes.html] from_address [http://docs.python.org/lib/ctypes-data-types.html] functionality to access and modify the data.

Obviously, this approach has pros and cons:

	cons - it could be very dangerous - you can corrupt your application memory

	cons - managing memory is not something a typical Python [http://www.python.org] user get used to.
It is too “low level”.

	pros - you don’t need to create wrapper in C++

	pros - a Python user has access to the data

	pros - compilation time is smaller

	pros - you still can create wrapper, but using Python [http://www.python.org]

In my opinion, the better way to go is to “mix”:

	expose your native code using Boost.Python [http://www.boost.org/libs/python/doc/index.html] and “ctypes integration”
functionality - it is easy and cheap

	use ctypes [http://docs.python.org/lib/module-ctypes.html] module to access your data

	create high level API in Python: the wrappers, which will ensure the
constraints and will provide more “natural” interface

Implemented functionality

Py++ is able to

	expose global and member variable address

	expose “this” pointer value

	expose a class “sizeof”

	expose variable, which has a union type

	return address of return value as integer - new call policy was created

ctypes integration contents

Future directions

The functionality is going to be developed father and I intend to add
the following features:

	to port this functionality to 64bit systems

	to add ability to expose “C” functions without using Boost.Python [http://www.boost.org/libs/python/doc/index.html].

 this & sizeof

this & sizeof

The purpose

Py++ can expose a class sizeof and this pointer value to Python [http://www.python.org].
I created this functionality without special purpose in mind.

Example

mb = module_builder_t(...)
cls = mb.class_(<<<your class>>>)
cls.expose_this = True
cls.expose_sizeof = True

The Python [http://www.python.org] class will contain two properties this and sizeof. The usage
is pretty simple:

import ctypes
from <<<your module>>> import <<<your class>>> as data_t

d = data_t()
print d.this
print d.sizeof

Warning: I hope you know what you are doing, otherwise don’t blame me :-)

 Variables

Variables

expose_address

variable_t declarations have got new property expose_address. If you set
it value to True, Py++ will register new property with the same name, but
the type of it will be unsigned int and the value is address of the variable.

Py++ will take care and generate the right code for global, static and member
variables.

Show me the code

Lets say you have the following C++ code:

struct bytes_t{
 bytes_t(){
 data = new int[5];
 for(int i=0; i<5; i++){
 data[i] = i;
 }
 }
 ...
 int* data;
 static int* x;
};

//somewhere in a cpp file
int* bytes_t::x = new int(1997);

In order to get access to the bytes_t::data and bytes_t::x you
have to turn on expose_address property to True:

mb = module_builder_t(...)
bytes = mb.class_('bytes_t')
bytes.vars().expose_address = True

Py++ will generate code, which will expose the address of the variables.

and now it is a time to show some ctypes [http://docs.python.org/lib/module-ctypes.html] magic:

import ctypes
import your_module as m

bytes = m.bytes_t()

data_type = ctypes.POINTER(ctypes.c_int)
data = data_type.from_address(bytes.data)
for j in range(5):
 print '%d : %d' % (j, data[j])

data_type = ctypes.POINTER(ctypes.c_int)
data = data_type.from_address(m.bytes_t.x)
print x.contents.value

 Best practices

Best practices

Introduction

Py++ has reach interface and a lot of functionality. Sometimes reach
interface helps, but sometimes it can confuse. This document will describe how
effectively to use Py++.

Big projects

Definition

First of all, let me to define “big project”. “Big project” is a project with
few hundred of header files. Py++ was born to create Python [http://www.python.org] bindings
for such projects. If you take a look here you will find few such projects.

Tips

	Create one header file, which will include all project header files.

Doing it this way makes it so GCC-XML [http://www.gccxml.org] is only called once and it reduces the
overhead that would occur if you pass GCC-XML [http://www.gccxml.org] all the files individually.
Namely GCC-XML [http://www.gccxml.org] would have to run hundreds of times and each call would
actually end up including quite a bit of common code anyway. This way takes a
GCC-XML [http://www.gccxml.org] processing time from multiple hours with gigabytes of caches to a
couple minutes with a reasonable cache size.

You can read more about different caches supported by pygccxml
here.
module_builder_t.__init__ method takes reference to an instance of cache
class or None:

from module_builder import *
mb = module_builder_t(..., cache=file_cache_t(<<<path to project cache file>>>), ...)

	Single header file, will also improve performance compiling the generated bindings.

When Py++ generated the bindings, you have a lot of .cpp files to
compile. The project you are working on is big. I am sure it takes a lot of
time to compile projects that depend on it. Generated code also depend on it,
more over this code contains a lot of template instantiations. So it could
take a great deal of time to compile it. Allen Bierbaum investigated this
problem. He found out that most of the time is really spent processing all the
headers, templates, macros from the project and from the boost library. So he
come to conclusion, that in order to improve compilation speed, user should
be able to control(to be able to generate) precompiled header file. He
implemented an initial version of the functionality. After small discussion,
we agreed on the following interface:

class module_builder_t(...):
 ...
 def split_module(self, directory_path, huge_classes=None, precompiled_header=None):
 ...

precompiled_header argument could be None or string, that contains
name of precompiled header file, which will be created in the directory.
Py++ will add to it header files from Boost.Python [http://www.boost.org/libs/python/doc/index.html] library and
your header files.

What is huge_classes argument for? huge_classes could be None or
list of references to class declarations. It is there to provide a solution to
this error [http://boost.org/libs/python/doc/v2/faq.html#c1204]. Py++ will automatically split generated code for the
huge classes to few files:

mb = module_builder_t(...)
...
my_big_class = mb.class_(my_big_class)
mb.split_module(..., huge_classes=[my_big_class], ...)

	Caveats

Consider the following file layout:

boost/
 date_time/
 ptime.hpp
 time_duration.hpp
 date_time.hpp //main header, which include all other header files

Py++ currently does not handle relative paths as input very well, so it is
recommended that you use “os.path.abspath()” to transform the header file to
be processed into an absolute path:

#the following code will expose nothing
mb = module_builder(['date_time/date_time.hpp'], ...)

#while this one will work as expected
import os
mb = module_builder([os.path.abspath('date_time/date_time.hpp')], ...)

	Keep the declaration tree small.

When parsing the header files to build the declaration tree, there will also
be the occasional “junk” declaration inside the tree that is not relevant to
the bindings you want to generate. These extra declarations come from header
files that were included somewhere in the header files that you were actually
parsing (e.g. if that library uses the STL or OpenGL or other system headers
then the final declaration tree will contain those declarations, too).
It can happen that the majority of declarations in your declaration tree are
such “junk” declarations that are not required for generating your bindings
and that just slow down the generation process (reading the declaration cache
and doing queries will take longer).

To speed up your generation process you might want to consider making the
declaration tree as small as possible and only store those declarations that
somehow have an influence on the bindings. Ideally, this is done as early
as possible and luckily gccxml provides an option that allows you to reduce
the number of declarations that it will store in the output XML file. You can
specify one or more declarations using the -fxml-start option and only
those sub-tree starting at the specified declarations will be written. For
example, if you specify the name of a particular class, only this class
and all its members will get written. Or if your project already uses
a dedicated namespace you can simply use this namespace as a starting point
and all declarations stemming from system headers will be ignored (except
for those declarations that are actually used within your library).

In the pygccxml package you can set the value for the -fxml-start
option using the start_with_declarations attribute of the
pygccxml.parser.config_t object that you are passing to the parser.

	Use Py++ repository of generated files md5 sum.

Py++ is able to store md5 sum of generated files in a file. Next time you
will generate code, Py++ will compare generated file content against the sum,
instead of loading the content of the previously generated file from the disk
and comparing against it.

mb = module_builder_t(...)
...
my_big_class = mb.class_(my_big_class)
mb.split_module(..., use_files_sum_repository=True)

Py++ will generate file named “<your module name>.md5.sum” in the directory
it will generate all the files.

Enabling this functionality should give you 10-15% of performance boost.

	Caveats

If you changed manually some of the files - don’t forget to delete the relevant
line from “md5.sum” file. You can also delete the whole file. If the file is
missing, Py++ will use old plain method of comparing content of the files.
It will not re-write “unchanged” files and you will not be forced to recompile
the whole project.

 How to register an exception translation?

How to register an exception translation?

Introduction

Boost.Python provides functionality to translate any C++ exception to a Python one.
Py++ provides a convenient API to do this.

By the way, be sure to take a look on “troubleshooting guide - exceptions”.
The guide will introduces a complete solution for handling exceptions within
Python scripts.

Solution

Boost.Python exception translator documentation [http://boost.org/libs/python/doc/v2/exception_translator.html] contains a complete explanation
what should be done. I will use that example, to show how it could be done with
Py++:

from pyplusplus import module_builder_t

mb = module_builder_t(...)
my_exception = mb.class_('my_exception')

translate_code = 'PyErr_SetString(PyExc_RuntimeError, exc.what();'
my_exception.exception_translation_code = translate_code

That’s all, really. Py++ will generate for you the translate function
definition and than will register it.

I think this is a most popular use case - translate a C++ exception to a string
and than to create an instance of Python built-in exception. That is exactly why
Py++ provides additional API:

mb = module_builder_t(...)
my_exception = mb.class_('my_exception')

my_exception.translate_exception_to_string('PyExc_RuntimeError', 'exc.what()')

The first argument of translate_exception_to_string method is exception type,
The second one is a string - code that converts your exception to const char*.

As you see, it is really simple to add exception translation to your project.

One more point, in both pieces of code I used “exc” as the name of my_exception
class instance. This is a predefined name. I am not going to change it without
any good reason, any time soon :-).

 How to deal with templates?

How to deal with templates?

Introduction

I would like to introduce the following piece of code. I am going to use it for most exlanations.

// file point.h
template< class T>
struct point_t{
 T x, y;
};

template <class T>
double distance(const point_t<T>& point){
 return sqrt(point.x * point.x + point.y*point.y);
}

struct environment_t{
 ...
 template< class T>
 T get_value(const std::string& name);
 ...
};

Template instantiation

First of all you should understand, that you can not export template itself, but
only its instantiations.

You can instantiate template class using operator sizeof:

sizeof(point_t<int>);

In order to instantiate a function you have to call it:

void instantiate(){
 double x = distance(point_t<t>());

 environment_t env;
 std::string path = env.get_value< std::string >("PATH");
 int version = env.get_value< int >("VERSION");
}

You should put that code in some header file, parsed by GCC-XML.

“Dynamic” instantiation

If you have a template class, which should be instantiated with many types, you
can create a small code generator, which will “instantiate the class”. It is
pretty easy to blend together the generated code and the existing one:

from module_builder import module_builder_t, create_text_fc

def generate_instantiations_string(...):
 ...

code = generate_instantiations_string(...)

mb = module_builder_t([create_text_fc(code), <<<other file names>>>], ...)
...

Function create_text_fc allows you to extract declarations from the string,
which contains valid C++ code. It creates temporal header file and compiles it.

Functions templated on return type

environment_t env;
std::string path = env.get_value< std::string >("PATH");
int version = env.get_value< int >("VERSION");

GCC-XML [http://www.gccxml.org] provides information for both instantiations:

	get_value<int>

	get_value< std::string >

But, in this case there is a catch: the name of both functions is “get_value”.
The only difference is “return type”.

In this situation, Py++ will generate code that contains errors. If your are
lucky, it depends on the compiler you use, the generated code will not compile.
Otherwise, you will discover the errors while testing the bindings.

Generated code:

bp::class_< environment_t >("environment_t")
 ...
 .def("get_value"
 , (int (::environment_t::*)(::std::string const &))(&::environment_t::get_value))
 .def("get_value"
 , (::std::string (::environment_t::*)(::std::string const &))(&::environment_t::get_value));

The correct code:

bp::class_< environment_t >("environment_t")
 .def("get_value"
 , (int (::environment_t::*)(::std::string const &))(&::environment_t::get_value< int >))
 //--^^^^^^^^^^^^^^^^
 .def("get_value"
 , (::std::string (::environment_t::*)(::std::string const &))(&::environment_t::get_value< std::string >));
 //--^^^^^^^^^^^^^^^^^^^^^^^^

The perfect one:

bp::class_< environment_t >("environment_t")
 ...
 .def("get_value", &::environment_t::get_value< int >)
 .def("get_value", &::environment_t::get_value< std::string >);

Work-around

Py++ contains a work-around to the problem:

mb = module_builder_t(..., optimize_queries=False, ...)
environment = mb.class_("environment_t")
for f in environment.member_functions("get_value"):
 #set the function alias
 f.alias = f.name + "_" + f.return_type.decl_string
 #correct function name
 f.name = f.demangled_name
#you still want the queries to run fast
mb.run_query_optimizer()

Before you read the rest of the solution, you should understand what is
“name mangling” means. If you don’t, consider reading about it on Wikipedia [http://en.wikipedia.org/wiki/Name_mangling] .

The solution is pretty simple. GCC-XML [http://www.gccxml.org] reports mangled and demangled function
names. The demangled function name contains “real” function name:
get_value< used type >. You only have to instruct Py++ to use it.

Py++ does not use by default demangled function name for mainly one reason.
Demangled function name is a string that contains a lot of information. Py++
implements a parser, which extracts the only relevant one. The parser
implementation is a little bit complex and was not heavily tested. By “heavily” I
mean that I tested it on a lot of crazy use cases and on a real project, but
there is always some new use case out there. I am almost sure it will work for
you. The problem, we deal with, is rare, so by default “demangled_name”
feature is turned off.

By the way, almost the same problem exists for template classes. But, in the
classes use case Py++ uses demangled name by default.

Help wanted

I understand that the provided solutions are not perfect and that something
better and simpler should be done. Unfortunatelly the priority of this task is
low.

Allen Bierbaum has few suggestion that could improve Py++. He created a
wiki page [https://realityforge.vrsource.org/view/PyppApi/TemplateSupport], that discuss possible solutions. Your contribution is welcome too!

 Fatal error C1204: compiler limit: internal structure overflow

Fatal error C1204: compiler limit: internal structure overflow

Fatal error C1204: compiler limit: internal structure overflow

If you get this error, than the generated file is too big. You will have to split
it to few files. Well, not you but Py++, you will only have to tell it to do
that.

If you are using module_builder_t.write_module method, consider to switch
to module_builder_t.split_module.

If you are using split_module, but still the generated code for some class
could not be compiled, because of the error, you can ask Py++ to split the
code generated for class to be split to few source files.

For more information, considre to read the splitting generated code to files
document.

 Hints

Hints

Class template instantiation alias

Py++ has nice feature. If you define typedef for instantiated class
template, than Py++ will use it as a Python [http://www.python.org] class name.

For example:

#include <vector>
typedef std::vector< int > numbers;
numbers generate_n(){
 ...
}

Py++ will use “numbers” as Python class name:

using boost::python;
class_< std::vector< int > >("numbers")
 ...
;

Py++ will pick up the alias, only in case the class has single “typedef”.

pyplusplus::aliases namespace

The previous approach is “implicit” - Py++ does something behind the scene.
Recently (version 0.8.6), another approach was introduced:

#include <vector>

namespace pyplusplus{ namespace aliases{
//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 typedef std::vector< int > numbers;

} } //pyplusplus::aliases

The idea is that you create namespace with a special name - pyplusplus::aliases
and Py++ automatically picks the class aliases from it. In case you accidentally
introduced two or more different aliases to the same class, it will pick the
longest one and print a warning. Other advantages of the approach:

	you are not forced to learn new API

	you continue to use your favorite editor and familiar language

 Absolute\relative paths

Absolute\relative paths

Absolute\relative paths

Consider the following layout:

boost/
 date_time/
 ptime.hpp
 time_duration.hpp
 date_time.hpp

date_time.hpp is the main header file, which should be parsed.

Py++ does not handle relative paths, as input, well. It tries, but there are uses
cases it fails. In these cases it generates empty module - nothing is exposed:

mb = module_builder(['date_time/date_time.hpp'], ...)
mb.split_module(...)

I recommend you to use absolute paths instead of relative ones:

import os
mb = module_builder([os.path.abspath('date_time/date_time.hpp')], ...)
mb.split_module(...)

and Py++ will expose all declarations found in the date_time.hpp file and
other files from the same directory.

 How to ... ?

How to ... ?

 Generated file name is too long

Generated file name is too long

Generated file name is too long

There are use cases, when Py++ generated file name is too long. In some cases
the code generation process even fails because of this.

This is just a symptom of the problem. This happens when you expose template
instantiated classes and you did not specify the class alias. Py++ uses a class
alias as a basis for the file name.

Let me explain.

template < class T>
struct holder{ ... };

As you know, a class name in Python [http://www.python.org] has few constraints [http://www.python.org/doc/2.5.2/ref/identifiers.html] and Py++ is aware
of them. “holder< int >” is illegal class name, so Py++ will generate another
one - “holder_less_int_greater_”. Pretty ugly and even long, but at least it is
legal one.

It is pretty simple to change the alias of the class, or any other declaration:

from pyplusplus import module_builder

mb = module_builder_t(...)
holder = mb.class_('holder< int >')
holder.alias = 'IntHolder'
#the following line has same effect as the previous one:
holder.rename('IntHolder')

Another solution to the problem, is to use different strategy to split the generated
code to files. You can read more about splitting files here.

 pygccxml and Py++ GUI

pygccxml and Py++ GUI

[image: ../../_images/pyplusplus_gui.png]

 module_builder_t usage example

module_builder_t usage example

#! /usr/bin/python
Copyright 2004-2008 Roman Yakovenko.
Distributed under the Boost Software License, Version 1.0. (See
accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

import os
import sys
sys.path.append('../../../..')
from environment import gccxml
from pyplusplus import module_builder

mb = module_builder.module_builder_t(
 files=['hello_world.hpp']
 , gccxml_path=gccxml.executable) #path to gccxml executable

#rename enum Color to color
Color = mb.enum('color')
Color.rename('Color')

#Set call policies to animal::genealogical_tree_ref
animal = mb.class_('animal')
genealogical_tree_ref = animal.member_function('genealogical_tree_ref', recursive=False)
genealogical_tree_ref.call_policies = module_builder.call_policies.return_internal_reference()

#next code has same effect
genealogical_tree_ref = mb.member_function('genealogical_tree_ref')
genealogical_tree_ref.call_policies = module_builder.call_policies.return_internal_reference()

#I want to exclude all classes with name starts with impl
impl_classes = mb.classes(lambda decl: decl.name.startswith('impl'))
impl_classes.exclude()

#I want to exclude all functions that returns pointer to int
ptr_to_int = mb.free_functions(return_type='int *')
ptr_to_int.exclude()

#I can print declarations to see what is going on
mb.print_declarations()

#I can print single declaration
mb.print_declarations(animal)

#Now it is the time to give a name to our module
mb.build_code_creator(module_name='hw')

#It is common requirement in software world - each file should have license
mb.code_creator.license = '//Boost Software License(http://boost.org/more/license_info.html)'

#I don't want absolute includes within code
mb.code_creator.user_defined_directories.append(os.path.abspath('.'))

#And finally we can write code to the disk
mb.write_module(os.path.join(os.path.abspath('.'), 'generated.cpp'))

 C++ header file

C++ header file

// Copyright 2004-2006 Roman Yakovenko.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef __hello_world_hpp__
#define __hello_world_hpp__

#include <string>

//I want to rename color to Color
enum color{ red, green, blue };

struct genealogical_tree{/*...*/};

struct animal{

 explicit animal(const std::string& name="")
 : m_name(name)
 {}

 //I need to set call policies to the function
 genealogical_tree& genealogical_tree_ref()
 { return m_genealogical_tree; }

 std::string name() const
 { return m_name; }

private:
 std::string m_name;
 genealogical_tree m_genealogical_tree;
};

//I want to exclude next declarations:
struct impl1{};
struct impl2{};

inline int* get_int_ptr(){ return 0;}
inline int* get_int_ptr(int){ return 0;}
inline int* get_int_ptr(double){ return 0;}

#endif//__hello_world_hpp__

 Generated code

Generated code

// This file has been generated by Py++.

//Boost Software License(http://boost.org/more/license_info.html)

#include "boost/python.hpp"

#include "hello_world.hpp"

namespace bp = boost::python;

BOOST_PYTHON_MODULE(hw){
 bp::enum_< color>("Color")
 .value("red", red)
 .value("green", green)
 .value("blue", blue)
 .export_values()
 ;

 bp::class_< animal, boost::noncopyable >("animal", bp::init< bp::optional< std::string const & > >((bp::arg("name")="")))
 .def(
 "genealogical_tree_ref"
 , &::animal::genealogical_tree_ref
 , bp::return_internal_reference< 1, bp::default_call_policies >())
 .def(
 "name"
 , &::animal::name);

 bp::implicitly_convertible< std::string const &, animal >();

 bp::class_< genealogical_tree >("genealogical_tree");
}

 Tutorials

Tutorials

What is Py++?

Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

Preamble

I guess you decided to try Py++ API. Good! Lets start. First of all,
please take a look on two files:

	hello_world.hpp - C++ source code, that we want to export to Python

	generate_code.py - Python code, that uses Py++ to export
declarations from the source file

module_builder_t

Py++ is built from a few packages, but there is only one package, you
should really to be familiar with - module_builder. This package is some kind
of facade to low level API. It provides simple and intuitive API. The main
class within this package is module_builder_t. The instance of this class will
guide you through the whole process.

module_builder_t.__init__

First of all, what is needed in order to create an instance of the class?

module_builder_t.__init__ methods take few arguments:

	files - list of all C++ source files, that declarations from them, you want
to expose. This is the only required parameter.

	gccxml_path - path to GCC-XML [http://www.gccxml.org] binary. If you don’t supply this argument
pygccxml will look for it using PATH environment variable.

There are some other arguments:

	additional include directories

	[un]defined symbols (macros)

	intermediate results cache strategy configuration

	...

Parsing of source files is done within this method. Post condition of this
method is that all declarations has been successfully extracted from the sources
files and you can start work on them.

Declarations customization

There are always declarations, which should not be exported or could not be
exported without human invocation. As you already saw from example, Py++ provides
simple and powerful declarations query interface. By default, only the declarations
that belongs to the files, you have asked to parse, and to the files, that lies
in the same directories as parsed files, will be exported:

project_root/
 details/
 impl_a.h
 impl_b.h
 include/
 a.h //includes impl_a.h
 b.h //includes impl_b.h
 all.h //includes a.h and b.h
mb = module_builder(['all.h'])

All declarations that belongs to include directory will be signed as included
to exporting. All other declarations will be ignored.

You can change the set of exported declarations by calling exclude or
include methods, on declarations.

Basically, this is a second step of code generation process. During this step
you could/should/may change Py++ defaults:

	to rename exposed declarations

	to include/exclude declarations

	to set call policies

	...

I think it is critical for beginners to see what is going on, right?
module_builder_t class has print_declarations method. You can print whole
declarations tree or some specific declaration. You will find a lot of useful
information there:

	whether the declaration is include\excluded

	call policies

	warnings, Py++ warns you about the declarations that have some “problems”

	...

Very convenient, very useful.

module_builder_t.build_code_creator

Now it is a time to create module code creator. Do you remember, in introduction
to Py++, I told you that before writing code to disc, Py++ will create some
kind of AST [http://en.wikipedia.org/wiki/Abstract_syntax_tree]. Well calling module_builder_t.build_code_creator function does this.
Right now, the only important argument to the function is module_name.
Self explained, is it?

What is the main value of code creators? Code creators allow you to modify
code before it has been written to disk. For example one common requirement for
open source projects it to have license text within every source file. You can
do it with one line of code only:

mb.code_creator.license = <<<your license text>>>

After you call this function, I recommend you not to change declarations
configuration. In most cases the change will take effect, in some cases it will
not!

This tutorial is not cover code creators and how you should work with them.
I will write another tutorial.

module_builder_t.write_module

You have almost created your module. The last things left is to write module
code to file(s). You can do it with

	module_builder_t.write_module - you should provide file name, the code
will be written in.

	module_builder_t.split_module - you should provide directory name.
For big projects it is a must to minimize compilation time. So Py++
splits your module source code to different files within the directory.

Files

That’s all. I hope you enjoyed.

 pyplusplus.function_transformers package

pyplusplus.function_transformers package

Overview

Modules

controllers

function_transformation

templates

transformer

transformers

 pyplusplus.decl_wrappers package

pyplusplus.decl_wrappers package

Overview

Modules

algorithm

calldef_wrapper

call_policies

class_wrapper

decl_wrapper

decl_wrapper_printer

doc_extractor

enumeration_wrapper

indexing_suite1

indexing_suite2

namespace_wrapper

properties

python_traits

scopedef_wrapper

typedef_wrapper

user_text

variable_wrapper

 pyplusplus.code_creators package

pyplusplus.code_creators package

Overview

Modules

algorithm

array_1_registrator

bookmark

calldef

calldef_ctypes

calldef_transformed

calldef_utils

class_declaration

code_creator

compound

ctypes_formatter

ctypes_integration_creators

ctypes_module

custom

declaration_based

embedded_code_repository

enum

exception_translator

global_variable

include

include_directories

indexing_suites

instruction

library_reference

license

member_variable

module

module_body

namespace

name_mappings

opaque_type_registrator

properties

registration_based

scoped

smart_pointers

target_configuration

typedef_as_pyvar

unnamed_enum

 pyplusplus.messages package

pyplusplus.messages package

Overview

Modules

warnings

 pyplusplus.module_builder package

pyplusplus.module_builder package

Overview

Modules

boost_python_builder

ctypes_builder

ctypes_decls_dependencies

module_builder

 pyplusplus.creators_factory package

pyplusplus.creators_factory package

Overview

Modules

bpcreator

call_policies_resolver

creators_wizard

ctypes_creator

dependencies_manager

fake_constructors_manager

opaque_types_manager

sort_algorithms

types_database

 pyplusplus.code_repository package

pyplusplus.code_repository package

Overview

sub-packages

Modules

ctypes_integration

ctypes_utils

gil_guard

named_tuple

 pyplusplus.file_writers package

pyplusplus.file_writers package

Overview

Modules

balanced_files

class_multiple_files

md5sum_repository

multiple_files

single_file

writer

 pyplusplus.utils package

pyplusplus.utils package

Overview

Modules

 pyplusplus._logging_ package

pyplusplus._logging_ package

Overview

Modules

multi_line_formatter

 API

API

Py++ consists from few sub packages

 pyplusplus.code_repository.indexing_suite package

pyplusplus.code_repository.indexing_suite package

Overview

Modules

deque_header

element_proxy_header

element_proxy_traits_header

int_slice_helper_header

iterator_range_header

iterator_traits_header

list_header

map_header

methods_header

multimap_header

pair_header

proxy_iterator_header

python_iterator_header

set_header

shared_proxy_impl_header

slice_handler_header

slice_header

suite_utils_header

value_traits_header

vector_header

visitor_header

workaround_header

algorithms_header

container_proxy_header

container_suite_header

container_traits_header

 EasyBMP example

EasyBMP example

Introduction

What is EasyBMP?

EasyBMP [http://easybmp.sourceforge.net/] is a simple, cross-platform, open source (LGPL) C++ library designed
for easily reading, writing, and modifying Windows bitmap (BMP) image files.
In this example I am referring to version 0.70.

What is Py++?

Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

Description

Py++ has been used to create Python [http://www.python.org] bindings for EasyBMP [http://easybmp.sourceforge.net/]
library. Before proceeding with this example, I should say, that I did not work
with EasyBMP [http://easybmp.sourceforge.net/] at all. I have seen it’s announcement on www.freshmeat.org site
and decided to test Py++ with “real world” project. It took me 30
minutes, to create full working python version of this library. These examples
consist few files and directories:

	environment.py - contains different environment settings

	generate_code.py - contains source code needed to generate
Boost.Python [http://www.boost.org/libs/python/doc/index.html] bindings for EasyBMP [http://easybmp.sourceforge.net/] library.

	sconstruct - build configuration file

	generated - directory that contains all generated code and only it

	unittests - directory that contains grey scale example from tutorials.
C++

I run grey scale example on

[image: Py++ logo]

and this is what I have got:

[image: Py++ logo]

Download

http://sourceforge.net/project/showfiles.php?group_id=118209.

 boost libraries

boost libraries

Introduction

What is the Py++?

Py++11 is an object-oriented framework for creating a code generator for the
pybind11 [http://pybind11.readthedocs.org/en/latest/] library and the
ctypes [http://docs.python.org/library/ctypes.html] package.

What is the Boost?

Boost [http://www.boost.org] is repository of free peer-reviewed portable C++ source libraries.

Boost [http://www.boost.org] works on almost any modern operating system, including UNIX and Windows
variants.

Abstract

Boost [http://www.boost.org] libraries have good interface, documentation and unit tests.
A lot of people contributed their knowledge and experience to those libraries.
Ten Boost [http://www.boost.org] libraries are already included in the C++ Standards Committee’s [http://www.open-std.org/jtc1/sc22/wg21/]
Library Technical Report (TR1 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf]) as a step toward becoming part of a future
C++ Standard. More Boost libraries are proposed for the upcoming TR2 [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1810.html].

I believe that Py++ is ready for hard work. It is quick, stable and
flexible. Py++ is a new tool and in my opinion I should prove its
usefulness. Using Py++, I exposed the following libraries to Python:

	Boost.Date_Time [http://boost.org/doc/html/date_time.html]

	Boost.CRC [http://boost.org/libs/crc/index.html]

	Boost.Rational [http://boost.org/libs/rational/index.html]

	Boost.Random [http://boost.org/libs/random/index.html]

There are few reasons I choose to expose those libraries.

	I used those libraries at my work.

	All those libraries have:

	good documentation

	well-defined interfaces

	clear concepts

	comprehensive unit tests

	I think, that Python is missing functionality provided by Boost.Date_Time [http://boost.org/doc/html/date_time.html]
and Boost.Random [http://boost.org/libs/random/index.html] libraries.

I spent different amount of time on each library. It took me one week, to expose
the Boost.Date_Time [http://boost.org/doc/html/date_time.html] library. I added few missing features to Py++,
polished the existing ones. Most of the time I spent translating tests from C++
to Python [http://www.python.org]. It took me 3 days to expose all other libraries.

pyboost package

Documentation

Right now, pyboost package does not have documentation. In my opinion it is
fairly simple to read original documentation and “translate” it to Python.

Examples

One picture worth thousands words.

random

	C++ code: http://boost.org/libs/random/index.html

	Python code:

import time
from pyboost import boost_random

rng = boost_random.mt19937(int(time.time())) #setting initial seed
six = boost_random.uniform_int(1,6)
die = boost_random.variate_generator(rng, six)

print die()

date_time

	C++ code: http://www.boost.org/doc/html/date_time/examples/general_usage_examples.html

	Python code:

import os
from pyboost import date_time
from pyboost.date_time import gregorian
from pyboost.date_time import posix_time
from pyboost.date_time import local_time
from pyboost.date_time import to_simple_string

#Date programming

weekstart = gregorian.date(2002, date_time.Feb,1)
print 'weekstart: ', to_simple_string(weekstart)

weekend = weekstart + gregorian.weeks(1)
print 'weekend: ', to_simple_string(weekend)

today = gregorian.day_clock.local_day()
d2 = weekstart + gregorian.days(5)
if d2 >= today: #comparison operator
 pass

thisWeek = gregorian.date_period(today,d2)
if thisWeek.contains(today):
 pass

#date generator functions

d5 = gregorian.next_weekday(today, date_time.Sunday); #calculate Sunday following d4
print 'd5: ', to_simple_string(d5)

#US labor day is first Monday in Sept
first = gregorian.nth_day_of_the_week_in_month.first
labor_day = gregorian.nth_day_of_the_week_in_month(first, date_time.Monday, date_time.Sep)
#calculate a specific date for 2004 from functor
print 'labor day 2004: ', to_simple_string(labor_day.get_date(2004))

#Time programming:

d = gregorian.date(2002,date_time.Feb,1)#an arbitrary date
t1 = posix_time.ptime(d, posix_time.hours(5) + posix_time.millisec(100)); #date + time of day offset
print 't1: ', to_simple_string(t1)

t2 = t1 - posix_time.minutes(4) + posix_time.seconds(2)
print 't2: ', to_simple_string(t2)

now = posix_time.second_clock.local_time(); #use the clock
print 'now: ', to_simple_string(now)
today = now.date() #Get the date part out of the time
print 'today: ', to_simple_string(today)
tomorrow = today + gregorian.date_duration(1)
print 'tomorrow: ', to_simple_string(tomorrow)

#Local time programming:

#setup some timezones for creating and adjusting times
#first time zone uses the time zone file for regional timezone definitions
tz_db = local_time.time_zone_database()
tz_db.load_from_file(os.path.join(date_time.__path__[0], "date_time_zonespec.csv"))
nyc_tz = tz_db.time_zone_from_region("America/New_York")
#This timezone uses a posix time zone string definition to create a time zone
phx_tz = local_time.posix_time_zone("MST-07:00:00")

#local departure time in phoenix is 11 pm on April 2 2005
#Note that New York changes to daylight savings on Apr 3 at 2 am)
phx_departure = local_time.local_date_time(
 gregorian.date(2005, date_time.Apr, 2)
 , posix_time.hours(23)
 , phx_tz
 , local_time.local_date_time.NOT_DATE_TIME_ON_ERROR)

flight_length = posix_time.hours(4) + posix_time.minutes(30)
phx_arrival = phx_departure + flight_length
#convert the phx time to a nyz time
nyc_arrival = phx_arrival.local_time_in(nyc_tz, posix_time.time_duration())
print "New York arrival: ", nyc_arrival.to_string() #//2005-Apr-03 06:30:00 EDT

rational

	C++ code: http://boost.org/libs/rational/rational_example.cpp

	Python code:

import unittest
from pyboost import rational

half = rational.rational(1, 2)
one = rational.rational(1)
two = rational.rational(2)

#Some basic checks
assert half.numerator() == 1
assert half.denominator() == 2
assert float(half) == 0.5

#Arithmetic
assert half + half == one == 1
assert one - half == half
assert two * half == one == 1
assert one / half == two == 2

crc

	C++ code: http://boost.org/libs/crc/crc_example.cpp

	Python code:

import os
import sys
from pyboost import crc

if __name__ == '__main__':
 if sys.argv:
 files = sys.argv
 else:
 files = [sys.executable]

 try:
 result = crc.crc_32_type()
 for file_name in files:
 ifs = file(file_name, 'rb')
 for line in ifs:
 result.process_bytes(line)
 print hex(result.checksum()).upper()
 except Exception, error:
 sys.stderr.write("Found an exception with'%s'%s" %(str(error), os.linesep))
 sys.exit(1)

Download

http://sourceforge.net/project/showfiles.php?group_id=118209.

 Usage example/Tester

Usage example/Tester

import unittest
import custom_sptr

class py_derived_t(custom_sptr.base_i):
 def __init__(self):
 custom_sptr.base_i.__init__(self)

 def get_value(self):
 return 28

class py_double_derived_t(custom_sptr.derived_t):
 def __init__(self):
 custom_sptr.derived_t.__init__(self)

 def get_value(self):
 return 0xDD

class tester_t(unittest.TestCase):
 def __init__(self, *args):
 unittest.TestCase.__init__(self, *args)

 def __test_ref(self, inst):
 try:
 custom_sptr.ref_get_value(inst)
 self.fail('ArgumentError was not raised.')
 except Exception, error:
 self.failUnless(error.__class__.__name__ == 'ArgumentError')

 def __test_ref_fine(self, inst, val):
 self.assertEqual(custom_sptr.ref_get_value(inst), val)

 def __test_val(self, inst, val):
 self.assertEqual(custom_sptr.val_get_value(inst), val)

 def __test_const_ref(self, inst, val):
 self.assertEqual(custom_sptr.const_ref_get_value(inst), val)

 def __test_impl(self, inst, val):
 self.__test_ref(inst)
 self.__test_val(inst, val)
 self.__test_const_ref(inst, val)

 def test_derived(self):
 self.__test_impl(custom_sptr.derived_t(), 0xD)

 def test_py_derived(self):
 self.__test_impl(py_derived_t(), 28)

 def test_py_double_derived(self):
 self.__test_impl(py_double_derived_t(), 0xDD)

 def test_created_derived(self):
 self.__test_impl(custom_sptr.create_derived(), 0xD)

 def test_created_base(self):
 inst = custom_sptr.create_base()
 val = 0xD
 self.__test_ref_fine(inst, val)
 self.__test_val(inst, val)
 self.__test_const_ref(inst, val)

 def test_mem_var_access(self):
 holder = custom_sptr.buffer_holder_t()
 self.failUnless(holder.get_data().size == 0)
 self.failUnless(holder.data.size == 0)
 try:
 self.failUnless(holder.data_naive.size == 0)
 self.fail("TypeError exception was not raised.")
 except TypeError:
 pass

 def test_numeric(self):
 numeric = custom_sptr.create_numeric(21)
 self.failUnless(21 == numeric.value)
 self.failUnless(21 == custom_sptr.get_numeric_value(numeric))
 numeric = custom_sptr.numeric_t()
 self.failUnless(0 == numeric.value)
 self.failUnless(0 == custom_sptr.get_numeric_value(numeric))

def create_suite():
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(tester_t))
 return suite

def run_suite():
 unittest.TextTestRunner(verbosity=2).run(create_suite())

if __name__ == "__main__":
 run_suite()

 Build script (SCons)

Build script (SCons)

#scons build script
SharedLibrary(target=r'custom_sptr'
 , source=[r'bindings.cpp']
 , LIBS=[r"boost_python"]
 , LIBPATH=[r"/home/roman/boost_cvs/libs/python/build/bin-stage",r""]
 , CPPPATH=[r"/home/roman/boost_cvs"
 , r"/usr/include/python2.4"]
 , SHLIBPREFIX=''
 , SHLIBSUFFIX='.so'
)

 How to expose custom smart pointer?

How to expose custom smart pointer?

Introduction

There are projects, which use custom smart pointer(s). For majority of the
projects, it is not an option to switch to boost::shared_ptr. The
solution contains source code and comprehensive unit test for the problem.

Files

All files contain comments, which describe what and why was done.

Download

smart_ptrs.zip

 To be exposed C++ classes

To be exposed C++ classes

#ifndef classes_11_11_2006
#define classes_11_11_2006

#include "smart_ptr.h"

struct base_i{
public:
 virtual ~base_i() {}
 virtual int get_value() const = 0;
};

struct derived_t : base_i{
 derived_t(){}
 virtual int get_value() const{ return 0xD; }
};

// Some smart pointer classes does not have reach interface as boost ones.
// In order to provide same level of convenience, users are forced to create
// classes, which derive from smart pointer class.
struct derived_ptr_t : public smart_pointers::smart_ptr_t< derived_t >{

 derived_ptr_t()
 : smart_pointers::smart_ptr_t< derived_t >()
 {}

 explicit derived_ptr_t(derived_t* rep)
 : smart_pointers::smart_ptr_t<derived_t>(rep)
 {}

 derived_ptr_t(const derived_ptr_t& r)
 : smart_pointers::smart_ptr_t<derived_t>(r) {}

 derived_ptr_t(const smart_pointers::smart_ptr_t< base_i >& r)
 : smart_pointers::smart_ptr_t<derived_t>()
 {
 m_managed = static_cast<derived_t*>(r.get());
 m_use_count = r.use_count_ptr();
 if (m_use_count)
 {
 ++(*m_use_count);
 }
 }

 derived_ptr_t& operator=(const smart_pointers::smart_ptr_t< base_i >& r)
 {
 if (m_managed == static_cast<derived_t*>(r.get()))
 return *this;
 release();
 m_managed = static_cast<derived_t*>(r.get());
 m_use_count = r.use_count_ptr();
 if (m_use_count)
 {
 ++(*m_use_count);
 }

 return *this;
 }
};

// Few functions that will be used to test custom smart pointer functionality
// from Python.
derived_ptr_t create_derived(){
 return derived_ptr_t(new derived_t());
}

smart_pointers::smart_ptr_t< base_i > create_base(){
 return smart_pointers::smart_ptr_t< base_i >(new derived_t());
}

// Next function could be exposed, but it could not be called from Python, when
// the argument is the instance of a derived class.
//
// This is the explanation David Abrahams gave:
// Naturally; there is no instance of smart_pointers::smart_ptr_t<base_i> anywhere in the
// Python object for the reference to bind to. The rules are the same as in C++:
//
// int f(smart_pointers::smart_ptr_t<base>& x);
// smart_pointers::smart_ptr_t<derived> y;
// int z = f(y); // fails to compile

inline int
ref_get_value(smart_pointers::smart_ptr_t< base_i >& a){
 return a->get_value();
}

inline int
val_get_value(smart_pointers::smart_ptr_t< base_i > a){
 return a->get_value();
}

inline int
const_ref_get_value(const smart_pointers::smart_ptr_t< base_i >& a){
 return a->get_value();
}

struct numeric_t{
 numeric_t()
 : value(0)
 {}

 int value;
};

smart_pointers::smart_ptr_t< numeric_t > create_numeric(int value){
 smart_pointers::smart_ptr_t< numeric_t > num(new numeric_t());
 num->value = value;
 return num;
}

int get_numeric_value(smart_pointers::smart_ptr_t< numeric_t > n){
 if(n.get()){
 return n->value;
 }
 else{
 return 0;
 }
}

namespace shared_data{

// Boost.Python has small problem with user defined smart pointers and public
// member variables, exposed using def_readonly, def_readwrite functionality
// Read carefully "make_getter" documentation.
// http://boost.org/libs/python/doc/v2/data_members.html#make_getter-spec
// bindings.cpp contains solution to the problem.

struct buffer_t{
 buffer_t() : size(0) {}
 int size;
};

struct buffer_holder_t{
 buffer_holder_t()
 : data(new buffer_t())
 {}

 smart_pointers::smart_ptr_t< buffer_t > get_data(){ return data; }

 smart_pointers::smart_ptr_t< buffer_t > data;
};

}

#endif//classes_11_11_2006

 C++/Python bindings code

C++/Python bindings code

#include "boost/python.hpp"
#include "classes.hpp"

namespace bp = boost::python;

namespace smart_pointers{
 // "get_pointer" function returns pointer to the object managed by smart pointer
 // class instance

 template<class T>
 inline T * get_pointer(smart_pointers::smart_ptr_t<T> const& p){
 return p.get();
 }

 inline derived_t * get_pointer(derived_ptr_t const& p){
 return p.get();
 }
}

namespace boost{ namespace python{

 using boost::get_pointer;

 // "pointee" class tells Boost.Python the type of the object managed by smart
 // pointer class.
 // You can read more about "pointee" class here:
 // http://boost.org/libs/python/doc/v2/pointee.html

 template <class T>
 struct pointee< smart_pointers::smart_ptr_t<T> >{
 typedef T type;
 };

 template<>
 struct pointee< derived_ptr_t >{
 typedef derived_t type;
 };

} }

// "get_pointer" and "pointee" are needed, in order to allow Boost.Python to
// work with user defined smart pointer

struct base_wrapper_t : base_i, bp::wrapper< base_i > {

 base_wrapper_t()
 : base_i(), bp::wrapper< base_i >()
 {}

 virtual int get_value() const {
 bp::override func_get_value = this->get_override("get_value");
 return func_get_value();
 }

};

struct derived_wrapper_t : derived_t, bp::wrapper< derived_t > {

 derived_wrapper_t()
 : derived_t(), bp::wrapper< derived_t >()
 {}

 derived_wrapper_t(const derived_t& d)
 : derived_t(d), bp::wrapper< derived_t >()
 {}

 derived_wrapper_t(const derived_wrapper_t&)
 : derived_t(), bp::wrapper< derived_t >()
 {}

 virtual int get_value() const {
 if(bp::override func_get_value = this->get_override("get_value"))
 return func_get_value();
 else
 return derived_t::get_value();
 }

 int default_get_value() const {
 return derived_t::get_value();
 }

};

BOOST_PYTHON_MODULE(custom_sptr){
 bp::class_< base_wrapper_t
 , boost::noncopyable
 , smart_pointers::smart_ptr_t< base_wrapper_t > >("base_i")
 // -----------^^^
 // HeldType of the abstract class, which is managed by custom smart pointer
 // should be smart_pointers::smart_ptr_t< base_wrapper_t >.
 .def("get_value", bp::pure_virtual(&base_i::get_value));

 // Register implicit conversion between smart pointers. Boost.Python library
 // can not discover relationship between classes. You have to tell about the
 // relationship to it. This will allow Boost.Python to treat right, the
 // functions, which expect to get as argument smart_pointers::smart_ptr_t< base_i > class
 // instance, when smart_pointers::smart_ptr_t< derived from base_i > class instance is passed.
 //
 // For more information about implicitly_convertible see the documentation:
 // http://boost.org/libs/python/doc/v2/implicit.html .
 bp::implicitly_convertible<
 smart_pointers::smart_ptr_t< base_wrapper_t >
 , smart_pointers::smart_ptr_t< base_i > >();

 // The register_ptr_to_python functionality is explaned very well in the
 // documentation:
 // http://boost.org/libs/python/doc/v2/register_ptr_to_python.html .
 bp::register_ptr_to_python< smart_pointers::smart_ptr_t< base_i > >();

 bp::class_< derived_wrapper_t
 , bp::bases< base_i >
 , smart_pointers::smart_ptr_t<derived_wrapper_t> >("derived_t")
 // -----------^^
 // Pay attention on the class HeldType. It will allow us to create new classes
 // in Python, which derive from the derived_t class.
 .def("get_value", &derived_t::get_value, &derived_wrapper_t::default_get_value);

 // Now register all existing conversion:
 bp::implicitly_convertible<
 smart_pointers::smart_ptr_t< derived_wrapper_t >
 , smart_pointers::smart_ptr_t< derived_t > >();
 bp::implicitly_convertible<
 smart_pointers::smart_ptr_t< derived_t >
 , smart_pointers::smart_ptr_t< base_i > >();
 bp::implicitly_convertible<
 derived_ptr_t
 , smart_pointers::smart_ptr_t< derived_t > >();
 bp::register_ptr_to_python< derived_ptr_t >();

 bp::def("const_ref_get_value", &::const_ref_get_value);
 bp::def("ref_get_value", &::ref_get_value);
 bp::def("val_get_value", &::val_get_value);
 bp::def("create_derived", &::create_derived);
 bp::def("create_base", &::create_base);

 bp::class_< numeric_t, smart_pointers::smart_ptr_t< numeric_t > >("numeric_t")
 .def_readwrite("value", &numeric_t::value);

 bp::def("create_numeric", &::create_numeric);
 bp::def("get_numeric_value", &::get_numeric_value);

 // Work around for the public member variable, where type of the variable
 // is smart pointer problem
 bp::class_< shared_data::buffer_t >("buffer_t")
 .def_readwrite("size", &shared_data::buffer_t::size);

 bp::register_ptr_to_python< smart_pointers::smart_ptr_t< shared_data::buffer_t > >();

 bp::class_< shared_data::buffer_holder_t >("buffer_holder_t")
 .def("get_data", &shared_data::buffer_holder_t::get_data)
 .def_readwrite("data_naive", &shared_data::buffer_holder_t::data)
 // If you will try to access "data_naive" you will get
 // TypeError: No Python class registered for C++ class smart_pointers::smart_ptr_t<shared_data::buffer_t>
 // Next lines of code contain work around
 .add_property("data"
 , bp::make_getter(&shared_data::buffer_holder_t::data
 , bp::return_value_policy<bp::copy_non_const_reference>())
 , bp::make_setter(&shared_data::buffer_holder_t::data));

}

 User defined “smart pointer” class

User defined “smart pointer” class

#ifndef smart_ptr_t_19_09_2006
#define smart_ptr_t_19_09_2006

#include <assert.h>

//The smart_ptr_t class has been created based on Ogre::SharedPtr class
//http://www.ogre3d.org/docs/api/html/OgreSharedPtr_8h-source.html

namespace smart_pointers{

template<class T>
class smart_ptr_t {
protected:
 T* m_managed;
 unsigned int* m_use_count;
public:

 smart_ptr_t()
 : m_managed(0), m_use_count(0)
 {}

 //rep should not be NULL
 explicit smart_ptr_t(T* rep)
 : m_managed(rep), m_use_count(new unsigned int(1))
 {}

 //Every custom smart pointer class should have copy constructor and
 //assignment operator. Probably your smart pointer class already has this
 //functionality.

 smart_ptr_t(const smart_ptr_t& r)
 : m_managed(0), m_use_count(0)
 {
 m_managed = r.get();
 m_use_count = r.use_count_ptr();
 if(m_use_count){
 ++(*m_use_count);
 }
 }

 smart_ptr_t& operator=(const smart_ptr_t& r){
 if(m_managed == r.m_managed){
 return *this;
 }
 release();

 m_managed = r.get();
 m_use_count = r.use_count_ptr();
 if(m_use_count){
 ++(*m_use_count);
 }
 return *this;
 }

 //Next two functions allows to construct smart pointer from an existing one,
 //which manages object with a different type.
 //For example:
 // struct base{...};
 // struct derived : base { ... };
 // smart_ptr_t< base > b(smart_ptr_t<derived>());
 //
 //This functionality is very important for C++ Python bindings. It will allow
 //you to register smart pointer conversion:
 // boost::python::implicitly_convertible< smart_ptr_t< derived >, smart_ptr_t< base > >();
 template<class Y>
 smart_ptr_t(const smart_ptr_t<Y>& r)
 : m_managed(0), m_use_count(0)
 {
 m_managed = r.get();
 m_use_count = r.use_count_ptr();
 if(m_use_count){
 ++(*m_use_count);
 }
 }

 template< class Y>
 smart_ptr_t& operator=(const smart_ptr_t<Y>& r){
 if(m_managed == r.m_managed){
 return *this;
 }
 release();

 m_managed = r.get();
 m_use_count = r.use_count_ptr();
 if(m_use_count){
 ++(*m_use_count);
 }
 return *this;
 }

 virtual ~smart_ptr_t() {
 release();
 }

 inline T& operator*() const {
 assert(m_managed); return *m_managed;
 }

 inline T* operator->() const {
 assert(m_managed); return m_managed;
 }

 inline T* get() const {
 return m_managed;
 }

 inline unsigned int* use_count_ptr() const {
 return m_use_count;
 }

protected:

 inline void release(void){
 bool destroy_this = false;

 if(m_use_count){
 if(--(*m_use_count) == 0){
 destroy_this = true;
 }
 }
 if (destroy_this){
 destroy();
 }
 }

 virtual void destroy(void){
 delete m_managed;
 delete m_use_count;
 }
};

} //smart_pointers

#endif //smart_ptr_t_19_09_2006

 Boost.Python to/from Python tuple conversion tester

Boost.Python to/from Python tuple conversion tester

#include "boost/python.hpp"
#include "boost/tuple/tuple_comparison.hpp"
#include "tuples.hpp"

/**
 * Content:
 * * few testers for boost::tuples::tuple<...> to\from Python tuple conversion
 * functionality
 *
 * * example of custom r-value converter for a registered class
 *
 *
 **/

typedef boost::tuple< int, int, int > triplet_type;

triplet_type triplet_ret_val_000() {
 return triplet_type(0,0,0);
}

triplet_type triplet_ret_val_101() {
 return triplet_type(1,0,1);
}

triplet_type& triplet_ret_ref_010(){
 static triplet_type pt(0,1,0);
 return pt;
}

triplet_type* triplet_ret_ptr_110(){
 static triplet_type pt(1,1,0);
 return &pt;
}

bool test_triplet_val_000(triplet_type pt){
 return pt == triplet_type(0,0,0);
}

bool test_triplet_cref_010(const triplet_type& pt){
 return pt == triplet_type(0,1,0);
}

bool test_triplet_ref_110(triplet_type& pt){
 return pt == triplet_type(1,1,0);
}

bool test_triplet_ptr_101(triplet_type* pt){
 return pt && *pt == triplet_type(1,0,1);
}

namespace bpl = boost::python;

BOOST_PYTHON_MODULE(tuples){

 bpl::register_tuple< triplet_type >();

 bpl::def("triplet_ret_val_000", &::triplet_ret_val_000);
 bpl::def("triplet_ret_val_101", &::triplet_ret_val_101);
 bpl::def("triplet_ret_ref_010"
 , &::triplet_ret_ref_010
 , bpl::return_value_policy<bpl:: copy_non_const_reference>());
 bpl::def("triplet_ret_ptr_110"
 , &::triplet_ret_ptr_110
 , bpl::return_value_policy<bpl::return_by_value>());
 bpl::def("test_triplet_val_000", &::test_triplet_val_000);
 bpl::def("test_triplet_cref_010", &::test_triplet_cref_010);
 bpl::def("test_triplet_ref_110", &::test_triplet_ref_110);
 bpl::def("test_triplet_ptr_101", &::test_triplet_ptr_101);

}

 Boost.Python to/from Python tuple conversion

Boost.Python to/from Python tuple conversion

// Copyright 2004-2007 Roman Yakovenko.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef TUPLES_HPP_16_JAN_2007
#define TUPLES_HPP_16_JAN_2007

#include "boost/python.hpp"
#include "boost/tuple/tuple.hpp"
#include "boost/python/object.hpp" //len function
#include <boost/mpl/int.hpp>
#include <boost/mpl/next.hpp>

/**
 * Converts boost::tuples::tuple<...> to\from Python tuple
 *
 * The conversion is done "on-the-fly", you should only register the conversion
 * with your tuple classes.
 * For example:
 *
 * typedef boost::tuples::tuple< int, double, std::string > triplet;
 * boost::python::register_tuple< triplet >();
 *
 * That's all. After this point conversion to\from next types will be handled
 * by Boost.Python library:
 *
 * triplet
 * triplet& (return type only)
 * const triplet
 * const triplet&
 *
 * Implementation description.
 * The conversion uses Boost.Python custom r-value converters. r-value converters
 * is very powerful and undocumented feature of the library. The only documentation
 * we have is http://boost.org/libs/python/doc/v2/faq.html#custom_string .
 *
 * The conversion consists from two parts: "to" and "from".
 *
 * "To" conversion
 * The "to" part is pretty easy and well documented (http://docs.python.org/api/api.html).
 * You should use Python C API to create an instance of a class and than you
 * initialize the relevant members of the instance.
 *
 * "From" conversion
 * Lets start from analyzing one of the use case Boost.Python library have to
 * deal with:
 *
 * void do_smth(const triplet& arg){...}
 *
 * In order to allow calling this function from Python, the library should keep
 * parameter "arg" alive until the function returns. In other words, the library
 * should provide instances life-time management. The provided interface is not
 * ideal and could be improved. You have to implement two functions:
 *
 * void* convertible(PyObject* obj)
 * Checks whether the "obj" could be converted to an instance of the desired
 * class. If true, the function should return "obj", otherwise NULL
 *
 * void construct(PyObject* obj, converter::rvalue_from_python_stage1_data* data)
 * Constructs the instance of the desired class. This function will be called
 * if and only if "convertible" function returned true. The first argument
 * is Python object, which was passed as parameter to "convertible" function.
 * The second object is some kind of memory allocator for one object. Basically
 * it keeps a memory chunk. You will use the memory for object allocation.
 *
 * For some unclear for me reason, the library implements "C style Inheritance"
 * (http://www.embedded.com/97/fe29712.htm). So, in order to create new
 * object in the storage you have to cast to the "right" class:
 *
 * typedef converter::rvalue_from_python_storage<your_type_t> storage_t;
 * storage_t* the_storage = reinterpret_cast<storage_t*>(data);
 * void* memory_chunk = the_storage->storage.bytes;
 *
 * "memory_chunk" points to the memory, where the instance will be allocated.
 *
 * In order to create object at specific location, you should use placement new
 * operator:
 *
 * your_type_t* instance = new (memory_chunk) your_type_t();
 *
 * Now, you can continue to initialize the instance.
 *
 * instance->set_xyz = read xyz from obj
 *
 * If "your_type_t" constructor requires some arguments, "read" the Python
 * object before you call the constructor:
 *
 * xyz_type xyz = read xyz from obj
 * your_type_t* instance = new (memory_chunk) your_type_t(xyz);
 *
 * Hint:
 * In most case you don't really need\have to work with C Python API. Let
 * Boost.Python library to do some work for you!
 *
 **/

namespace boost{ namespace python{

namespace details{

//Small helper function, introduced to allow short syntax for index incrementing
template< int index>
typename mpl::next< mpl::int_< index > >::type increment_index(){
 typedef typename mpl::next< mpl::int_< index > >::type next_index_type;
 return next_index_type();
}

}

template< class TTuple >
struct to_py_tuple{

 typedef mpl::int_< tuples::length< TTuple >::value > length_type;

 static PyObject* convert(const TTuple& c_tuple){
 list values;
 //add all c_tuple items to "values" list
 convert_impl(c_tuple, values, mpl::int_< 0 >(), length_type());
 //create Python tuple from the list
 return incref(python::tuple(values).ptr());
 }

private:

 template< int index, int length >
 static void
 convert_impl(const TTuple &c_tuple, list& values, mpl::int_< index >, mpl::int_< length >) {
 values.append(c_tuple.template get< index >());
 convert_impl(c_tuple, values, details::increment_index<index>(), length_type());
 }

 template< int length >
 static void
 convert_impl(const TTuple&, list& values, mpl::int_< length >, mpl::int_< length >)
 {}

};

template< class TTuple>
struct from_py_sequence{

 typedef TTuple tuple_type;

 typedef mpl::int_< tuples::length< TTuple >::value > length_type;

 static void*
 convertible(PyObject* py_obj){

 if(!PySequence_Check(py_obj)){
 return 0;
 }

 if(!PyObject_HasAttrString(py_obj, "__len__")){
 return 0;
 }

 python::object py_sequence(handle<>(borrowed(py_obj)));

 if(tuples::length< TTuple >::value != len(py_sequence)){
 return 0;
 }

 if(convertible_impl(py_sequence, mpl::int_< 0 >(), length_type())){
 return py_obj;
 }
 else{
 return 0;
 }
 }

 static void
 construct(PyObject* py_obj, converter::rvalue_from_python_stage1_data* data){
 typedef converter::rvalue_from_python_storage<TTuple> storage_t;
 storage_t* the_storage = reinterpret_cast<storage_t*>(data);
 void* memory_chunk = the_storage->storage.bytes;
 TTuple* c_tuple = new (memory_chunk) TTuple();
 data->convertible = memory_chunk;

 python::object py_sequence(handle<>(borrowed(py_obj)));
 construct_impl(py_sequence, *c_tuple, mpl::int_< 0 >(), length_type());
 }

 static TTuple to_c_tuple(PyObject* py_obj){
 if(!convertible(py_obj)){
 throw std::runtime_error("Unable to construct boost::tuples::tuple from Python object!");
 }
 TTuple c_tuple;
 python::object py_sequence(handle<>(borrowed(py_obj)));
 construct_impl(py_sequence, c_tuple, mpl::int_< 0 >(), length_type());
 return c_tuple;
 }

private:

 template< int index, int length >
 static bool
 convertible_impl(const python::object& py_sequence, mpl::int_< index >, mpl::int_< length >){

 typedef typename tuples::element< index, TTuple>::type element_type;

 object element = py_sequence[index];
 extract<element_type> type_checker(element);
 if(!type_checker.check()){
 return false;
 }
 else{
 return convertible_impl(py_sequence, details::increment_index<index>(), length_type());
 }
 }

 template< int length >
 static bool
 convertible_impl(const python::object& py_sequence, mpl::int_< length >, mpl::int_< length >){
 return true;
 }

 template< int index, int length >
 static void
 construct_impl(const python::object& py_sequence, TTuple& c_tuple, mpl::int_< index >, mpl::int_< length >){

 typedef typename tuples::element< index, TTuple>::type element_type;

 object element = py_sequence[index];
 c_tuple.template get< index >() = extract<element_type>(element);

 construct_impl(py_sequence, c_tuple, details::increment_index<index>(), length_type());
 }

 template< int length >
 static void
 construct_impl(const python::object& py_sequence, TTuple& c_tuple, mpl::int_< length >, mpl::int_< length >)
 {}

};

template< class TTuple>
void register_tuple(){

 to_python_converter< TTuple, to_py_tuple<TTuple> >();

 converter::registry::push_back(&from_py_sequence<TTuple>::convertible
 , &from_py_sequence<TTuple>::construct
 , type_id<TTuple>());
};

} } //boost::python

#endif//TUPLES_HPP_16_JAN_2007

 Custom r-value converter registration

Custom r-value converter registration

#include "boost/python.hpp"
#include "boost/python/object.hpp" //len function
#include "boost/python/ssize_t.hpp" //ssize_t type definition
#include "boost/python/detail/none.hpp"
#include "tuples.hpp"

/**
 * Custom r-value converter example.
 *
 * Use-case description. I and few other developers work on Python bindings for
 * Ogre (http://ogre3d.org). The engine defines ColourValue class. This class
 * describes colour using 4 components: red, green, blue and transparency. The
 * class is used through the whole engine. One of the first features users ask
 * is to add an ability to pass a tuple, instead of the "ColourValue" instance.
 * This feature would allow them to write less code:
 *
 * x.do_smth((1,2,3,4))
 *
 * instead of
 *
 * x.do_smth(ogre.ColourValue(1,2,3,4))
 *
 * That's not all. They also wanted to be able to use ColourValue functionality.
 *
 * Solution.
 *
 * Fortunately, Boost.Python library provides enough functionality to implement
 * users requirements - r-value converters.
 *
 * R-Value converters allows to register custom conversion from Python type to
 * C++ type. The conversion will be handled by Boost.Python library automaticly
 * "on-the-fly".
 *
 * The example introduces "colour_t" class and few testers.
 *
 **/

struct colour_t{
 explicit colour_t(float red_=0.0, float green_=0.0, float blue_=0.0)
 : red(red_), green(green_), blue(blue_)
 {}

 bool operator==(const colour_t& other) const{
 return red == other.red && green == other.green && blue == other.blue;
 }

 float red, green, blue;
};

struct desktop_t{
 bool is_same_colour(const colour_t& colour) const{
 return colour == background;
 }
 colour_t background;
};

namespace bpl = boost::python;

struct pytuple2colour{

 typedef boost::tuples::tuple< float, float, float> colour_tuple_type;

 typedef bpl::from_py_sequence< colour_tuple_type > converter_type;

 static void* convertible(PyObject* obj){
 return converter_type::convertible(obj);
 }

 static void
 construct(PyObject* obj, bpl::converter::rvalue_from_python_stage1_data* data){
 typedef bpl::converter::rvalue_from_python_storage<colour_t> colour_storage_t;
 colour_storage_t* the_storage = reinterpret_cast<colour_storage_t*>(data);
 void* memory_chunk = the_storage->storage.bytes;

 float red(0.0), green(0.0), blue(0.0);
 boost::tuples::tie(red, green, blue) = converter_type::to_c_tuple(obj);

 colour_t* colour = new (memory_chunk) colour_t(red, green, blue);
 data->convertible = memory_chunk;
 }
};

void register_pytuple2colour(){
 bpl::converter::registry::push_back(&pytuple2colour::convertible
 , &pytuple2colour::construct
 , bpl::type_id<colour_t>());
}

bool test_val_010(colour_t colour){
 return colour == colour_t(0, 1, 0);
}

bool test_cref_000(const colour_t& colour){
 return colour == colour_t(0, 0, 0);
}

bool test_ref_111(colour_t& colour){
 return colour == colour_t(1, 1, 1);
}

bool test_ptr_101(colour_t* colour){
 return colour && *colour == colour_t(1, 0, 1);
}

bool test_cptr_110(const colour_t* colour){
 return colour && *colour == colour_t(1, 1, 0);
}

BOOST_PYTHON_MODULE(custom_rvalue){
 bpl::class_< colour_t >("colour_t")
 .def(bpl::init< bpl::optional< float, float, float > >(
 (bpl::arg("red_")=0.0, bpl::arg("green_")=0.0, bpl::arg("blue_")=0.0)))
 .def_readwrite("red", &colour_t::red)
 .def_readwrite("green", &colour_t::green)
 .def_readwrite("blue", &colour_t::blue);
 register_pytuple2colour();

 bpl::class_< desktop_t >("desktop_t")
 //naive aproach that will not work - plain Python assignment
 //.def_readwrite("background", &desktop_t::background)
 //You should use properties to force the conversion
 .add_property("background"
 , bpl::make_getter(&desktop_t::background)
 , bpl::make_setter(&desktop_t::background))
 .def("is_same_colour", &desktop_t::is_same_colour);

 bpl::def("test_val_010", &::test_val_010);
 bpl::def("test_cref_000", &::test_cref_000);
 bpl::def("test_ref_111", &::test_ref_111);
 bpl::def("test_ptr_101", &::test_ptr_101);
 bpl::def("test_cptr_110", &::test_cptr_110);
}

 Usage example/tester

Usage example/tester

import unittest
import tuples
import custom_rvalue

class tuplesersion_tester_t(unittest.TestCase):
 def __init__(self, *args):
 unittest.TestCase.__init__(self, *args)

 def test_tuples(self):
 self.failUnless((0,0,0) == tuples.triplet_ret_val_000())
 self.failUnless((1,0,1) == tuples.triplet_ret_val_101())
 self.failUnless((0,1,0) == tuples.triplet_ret_ref_010())
 self.failUnlessRaises(TypeError, tuples.triplet_ret_ptr_110)
 self.failUnless(tuples.test_triplet_val_000((0,0,0)))
 self.failUnless(tuples.test_triplet_cref_010((0,1,0)))
 self.failUnless(tuples.test_triplet_val_000([0,0,0]))
 self.failUnless(tuples.test_triplet_cref_010([0,1,0]))
 self.failUnlessRaises(TypeError, tuples.test_triplet_ref_110, (1,1,0))
 self.failUnlessRaises(TypeError, tuples.test_triplet_ptr_101, (1,0,1))

 def test_from_sequence(self):
 self.failUnless(custom_rvalue.test_val_010((0,1,0)))
 self.failUnless(custom_rvalue.test_cref_000((0,0,0)))
 self.failUnless(custom_rvalue.test_val_010([0,1,0]))
 self.failUnless(custom_rvalue.test_cref_000([0,0,0]))
 self.failUnlessRaises(Exception, custom_rvalue.test_ref_111, (1,1,1))
 self.failUnlessRaises(Exception, custom_rvalue.test_ptr_101, (1,0,1))
 self.failUnlessRaises(Exception, custom_rvalue.test_cptr_110, (1,1,0))

 def test_from_class(self):
 color = custom_rvalue.colour_t
 self.failUnless(custom_rvalue.test_val_010(color(0,1,0)))
 self.failUnless(custom_rvalue.test_cref_000(color(0,0,0)))
 self.failUnless(custom_rvalue.test_ref_111(color(1,1,1)))
 self.failUnless(custom_rvalue.test_ptr_101(color(1,0,1)))
 self.failUnless(custom_rvalue.test_cptr_110(color(1,1,0)))

 def cmp_colours(self, c1, c2):
 return c1.red == c2.red and c1.green == c2.green and c1.blue == c2.blue

 def test_from_class_property(self):
 colour = custom_rvalue.colour_t
 desktop = custom_rvalue.desktop_t()
 self.failUnless(self.cmp_colours(desktop.background, colour()))
 desktop.background = (1,0,1)
 self.failUnless(self.cmp_colours(desktop.background, colour(1,0,1)))
 self.failUnless(desktop.is_same_colour((1,0,1)))
 self.failUnless(desktop.is_same_colour(colour(1,0,1)))

def create_suite():
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(tuplesersion_tester_t))
 return suite

def run_suite():
 unittest.TextTestRunner(verbosity=2).run(create_suite())

if __name__ == "__main__":
 run_suite()

 Build script (SCons)

Build script (SCons)

#scons build script
SharedLibrary(target=r'tuples'
 , source=[r'tuples_tester.cpp']
 , LIBS=[r"boost_python"]
 , LIBPATH=[r"/home/roman/boost_cvs/bin",r""]
 , CPPPATH=[r"/home/roman/boost_cvs"
 , r"/usr/include/python2.4"]
 , SHLIBPREFIX=''
 , SHLIBSUFFIX='.so'
)

SharedLibrary(target=r'custom_rvalue'
 , source=[r'custom_rvalue.cpp']
 , LIBS=[r"boost_python"]
 , LIBPATH=[r"/home/roman/boost_cvs/bin",r""]
 , CPPPATH=[r"/home/roman/boost_cvs"
 , r"/usr/include/python2.4"]
 , SHLIBPREFIX=''
 , SHLIBSUFFIX='.so'
)

 Automatic conversion between C++ and Python types

Automatic conversion between C++ and Python types

Introduction

Boost.Python allows to define automatic conversion from\to C++\Python types.
While this is very, very useful functionality, the documentation for it does not
exist. This example will shed some light on “r-value”\”l-value” converters.

Content

This example actually consist from 2 small, well documented examples.

The first one shows how to handle conversion between tuples: boost::tuples::tuple [http://boost.org/libs/tuple/doc/tuple_users_guide.html]
and Python tuple.

The second one shows how to add an automatic conversion from Python tuple to
some registered class. The class registration allows you to use its functionality
and enjoy from automatic conversion.

Files

Download

automatic_conversion.zip

 Usage example/tester

Usage example/tester

import unittest
import shared_ptr

class tester_t(unittest.TestCase):
 def __init__(self, *args):
 unittest.TestCase.__init__(self, *args)

 def test(self):
 ptr = shared_ptr.create_ptr()
 self.failUnless(ptr.text == "ptr")
 self.failUnless(shared_ptr.read_ptr(ptr) == "ptr")

 const_ptr = shared_ptr.create_const_ptr()
 self.failUnless(const_ptr.text == "const ptr")
 self.failUnless(shared_ptr.read_const_ptr(const_ptr) == "const ptr")

 #testing conversion functionality
 self.failUnless(shared_ptr.read_const_ptr(ptr) == "ptr")

def create_suite():
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(tester_t))
 return suite

def run_suite():
 unittest.TextTestRunner(verbosity=2).run(create_suite())

if __name__ == "__main__":
 run_suite()

 How to register shared_ptr<const T> conversion?

How to register shared_ptr<const T> conversion?

Introduction

Boost.Python works pretty well with boost::shared_ptr< T > class, but
additional work should be done if you want to register a conversion to
boost::shared_ptr< const T> class.

Solutions

There are two possible solutions to the problem. The first one is to fix
Boost.Python library: pointer_holder.hpp.patch . The patch was contributed
to the library (8-December-2006) and some day it will be committed to the CVS.

It is also possible to solve the problem, without changing Boost.Python library:

namespace boost{

 template<class T>
 inline T* get_pointer(boost::shared_ptr<const T> const& p){
 return const_cast< T* >(p.get());
 }

}

namespace boost{ namespace python{

 template<class T>
 struct pointee< boost::shared_ptr<T const> >{
 typedef T type;
 };

} } //boost::python

namespace utils{

 template< class T >
 register_shared_ptrs_to_python(){
 namespace bpl = boost::python;
 bpl::register_ptr_to_python< boost::shared_ptr< T > >();
 bpl::register_ptr_to_python< boost::shared_ptr< const T > >();
 bpl::implicitly_convertible< boost::shared_ptr< T >, boost::shared_ptr< const T > >();
 }

}

BOOST_PYTHON_MODULE(...){
 class_< YourClass >("YourClass")
 ...;
 utils::register_shared_ptrs_to_python< YourClass >();
}

The second approach is a little bit “evil” because it redefines get_pointer
function for all shared pointer class instantiations. So you should be careful.

Files

Download

shared_ptr.zip

 Build script (SCons)

Build script (SCons)

#scons build script
SharedLibrary(target=r'shared_ptr'
 , source=[r'solution.cpp']
 , LIBS=[r"boost_python"]
 , LIBPATH=[r"/home/roman/boost_cvs/bin",r""]
 , CPPPATH=[r"/home/roman/boost_cvs"
 , r"/usr/include/python2.4"]
 , SHLIBPREFIX=''
 , SHLIBSUFFIX='.so'
)

 solution.cpp - C++ source file

solution.cpp - C++ source file

#include "boost/python.hpp"
#include <string>

namespace boost{

 template<class T>
 inline T* get_pointer(boost::shared_ptr<const T> const& p){
 return const_cast< T* >(p.get());
 }

}

namespace boost{ namespace python{

 template<class T>
 struct pointee< boost::shared_ptr<T const> >{
 typedef T type;
 };

} } //boost::python

struct info_t{
 //class info_t records in what function it was created information
 info_t(const std::string& n)
 : text(n)
 {}

 std::string text;
};

typedef boost::shared_ptr< info_t > ptr_t;
typedef boost::shared_ptr< const info_t > const_ptr_t;

ptr_t create_ptr(){
 return ptr_t(new info_t("ptr"));
}

const_ptr_t create_const_ptr(){
 return const_ptr_t(new info_t("const ptr"));
}

std::string read_ptr(ptr_t x){
 if(!x)
 return "";
 return x->text;
}

std::string read_const_ptr(const_ptr_t x){
 if(!x)
 return "";
 return x->text;
}

namespace bpl = boost::python;

namespace utils{

 template< class T >
 void register_shared_ptrs_to_python(){
 //small helper function, which will register shared_ptr conversions
 bpl::register_ptr_to_python< boost::shared_ptr< T > >();
 bpl::register_ptr_to_python< boost::shared_ptr< const T > >();
 bpl::implicitly_convertible< boost::shared_ptr< T >, boost::shared_ptr< const T > >();
 }

}

BOOST_PYTHON_MODULE(shared_ptr){
 bpl::class_< info_t >("info_t", bpl::init< std::string >())
 .add_property("text", &info_t::text);
 utils::register_shared_ptrs_to_python< info_t >();

 bpl::def("create_ptr", &create_ptr);
 bpl::def("create_const_ptr", &create_const_ptr);
 bpl::def("read_ptr", &read_ptr);
 bpl::def("read_const_ptr", &read_const_ptr);

}

 Boost.Python library patch

Boost.Python library patch

Download: pointer_holder.hpp.patch

*** pointer_holder.hpp.orig	2006-11-24 22:39:59.000000000 +0200
--- pointer_holder.hpp	2006-12-08 20:05:58.000000000 +0200

*** 35,40 ****
--- 35,42 ----

 # include <boost/detail/workaround.hpp>

+ # include <boost/type_traits/remove_const.hpp>
+
 namespace boost { namespace python {

 template <class T> class wrapper;

*** 122,146 ****
 template <class Pointer, class Value>
 void* pointer_holder<Pointer, Value>::holds(type_info dst_t, bool null_ptr_only)
 {
 if (dst_t == python::type_id<Pointer>()
 && !(null_ptr_only && get_pointer(this->m_p))
)
 return &this->m_p;
!
! Value* p = get_pointer(this->m_p);
 if (p == 0)
 return 0;

 if (void* wrapped = holds_wrapped(dst_t, p, p))
 return wrapped;

! type_info src_t = python::type_id<Value>();
 return src_t == dst_t ? p : find_dynamic_type(p, src_t, dst_t);
 }

 template <class Pointer, class Value>
 void* pointer_holder_back_reference<Pointer, Value>::holds(type_info dst_t, bool null_ptr_only)
 {
 if (dst_t == python::type_id<Pointer>()
 && !(null_ptr_only && get_pointer(this->m_p))
)
--- 124,153 ----
 template <class Pointer, class Value>
 void* pointer_holder<Pointer, Value>::holds(type_info dst_t, bool null_ptr_only)
 {
+ typedef typename boost::remove_const< Value >::type NonConstValue;
+
 if (dst_t == python::type_id<Pointer>()
 && !(null_ptr_only && get_pointer(this->m_p))
)
 return &this->m_p;
!
! Value* tmp = get_pointer(this->m_p);
! NonConstValue* p = const_cast<NonConstValue*>(tmp);
 if (p == 0)
 return 0;

 if (void* wrapped = holds_wrapped(dst_t, p, p))
 return wrapped;

! type_info src_t = python::type_id<NonConstValue>();
 return src_t == dst_t ? p : find_dynamic_type(p, src_t, dst_t);
 }

 template <class Pointer, class Value>
 void* pointer_holder_back_reference<Pointer, Value>::holds(type_info dst_t, bool null_ptr_only)
 {
+ typedef typename boost::remove_const< Value >::type NonConstValue;
+
 if (dst_t == python::type_id<Pointer>()
 && !(null_ptr_only && get_pointer(this->m_p))
)

*** 149,160 ****
 if (!get_pointer(this->m_p))
 return 0;

! Value* p = get_pointer(m_p);

 if (dst_t == python::type_id<held_type>())
 return p;

! type_info src_t = python::type_id<Value>();
 return src_t == dst_t ? p : find_dynamic_type(p, src_t, dst_t);
 }

--- 156,168 ----
 if (!get_pointer(this->m_p))
 return 0;

! Value* tmp = get_pointer(this->m_p);
! NonConstValue* p = const_cast<NonConstValue*>(tmp);

 if (dst_t == python::type_id<held_type>())
 return p;

! type_info src_t = python::type_id<NonConstValue>();
 return src_t == dst_t ? p : find_dynamic_type(p, src_t, dst_t);
 }

 exceptions.cpp - C++ source code

exceptions.cpp - C++ source code

#include "boost/python.hpp"
#include <stdexcept>
#include <iostream>

/**
 * Content:
 * * example, which explain how to create custom exception class, which gives
 * expected behaviour to exceptions exposed using Boost.Python library.
 *
 * The example also allows you to map your exception classes to the Python
 * built-in ones.
 *
 **/

class application_error : public std::exception{
public:

 application_error()
 : std::exception(), m_msg()
 {}

 application_error(const std::string& msg)
 : std::exception(), m_msg(msg)
 {}

 application_error(const application_error& other)
 : std::exception(other), m_msg(other.m_msg)
 {}

 const std::string& message() const
 { return m_msg; }

 virtual ~application_error() throw(){}

 std::string application_name() const
 { return "my_exceptions module"; }

private:
 const std::string m_msg;
};

//small dummy function that will conditionaly throws exception
void check_preconditions(bool raise_error){
 if(raise_error){
 throw application_error("xyz");
 }
}

//test function for custom r-value converter
std::string get_application_name(const application_error& err){
 return err.application_name();
}

namespace bpl = boost::python;

struct exception_translator{

 exception_translator(){

 bpl::register_exception_translator<application_error>(&exception_translator::translate);

 //Register custom r-value converter
 //There are situations, where we have to pass the exception back to
 //C++ library. This will do the trick
 bpl::converter::registry::push_back(&exception_translator::convertible
 , &exception_translator::construct
 , bpl::type_id<application_error>());
 }

 static void
 translate(const application_error& err){
 bpl::object pimpl_err(err);
 bpl::object pyerr_class = pimpl_err.attr("py_err_class");
 bpl::object pyerr = pyerr_class(pimpl_err);
 PyErr_SetObject(pyerr_class.ptr(), bpl::incref(pyerr.ptr()));
 }

 //Sometimes, exceptions should be passed back to the library.
 static void*
 convertible(PyObject* py_obj){
 if(1 != PyObject_IsInstance(py_obj, PyExc_Exception)){
 return 0;
 }

 if(!PyObject_HasAttrString(py_obj, "_pimpl")){
 return 0;
 }

 bpl::object pyerr(bpl::handle<>(bpl::borrowed(py_obj)));
 bpl::object pimpl = bpl::getattr(pyerr, "_pimpl");
 bpl::extract<application_error> type_checker(pimpl);
 if(!type_checker.check()){
 return 0;
 }
 return py_obj;
 }

 static void
 construct(PyObject* py_obj, bpl::converter::rvalue_from_python_stage1_data* data){
 typedef bpl::converter::rvalue_from_python_storage<application_error> storage_t;

 bpl::object pyerr(bpl::handle<>(bpl::borrowed(py_obj)));
 bpl::object pimpl = bpl::getattr(pyerr, "_pimpl");

 storage_t* the_storage = reinterpret_cast<storage_t*>(data);
 void* memory_chunk = the_storage->storage.bytes;
 application_error* cpp_err
 = new (memory_chunk) application_error(bpl::extract<application_error>(pimpl));

 data->convertible = memory_chunk;
 }

};

BOOST_PYTHON_MODULE(my_exceptions){

 typedef bpl::return_value_policy< bpl::copy_const_reference > return_copy_const_ref;
 bpl::class_< application_error >("_application_error_")
 .def(bpl::init<const std::string&>())
 .def(bpl::init<const application_error&>())
 .def("application_name", &application_error::application_name)
 .def("message", &application_error::message, return_copy_const_ref())
 .def("__str__", &application_error::message, return_copy_const_ref());

 exception_translator();

 bpl::def("check_preconditions", &::check_preconditions);
 bpl::def("get_application_name", &::get_application_name);
}

 Usage example/tester

Usage example/tester

import unittest
import my_exceptions

class application_error(Exception):
 def __init__(self, app_error):
 Exception.__init__(self)
 self._pimpl = app_error

 def __str__(self):
 return self._pimpl.message()

 def __getattribute__(self, attr):
 my_pimpl = super(application_error, self).__getattribute__("_pimpl")
 try:
 return getattr(my_pimpl, attr)
 except AttributeError:
 return super(application_error,self).__getattribute__(attr)

my_exceptions.application_error = application_error
my_exceptions._application_error_.py_err_class = application_error

class tester_t(unittest.TestCase):
 def __init__(self, *args):
 unittest.TestCase.__init__(self, *args)

 def test_function_call(self):
 my_exceptions.check_preconditions(False)

 def test_concrete_error(self):
 try:
 my_exceptions.check_preconditions(True)
 except my_exceptions.application_error, err:
 self.failUnless(str(err) == "xyz")

 def test_base_error(self):
 try:
 my_exceptions.check_preconditions(True)
 except Exception, err:
 self.failUnless(str(err) == "xyz")

 def test_redirection(self):
 try:
 my_exceptions.check_preconditions(True)
 except Exception, err:
 self.failUnless(err.application_name() == "my_exceptions module")

 def test_converter(self):
 try:
 my_exceptions.check_preconditions(True)
 except my_exceptions.application_error, err:
 app_name = my_exceptions.get_application_name(err)
 self.failUnless("my_exceptions module" == app_name)

def create_suite():
 suite = unittest.TestSuite()
 suite.addTest(unittest.makeSuite(tester_t))
 return suite

def run_suite():
 unittest.TextTestRunner(verbosity=2).run(create_suite())

if __name__ == "__main__":
 run_suite()

 Build script (SCons)

Build script (SCons)

#scons build script
SharedLibrary(target=r'my_exceptions'
 , source=[r'exceptions.cpp']
 , LIBS=[r"boost_python"]
 , LIBPATH=[r"/home/roman/boost_cvs/libs/python/build/bin-stage"]
 , CPPPATH=[r"/home/roman/boost_cvs"
 , r"/usr/include/python2.4"]
 , SHLIBPREFIX=''
 , SHLIBSUFFIX='.so'
)

 Custom exceptions

Custom exceptions

Introduction

Boost.Python has a limitation: it does not allow to create class, which derives
from the class defined in Python. In most use cases this should not bother you,
except one - exceptions. The example will provide you with one of the possible
solutions.

What’s the problem?

It is all about module interface and user expectations. If you can translate all
your exceptions to built-in ones, than you are fine. You don’t have to read this
guide, but Boost.Python exception translator [http://boost.org/libs/python/doc/v2/exception_translator.html] documentation.

My use case was different. I was supposed to export the exception classes and make
them play nice with the try ... except mechanism. I mean, users should be able
to:

	“except” all exceptions using except Exception, err: statement

	“except” the exposed library defined exception classes

I thought about few possible solutions to the problem. My first attempt was to
add a missing functionality to Boost.Python library. Well, I quickly found out
that the task is not a trivial one.

The following solution, I thought about, was to expose the exception class as-is and
to define new class in Python, which derives from it and the built-in Exception.
I implemented it and when I run the code I’ve got TypeError:
“Error when calling the metaclass bases multiple bases have instance lay-out conflict”.

The only solution left was to use “aggregation with automatic delegation”. I mean
instead of deriving from the exception class, I will keep it as a member variable
in a class defined in Python, which derives from the built-in Exception one.
Every time user access an attribute, the class defined in Python will automatically
redirect the request to the variable. This technique is explained much better here:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52295 .

Files

All files contain comments, which describe what and why was done.

Download

exceptions.zip

 Easy extending guide

Easy extending guide

Introduction

”... Boost.Python library is designed to wrap C++ interfaces non-intrusively, so that
you should not have to change the C++ code at all in order to wrap it.”

The previous statement is almost true. There are few use cases that the library
doesn’t support. This guide will list some of them and will offer few possible
solutions.

Pointer to function

Boost.Python doesn’t handle “pointer to function” functionality. You cannot pass
it as function argument or keep it, as a member variable.

The simple work-around is to use command design pattern [http://en.wikipedia.org/wiki/Command_pattern]

Problematic function arguments types

C arrays

Boost.Python doesn’t handle C arrays, the only exception are char* and
wchar_t*.

Consider the following function:

int write(int* data, size_t size);

The technical reasons are not the only one that prevent Boost.Python to expose such
functions, there is a mental one: such interface is not intuitive for Python
developers. They expect to pass single argument. For example, built-in file.write
method takes a single argument - sequence of characters.

Work-around:

	With small help from the developer, Py++ generates code which feets well into
Python developer mental model. Pure virtual member functions are a special
case, which Py++ doesn’t handle right now.

	Use STL containers, std::vector<...> and others.

Immutable by reference

Python defines few fundamental types as “immutable”. The value of an instance of
the immutable type could not be changed after construction. Try to avoid passing
the immutable types by reference.

Immutable types:

	char

	signed char

	unsigned char

	wchar_t

	short int

	short unsigned int

	bool

	int

	unsigned int

	long int

	long unsigned int

	long long int

	long long unsigned int

	float

	double

	long double

	complex double

	complex long double

	complex float

	std::string

	std::wstring

	C++ enum is mapped to Python int type

	smart pointers

Work around:

	Just don’t pass them by reference :-)

	With small help from the developer, Py++ generates code which work-arounds
this issue, but the resulting interface is ugly.

void*

In most cases, void* is used when a developer has to deal with a memory block.
Python provides support for this functionality, but I still didn’t find an easy and
intuitive way to expose it. There is no work-around for this issue.

If you use void* to pass a reference to some object, than Boost.Python and Py++
support such use case.

Memory managment

	Use std::auto_ptr to transfer ownership and responsibility for an object
destruction.

	The only well supported smart pointer class is boost::shared_ptr. I suggest
you to use it all the time, especially in cases where you want to create object
from Python and pass ownership to C++ code. You don’t want the headache associated
with this task.

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Py++11 package

 		Tutorials

 		What is Py++?

 		Graphical interface

 		Getting started

 		Advanced

 		Users and quotes

 		What do they say?

 		Who is using Py++?

 		Download & Install

 		Py++ on SourceForge

 		Subversion access

 		Download

 		Installation

 		Boost.Python installation

 		Dependencies

 		Documentation

 		Help needed!

 		Overview

 		Examples

 		Graphical interface

 		pyeasybmp

 		boost libraries

 		Links

 		Wiki

 		Reading

 		Help resources

 		Mailing lists

 		Libraries inspired by Boost.Python

 		Projects inspired by Py++ :-)

 		Blogs

 		Build systems

 		Compare Py++ to ...

 		Pyste

 		SWIG & SIP

 		TODO

 		Description

 		Boost.Python - lessons learned

 		Preamble

 		Development history

 		Contributors

 		SVN Version

 		Version 1.0

 		Version 0.9.5

 		Version 0.9.0

 		Version 0.8.5

 		Version 0.8.2

 		Version 0.8.1

 		Project name changed

 		Version 0.8.0

 		Version 0.7.0

 		Version 0.6.0

 		Version 0.5.1

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_images/pyplusplus_gui.png
